
Quick: An Introduction to Racket with Pictures
Version 8.12.0.14

Matthew Flatt

April 10, 2024

This tutorial provides a brief introduction to the Racket programming language by using
one of its picture-drawing libraries. Even if you don’t intend to use Racket for your artistic
endeavours, the picture library supports interesting and enlightening examples. After all, a
picture is worth five hundred “hello world”s.

Along the same lines, we assume that you will run the examples using DrRacket. Using
DrRacket is the fastest way to get a sense of what the language and system feels like, even
if you eventually use Racket with Emacs, vi, or some other editor.

1

http://download.racket-lang.org/

1 Ready...

Download Racket, install, and then start DrRacket.

2

http://download.racket-lang.org/

2 Set...
See the DrRacket
documentation for a
brief overview of
the DrRacket IDE.

To draw pictures, we must first load some picture functions, which are part of a library for
creating slide presentations. Copy the following into the definitions area, which is the top
text area that you see in DrRacket:

#lang slideshow

Then click the Run button. You’ll see the text caret move to the bottom text area, which is
the interactions area.

If you’ve used DrRacket before, you might need to reset DrRacket to use the language
declared in the source via the Language|Choose Language... menu item before clicking
Run.

3

3 Go!

When you type an expression after the ą in the interactions window and hit Enter, DrRacket
evaluates the expression and prints its result. An expression can be just a value, such as the
number 5 or the string "art gallery":

> 5
5
> "art gallery"
"art gallery"

An expression can also be a function call. To call a function, put an open parenthesis before
the function name, then expressions for the function arguments, and then a close parenthesis,
like this:

> (circle 10)

A result from the circle function is a picture value, which prints as an expression result
in much the same way that numbers or strings print. The argument to circle determines
the circle’s size in pixels. As you might guess, there’s a rectangle function that takes two
arguments instead of one:

> (rectangle 10 20)

Try giving circle the wrong number of arguments, just to see what happens:

> (circle 10 20)
circle: arity mismatch;

the expected number of arguments does not match the given
number

expected: 1 plus optional arguments with keywords
#:border-color and #:border-width

given: 2
arguments...:

10
20

Note that DrRacket highlights in pink the expression that triggered the error (but pink high-
lighting is not shown in this documentation).

In addition to basic picture constructors like circle and rectangle, there’s a hc-append
function that combines pictures. When you start composing function calls in Racket, it looks
like this:

4

> (hc-append (circle 10) (rectangle 10 20))

The hyphen in the name hc-append is just a part of the identifier; it’s not hc minus append.
The function name starts with h because it combines pictures horizontally, and the next letter
is c because the pictures are centered vertically.

If you wonder what other functions exist—perhaps a way to stack pictures vertically and left-
aligned?—move the text caret to the name hc-append and press the F1 key in DrRacket. A
browser window will open, and it will give you a link to the documentation for hc-append.
Click the link, and you’ll see lots of other functions.

If you’re reading this in HTML form, you can also just click on hc-append or any other
imported identifier that is used in this tutorial.

5

4 Definitions

To use a particular circle and rectangle picture many times, it’s simpler to give them names.
Move back to the definitions area (the top area) and add two definitions, so that the complete
content of the definitions area looks like this:

#lang slideshow
(define c (circle 10))
(define r (rectangle 10 20))

Then click Run again. Now, you can just type c or r:

> r

> (hc-append c r)

> (hc-append 20 c r c)

As you can see, the hc-append function accepts an optional number argument before the
picture arguments, and it accepts any number of picture arguments. When a number is
provided, it specifies the amount of space to add between pictures.

We could have evaluated the define forms for c and r in the interactions area instead of the
definitions area. In practice, though, the definitions area is where your program lives—it’s
the file that you save—while the interaction area is for transient explorations and debugging
tasks.

Let’s add a function definition to the program. A function definition uses define, just like
our shape definitions, but with an open parenthesis before the function name, and names for
the function arguments before the matching close parenthesis:

(define (square n)
; A semi-colon starts a line comment.
; The expression below is the function body.
(filled-rectangle n n))

The syntax of the definition mirrors the syntax of a function call:

> (square 10)

In the same way that definitions can be evaluated in the interactions area, expressions can
be included in the definitions area. When a program is run, expression results from the

6

definition area are shown in the interaction area. From now on, we’ll write our example
definitions and expressions together, and you can put them in whichever area you prefer.
The examples will build on each other, however, so it’s best to put at least the definitions in
the definition area.

7

5 Local Binding

The define form can be used in some places to create local bindings. For example, it can
be used inside a function body:

(define (four p)
(define two-p (hc-append p p))
(vc-append two-p two-p))

> (four (circle 10))

More typically, Racketeers use the let or let* form for local binding. An advantage of
let is that it can be used in any expression position. Also, it binds many identifiers at once,
instead of requiring a separate define for each identifier:

(define (checker p1 p2)
(let ([p12 (hc-append p1 p2)]

[p21 (hc-append p2 p1)])
(vc-append p12 p21)))

> (checker (colorize (square 10) "red")
(colorize (square 10) "black"))

A let form binds many identifiers at the same time, so the bindings cannot refer to each
other. The let* form, in contrast, allows later bindings to use earlier bindings:

(define (checkerboard p)
(let* ([rp (colorize p "red")]

[bp (colorize p "black")]
[c (checker rp bp)]
[c4 (four c)])

(four c4)))

> (checkerboard (square 10))

8

6 Functions are Values

Instead of calling circle as a function, try evaluating just circle as an expression:

> circle
#<procedure:circle>

That is, the identifier circle is bound to a function (a.k.a. “procedure”), just like c is
bound to a circle. Unlike a circle picture, there’s not a simple way of completely printing
the function, so DrRacket just prints #<procedure:circle>.

This example shows that functions are values, just like numbers and pictures (even if they
don’t print as nicely). Since functions are values, you can define functions that accept other
functions as arguments:

(define (series mk)
(hc-append 4 (mk 5) (mk 10) (mk 20)))

> (series circle)

> (series square)

When calling a function that accepts a function argument, the argument function often isn’t
needed anywhere else. Having to write down the function via define would be a hassle,
because you have to make up a name and find a place to put the function definition. The
alternative is to use lambda, which creates an anonymous function:

> (series (lambda (size) (checkerboard (square size))))

The parenthesized names after a lambda are the arguments to the function, and the expres-
sion after the argument names is the function body. Using the word “lambda” instead of
“function” or “procedure” is part of Racket’s history and culture.

9

A define form for a function is really a shorthand for a simple define using lambda as
the value. For example, the series definition could be written as

(define series
(lambda (mk)

(hc-append 4 (mk 5) (mk 10) (mk 20))))

Most Racketeers prefer to use the shorthand function form with define instead of expanding
to lambda.

10

7 Lexical Scope

Racket is a lexically scoped language, which means that whenever an identifier is used as
an expression, something in the textual environment of the expression determines the iden-
tifier’s binding. This rule applies to identifiers in a lambda body as well as anywhere else.

In the following rgb-series function, the uses of mk in each lambda form refer to the
argument of rgb-series, since that’s the binding that is textually in scope:

(define (rgb-series mk)
(vc-append
(series (lambda (sz) (colorize (mk sz) "red")))
(series (lambda (sz) (colorize (mk sz) "green")))
(series (lambda (sz) (colorize (mk sz) "blue")))))

> (rgb-series circle)

> (rgb-series square)

Here’s another example, where rgb-maker takes a function and returns a new one that
remembers and uses the original function.

(define (rgb-maker mk)
(lambda (sz)

(vc-append (colorize (mk sz) "red")
(colorize (mk sz) "green")
(colorize (mk sz) "blue"))))

> (series (rgb-maker circle))

> (series (rgb-maker square))

11

Note how composing functions via rgb-maker creates a different alignment of objects
within the picture compared to using rgb-series.

12

8 Lists

Racket inherits much of its style from the language Lisp, whose name originally stood for
“LISt Processor,” and lists remain an important part of Racket.

The list function takes any number of arguments and returns a list containing the given
values:

> (list "red" "green" "blue")
'("red" "green" "blue")
> (list (circle 10) (square 10))
'()

As you can see, a list prints as a single quote and then pair of parentheses wrapped around
the printed form of the list elements. There’s room for confusion here, because parentheses
are used for both expressions, such as (circle 10), and printed results, such as '("red"
"green" "blue"). The quote is the key difference, as discussed elsewhere. To help em-
phasize the difference, in the documentation and in DrRacket, result parentheses are printed
in blue, unlike expression parentheses.

If you have a list, then you’ll eventually want to do something with each of the elements.
The map function takes a list and a function to apply to each element of the list; it returns a
new list to combine the function’s results:

(define (rainbow p)
(map (lambda (color)

(colorize p color))
(list "red" "orange" "yellow" "green" "blue" "purple")))

> (rainbow (square 5))
'()

Another function that works with lists is apply. Like map, it takes a function and a list,
but a function given to apply should take all of the arguments at once, instead of each one
individually. The apply function is especially useful with functions that take any number of
arguments, such as vc-append:

> (apply vc-append (rainbow (square 5)))

Note that (vc-append (rainbow (square 5))) would not work, because vc-append
does not want a list as an argument; it wants a picture as an argument, and it is willing to
accept any number of them. The apply function bridges the gap between a function that
wants many arguments and a list of those arguments as a single value.

13

9 Modules

Since your program in the definitions window starts with

#lang slideshow

all of the code that you put in the definitions window is inside a module. Furthermore,
the module initially imports everything from the module designated by slideshow, which
exports picture-making functions as well as more commonly used functions such as list
and map.

To import additional libraries, use the require form. For example, the library pict/flash
provides a filled-flash function:

(require pict/flash)

> (filled-flash 40 30)

Modules are named and distributed in various ways:

• Some modules are packaged in the Racket distribution or otherwise installed into a
hierarchy of collections. For example, the module name pict/flash means “the
module implemented in the file "flash.rkt" that is located in the "pict" collec-
tion.” When a module name includes no slash, then it refers to a "main.rkt" file.

• Some collections of modules are distributed as packages. Packages can be installed
using the Install Package... menu item in DrRacket’s File menu, or they can be in-
stalled using the raco pkg command-line tool. For example, installing the "avl"
package makes the avl module available.

Packages can be registered at https://pkgs.racket-lang.org/, or they can be
installed directly from a Git repository, web site, file, or directory. See Package Man-
agement in Racket for more information about packages.

To save your
definitions, use
DrRacket’s Save
Definitions menu
item.

• Some modules live relative to other modules, without necessarily belonging to any
particular collection or package. For example, in DrRacket, if you save your defini-
tions so far in a file "quick.rkt" and add the line

(provide rainbow square)

then you can open a new tab or window in DrRacket, type the new program
"use.rkt" in the same directory as "quick.rkt":

14

https://pkgs.racket-lang.org/

#lang racket
(require "quick.rkt")
(rainbow (square 5))

and when you run "use.rkt", a rainbow list of squares is the output. Note that
"use.rkt" is written using the initial import racket, which does not supply any
picture-making functions itself—but does provide require and the function-calling
syntax.

Racketeers typically write new programs and libraries as modules that import each other
through relative paths and collection-based paths. When a program or library developed this
way seems useful to others, it can be registered as a package, especially if the implementation
is hosted in a Git repository.

15

10 Macros

Here’s another library to try:

(require slideshow/code)

> (code (circle 10))

(circle 10)

Instead of a circle, the result is a picture of the code that, if it were used as an expression,
would produce a circle. In other words, code is not a function, but instead a new syntactic
form for creating pictures; the bit between the opening parenthesis with code is not an
expression, but instead manipulated by the code syntactic form.

This helps explain what we meant in the previous section when we said that racket provides
require and the function-calling syntax. Libraries are not restricted to exporting values,
such as functions; they can also define new syntactic forms. In this sense, Racket isn’t
exactly a language at all; it’s more of an idea for how to structure a language so that you can
extend it or create entirely new languages.

One way to introduce a new syntactic form is through define-syntax with syntax-
rules:

(define-syntax pict+code
(syntax-rules ()

[(pict+code expr)
(hc-append 10

expr
(code expr))]))

> (pict+code (circle 10))

(circle 10)

This kind of definition is a macro. The (pict+code expr) part is a pattern for uses of the
macro; instances of the pattern in a program are replaced by instances of the correspond-
ing template, which is (hc-append 10 expr (code expr)). In particular, (pict+code
(circle 10)) matches the pattern with (circle 10) as expr, so it is replaced with (hc-
append 10 (circle 10) (code (circle 10))).

Of course, this sort of syntactic extension cuts both ways: inventing a new language can
make it easier to say what you want, but harder for others to understand. As it happens, the

16

developers of Racket are constantly giving talks and writing papers that involve Racket code,
and it’s worthwhile for everyone who works on those products to know about code.

In fact, you might want to take a look at the source of this document. You’ll see that it starts
with #lang, but otherwise doesn’t look a lot like Racket; nevertheless, we build this docu-
ment by running its source as a Racket program. We have to use a lot more than syntax-
rules to extend Racket’s syntax enough for writing documents, but Racket’s syntactic ex-
tension can take you a long way.

17

quick.scrbl

11 Objects

An object system is another example of a sophisticated language extension that is worth
learning and using for Racket users. Objects are sometimes better than functions, even when
you have lambda, and objects work especially well for graphical user interfaces. The API
for Racket’s GUI and graphics system is expressed in terms of objects and classes.

The class system itself is implemented by the racket/class library, and the
racket/gui/base library provides the GUI and drawing classes. By convention, the
classes are given names that end with %:

(require racket/class
racket/gui/base)

(define f (new frame% [label "My Art"]
[width 300]
[height 300]
[alignment '(center center)]))

> (send f show #t)

The new form creates an instance of a class, where initialization arguments like label and
width are provided by name. The send form calls a method of the object, such as show,
with arguments after the method name; the argument #t in this case is the boolean constant
“true.”

Pictures generated with slideshow encapsulate a function that uses the graphics toolbox’s
drawing commands to render the picture to a drawing context, such as a canvas in a frame.
The make-pict-drawer function from slideshow exposes a picture’s drawing function.
We can use make-pict-drawer in a canvas-painting callback to draw a picture into a can-
vas:

(define (add-drawing p)
(let ([drawer (make-pict-drawer p)])

(new canvas% [parent f]
[style '(border)]
[paint-callback (lambda (self dc)

(drawer dc 0 0))])))

> (add-drawing (pict+code (circle 10)))
#(struct:object:canvas% ...)
> (add-drawing (colorize (filled-flash 50 30) "yellow"))
#(struct:object:canvas% ...)

18

Each canvas stretches to fill an equal portion of the frame, because that’s how a frame man-
ages its children by default.

19

12 Where to Go From Here

This introduction to Racket purposely avoids many of the traditional ways of introducing and
distinguishing Lisp or Scheme: prefix arithmetic notation, symbols, quoting and quasiquot-
ing lists, eval, first-class continuations, and the idea that all syntax is really just a lambda in
disguise. While those are all part of Racket, they are not the main ingredients of day-to-day
programming in Racket.

Instead, Racket programmers typically program with functions, records, objects, exceptions,
regular expressions, modules, and threads. That is, instead of a “minimalist” language—
which is the way that Scheme is often described—Racket offers a rich language with an
extensive set of libraries and tools.

If you are new to programming or if you have the patience to work through a textbook, we
recommend reading How to Design Programs. If you have already read it, or if you want to
see where the book will take you, then see Continue: Web Applications in Racket.

For experienced programmers, to continue touring Racket from a systems-oriented perspec-
tive instead of pictures, your next stop is More: Systems Programming with Racket.

To instead start learning about the full Racket language and tools in depth, move on to The
Racket Guide.

20

http://www.htdp.org/

	1 Ready...
	2 Set...
	3 Go!
	4 Definitions
	5 Local Binding
	6 Functions are Values
	7 Lexical Scope
	8 Lists
	9 Modules
	10 Macros
	11 Objects
	12 Where to Go From Here

