The Racket Graphical Interface Toolkit

Version 8.12.0.12

Matthew Flatt,
Robert Bruce Findler,
and John Clements

March 14, 2024

(require racket/gui/base) package: [gui-11iDb

The racket/gui/base library provides all of the class, interface, and procedure bindings
defined in this manual, in addition to the bindings of racket/draw and file/resource.

#lang racket/gui package: |gui-1ib

The racket/gui language combines all bindings of the racket language and the
racket/gui/base and racket/draw modules.

The racket/gui toolbox is roughly organized into two parts:
* The windowing toolbox, for implementing windows, buttons, menus, text fields, and
other controls.

* The editor toolbox, for developing traditional text editors, editors that mix text and
graphics, or free-form layout editors (such as a word processor, HTML editor, or
icon-based file browser).

Both parts of the toolbox rely extensively on the racket/draw drawing library.

https://pkgs.racket-lang.org/package/gui-lib
https://pkgs.racket-lang.org/package/gui-lib

Contents

Wind g

[I.1 Creating Windows|
I1.2 Drawing in Canvases| e
I1.3 Core Windowing Classes|
|14 Geometry Management|
[L41 Containees|
42 Containers|

|1.4.3 Defining New 'Types of Containers|.

|I1.5 Mouse and Keyboard Events|,
|1.6 Event Dispatching and Eventspaces|
[1.6.1 EventTypes and Priorities|
11.6.2 Eventspaces and Threads|

11.6.3 Creating and Setting the Eventspace|

|1.6.4 Continuations and Event Dispatch|

6 GOING . . o o o e e e e e

[/ Animationin Canvasesl
|1.8 Screen Resolution and Text Scaling|

2~ Widget Gallery]

3 Windowing Classes|

3.1 area</>|.
3.2 area-container</>|.
3.3 area-container-window<)>|.
....................................

11

12

15

16

17

19

22

23

24

24

25

25

26

27

33

40

B.5 canvas</>| 42

.................................... 47
3.7 _check-box/l 55
3.8 checkable-menu-itemy 57
3.9 choicel|. o e 59
[3.10 clipboard-clients|.« .« o v i 60
3.11 clipboard</>| o i e e e 62
BI2 combo-fieldy] 64
3.13 control<i> L 66
[3.14 column-control-eventsl. 67
[3.15 control-eventyl. 68
.................................... 69
.................................... 71
.................................... 73
.................................... 74
3.20 gaugel| 79
3.21 group-box-panel| 82
[3.22 grow-box-spacer-panes| oo e i e e e e e 83
[3.23 horizontal-pane/| e 83
[3.24 horizontal-panel/l. i i e e e e 84
[3:25 key-eventy| 86
[3.26 labelled-menu-item<%>|. 96
B27 Tist-boxW] 98
[3.28 list-control</> 106
3.20 menuj| 108

13.30 menu-bar/l e 109

3.31 menu-item<y>| 110
3.32 menu-itempl 111
[3.33 menu-item-container<y> Lo 112
................................... 113
[3.35 mouse-event/l 115
3.36 panel| 122
337 panell] 124
[3.38 popup-menuz|. 125
[3.39 printer-dci|. 127
B340 radio-box¥] 128
[3.41 selectable-menu-item<j> 131
[3.42 separator-menu-item/| 133
[3.43 scroll-eventy| 134
.................................... 135
[3.45 subarea<ii>| 138
[3.46 subwindow<y>| 138
[3.47 tab-panel’| 139
3.48 text-fieldjl. 143
3.49 timerd| e 146
3.50 top-level-window</>| 148
[3.51 vertical-pane|. 153
[3.52 vertical-panell| 154
[3.53 window<Z>| 156
4 Windowing Functions| 167

4.2 Eventspaces| 178
4.3 SystemMenus|. 183
4.4 Global Graphics|. 185
D v 187
4.6 Miscellaneous| o 188
197
[5.1 Editor Structure and Terminology| 199
B.T.T Characters and Graphemes| 200
BI2 Administratorsl 201
................................. 201

B2 FileFormallot 202
B21 Encoding Smips| 203
022 Global Data: Headers and Footers 205

5.3 Endof Line Ambiguity| 205
5.4 Implementing New Snips|o 206
BS Flattened Text o o 210
5.6 CaretOwnership| 210
5.7 Cut and Paste Time Stamps| 211
B8 Chickbacksl.ot 211
5.9 Internal EditorLocks|, . 211
5.10 Editorsand Threads| 212
|6 Snip and Style Classes| 214
6.1 add-color<y>| 214

6.2 image-snip/l. e e 216

6.3 mult-color</> 219
6.4 readable-snip</>| 221
6.5 SDIPA -« v e e e e e e e e 222
[6.6 snip-adminZ]. 236
6.7 snip-class/l. oo e e e 242
6.8 snip-class-1ist</>|. e e 244
6.9 string-sniphlo 245
................................... 246
[6.11 style-deltahl o o v v v i i i 249
[6.12 style-Tisth]. o o 262
[6.13 tab-sniph| 266
7 _Editor Classes 267
[[.1 _editor<i> 267
7.2 editor-adminglo 311
[/.3 editor-camnvash|. 316
[74 editor-datafl« o e 323
[1.5 editor-data-classhl . « - - « « ¢« e v i e e e 324
[7.6 editor-data-class-1ist</>] 325
[7.7 editor-snip-editor-admin<y/>|., 326
7.8 €ditor-Snip/hl . « -« v v v i e e e e e e 326
[7.9 editor-stream-inj|. 333
[/.10 editor-stream-in-bases]« v o i b e 335
[7.11 editor-stream-in-bytes-base/ 337
[7.12 editor-stream-out/l . . . - - . .«l 337

[7.13 editor-stream-out-base/, 339

[7.14 editor-stream-out-bytes-basel| 340
[7.15 editor-wordbreak-map/l. 340
.................................... 341
[7.17 pasteboardi|.o 350
718 texthl . . .« . . o e 369
8__Editor Functions 411
[0 WXME Decoding| 420
9.1 SnipClass Mapping|. e 424
D11 Nested Editors] 426

0.1. MAZES| . v v e 426

2 _DrRack mment Boxes|o oo 427

9.3 DrRacket XML Boxes| 428
9.4 DrRacket Racket Boxes|. 428
9.5 DrRacket Text Boxesl 429
9.6 DrRacket Fractionsl 0000 430
9.7 DrRacket Teachpack Images| 430
9.8 DrRacket Test-Case Boxes| 431
(10" Preferences| 432
11 Dynamic Loading| 433
|12 Startup Actions| 434
3 Init Libraries 435

[14 Platform Dependencies| 436

[ndex 437

[[ndex 437

1 Windowing

The windowing toolbox provides the basic building blocks of GUI programs, including
frames (top-level windows), modal dialogs, menus, buttons, check boxes, text fields, and
radio buttons—all as classes.

1.1 Creating Windows

To create a new top-level window, instantiate the frame} class:

; Make a frame by instantiating the frame) class
(define frame (new frame), [label "Example"]))

; Show the frame by calling its show method
(send frame show #t)

The built-in classes provide various mechanisms for handling GUI events. For example,
when instantiating the button, class, supply an event callback procedure to be invoked
when the user clicks the button. The following example program creates a frame with a text
message and a button; when the user clicks the button, the message changes:

; Make a frame by instantiating the frame), class
(define frame (new framey, [label "Example"]))

; Make a static text message in the frame
(define msg (new message), [parent frame]
[label "No events so far..."]))

; Make a button in the frame
(new buttony [parent frame]
[label "Click Me"]
; Callback procedure for a button click:
[callback (lambda (button event)
(send msg set-label "Button click"))])

; Show the frame by calling its show method
(send frame show #t)

Programmers never implement the GUI event loop directly. Instead, the windowing system
automatically pulls each event from an internal queue and dispatches the event to an appro-
priate window. The dispatch invokes the window’s callback procedure or calls one of the
window’s methods. In the above program, the windowing system automatically invokes the
button’s callback procedure whenever the user clicks Click Me.

See §13 “Classes
and Objects” for an
introduction to
classes and
interfaces in
Racket.

If a window receives multiple kinds of events, the events are dispatched to methods of the
window’s class instead of to a callback procedure. For example, a drawing canvas receives
update events, mouse events, keyboard events, and sizing events; to handle them, derive a
new class from the built-in canvas, class and override the event-handling methods. The
following expression extends the frame created above with a canvas that handles mouse and
keyboard events:

; Derive a new canvas (a drawing window) class to handle events
(define my-canvas/
(class canvas), ; The base class is canvas
; Define overriding method to handle mouse events
(define/override (on-event event)
(send msg set-label "Canvas mouse"))
; Define overriding method to handle keyboard events
(define/override (on-char event)
(send msg set-label "Canvas keyboard"))
; Call the superclass init, passing on all init args
(super-new)))

; Make a canvas that handles events in the frame
(new my-canvasy [parent frame])

After running the above code, manually resize the frame to see the new canvas. Moving the
cursor over the canvas calls the canvas’s on-event method with an object representing a
motion event. Clicking on the canvas calls on-event. While the canvas has the keyboard
focus, typing on the keyboard invokes the canvas’s on-char method.

The windowing system dispatches GUI events sequentially; that is, after invoking an event-
handling callback or method, the windowing system waits until the handler returns before
dispatching the next event. To illustrate the sequential nature of events, extend the frame
again, adding a Pause button:

(new buttony [parent frame]
[label "Pause"]
[callback (lambda (button event) (sleep 5))1)

After the user clicks Pause, the entire frame becomes unresponsive for five seconds; the
windowing system cannot dispatch more events until the call to sleep returns. For more
information about event dispatching, see[§1.6 “Event Dispatching and Eventspaces’}

In addition to dispatching events, the GUI classes also handle the graphical layout of win-
dows. Our example frame demonstrates a simple layout; the frame’s elements are lined up
top-to-bottom. In general, a programmer specifies the layout of a window by assigning each
GUI element to a parent container. A vertical container, such as a frame, arranges its chil-
dren in a column, and a horizontal container arranges its children in a row. A container can

10

be a child of another container; for example, to place two buttons side-by-side in our frame,
create a horizontal panel for the new buttons:

(define panel (new horizontal-panel) [parent frame]))
(new buttony [parent panell
[label "Left"]
[callback (lambda (button event)
(send msg set-label "Left click"))])
(new buttonj, [parent panel]
[label "Right"]
[callback (lambda (button event)
(send msg set-label "Right click"))])

For more information about window layout and containers, see [§1.4 “Geometry Manage-|

[ment™

1.2 Drawing in Canvases

The content of a canvas is determined by its on-paint method, where the default on-paint
calls the paint-callback function that is supplied when the canvas is created. The on-
paint method receives no arguments and uses the canvas’s get-dc method to obtain a
drawing context (DC) for drawing; the default on-paint method passes the canvas and this
DC on to the paint-callback function. Drawing operations of the racket/draw toolbox
on the DC are reflected in the content of the canvas onscreen.

For example, the following program creates a canvas that displays large, friendly letters:

(define frame (new frameY
[label "Example"]
[width 300]
[height 300]))
(new canvasy [parent frame]
[paint-callback
(lambda (canvas dc)
(send dc set-scale 3 3)
(send dc set-text-foreground "blue")
(send dc draw-text "Don't Panic!" 0 0))])
(send frame show #t)

The background color of a canvas can be set through the set-canvas-background method.
To make the canvas transparent (so that it takes on its parent’s color and texture as its initial
content), supply 'transparent in the style argument when creating the canvas.

See §1 “Overview” in The Racket Drawing Toolkit for an overview of drawing with the

11

racket/draw library. For more advanced information on canvas drawing, see|§1.7 “Anima-

1.3 Core Windowing Classes

The fundamental graphical element in the windowing toolbox is an area. The following
classes implement the different types of areas in the windowing toolbox:

e Containers — areas that can contain other areas:

— frame’, — a frame is a top-level window that the user can move and resize.

— dialogl, — a dialog is a modal top-level window; when a dialog is shown, other
top-level windows are disabled until the dialog is dismissed.

— panely, — a panel is a subcontainer within a container. The toolbox provides
three subclasses of panely: vertical-panel’, horizontal-panel, and
tab-panell.

— pane’% — a pane is a lightweight panel. It has no graphical representation or
event-handling capabilities. The pane?, class has three subclasses: vertical-
paneY, horizontal-pane, and grow-box-spacer-panel.

¢ Containees — areas that must be contained within other areas:

— panel’,— a panel is a containee as well as a container.
— pane’ — a pane is a containee as well as a container.
— canvas), — a canvas is a subwindow for drawing on the screen.

— editor-canvas} — an editor canvas is a subwindow for displaying a text ed-
itor or pasteboard editor. The editor-canvas} class is documented with the

editor classes in

— Controls — containees that the user can manipulate:

* message’, — a message is a static text field or bitmap with no user interac-
tion.

% buttony, — a button is a clickable control.

* check-box, — a check box is a clickable control; the user clicks the control
to set or remove its check mark.

% radio-box’ — a radio box is a collection of mutually exclusive radio but-
tons; when the user clicks a radio button, it is selected and the radio box’s
previously selected radio button is deselected.

% choice’, — a choice item is a pop-up menu of text choices; the user selects
one item in the control.

* list-box% — a list box is a scrollable lists of text choices; the user selects
one or more items in the list (depending on the style of the list box).

12

* text-field), — a fext field is a box for simple text entry.

% combo-field% — a combo field combines a text field with a pop-up menu
of choices.

slider’, — aslider is a dragable control that selects an integer value within
a fixed range.

% gauge’, — a gauge is an output-only control (the user cannot change the
value) for reporting an integer value within a fixed range.

As suggested by the above listing, certain areas, called containers, manage certain other
areas, called containees. Some areas, such as panels, are both containers and containees.

Most areas are windows, but some are non-windows. A window, such as a panel, has a
graphical representation, receives keyboard and mouse events, and can be disabled or hidden.
In contrast, a non-window, such as a pane, is useful only for geometry management; a non-
window does not receive mouse events, and it cannot be disabled or hidden.

Every area is an instance of the area<y> interface. Each container is also an instance of
the area-container<’> interface, whereas each containee is an instance of subarea<y>.
Windows are instances of window<%>. The area-container<)>, subarea<%>, and win-
dow<Y%> interfaces are subinterfaces of area<’>.

The following diagram shows more of the type hierarchy under area<y>:

area<}),>
______________________ | __
I I |
subarea<’,> window<%> area-container<¥%>
l____ _______ | |
I I I |
subwindow<%> area-container-window<%>
________ o _
I | I
control<y> canvas<y%> top-level-window<>

The diagram below extends the one above to show the complete type hierarchy under
area<%>. (Some of the types are represented by interfaces, and some types are represented
by classes. In principle, every area type should be represented by an interface, but whenever
the windowing toolbox provides a concrete implementation, the corresponding interface is
omitted from the toolbox.) To avoid intersecting lines, the hierarchy is drawn for a cylin-
drical surface; lines from subarea<’> and subwindow<7> wrap from the left edge of the
diagram to the right edge.

area<’>
_____________________ | ___
I I |

subarea<’,> window<%> area-container<%>

13

| |
subwindow<%> | | |
<L | | | || _<<<
| | | | pane’,
control<y> | | | |- horizontal-pane’ |
|- message, | | | |- vertical-pane) |
|- button% I | | |
| - check-box% | area-container-window<%>
|- slider? | | I
|- gaugeb | r |
|- text-fieldy | | |
|- combo-fieldy | [-———---- panely
|- radio-box% | | | - horizontal-panely,
|- list-control<y> | | |- vertical-panel},
|- choice | | |- tab-panely
[- list-box | | | - group-box-
panel’,

| |
| |- top-level-window<}>
| |- frame,
canvas</,> |- dialogh
|- canvas’
|- editor-canvasy

Menu bars, menus, and menu items are graphical elements, but not areas (i.e., they do not
have all of the properties that are common to areas, such as an adjustable graphical size).
Instead, the menu classes form a separate container—containee hierarchy:

* Menu Item Containers
— menu-bar’, — a menu bar is a top-level collection of menus that are associated
with a frame.

— menuY, — a menu contains a set of menu items. The menu can appear in a menu
bar, in a popup menu, or as a submenu in another menu.

— popup-menuj — a popup menu is a top-level menu that is dynamically displayed
in a canvas or editor canvas.
e Menu Items
— separator-menu-itemy), — a separator is an unselectable line in a menu or
popup menu.
— menu-item} — a plain menu item is a selectable text item in a menu. When the
item is selected, its callback procedure is invoked.

— checkable-menu-item} — a checkable menu item is a text item in a menu; the
user selects a checkable menu item to toggle a check mark next to the item.

14

— menu’ — a menu is a menu item as well as a menu item container.

The following diagram shows the complete type hierarchy for the menu system:

menu-item<%> menu-item-container<’>
| |
|- separator-menu-item}), _____ [___
|- labelled-menu-item<%> | | - menu-bar/,
_________ o | - popup-menu%
|

- selectable-menu-item<¥%>
| - menu-itemY
| - checkable-menu-item}

1.4 Geometry Management

The windowing toolbox’s geometry management makes it easy to design windows that look
right on all platforms, despite different graphical representations of GUI elements. Geometry
management is based on containers; each container arranges its children based on simple
constraints, such as the current size of a frame and the natural size of a button.

The built-in container classes include horizontal panels (and panes), which align their chil-
dren in a row, and vertical panels (and panes), which align their children in a column. By
nesting horizontal and vertical containers, a programmer can achieve most any layout. For
example, to construct a dialog with the shape

with the following program:

; Create a dialog
(define dialog (instantiate dialog), ("Example")))

; Add a text field to the dialog
(new text-field) [parent dialog] [label "Your name"])

15

; Add a horizontal panel to the dialog, with centering for buttons
(define panel (new horizontal-panel), [parent dialog]
[alignment '(center center)]))

; Add Cancel and Ok buttons to the horizontal panel
(new buttony [parent panel] [label "Cancel'])
(new button) [parent panel] [label "0Ok"])
(when (system-position-ok-before-cancel?)
(send panel change-children reverse))

; Show the dialog
(send dialog show #t)

Each container arranges its children using the natural size of each child, which usually de-
pends on instantiation parameters of the child, such as the label on a button or the number of
choices in a radio box. In the above example, the dialog stretches horizontally to match the
minimum width of the text field, and it stretches vertically to match the total height of the
field and the buttons. The dialog then stretches the horizontal panel to fill the bottom half
of the dialog. Finally, the horizontal panel uses the sum of the buttons’ minimum widths to
center them horizontally.

As the example demonstrates, a stretchable container grows to fill its environment, and it
distributes extra space among its stretchable children. By default, panels are stretchable in
both directions, whereas buttons are not stretchable in either direction. The programmer can
change whether an individual GUI element is stretchable.

The following subsections describe the container system in detail, first discussing the at-
tributes of a containee in [§1.4.1 *"Containees’| and then describing the attributes of a con-
tainer in [§1.4.2 “Containers’| In addition to the built-in vertical and horizontal containers,
programmers can define new types of containers as discussed in the final subsection, [§1.4.3]
[*Defining New Types of Containers’|

1.4.1 Containees

Each containee, or child, has the following properties:

* a graphical minimum width and a graphical minimum height;
* a requested minimum width and a requested minimum height,
¢ horizontal and vertical stretchability (on or off); and

* horizontal and vertical margins.

16

A container arranges its children based on these four properties of each containee. A con-
tainee’s parent container is specified when the containee is created. A window containee can
be hidden or deleted within its parent, and its parent can be changed by reparenting.

The graphical minimum size of a particular containee, as reported by get-graphical-min-
size, depends on the platform, the label of the containee (for a control), and style attributes
specified when creating the containee. For example, a button’s minimum graphical size
ensures that the entire text of the label is visible. The graphical minimum size of a control
(such as a button) cannot be changed; it is fixed at creation time. (A control’s minimum size
is not recalculated when its label is changed.) The graphical minimum size of a panel or
pane depends on the total minimum size of its children and the way that they are arranged.

To select a size for a containee, its parent container considers the containee’s requested
minimum size rather than its graphical minimum size (assuming the requested minimum is
larger than the graphical minimum). Unlike the graphical minimum, the requested minimum
size of a containee can be changed by a programmer at any time using the min-width and
min-height methods.

Unless a containee is stretchable (in a particular direction), it always shrinks to its minimum
size (in the corresponding direction). Otherwise, containees are stretched to fill all available
space in a container. Each containee begins with a default stretchability. For example,
buttons are not initially stretchable, whereas a one-line text field is initially stretchable in the
horizontal direction. A programmer can change the stretchability of a containee at any time
using the stretchable-width and stretchable-height methods.

A margin is space surrounding a containee. Each containee’s margin is independent of
its minimum size, but from the container’s point of view, a margin effectively increases
the minimum size of the containee. For example, if a button has a vertical margin of 2,
then the container must allocate enough room to leave two pixels of space above and below
the button, in addition to the space that is allocated for the button’s minimum height. A
programmer can adjust a containee’s margin with horiz-margin and vert-margin. The
default margin is 2 for a control, and 0 for any other type of containee.

In practice, the requested minimum size and margin of a control are rarely changed, although
they are often changed for a canvas. Stretchability is commonly adjusted for any type of
containee, depending on the visual effect desired by the programmer.

1.4.2 Containers

A container has the following properties:

* a list of (non-deleted) children containees;
¢ arequested minimum width and a requested minimum height;

* aspacing used between the children;

17

* a border margin used around the total set of children;
* horizontal and vertical stretchability (on or off); and

* an alignment setting for positioning leftover space.

These properties are factored into the container’s calculation of its own size and the arrange-
ment of its children. For a container that is also a containee (e.g., a panel), the container’s
requested minimum size and stretchability are the same as for its containee aspect.

A containee’s parent container is specified when the containee is created. A containee win-
dow can be hidden or deleted within its parent container, and its parent can be changed by
reparenting (but a non-window containee cannot be hidden, deleted, or reparented):

* A hidden child is invisible to the user, but space is still allocated for each hidden child
within a container. To hide or show a child, call the child’s show method.

* A deleted child is hidden and ignored by container as it arranges its other children, so
no space is reserved in the container for a deleted child. To make a child deleted or
non-deleted, call the container’s delete-child or add-child method (which calls
the child’s show method).

* To reparent a window containee, use the reparent method. The window retains its
hidden or deleted status within its new parent.

When a child is created, it is initially shown and non-deleted. A deleted child is subject
to garbage collection when no external reference to the child exists. A list of non-deleted
children (hidden or not) is available from a container through its get-children method.

The order of the children in a container’s non-deleted list is significant. For example, a
vertical panel puts the first child in its list at the top of the panel, and so on. When a new child
is created, it is put at the end of its container’s list of children. The order of a container’s list
can be changed dynamically via the change-children method. (The change-children
method can also be used to activate or deactivate children.)

The graphical minimum size of a container, as reported by get-graphical-min-size, is
calculated by combining the minimum sizes of its children (summing them or taking the
maximum, as appropriate to the layout strategy of the container) along with the spacing and
border margins of the container. A larger minimum may be specified by the programmer
using min-width and min-height methods; when the computed minimum for a container
is larger than the programmer-specified minimum, then the programmer-specified minimum
is ignored.

A container’s spacing determines the amount of space left between adjacent children in the
container, in addition to any space required by the children’s margins. A container’s border
margin determines the amount of space to add around the collection of children; it effectively

18

decreases the area within the container where children can be placed. A programmer can
adjust a container’s border and spacing dynamically via the border and spacing methods.
The default border and spacing are O for all container types.

Because a panel or pane is a containee as well as a container, it has a containee margin in
addition to its border margin. For a panel, these margins are not redundant because the panel
can have a graphical border; the border is drawn inside the panel’s containee margin, but
outside the panel’s border margin.

For a top-level-window container, such as a frame or dialog, the container’s stretchability
determines whether the user can resize the window to something larger than its minimum
size. Thus, the user cannot resize a frame that is not stretchable. For other types of containers
(i.e., panels and panes), the container’s stretchability is its stretchability as a containee in
some other container. All types of containers are initially stretchable in both directions—
except instances of grow-box-spacer-pane, which is intended as a lightweight spacer
class rather than a useful container class—but a programmer can change the stretchability of
an area at any time via the stretchable-width and stretchable-height methods.

The alignment specification for a container determines how it positions its children when
the container has leftover space. (A container can only have leftover space in a particular
direction when none of its children are stretchable in that direction.) For example, when
the container’s horizontal alignment is ' left, the children are left-aligned in the container
and leftover space is accumulated to the right. When the container’s horizontal alignment
is 'center, each child is horizontally centered in the container. A container’s alignment is
changed with the set-alignment method.

1.4.3 Defining New Types of Containers

Although nested horizontal and vertical containers can express most layout patterns, a pro-
grammer can define a new type of container with an explicit layout procedure. A program-
mer defines a new type of container by deriving a class from panel, or pane} and overriding
the container-size and place-children methods. The container-size method takes
a list of size specifications for each child and returns two values: the minimum width and
height of the container. The place-children method takes the container’s size and a list
of size specifications for each child, and returns a list of sizes and placements (in parallel to
the original list).

An input size specification is a list of four values:

e the child’s minimum width;
¢ the child’s minimum height;

* the child’s horizontal stretchability (#t means stretchable, #f means not stretchable);
and

19

* the child’s vertical stretchability.

For place-children, an output position and size specification is a list of four values:

* the child’s new horizontal position (relative to the parent);

* the child’s new vertical position;

the child’s new actual width;

* the child’s new actual height.

The widths and heights for both the input and output include the children’s margins. The re-
turned position for each child is automatically incremented to account for the child’s margin

in placing the control.

1.5 Mouse and Keyboard Events

Whenever the user moves the mouse, clicks or releases a mouse button, or presses a key on
the keyboard, an event is generated for some window. The window that receives the event

depends on the current state of the graphic display:

* The receiving window of a mouse event is usually the window under the cursor when
the mouse is moved or clicked. If the mouse is over a child window, the child window
receives the event rather than its parent.

When the user clicks in a window, the window “grabs” the mouse, so that al/l mouse
events go to that window until the mouse button is released (regardless of the location
of the cursor). As a result, a user can click on a scrollbar thumb and drag it without
keeping the cursor strictly inside the scrollbar control.

A mouse button-release event is normally generated for each mouse button-down
event, but a button-release event might get dropped. For example, a modal dialog
might appear and take over the mouse. More generally, any kind of mouse event can
get dropped in principle, so avoid algorithms that depend on precise mouse-event se-
quences. For example, a mouse tracking handler should reset the tracking state when
it receives an event other than a dragging event.

The receiving window of a keyboard event is the window that owns the keyboard
focus at the time of the event. Only one window owns the focus at any time, and focus
ownership is typically displayed by a window in some manner. For example, a text
field control shows focus ownership by displaying a blinking caret.

Within a top-level window, only certain kinds of subwindows can have the focus, de-
pending on the conventions of the platform. Furthermore, the subwindow that initially

20

owns the focus is platform-specific. A user can moves the focus in various ways, usu-
ally by clicking the target window. A program can use the focus method to move the
focus to a subwindow or to set the initial focus.

A 'wheel-up or 'wheel-down event may be sent to a window other than the one with
the keyboard focus, depending on how the operating system handles wheel events.

A key-press event may correspond to either an actual key press or an auto-key repeat.
Multiple key-press events without intervening key-release events normally indicate an
auto-key. Like any input event, however, key-release events sometimes get dropped
(e.g., due to the appearance of a modal dialog).

Controls, such as buttons and list boxes, handle keyboard and mouse events automatically,
eventually invoking the callback procedure that was provided when the control was created.
A canvas propagates mouse and keyboard events to its on-event and on-char methods,
respectively.

A mouse and keyboard event is delivered in a special way to its window. Each ancestor of the
receiving window gets a chance to intercept the event through the on-subwindow-event
and on-subwindow-char methods. See the method descriptions for more information.

The default on-subwindow-char method for a top-level window intercepts keyboard events
to detect menu-shortcut events and focus-navigation events. See on-subwindow-char in
frame’, and on-subwindow-char in dialog} for details. Certain OS-specific key combi-
nations are captured at a low level, and cannot be overridden. For example, on Windows and
Unix, pressing and releasing Alt always moves the keyboard focus to the menu bar. Simi-
larly, Alt-Tab switches to a different application on Windows. (Alt-Space invokes the system
menu on Windows, but this shortcut is implemented by on-system-menu-char, which is
called by on-subwindow-char in frame, and on-subwindow-char in dialogh.)

1.6 Event Dispatching and Eventspaces

A graphical user interface is an inherently multi-threaded system: one thread is the program
managing windows on the screen, and the other thread is the user moving the mouse and
typing at the keyboard. GUI programs typically use an event queue to translate this multi-
threaded system into a sequential one, at least from the programmer’s point of view. Each
user action is handled one at a time, ignoring further user actions until the previous one is
completely handled. The conversion from a multi-threaded process to a single-threaded one
greatly simplifies the implementation of GUI programs.

Despite the programming convenience provided by a purely sequential event queue, certain
situations require a less rigid dialog with the user:

* Nested event handling: In the process of handling an event, it may be necessary to
obtain further information from the user. Usually, such information is obtained via

21

a modal dialog; in whatever fashion the input is obtained, more user events must be
received and handled before the original event is completely handled. To allow the
further processing of events, the handler for the original event must explicitly yield to
the system. Yielding causes events to be handled in a nested manner, rather than in a
purely sequential manner.

* Asynchronous event handling: An application may consist of windows that represent
independent dialogs with the user. For example, a drawing program might support
multiple drawing windows, and a particularly time-consuming task in one window
(e.g., a special filter effect on an image) should not prevent the user from working
in a different window. Such an application needs sequential event handling for each
individual window, but asynchronous (potentially parallel) event handling across win-
dows. In other words, the application needs a separate event queue for each window,
and a separate event-handling thread for each event queue.

An eventspace is a context for processing GUI events. Each eventspace maintains its own
queue of events, and events in a single eventspace are dispatched sequentially by a designated
handler thread. An event-handling procedure running in this handler thread can yield to the
system by calling yield, in which case other event-handling procedures may be called in a
nested (but single-threaded) manner within the same handler thread. Events from different
eventspaces are dispatched asynchronously by separate handler threads.

When a frame or dialog is created without a parent, it is associated with the current
eventspace as described in[§1.6.3 “Creating and Setting the Eventspace™ Events for a top-
level window and its descendants are always dispatched in the window’s eventspace. Every
dialog is modal; a dialog’s show method implicitly calls yield to handle events while the
dialog is shown. (See also[§1.6.2 “Eventspaces and Threads”|for information about threads
and modal dialogs.) Furthermore, when a modal dialog is shown, the system disables key
and mouse press/release events to other top-level windows in the dialog’s eventspace, but
windows in other eventspaces are unaffected by the modal dialog. (Mouse motion, enter,
and leave events are still delivered to all windows when a modal dialog is shown.)

1.6.1 Event Types and Priorities

In addition to events corresponding to user and windowing actions, such as button clicks,
key presses, and updates, the system dispatches two kinds of internal events: timer events
and explicitly queued events.

Timer events are created by instances of timer%. When a timer is started and then expires,
the timer queues an event to call the timer’s notify method. Like a top-level window, each
timer is associated with a particular eventspace (the current eventspace as described in[§1.6.3]
[‘Creating and Setting the Eventspace™) when it is created, and the timer queues the event in
its eventspace.

Explicitly queued events are created with queue-callback, which accepts a callback pro-

22

cedure to handle the event. The event is enqueued in the current eventspace at the time of
the call to queue-callback, with either a high or low priority as specified by the (optional)
second argument to queue-callback.

An eventspace’s event queue is actually a priority queue with events sorted according to their
kind, from highest-priority (dispatched first) to lowest-priority (dispatched last):

* High-priority events installed with queue-callback have the highest priority.
* Timer events via timery have the second-highest priority.
* Window-refresh events have the third-highest priority.

* Input events, such as mouse clicks or key presses, have the second-lowest priority.

* Low-priority events installed with queue-callback have the lowest priority.

Although a programmer has no direct control over the order in which events are dispatched,
a programmer can control the timing of dispatches by setting the event dispatch handler via
the event-dispatch-handler parameter. This parameter and other eventspace procedures
are described in more detail in[§4.2 “Eventspaces’]

1.6.2 Eventspaces and Threads

When a new eventspace is created, a corresponding handler thread is created for the
eventspace. The initial eventspace does not create a new handler thread, but instead uses the
thread where racket/gui/base is instantiated as the initial eventspace’s handler thread;
see also[§12 “Startup Actions”|

When the system dispatches an event for an eventspace, it always does so in the eventspace’s
handler thread. A handler procedure can create new threads that run indefinitely, but as long
as the handler thread is running a handler procedure, no new events can be dispatched for
the corresponding eventspace.

When a handler thread shows a dialog, the dialog’s show method implicitly calls yield for
as long as the dialog is shown. When a non-handler thread shows a dialog, the non-handler
thread simply blocks until the dialog is dismissed. Calling yield with no arguments from
a non-handler thread has no effect. Calling yield with a semaphore from a non-handler
thread is equivalent to calling semaphore-wait.

Windowing functions and methods from racket/gui/base can be called in any thread, but
beware of creating race conditions among the threads or with the handler thread:

» Although graphical objects are thread-safe, callbacks or other event handlers might
see changing object states if graphical elements are manipulated in multiple threads.

23

« Editor classes have specific threading constraints. See[§5.10 “Editors and Threads™}

Because it’s easy to create confusing race conditions by manipulating GUI elements in a non-
handler thread (while callbacks might run in the handler thread), it’s best to instead perform
all GUI setup and manipulations in the handler thread. The queue-callback function can
be helpful to schedule work in the handler thread from any other thread. When already
running in the handler thread, use yield to wait on non-GUI events while allowing GUI
events to proceed.

1.6.3 Creating and Setting the Eventspace

Whenever a frame, dialog, or timer is created, it is associated with the current eventspace as
determined by the current-eventspace parameter (see §11.3.2 “Parameters”).

The make-eventspace procedure creates a new eventspace. The following example creates
a new eventspace and a new frame in the eventspace (the parameterize syntactic form
temporary sets a parameter value):

(let ([new-es (make-eventspace)])
(parameterize ([current-eventspace new-es])
(new frame), [label "Example"])))

When an eventspace is created, it is placed under the management of the current custo-
dian. When a custodian shuts down an eventspace, all frames and dialogs associated with
the eventspace are destroyed (without calling can-close? or on-close in top-level-
window<%>), all timers in the eventspace are stopped, and all enqueued callbacks are re-
moved. Attempting to create a new window, timer, or explicitly queued event in a shut-down
eventspace raises the exn:fail exception.

An eventspace is a synchronizable event (not to be confused with a GUI event), so it can
be used with sync. As a synchronizable event, an eventspace is in a blocking state when a
frame is visible, a timer is active, a callback is queued, or a menu-bar¥ is created with a
'root parent. Note that the blocking state of an eventspace is unrelated to whether an event
is ready for dispatching. Note also that an eventspace is not necessarily in a blocking state
while an event is being handled, timer is firing, or callback is being run, and an eventspace
may be left in a block state if its handler thread has terminated.

1.6.4 Continuations and Event Dispatch

Whenever the system dispatches an event, the call to the handler is wrapped with a contin-
uation prompt (see call-with-continuation-prompt) that delimits continuation aborts
(such as when an exception is raised) and continuations captured by the handler. The de-

24

limited continuation prompt is installed outside the call to the event dispatch handler, so any
captured continuation includes the invocation of the event dispatch handler.

For example, if a button callback raises an exception, then the abort performed by the default
exception handler returns to the event-dispatch point, rather than terminating the program or
escaping past an enclosing (yield). If with-handlers wraps a (yield) that leads to
an exception raised by a button callback, however, the exception can be captured by the
with-handlers.

Along similar lines, if a button callback captures a continuation (using the default continua-
tion prompt tag), then applying the continuation re-installs only the work to be done by the
handler up until the point that it returns; the dispatch machinery to invoke the button call-
back is not included in the continuation. A continuation captured during a button callback is
therefore potentially useful outside of the same callback.

1.6.5 Logging

The GUI system logs the timing of when events are handled and how long they take to be
handled. Each event that involves a callback into Racket code has two events logged, both
of which use the gui-event struct:

(struct gui-event (start end name) #:prefab)

The start field is the result of (current-inexact-milliseconds) when the event han-
dling starts. The end field is #£ for the log message when the event handling starts, and the
result of (current-inexact-milliseconds) when it finishes for the log message when
an event finishes. The name field is the name of the function that handled the event; in
the case of a queue-callback-based event, it is the name of the thunk passed to queue-
callback.

1.7 Animation in Canvases

The content of a canvas is buffered, so if a canvas must be redrawn, the on-paint method
or paint-callback function usually does not need to be called again. To further reduce
flicker, while the on-paint method or paint-callback function is called, the windowing
system avoids flushing the canvas-content buffer to the screen.

Canvas content can be updated at any time by drawing with the result of the canvas’s get-dc
method, and drawing is thread-safe. Changes to the canvas’s content are flushed to the screen
periodically (not necessarily on an event-handling boundary), but the f1ush method imme-
diately flushes to the screen—as long as flushing has not been suspended. The suspend-
flush and resume-flush methods suspend and resume both automatic and explicit flushes,
although on some platforms, automatic flushes are forced in rare cases.

25

For most animation purposes, suspend-flush, resume-flush, and f1lush can be used to
avoid flicker and the need for an additional drawing buffer for animations. During an anima-
tion, bracket the construction of each animation frame with suspend-flush and resume-
flush to ensure that partially drawn frames are not flushed to the screen. Use flush to
ensure that canvas content is flushed when it is ready if a suspend-f1lush will soon follow,
because the process of flushing to the screen can be starved if flushing is frequently sus-
pended. The method refresh-now in canvas}, conveniently encapsulates this sequence.

1.8 Screen Resolution and Text Scaling

On Mac OS, screen sizes are described to users in terms of drawing units. A Retina display
provides two pixels per drawing unit, while drawing units are used consistently for window
sizes, child window positions, and canvas drawing. A “point” for font sizing is equivalent to
a drawing unit.

On Windows and Unix, screen sizes are described to users in terms of pixels, while a scale
can be selected independently by the user to apply to text and other items. Typical text scales
are 125%, 150%, and 200%. The racket/gui library uses this scale for all GUI elements,
including the screen, windows, buttons, and canvas drawing. For example, if the scale is
200%, then the screen size reported by get-display-size will be half of the number of
pixels in each dimension. Beware that round-off effects can cause the reported size of a
window to be different than a size to which a window has just been set. A “point” for font
sizing is equivalent to (/ 96 72) drawing units.

On Unix, if the PLT_DISPLAY_BACKING_SCALE environment variable is set to a positive
real number, then it overrides certain system settings for racket/gui scaling. With GTK+
3 (see[§14 “Platform Dependencies’)), the environment variable overrides system-wide text
scaling; with GTK+ 2, the environment variable overrides both text and control scaling.
Menus, control labels using the default label font, and non-label control parts will not use a
scale specified through PLT_DISPLAY_BACKING_SCALE, however.

Changed in version 1.14 of package gui-1ib: Added support for scaling on Unix.

26

2 Widget Gallery

This section shows the main widgets available in the Racket Graphical User Interface
Toolkit. Each image is a link to the documentation of the relevant widget.

IE»uttn:-nI

(define button (new button
(parent panel)
(label "Button")))

[Check Box

(define check-box (new check-box
(parent panel)
(label "Check Box")
(value #t)))

Ehoicel ltem0 2

(define choice (new choice}
(label "Choice")
(parent panel)
(choices (1ist "Item 0"))))

27

Combo Field

(define combo-field (new combo-field
(label "Combo™)
(parent panel)
(choices (list "Field"))
(init-value "Field")))

Editor Canvas

(define editor-canvas (new editor-canvas),
(parent panel)
(label "Editor Canvas")))
(define text (new text’))
(send text insert "Editor Canvas")
(send editor-canvas set-editor text)

Gauge G

(define gauge (new gauge
(label "Gauge")
(parent panel)
(range 100)))
(send gauge set-value 42)

Group Box Panel

(define group-box-panel (new group-box-panel,
(parent panel)
(label "Group Box Panel")))

List Box First Column

ltem 1

Item 2

(define list-box (new list-box’
(label "List Box")
(parent (new horizontal-panel,
(parent panel)
(style (list 'border))))
(choices (list "Item O"
"ITtem 1"
"ITtem 2"))
(style (list 'single
'column-headers))
(columns (list "First Column"))))

29

(define menu-bar (new menu-bar?,
(parent frame)))

(new menu’,
(label "&File")
(parent menu-bar))
(new menu’,
(label "&Edit")
(parent menu-bar))
(new menu’,
(label "&Help")
(parent menu-bar))

Message

(define message (new messageY
(parent panel)
(label "Message")))

Panel

(define a-panel (new panely

(parent panel)

(style (list 'border))))
(new message’,

(parent a-panel)
(label "Panel"))

® Button0
Radio Box () Button1

) Button 2

(define radio-box (new radio-box
(label "Radio Box")
(parent panel)
(choices (list "Button 0"
"Button 1"
"Button 2"))))

(define slider (new slider),
(label "Slider")
(parent panel)
(min-value 0)
(max-value 100)
(init-value 42)))

31

TabO|| Tab1 | Tab 2

(define tab-panel (new tab-panel,
(parent panel)
(choices (list "Tab 0"
"Tab 1"
"Tab 2"))))

Texk|Field

(define text-field (new text-field%
(label "Text")
(parent panel)
(init-value "Field")))

32

3 Windowing Classes

Windows and controls:

area<’)>
_____________________ | ___
| | |
subarea<y,> window<%> area-container<y>
<<<________ _____ | e __ | <<
| | | | [
subwindow<%> | | |
L& | | | | _<<L
| | | | pane’,
control<y%> | | | |- horizontal-pane’ |
| - message’, | | | |- vertical-pane’ |
|- button% | | | |
| - check-box} | area-container-window<%>
|- slider% I I I
|- gauge’ | l\ |
|- text-field% I I I
|- combo-field’, | [--—--—-- panel’,
|- radio-box% | | |- horizontal-panel},
|- list-control<y> | | | - vertical-panell,
|- choice% | | |- tab-panely
- list-box | | | - group-box-
panel’,
| |
| |- top-level-window<}>
| | - frame9,
canvas<y,> |- dialogh
|- canvas’,
| - editor-canvasY
Menus:

menu-item<%>

| - separator-menu-item
| - labelled-menu-item<%>

| - menu-itemY

menu-item-container<y>
|
e [___
| | - menu-bar/,
| | - popup-menu’,
|

- selectable-menu-item<¥%>

33

| - checkable-menu-item}

Events and other:

event, timer,
|- key-event} cursor,
| - mouse-event/,
|- scroll-event clipboard<y%>
|- control-eventy clipboard-client
Alphabetical:

3.1 area<y>

area<’,> : interface?

An area<y,> object is either a window or a windowless container for managing the position
and size of other areas. An area<%> can be a container, a containee, or both. The only areas
without a parent are top-level windows.

All area<> classes accept the following named instantiation arguments:

* min-width — default is the initial graphical minimum width; passed to min-width

* min-height — default is the initial graphical minimum height; passed to min-
height

* stretchable-width — default is class-specific; passed to stretchable-width

* stretchable-height — default is class-specific; passed to stretchable-height

(send an-area get-graphical-min-size)
— dimension-integer? dimension-integer?

Returns the area’s graphical minimum size as two values: the minimum width and the mini-
mum height (in pixels).

See [§1.4 “Geometry Management’| for more information. Note that the return value does
not depend on the area’s min-width and min-height settings.

(send an-area get-parent)
— (or/c (is-a?/c area-container<y>) #f)

Returns the area’s parent. A top-level window may have no parent (in which case #f is
returned), or it may have another top-level window as its parent.

34

(send an-area get-top-level-window)
— (or/c (is-a?/c frame}%) (is-a?/c dialog¥))

Returns the area’s closest frame or dialog ancestor. For a frame or dialog area, the frame or
dialog itself is returned.

(send an-area min-width) — dimension-integer?
(send an-area min-width w) — void?
w : dimension-integer?

Gets or sets the area’s minimum width (in pixels) for geometry management.

The minimum width is ignored when it is smaller than the area’s graphical minimum width,
or when it is smaller than the width reported by container-size if the area is a container.
See[§1.4 “Geometry Management”|for more information.

An area’s initial minimum width is its graphical minimum width. See also get-graphical-
min-size.

When setting the minimum width, if w is smaller than the internal hard minimum, an
exn:fail:contract exception is raised.

(send an-area min-height) — dimension-integer?
(send an-area min-height h) — void?
h : dimension-integer?

Gets or sets the area’s minimum height for geometry management.

The minimum height is ignored when it is smaller than the area’s graphical minimum height,
or when it is smaller than the height reported by container-size if the area is a container.
See|§1.4 “Geometry Management” | for more information.

An area’s initial minimum height is its graphical minimum height. See also get-
graphical-min-size.

When setting the minimum height (in pixels); if h is smaller than the internal hard minimum,
an exn:fail:contract exception is raised.

(send an-area stretchable-height) — boolean?
(send an-area stretchable-height stretch?) — void?
stretch? : any/c

Gets or sets the area’s vertical stretchability for geometry management. See[§T.4 “Geometry]
for more information.

35

(send an-area stretchable-width) — boolean?
(send an-area stretchable-width stretch?) — void?
stretch? : any/c

Gets or sets the area’s horizontal stretchability for geometry management. See
letry Management”|for more information.

3.2 area-container<y%>

area-container<%> : interface?
implements: area<’>

An area-container<y> is a container area<%>.

All area-container<y> classes accept the following named instantiation arguments:

* border — default is O; passed to border
* spacing — default is O; passed to spacing

* alignment — default is class-specific, such as '(center top) for vertical-
panely; the list elements are passed to set-alignment

(send an-area-container add-child child) — void?
child : (is-a?/c subwindow<%>)

Add the given subwindow to the set of non-deleted children. See also change-children.

(send an-area-container after-new-child child) — void?
child : (is-a?/c subarea<},>)

Specification: This method is called after a new containee area is created with this area as
its container. The new child is provided as an argument to the method.

Default implementation: Does nothing.

(send an-area-container begin-container-sequence) — void?

Suspends geometry management in the container’s top-level window until end-
container-sequence is called. The begin-container-sequence and end-
container-sequence methods are used to bracket a set of container modifications so that

36

the resulting geometry is computed only once. A container sequence also delays show and
hide actions by change-children, as well as the on-screen part of showing via show un-
til the sequence is complete. Sequence begin and end commands may be nested arbitrarily
deeply.

(send an-area-container border) — spacing-integer?
(send an-area-container border margin) — void?
margin : spacing-integer?

Gets or sets the border margin for the container in pixels. This margin is used as an inset
into the panel’s client area before the locations and sizes of the subareas are computed.

(send an-area-container change-children filter) — void?
filter : ((listof (is-a?/c subarea<%>))
-> . (listof (is-a?/c subarea<},>)))

Takes a filter procedure and changes the container’s list of non-deleted children. The filter
procedure takes a list of children areas and returns a new list of children areas. The new list
must consist of children that were created as subareas of this area (i.e., change-children
cannot be used to change the parent of a subarea).

After the set of non-deleted children is changed, the container computes the sets of newly
deleted and newly non-deleted children. Newly deleted windows are hidden. Newly non-
deleted windows are shown.

Since non-window areas cannot be hidden, non-window areas cannot be deleted. If the filter
procedure removes non-window subareas, an exception is raised and the set of non-deleted
children is not changed.

(send an-area-container container-flow-modified) — void?

Call this method when the result changes for an overridden flow-defining method, such as
place-children. The call notifies the geometry manager that the placement of the con-
tainer’s children needs to be recomputed.

The reflow-containermethod only recomputes child positions when the geometry man-
ager thinks that the placement has changed since the last computation.

(send an-area-container container-size info)
— dimension-integer? dimension-integer?
info : (listof (list/c dimension-integer?
dimension-integer?
any/c
any/c))

37

Called to determine the minimum size of a container. See[§1.4 “Geometry Management”|for
more information.

(send an-area-container delete-child child) — void?
child : (is-a?/c subwindow<%>)

Removes the given subwindow from the list of non-deleted children. See also change-
children.

(send an-area-container end-container-sequence) — void?

See begin-container-sequence

(send an-area-container get-alignment)
— (symbols 'right 'center 'left)
(symbols 'bottom 'center 'top)

Returns the container’s current alignment specification. See set-alignment for more in-
formation.

(send an-area-container get-children)
— (listof (is-a?/c subarea<}>))

Returns a list of the container’s non-deleted children. (The non-deleted children are the ones
currently managed by the container; deleted children are generally hidden.) The order of the
children in the list is significant. For example, in a vertical panel, the first child in the list is
placed at the top of the panel.

(send an-area-container place-children info
width
height)

— (listof (1list/c dimension-integer?

dimension-integer?
dimension-integer?
dimension-integer?))
info : (listof (list/c dimension-integer?
dimension-integer?
any/c
any/c))
width : dimension-integer?
height : dimension-integer?

38

Called to place the children of a container. See [§1.4 “Geometry Management”| for more
information.

(send an-area-container reflow-container) — void?

When a container window is not shown, changes to the container’s set of children do not nec-
essarily trigger the immediate re-computation of the container’s size and its children’s sizes
and positions. Instead, the recalculation is delayed until the container is shown, which avoids
redundant computations between a series of changes. The reflow-container method
forces the immediate recalculation of the container’s and its children’s sizes and locations.

Immediately after calling the reflow-container method, get-size, get-client-size,
get-width, get-height, get-x, and get-y report the manager-applied sizes and loca-
tions for the container and its children, even when the container is hidden. A container
implementation can call functions such as get-size at any time to obtain the current state
of a window (because the functions do not trigger geometry management).

See also container-flow-modified.

(send an-area-container set-alignment horiz-align
vert-align) — void?
horiz-align : (symbols 'right 'center 'left)
vert-align : (symbols 'bottom 'center 'top)

Sets the alignment specification for a container, which determines how it positions its chil-
dren when the container has leftover space (when a child was not stretchable in a particular
dimension).

When the container’s horizontal alignment is ' left, the children are left-aligned in the con-
tainer and whitespace is inserted to the right. When the container’s horizontal alignment is
'center, each child is horizontally centered in the container. When the container’s hori-
zontal alignment is 'right, leftover whitespace is inserted to the left.

Similarly, a container’s vertical alignment can be 'top, 'center, or 'bottom.

(send an-area-container spacing) — spacing-integer?
(send an-area-container spacing spacing) — void?
spacing : spacing-integer?

Gets or sets the spacing, in pixels, used between subareas in the container. For example, a
vertical panel inserts this spacing between each pair of vertically aligned subareas (with no
extra space at the top or bottom).

39

3.3 area-container-window<%>

area-container-window<’%> : interface?
implements: area-container<y>
window<%>

Combines two interfaces.

3.4 button,

IE?.I.Jtt::mI

buttony, : class?
superclass: object’

extends: control<’>

Whenever a button is clicked by the user, the button’s callback procedure is invoked. A
callback procedure is provided as an initialization argument when each button is created.

(new button
[label label]
[parent parent]
[[callback callback]
[style style]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c buttonl)
label : (or/c label-string?
(is-a?/c bitmap%)
(list/c (is-a?/c bitmap%)
label-string?
(or/c 'left 'top 'right 'bottom)))
parent : (or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel},) (is-a?/c pane}))

40

callback : ((is-a?/c button),) (is-a?/c control-event’,) . -> . any)
= (lambda (b e) (void))

style : (listof (or/c 'border 'multi-line 'deleted)) = null

font : (is-a?/c font)) = normal-control-font

enabled : any/c = #t

vert-margin :@ spacing-integer? = 2

horiz-margin : spacing-integer? = 2

min-width : (or/c dimension-integer? #f) = #f

min-height : (or/c dimension-integer? #f) = #f

stretchable-width : any/c = #f

stretchable-height : any/c = #f

Creates a button with a string label, bitmap label, or both. If 1abel is a bitmap, and if the
bitmap has a mask (see get-loaded-mask in bitmap¥) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. If 1abel is a list, then the button has both a bitmap
and string label, and the symbol 'left, 'top, 'right, or 'bottom specifies the location of
the image relative to the text on the button.

If & occurs in 1abel (when label includes a string), it is specially parsed; on Windows and
Unix, the character following & is underlined in the displayed control to indicate a keyboard
mnemonic. (On Mac OS, mnemonic underlines are not shown.) The underlined mnemonic
character must be a letter or a digit. The user can effectively click the button by typing the
mnemonic when the control’s top-level-window contains the keyboard focus. The user must
also hold down the Meta or Alt key if the keyboard focus is currently in a control that handles
normal alphanumeric input. The & itself is removed from Iabel before it is displayed for
the control; a && in 1abel is converted to & (with no mnemonic underlining). On Mac OS, a
parenthesized mnemonic character is removed (along with any surrounding space) before the
label is displayed, since a parenthesized mnemonic is often used for non-Roman languages.
Finally, for historical reasons, any text after a tab character is removed on all platforms. All
of these rules are consistent with label handling in menu items (see set-label). Mnemonic
keyboard events are handled by on-traverse-char (but not on Mac OS).

The callback procedure is called (with the event type 'button) whenever the user clicks
the button.

If style includes 'border, the button is drawn with a special border that indicates to
the user that it is the default action button (see on-traverse-char). If style includes
'multi-line, the button is drawn in a way that can stretch vertically and accommodate
multiple lines in a text label; currently, this style makes a difference only on Mac OS, and
it is selected automatically when label is a string that contains #\newline or #\return.
If style includes 'deleted, then the button is created as hidden, and it does not affect
its parent’s geometry; the button can be made active later by calling parent’s add-child
method.

The font argument determines the font for the control. For information about the en-

41

abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<},>.

Changed in version 1.47 of package gui-1ib: Added the 'multi-line style, and made it selected when label

contains #\return.

(send a-button set-label label) — void?
label : (or/c label-string?
(is-a?/c bitmap%))

Overrides set-1label in window<’>.
The same as set-1label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap button. Since label is a bitmap, if the bitmap
has a mask (see get-loaded-mask in bitmap?¥) that is the same size as the bitmap, then the
mask is used for the label. Modifying a bitmap while it is used as a label has an unspecified
effect on the displayed label. The bitmap label is installed only if the control was originally
created with a bitmap label.

If the button has both a string and a bitmap label, then either can be set using set-label.

3.5 canvas<y>

canvas<%> : interface?
implements: subwindow<%>

A canvas is a subwindow onto which graphics and text can be drawn. Canvases also receive
mouse and keyboard events.

The canvas<’> interface is implemented by two classes:

e canvas’, — a canvas for arbitrary drawing and event handling; and

e editor-canvasy — a canvas for displaying editor<%> objects.

To draw onto a canvas, get its device context via get-dc. There are two basic approaches to
updating a canvas:

* Drawing normally occurs during the canvas’s on-paint callback. The canvas? class
supports a paint-callback initialization argument to be called from the default on-
paint method.

A canvas’s on-paint method is called automatically as an event when the windowing
system determines that the canvas must be updated, such as when the canvas is first

42

shown or when it is resized. Use the refresh method to explicitly trigger an on-
paint call from the windowing system. (Multiple refresh requests before on-paint
can be called are coaleced into a single on-paint call.)

Before the windowing system calls on-paint, it may erase the canvas’s background
(see erase), depending on the style of the canvas (e.g., as determined by the style
initialization argument for canvas’,). Even when the canvas’s style suppresses ex-
plicit clearing of the canvas, a canvas may be erased by the windowing system due to
window-moving and -resizing operations. For a transparent canvas, “erased” means
that the canvas’s parent window shows through.

* Drawing can also occur at any time outside an on-paint call from the windowing sys-
tem, including from threads other than the handler thread of the canvas’s eventspace.
Drawing outside an on-paint callback from the system is transient in the sense that
windowing activity can erase the canvas, but the drawing is persistent as long as no
windowing refresh is needed.

Calling an on-paint method directly is the same as drawing outside an on-paint
callback from the windowing system. For a canvas}, use refresh-now to force an
immediate update of the canvas’s content that is otherwise analogous to queueing an
update with refresh.

Drawing to a canvas’s drawing context actually renders into an offscreen buffer. The buffer
is automatically flushed to the screen asynchronously, explicitly via the flush method,
or explicitly via flush-display—unless flushing has been disabled for the canvas. The
suspend-flush method suspends flushing for a canvas until a matching resume-flush
calls; calls to suspend-flush and resume-flush can be nested, in which case flushing
is suspended until the outermost suspend-flush is balanced by a resume-flush. An
on-paint call from the windowing system is implicitly wrapped with suspend-flush and
resume-flush calls, as is a call to a paint procedure by refresh-now.

In the case of a transparent canvas, line and text smoothing can depend on the window that
serves as the canvas’s background. For example, smoothing may color pixels differently
depending on whether the target context is white or gray. Background-sensitive smoothing
is supported only if a relatively small number of drawing commands are recorded in the
canvas’s offscreen buffer, however.

(send a-canvas accept-tab-focus) — boolean?
(send a-canvas accept-tab-focus on?) — void?
on? : any/c

Gets or sets whether tab-focus is enabled for the canvas (assuming that the canvas is not
created with the 'no-focus style for canvas?). When tab-focus is enabled, the canvas can
receive the keyboard focus when the user navigates among a frame or dialog’s controls with
the Tab and arrow keys. By default, tab-focus is disabled.

43

When tab-focus is enabled for a canvas?, object, Tab, arrow, Enter, and Escape keyboard
events are consumed by a frame’s default on-traverse-char method. (In addition, a dia-
log’s default method consumes Escape key events.) Otherwise, on-traverse-char allows
the keyboard events to be propagated to the canvas.

For an editor-canvas?, object, handling of Tab, arrow, Enter, and Escape keyboard events
is determined by the allow-tab-exit method.

(send a-canvas flush) — void?

Like f1ush-display, but constrained if possible to the canvas.

(send a-canvas get-canvas-background)
— (or/c (is-a?/c colory) #f)

Returns the color currently used to “erase” the canvas content before on-paint is called.
See also set-canvas-background.

The result is #f if the canvas was created with the 'transparent style, otherwise it is
always a colory object.

(send a-canvas get-dc) — (is-a?/c dc<%>)

Gets the canvas’s device context. See dc<%> for more information about drawing.

(send a-canvas get-scaled-client-size)
— dimension-integer? dimension-integer?

Returns the canvas’s drawing-area dimensions in unscaled pixels—that is, without scaling
(see[81.8 “Screen Resolution and Text Scaling”)) that is implicitly applied to the canvas size
and content.

For example, when a canvas on Mac OS resides on a Retina display, it has a backing scale
of 2, and so the results from get-scaled-client-size will be twice as large as results
from get-client-size. If the same canvas’s frame is dragged to a non-Retina screen,
its backing scale can change to 1, in which case get-scaled-client-size and get-
client-size will produce the same value. Whether a canvas’s backing scale can change
depends on the platform.

The size reported by get-scaled-client-size may match a viewport size for OpenGL
drawing in canvasy instance with the 'gl style. On Mac OS, however, the viewport will
match the scaled size unless the canvas is created with a gl-configy specification that is

44

adjusted to high-resolution mode via set-hires-mode. See also get-gl-client-size in
canvash.

Added in version 1.13 of package gui-1ib.

(send a-canvas min-client-height) — dimension-integer?
(send a-canvas min-client-height h) — void?
h : dimension-integer?

Gets or sets the canvas’s minimum height for geometry management, based on the client
size rather than the full size. The client height is obtained or changed via min-height in
area<>, adding or subtracting border and scrollbar sizes as appropriate.

The minimum height is ignored when it is smaller than the canvas’s graphical minimum
height. See|§1.4 “Geometry Management”|for more information.

(send a-canvas min-client-width) — dimension-integer?
(send a-canvas min-client-width w) — void?
w : dimension-integer?

Gets or sets the canvas’s minimum width for geometry management, based on the canvas’s
client size rather than its full size. The client width is obtained or changed via min-width
in area<}>, adding or subtracting border and scrollbar sizes as appropriate.

The minimum width is ignored when it is smaller than the canvas’s graphical minimum
width. See§1.4 “Geometry Management”|for more information.

(send a-canvas on-char ch) — void?
ch : (is-a?/c key-event,)

Specification: Called when the canvas receives a keyboard event. See also
[Keyboard Events™|

Default implementation: Does nothing.

(send a-canvas on-event event) — void?
event : (is-a?/c mouse-event%)

Specification: Called when the canvas receives a mouse event. See also

[Keyboard Events™| noting in particular that certain mouse events can get dropped.

Default implementation: Does nothing.

45

(send a-canvas on-paint) — void?

Specification: Called when the canvas is exposed or resized so that the image in the canvas
can be repainted.

When on-paint is called in response to a system expose event and only a portion of the
canvas is newly exposed, any drawing operations performed by on-paint are clipped to the
newly-exposed region; however, the clipping region as reported by get-clipping-region
does not change.

Default implementation: Does nothing.

(send a-canvas on-tab-in) — void?

Specification: Called when the keyboard focus enters the canvas via keyboard navigation
events. The on-focus method is also called, as usual for a focus change. When the keyboard
focus leaves a canvas due to a navigation event, only on-focus is called.

See also accept-tab-focus and on-traverse-char in top-level-window<}> .

Default implementation: Does nothing.

(send a-canvas resume-flush) — void?

See canvas<}> for information on canvas flushing.

(send a-canvas set-canvas-background color) — void?
color : (is-a?/c color%)

Sets the color used to “erase” the canvas content before on-paint is called. (This color is
typically associated with the canvas at a low level, so that it is used even when a complete
refresh of the canvas is delayed by other activity.)

If the canvas was created with the ' transparent style, an exn:fail:contract exception
is raised.

(send a-canvas set-resize-corner on?) — void?
on? : any/c

On Mac OS, enables or disables space for a resize tab at the canvas’s lower-right corner
when only one scrollbar is visible. This method has no effect on Windows or Unix, and it
has no effect when both or no scrollbars are visible. The resize corner is disabled by default,
but it can be enabled when a canvas is created with the 'resize-corner style.

46

(send a-canvas suspend-flush) — void?

See canvas<%> for information on canvas flushing.

Beware that suspending flushing for a canvas can discourage refreshes for other windows in
the same frame on some platforms.

3.6 canvasY

canvas} : class?
superclass: object’

extends: canvas<%>

A canvasy, object is a general-purpose window for drawing and handling events. See can-
vas<> for information about drawing onto a canvas.

(new canvas’
[parent parent]
[[style stylel
[paint-callback paint-callback]
[label Iabel]
[gl-config gl-config]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c canvas)
parent : (or