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ABSTRACT

Automated Testing for Operational Semantics

Burke Fetscher

In this dissertation, I investigate the effectiveness of automatic property-based testing in a light-

weight framework for semantics engineering. The lightweight approach provides the benefits of

execution, exploration, and testing early in the development process, so bugs can be caught early,

before significant effort is expended on proofs of correctness. Specifically, I show how lightweight

specifications can be leveraged to automatically derive effective test-case generators.

This work is done in the context of PLT Redex, a lightweight semantics framework embedded

in Racket. Redex emphasizes property-based testing by allowing users to write predicates express-

ing desirable properties and attempting to falsify them by automatically generating test cases. In

keeping with the lightweight approach, Redex generators are intended to be as “push-button” as

possible, and are derived from Redex models with little additional input from the user. I present

several methods for deriving generators, including a generic method for randomly generating well-

typed expressions, the main contribution of this work. Starting from a specification of a typing

judgment in Redex, this method uses a specialized solver that employs randomness to find many

different valid derivations of the judgment form.
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To evaluate the effectiveness of the different generators, I present a random testing benchmark

of Redex models and bugs. I discuss the benchmark and the performance of the different genera-

tors at bug-finding, along with an additional case study comparing the typed generator against the

best available, custom well-typed term generator. The new generator is much more effective than

generation techniques that do not explicitly take types into account and is worse than, but competi-

tive with the custom generator, even though the custom generator is specialized to a particular type

system and Redex’s generator is generic.
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CHAPTER 1

Introduction

Computer scientists have many tools for understanding programming languages, developed

over years of research. Typically those tools were originally developed along with and applied

to small language models, calculi that could fit on a few pages of paper or a whiteboard. Since

the models themselves are written in a formal language, mechanized tools supporting semantics

development are a natural next step, and have been a long-standing research goal. This dissertation

investigates the combination of lightweight support for such mechanization with property-based

testing, an approach to testing that proves to be particularly effective for semantics engineering.

Lightweight mechanization is distinguished by providing support for executable definitions,

and perhaps associated tools, but requiring little effort beyond defining the model. More powerful

tools, in contrast, enable machine-checked proofs of soundness properties, but developing such

proofs requires more work; writing down definitions is only the beginning of the process.

Lightweight mechanization can be considered the “scripting langauge” approach to engineer-

ing a semantics, favoring rapid prototyping and testing as opposed to more powerful analysis or

verification. It provides the benefits of executability and testing with low investment. Low invest-

ment means changes are low cost, so development can be incremental and iterative. PLT Redex,

the framework for which the research in this dissertation was conducted, attempts to provide as

many benefits of mechanization as possible while minimizing development effort.

In the end, testing and other forms of automated but non-exhaustive checking may not be

enough to provide full confidence that a model is correct, at which point definitions can be ported
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into a more powerful tool for verification. Such tools typically require more investment to produce

an executable model, and the value of using a lightweight tool as a complement is to provide access

to the benefits of executability early in the development process.

Unit testing is already a valuable application of lightweight mechanization, but an even more

effective approach to semantics development is property-based testing. In property-based testing,

instead of defining inputs and expected results to a program, a tester formulates a property that

should hold over a certain domain. Elements from the domain are then generated automatically,

attempting to falsify the property. Since in the long run developers of semantics usually wish to

prove specific properties of a system, good testable properties for semantics models are easy to

formulate. The other necessary ingredient for effective property-based testing is a good test-case

generator, and this dissertation provides evidence that such generators can be automatically derived

from lightweight semantics models.

The thesis of this dissertation is:

Lightweight mechanization and automated property-based testing

are effective for semantics engineering.

To support this thesis, I show how lightweight definitions for a semantics can be leveraged to au-

tomatically derive test-case generators that effectively expose counterexamples when applied to

representative Redex models. I discuss three ways to derive such generators. To show that that

property-based testing using the generators is effective, I explain the development of an automated

testing benchmark for semantics, consisting of representative Redex models and realistic bugs. I

then report on the results of a careful comparison of all Redex’s generation methods using the

benchmark, as well as a comparison of its most successful method against the best-known, cus-

tomized generator for well-typed term.
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To begin, Chapter 2 introduces operational semantics and Redex in brief by working through

the development of a semantics for a small functional language, followed by a discussion of how to

mechanize and test the model in Redex. Following that, I discuss the approaches to test-case gen-

eration used by Redex. Chapter 3 introduces two approaches to generation based on regular-tree

grammars: ad-hoc recursive generators and enumerations. An alternative approach that searches

for random derivations satisfying relation and function definitions is introduced in Chapter 4 with

an example, and is formally specified and discussed in depth in Chapter 5. Chapter 6 discusses the

development of a benchmark intended for comparative evaluation of automated testing methods.

The different test generation methods used by Redex are compared using the benchmark in the

first section of Chapter 7, and the second section compares the derivation generator to a similar but

more specialized generator. Finally, Chapter 8 discusses related work and Chapter 9 concludes.
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CHAPTER 2

Operational Semantics and PLT Redex

This chapter provides background in operational semantics and how it is modeled in Redex.

It is by no means a comprehensive or systematic summary of either topic, but is intended to ex-

plain just enough to understand the rest of the dissertation and show how lightweight semantics

engineering works. It begins with an introduction to reduction semantics, the type of operational

semantics used by Redex, in section 2.1, by working through the step-by-step development of a

semantics for a simple functional language. Then section 2.2 shows how the same language can be

coded and run as Redex model that is comparable in size and concision to the pencil and paper se-

mantics. Finally, section 2.3 demonstrates the application of Redex’s property-based testing tools

to the model.

2.1. Operational Semantics by Example

This section works through the development of a semantics for a simple functional language

to illustrate the process of semantics engineering along with reduction semantics, the approach to

modeling that Redex is designed for.

Figure 1 shows the grammar for the language we’ll be modeling in this section. It is a parenthe-

sized, prefix-notation language of numbers and functions, with two binary operations on numbers,

addition (�) and subtraction (�), along with a conditional (���) that dispatches on whether or not its

first argument evaluates to � or not. Expressions beginning with � construct functions of a single

argument, which are applied via parenthesized juxtaposition as in Racket or other languages in the
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Figure 1: Grammar for expressions.

Lisp family. Finally, ��� expressions support the construction of recursive bindings. Since this is

a typed langauge, both of the bindings form also refer to types �, which are defined later in this

section.

A semantics for a programming language is a function from programs to answers. The way the

function is defined varies, depending on the intended use of the semantics. Here we will develop

an operational semantics in the form of a syntactic machine that transforms programs until they

become answers, meaning the domain and range of the function are abstract syntax trees defined

by the grammar in figure 1, and it is defined in terms of relations on syntax.

To develop a semantics for this language, we start by identifying the answers, a subset of

expressions that are values, the results or final states of computations. For this language the right

choices are numbers and functions, both of which cannot be further evaluated without being used

in another expression. We denote values with the addition of another nonterminal, �:

���������������������
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We expect that all valid programs (more will be said below about validity) either are a value, or

will eventually evaluate to a value.

To this end, we develop a set of relations, pairing any expression in the language that is not a

value with another expression that is in some sense “closer” to being a value. (“Closer” in this sense

is usually fairly intuitive to a programmer, but in the end it is necessary to prove that a semantics

based on these rules does the right thing by eventually transforming valid and terminating programs

into values.) For example, the notion of reduction for our binary operations looks like:

���⌈��⌉�⌈��⌉� ⌈�������⌉ ����

meaning that when a binary operation is applied to two numbers in an expression, we can relate

that expression to the number that is the result of the corresponding operation on numbers. (The

Gödel brackets ⌈�⌉ lift natural numbers into the syntax of the language.) This allows us to “reduce”

such a binary operation to a value. The expression on the left is called the reducible expression or

redex, and the expression on the right is called the contractum. A simple example is:

������� �

The rule for function application is more interesting. It says that when a function is applied to

a value, the resulting expression is constructed by substituting the value � for all instances of the

variable � bound by the function in the function’s body �:

��������������� ����←��� ����

where the notation ����←��� means to perform capture-avoiding substitution1 of � for � in �. For

example, the application of a function that adds one to its argument to two takes a step as follows:

����������������������� �������

1Capture-avoiding substitution (Felleisen et al. 2010) avoids unintentional variable bindings (captures) that can occur
when substituting underneath binders by renaming variables appropriately.
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Figure 2: Single step reduction, the union of all the notions of reduction for this language.

The complete set of reductions adds rules for ��� and ��� and is shown in figure 2. The ���

rule reduces to the second or third argument, depending on the value of the first, and the ��� rule

unfolds a recursive binding once, substituting the entire expression in the body.

The set of reductions shown in figure 2 capture the notions of computation we intend for our

language, but they aren’t enough to build an evaluator for all programs, because they only apply

at the top level of a term. For example, the term ������������� can’t be reduced using the � rule,

because at the top level, the second expression is not a number.

To create a relation upon which we can base an evaluator, we need to extend the set of reduc-

tions to apply deeper inside of terms. One way to do this is to take the compatible closure of the

reductions over expressions, which constructs a relation that allows the reductions to be applied

anywhere inside a term. This is useful as the basis for an equational calculus, but it is not an

evaluator because a given term can be reduced many different ways and evaluators have a fixed

strategy.

Instead we can construct a relation that relates each term that can take a step to exactly one

term. To do this we use an evaluation context, an expression that includes a “hole”, denoted by ��.

This allows a term to be decomposed into a context and, in the hole of the context, a redex. The
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contractum of the redex can be plugged back into the hole, expressing a single step of computation.

The evalutation contexts for our language are denoted by the � non-terminal:

���������������������������������������
�������������������

The first two productions allow reductions to apply on the left-hand side of an application, and on

the right right-hand-side of an application if the left-hand-side is a value. The contexts for binary

operations are analagous to those for applications, the second to last production allows computation

in the condition position of ��� expression, and the last is the hole, which may contain any term.

To construct a standard reduction relation, which we denote with , we take the contextual

closure of the the one-step reduction over �:

�� ��

����� �����

meaning that if a term can take a step according to the one-step reduction, then a context with that

same term in its hole can take a step to a term where the corresponding contractum is plugged back

into the context at the same position the redex occupied. The intention of the standard reduction is

to allow each program to take a step of computation in exactly one way. It may not be immediately

obvious from the structure of evaluation contexts that we have this property, so we might wish to

test it and, later, prove it. (I address how to test it in Redex in the next section.)

The idea of evaluating a program � corresponds to the reflexive transitive closure of the standard

reduction, denoted by �. We can define an evaluator in terms of this relation, as follows:

���������→��������������
������� ���� ��������� ���
������� ��� �������� ��������� ��������������

The idea behind ���� is to reduce a program over and over according to the standard reduction

until it becomes a value. If the value is a number, we consider that to be an answer. If it is syntax
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for an unapplied function, we return ��������, since that syntax really represents an internal state

of the evaluator and is not useful.

Note, however, that ���� is not a total function, for several reasons. First, not all programs ter-

minate. (Equivalently, the transitive-reflexive closure of the standard reduction doesn’t relate them

to values.) Second, some programs may get “stuck”, or terminate in expressions that are not values

and cannot take another step.2 We can’t avoid the first issue without seriously handicapping our

language, but we can tackle the second with a type system, which allows us to separate programs

that will get stuck from those that will not.

The type system accomplishes this by categorizing expressions according to what sort of values

they will evaluate to. To start, we need a language of types, denoted by �:

���������→���
������

expressing that we expect two types of values, numbers (���), and functions from one type of

value to another, represented by arrows. We can already see that the type system excludes some

programs that may not get stuck, namely functions that may return more that one type depending on

their input. We could capture functions like this by extending our language of types, but in general

the type system must be conservative, excluding some “good” programs in order to exclude all

“bad” ones.

We construct the type system using a set inference rules called a typing judgment that defines

a relation between a type environments (�, to be defined shortly), expressions, and types. As an

example, the rule for binary operations is:

��⊢��������� ��⊢���������

��⊢����������������

2Another issue sidestepped here that comes up in all real programming languages is that some primitives, such as
division, are partial functions.
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��⊢��������

��⊢����������→��� ��⊢��������

��⊢������������

����������������

��⊢������

���������⊢�������

��⊢��������������������→����

��������⊢������

��⊢������������������

��⊢���������
��⊢������� ��⊢�������

��⊢�������������������

Figure 3: The definition of the typing judgment.

expressing that two expressions that evaluate to numbers can be combined using a binary operation,

and the resulting expression will evaluate to a number. The relation is defined recursively. To deal

with substitutions that occur during evaluation, the type judgment uses the type environment �, an

accumulator to keep track of the types assigned to variables:

�����������������

The rule for function definition says that if the body of the function has some type with respect

to the environment extended with the type of the parameter, then the function itself has an arrow

type from the type of the parameter to the type of the body, in the original environment:

���������⊢�������

��⊢��������������������→����

The corresponding rule for typing a variable just looks for the type in the environment. The

complete definition of the typing judgment is shown in figure 3. These particular rules can be easily

used to derive a type checking algorithm. Treating the first two positions of the relation as inputs

and the last as an output leads directly to the definition of a recursive function for type-checking.

Now the type system can be used to restrict the set of valid programs to those that satisfy the

judgment:

��⊢������
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selecting those expressions that have some type with respect to the empty type environment, or

are “well-typed”. By making this restriction, we assert our belief that if a program is well-typed,

then either it evaluates to a value or it does not terminate. Ideally, we should formally prove this

property, but first it is helpful to test it. Modeling in Redex and testing properties such as this are

the subject of the next section.

2.2. Modeling Semantics in Redex

The entire development of the previous section can be translated almost directly into Redex. In

fact, all of the typesetting for the semantics of that section is generated automatically from a Redex

model. In this section I present Redex’s approach to semantics engineering by showing how it can

be used to implement, inspect, and test such models.

Redex is an embedded domain-specific language. A domain-specific language (DSL) is one

intended for a specific application, in this case semantics modeling. An embedded DSL is imple-

mented as an extension to a general-purpose language (in Redex’s case, Racket) instead of as a

stand-alone tool. That enables the power of the general-purpose language to be used in combina-

tion with the targeted abstractions that the DSL provides. For Redex, this means that it is possible

to “escape” to Racket when necessary, and all of tools and libraries already associated with Racket

can be used in combination with Redex.

One of the core principles of Redex is to use already existing informal metalanguage found

in programming language publications to guide its design. All of its core abstractions are chosen

to model those programming language researchers have found to be commonly useful, such as

grammars and reduction relations. Following this guideline makes designing useful abstractions

simpler, as the choices have already been made by the community of intended users. It also has

the potential to ease the learning curve of operational semantics.
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(define-language STLC-min
  (e ::= (e e)

(λ [x τ] e)
(rec [x τ] e)
(if0 e e e)
(o e e)
x n)

  (τ ::= (τ → τ)
num)

  (n ::= number)
  (o ::= + -)
  (x ::= variable-not-otherwise-mentioned))

�����������
��������������
����������������
��������������
����������
��������

���������→���
������

������������
�����������
��������������������������������������

Figure 4: Definition of a grammar in Redex (left) and the automatically generated typesetting.

A similar principle is applied to the design of Redex’s syntax, which attempts to be as close as

possible to what a semantics engineer would write down on the page or whiteboard. (Modulo some

parentheses, the price of the embedding in Racket.) At the same time, automatic typesetting is pro-

vided that mimics what users see in the source as closely as possible, even preserving whitespace

so that editing source code will directly affect typeset layouts, giving paper authors fine-grained

control over layout.

A concrete example of Redex’s approach is shown in figure 4, which compares the imple-

mentation of the core grammar from the previous section in Redex with the typeset version. The

Redex form for defining a grammar is define-language, whose first argument is the name of the

language, followed by a sequence of non-terminal definitions. Generating the typeset version on

the right requires only a single line of code: (render-language STLC-min). Note how the line-

breaks and arrangement of productions on the right follow those in the source code. Finally, both

the typeset version and the Redex source conform closely to commonly accepted ways of writing

down a grammar. What is shown here is the raw automatic typesetting; Redex also provides hooks

for customization, such as replacing ��������������������������������, a special Redex pattern
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that matches anything that is not a literal in the language, with something more familiar. Similar

correspondence between Redex source, Redex typesetting, and commonly accepted usage exists

for all the Redex forms defining semantic elements.

After defining a language in Redex, it is straightforward to parse concrete syntax (in the form of

s-expressions) according to the grammar. For example, the following interaction3 uses the redex-

match form to parse the term ����������������� as an application of one expression, e_1, in this

language to another, e_2, where the e’s refer to the nonterminal of the language STLC-min from

figure 4. The result is a representation of bindings from the patterns’ two expressions to the relevant

subterms for the one possible match in this case:

> (redex-match STLC-min (e_1 e_2)

(term ((λ (x num) x) 5)))

(list

(match (list (bind 'e_1 '(λ (x num) x)) (bind 'e_2 5))))

The redex-match syntactic form takes to a language defined as in figure 4, a patterned defined

in reference to that language (in the above, for example the e’s refer to the non-terminal of the

language), and a concrete term. It then attempts to parse to term according to the pattern. Trying

to parse ���������, however, fails, since the first subterm no longer conforms to the � nonterminal,

and is not a valid expression in this langauge:

> (redex-match STLC-min (e_1 e_2)

(term ((λ 4) 2)))

#f

Contexts, as introduced in section 2.1, are a native feature of patterns in Redex, and allow terms

to be decomposed into a context with a hole and the content of the hole. For example:

3Inlined interactions that appear in this section are actual transcripts of the Racket REPL with the Redex module
describing the language in the previous section loaded.
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> (redex-match STLC (in-hole E n)

(term ((λ [x num] 6) 5)))

(list

(match (list (bind 'E '((λ (x num) 6) hole)) (bind 'n 5))))

Here in-hole is Redex’s notation for the application of a context, so (in-hole E n) is equivalent

to ���� in the notation from section 2.1. (STLC is an extension of STLC-min that adds contexts.)

The result tells us that there is exactly one way to decompose the term such that a number is in the

hole, ������������������ and �. The 6 cannot appear in the hole, since in a function application with

value on the left, the hole must be on the right.

Redex patterns also feature ellipses, which are analagous to the Kleene star and allow matching

repetitions. A simple use case allows us to match a list of numbers of any length:

> (redex-match STLC (n ...)

(term (1 2 3 4 5)))

(list (match (list (bind 'n '(1 2 3 4 5)))))

A slightly more interesting example is to match a list of pairs of variables and numbers, a possible

representation for an environment:

> (redex-match STLC ((x n) ...)

(term ((a 1) (b 2) (c 3) (d 4) (e 5))))

(list

(match

(list (bind 'n '(1 2 3 4 5)) (bind 'x '(a b c d e)))))

As a result we get back bindings for the variables x, a list of variables, and n, a list of numbers.

Ellipses are a powerful feature of Redex’s pattern matcher but cause problems for some types of

random generation, an issue I will return to later on.

Reduction relations are defined using the reduction-relation form as a union of rules, the

syntax of which is very close to that of figure 2. The definition of the reduction is shown on
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(define STLC-red-one
  (reduction-relation

STLC
(--> ((λ [x τ] e) v)

(subst e x v)
β)

(--> (rec [x τ] e)
(subst e x (rec [x τ] e))
μ)

(--> (if0 0 e_1 e_2)
e_1
if-0)

(--> (if0 n e_1 e_2)
e_2
(side-condition
(term (different n 0)))

if-n)
(--> (o n_1 n_2)

(δ n_1 o n_2)
δ)))

(define-judgment-form STLC
  #:mode (tc I I O)
  [--------------

(tc Γ n num)]
  [(where τ (lookup Γ x))

----------------------
(tc Γ x τ)]

  [(tc (x τ_x Γ) e τ_e)
-----------------------------
(tc Γ (λ [x τ_x] e) (τ_x → τ_e))]

  [(tc (x τ Γ) e τ)
----------------------
(tc Γ (rec [x τ] e) τ)]

  [(tc Γ e_1 (τ_2 → τ)) (tc Γ e_2 τ_2)
------------------------------
(tc Γ (e_1 e_2) τ)]

  [(tc Γ e_0 num)
(tc Γ e_1 τ) (tc Γ e_2 τ)
-----------------------
(tc Γ (if0 e_0 e_1 e_2) τ)]

  [(tc Γ e_0 num) (tc Γ e_1 num)
-------------------------
(tc Γ (o e_0 e_1) num)])

Figure 5: Reduction-relation (left) and typing judgment definitions in Redex.

the left of figure 5. Each rule is parenthesized, and defined with the --> operator, which takes

a left-hand-side pattern, and resulting term, a sequence of side conditions, and a rule name as its

arguments.

To seen a reduction relation at work, we can use the apply-reduction-relation form,

which takes a relation and a term to reduce one step:

> (apply-reduction-relation STLC-red-one

(term ((λ [x num] (+ x 2)) 1)))

'((+ 1 2))

A list containing one term is returned, since in this case there is only one possible reduction step,

but depending on how the relation is defined, there could be more.
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The typing judgment, shown on the right on figure 5, is also defined in a manner designed

to follow the common syntax of figure 3. Instead of the designating the typing relation with the

infix syntax ��⊢������, judgments in Redex code use parenthesized prefix-notation, in this case

(tc Γ e τ). Each rule is bracketed, and the conclusion appears below a horizontal line of dashes,

the premises (and side-conditions) above. The only other significant addition is the mode annota-

tion in the second line, which designates which positions of the relation are considered inputs and

which are considered outputs. Redex requires this to ensure the judgment is executable without

search, although it constrains the relations that can be expressed with define-judgment-form.

Judgments can be applied through the judgment-holds form. For example, we can verify that

the type of (+ 1 (- 2 3)) is a num as follows:

> (judgment-holds (tc ‚ (+ 1 (- 2 3)) num))

#t

(Recall that ‚ indicates the empty type environment.) Or, we can ask Redex to compute the type

of a slightly more complicated term:

> (judgment-holds (tc ‚ (λ [x num] (λ [y num] x)) τ) τ)
'((num Ñ (num Ñ num)))

And if we ask for the type of a term that is not well-typed, Redex returns #f to indicate the judgment

does not hold:

> (judgment-holds (tc ‚ (+ 7 (λ [y num] y)) τ) τ)
'()

Finally, to complete the Redex model of this language, we can define an Eval metafunction in

Redex that corresponds exactly to ���� from section 2.1.
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(define-metafunction STLC

Eval : e -> n or function

[(Eval e)

n

(judgment-holds (refl-trans e n))]

[(Eval e)

function

(judgment-holds (refl-trans e (λ (x τ) e_3)))])

The first line specifies that this definition is relative to the STLC language and the second specifies

Eval’s contract. Two clauses follow, which are made up of, in order, a pattern, a result term, and a

side-condition, which is where all the work of reducing the term is happening in this case. Clauses

are tried in order, and the result is the right-hand side of the first clause that has both s pattern

matching the argument and side-conditions that succeed. As before, the judgment-holds side-

conditions in Eval apply the reflexive-transitive closure of the standard reduction (the judgment

form refl-trans) to its argument and dispatch on the result. (Note that the side-conditions of the

clauses differ in whether the result is an n or a λ-espression.) Metafunctions like Eval are applied

as if they were functions in the object language, from within term. We can now evaluate programs

using Redex. For example, to evaluate the application of the function that adds 1 to 1:

> (term (Eval ((λ [x num] (+ x 1)) 1)))

2

The unsurprising result is 2.

A more interesting example is:

(define (sumto n)

(term ((rec [sumto (num Ñ num)]

(λ [x num]

(if0 x

0

(+ x (sumto (- x 1))))))
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,n)))

which defines a whole class of programs that calculate arithmetic series, sums of 1 through n. This

definition takes advantage of Redex’s status as an embedded language, defining a Racket function

that returns a Redex term. The comma in the last line escapes to Racket, allowing the appropriate

number to be inserted in the term.

Now we can try a slightly more interesting calculation, the value of the arithmetic series of

100.

> (term (Eval ,(sumto 100)))

5050

which returns the answer we would expect.

Redex also allows us to observe the steps of a calculation with a reduction graph, where each

two terms related by the reduction relation are nodes in the graph, and the edges are labeled with the

rule that connects them. The above calculation actually has hundreds of steps, making its reduction

graph too large for visual inspection. Figure 6, however, shows the reduction graph of an analagous

program for the arithmetic series of 2, showing each step from the initial program generated by

(sumto 2) to the final value of 3. Generating this reduction graph with Redex is again a one-liner

given the appropriate definitions: (traces STLC-red (sumto 2)). The fact that there is a single

path in the graph is a feature of this reduction relation; other reduction relations may give rise to

many possible paths.

2.3. Property-based Testing with Redex

Redex strives to miminize the amount of time between sitting down to write a Redex model and

having an exectuable semantics to work with. Executability alone already provides a significant
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Figure 6: An example reduction graph. Since � reductions substitute the entire ��� expression in
the body, the bodies of duplicate such expressions are omitted, but are all the same as the initial
���.
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return on investment for the Redex user. Along with the tooling for interactive and graphical

exploration of a model’s dynamics, its greatest benefit is the ability to test a semantics.

An executable semantics can be equipped with a suite of tests. Unit tests alone, which Redex

has built-in tooling for, provide a semantics engineer with the same benefits they are known to

confer to software engineers, such as support for refactoring, the ability to apply test-driven de-

velopment, and higher overall confidence in the correctness of a model. May Redex efforts are

intended to model an already existing system (for example, Klein et al. (2013), Politz et al. (2013),

Politz et al. (2012), and Guha et al. (2010)), and in such cases tests support confidence that the

behaviors of the model and the implementation agree.

Unit tests, although unquestionably important for both software and semantics engineering, are

fundamentally limited by the ingenuity of the writer of test cases. Another approach that relies less

on human efforts to cover the space of possible tests is property-based testing, where instead of

writing individual test cases a programmer defines a property that should hold of their program

and a domain over which it should be checked. A generator then uses the definition of the domain

to create many test cases in an attempt to falsify the property. QuickCheck (Claessen and Hughes

2000) and its many derivatives have popularized this approach over the past few years.

When developing a semantics we are usually interested in such general properties of a model,

to the extent that a final step in such a development is to prove a number of them. For this rea-

son, property-based testing is an especially attractive approach to semantics engineering. There

are many testable properties that come up, and it is useful to be test them thoroughly during the

development process.

Redex supports property-based testing through the redex-check form, which allows users to

specify a method of generating terms and a property to check. It then generates a number of terms,

checking the property with each one until it finds one that falsifies the property or reaches some
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maximum number of tries. As a first example, we can try to verify the (false) property that every

expression in the language of section 2.2 is either a value or takes one step:

> (redex-check STLC e

(or (redex-match STLC v (term e))

(not (empty?

(apply-reduction-relation STLC-red

(term e))))))

redex-check: counterexample found after 1 attempt:

a

The first line tells redex-check to generate random e’s from the STLC language, and the or

expression is the predicate to check. In this case, it finds a counterexample on its first try, a free

variable.

A property that should hold in this language is slightly more complex. If a term is well-typed,

then it should be the case that it is either a value or that it can take a single reduction step. Also, if it

can take a step, then the resulting term should have the same type. We can formulate this property

as a Racket predicate:

(define (check-progress/preservation e)

(define type-or-empty (judgment-holds (tc ‚ ,e τ) τ))
(define step-or-empty (apply-reduction-relation STLC-red e))

(implies (not (empty? type-or-empty))

(or (redex-match? STLC v e)

(and (equal? 1 (length step-or-empty))

(equal? type-or-empty

(judgment-holds (tc ‚ ,(car step-or-empty) τ)
τ))))))

Now we can use redex-check to attempt to falsify it:

> (redex-check STLC e

(check-progress/preservation (term e)))
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redex-check: no counterexamples in 1000 attempts

This seems encouraging at first, but digging a little deeper exposes a common problem with random

testing.

Test case generators can be called directly with the generate-term form, which take a lan-

guage, a pattern, and a depth limit as parameters. This allows us to see what kind of terms redex-

check is using to test the property:

> (generate-term STLC e 2)

'((if0 z 1 v) (rec (s num) Wr))

Clearly this term is not well-typed, it even has a number of free variables. Looking back at the

definition of check-progress/preservation we can see that this isn’t a very good test case,

because it fails the premise of the implication that we want to test, so it doesn’t verify that a well-

typed term takes a step, or that the type is preserved. To check this part of the property, we need a

good portion of the test cases to be well-typed. Also, we would like to avoid having too many of

the well-typed test cases be values, because they won’t take any evaluation steps. We can generate

a number of terms with generate-term and check to see how many of them are “good”:

> (length

(filter (λ (e) (and (judgment-holds (tc ‚ ,e τ))
(not (redex-match STLC v e))))

(for/list ([i 1000])

(generate-term STLC e 3))))

19

Here we generated 1000 random terms, and less than 2% of them are good test cases.

To give a better idea of what kind of terms are being generated, figure 7 shows some statistics

for random terms in this language, and exposes some of the difficulty inherent in generating “good”
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Term characteristic Percentage of Terms
Reduces once or more 34.82%
Uses µ rule 29.96%
Well-typed 18.63%
Reduces twice or more 13.16%
Reduces three or more times 4.88%
Uses if-else rule 4.42%
Uses if-0 rule 4.28%
Well-typed, not a constant or constant function 2.45%
Uses β rule 2.31%
Uses δ rule 2.25%
Well-typed, reduces once or more 1.76%

Figure 7: Statistics for 100000 terms randomly generated from the stlc grammar.

terms. Although about 18% of random expresssions are well typed, only 2.45% are well-typed and

not a constant or a constant function (a function of the form (λ (x τ ) n)). The terms that are good

tests for the property in question, those that are well-typed and exercise the reduction, are even

rarer, at 1.76% of all terms.

The use of a few basic strategies can improve the coverage of terms generated using this

method. Redex can generate terms using the patterns of the left-hand-sides of the reduction rules

as templates, which increases the chances of generating a term exercising each case. However, it is

still likely that such terms will fail to be well-typed. Frequently this is due to the presence of free

variables in the term. Thus the user can write a function to preprocess randomly generated terms

by attempting to bind free variables. Both approaches are well-supported by redex-check.

The strategy of using strategically selected source patterns and preprocessing terms in some

way is typical of most serious testing efforts involving Redex, and has been effective in many

cases. It has been used to successfully find bugs in a Scheme semantics (Klein 2009), the Racket

Virtual Machine (Klein et al. 2013), and various language models drawn from the International

Conference on Functional Programming (Klein et al. 2012).



30

Another approach is to use the type system directly to generate test cases. Adding this capa-

bility to Redex is one of the main contributions outlined in this dissertation. To do so, we can use

the #:satsifying keyword with generate-term, which takes a judgment form that Redex will

attempt to use to generate test cases.

> (generate-term STLC #:satisfying (tc ‚ e τ) 2)

#f

We get back a complete type judgment containing a well-typed term and its type. Inspection of

this term confirms that it is well-typed, and has no free variables.

Similarly, we can ask redex-check to use the typing judgment to generate its test cases.

> (redex-check STLC #:satisfying (tc ‚ e τ)
(check-progress/preservation (term e))

#:attempts 100)

redex-check: no counterexamples in 100 attempts

Since all of the test cases used in this pass were well-typed, this is a much better test of the prop-

erty, and provides higher confidence it is correct. Section 5 discusses how this type of generation

works, and section 7 addresses how well different approaches to random generation do at testing

semantics.
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CHAPTER 3

Grammar-based Generators

A specification of abstract syntax is a fundamental part of any operational semantics. These

specifications usually take the form of recursively defined data types or, as in Redex, regular tree

grammars. These recursive structures are simple in the sense that they have no contextual con-

straints, unlike richer specifications such as type systems. Because of this they can be easily

leveraged for a number of different approaches to random generation.

In this section I discuss two grammar-based approaches to random expression generation. First,

I explain an approach based on recursively unfolding non-terminals, introduced to Redex by Klein

and Findler (2009). Following that I address a newer method based on forming enumerations

of the set of terms conforming to the grammar. Both approaches can be applied in general to

any specification using abstract data types or regular grammars, although the discussion here is

based on their implementation as part of Redex’s random testing framework. The comparative

effectiveness of the different approaches is discussed in section 7.

3.1. Ad-hoc Recursive Generators

Given a grammar, a straightforward method for generating random terms conforming to some

non-terminal is as follows. First, pick a production at random. If that production does not include

any non-terminals, we are done. If it contains non-terminals, we recur on them using the same

method until reaching a non-recursive production.
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To illustrate this approach, consider the following simple grammar for prefix-notation arith-

metic expressions:
�������������
����

�������������������
������������

To generate a random expression in this language, we can start with the non-terminal � as our initial

goal and transform it step-by-step into a term, where each step replaces a non-terminal with one of

its productions:

� ������� ������� ������� ������� ������� �������

Since in our grammar ������ is shorthand for the entire set of numbers, we just choose some

element of that set for the non-terminal �.

It is straightforward to write a recursive function in Racket implementing this method. The

only thing we need to be careful of is the danger of nontermination arising from randomly choos-

ing recursive productions too often. We can deal with this by adding a “fuel” parameter that is

decremented on recursive calls and only allows choosing recursive productions if it is positive,

thus placing a limit on the depth of the generated term. Here is one implementation, as a function

that takes a symbol indicating a non-terminal, a natural number indicating “fuel”, and returns an

appropriate random term:

(define/contract (generate-arith non-terminal fuel)

(-> symbol? natural-number/c arith?)

(define next-fuel (- fuel 1))

(case non-terminal

[(e)

(define choice (if (> fuel 0) (random 2) 1))

(if (= choice 0)

(list (generate-arith 'o next-fuel)

(generate-arith 'e next-fuel)

(generate-arith 'e next-fuel))
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(generate-arith 'n next-fuel))]

[(o)

(list-ref '(+ - * /) (random 4))]

[(n)

(random 100)]))

(The predicate arith? appearing in the contract on the second line checks that the result does

indeed conform to a non-terminal of the grammar above.) So, to generate a random expression, we

can call generate-arith with 'e and a depth limit of 3, for a medium-sized term:

> (generate-arith 'e 3)

'(* (* 36 (+ 59 37)) 20)

The transformation from a grammar into such a function is easily automated. Redex’s ad-hoc

grammar generator performs just such a transformation, and although the grammars and patterns

used in Redex can be significantly richer than those in this example, the method used is fundamen-

tally the same.

Even in our simple example, however, we have made choices that can significantly affect the

quality of our generator in testing. Most significantly, we have chosen to sample our numbers for

the n non-terminal uniformly from integers in the interval between 0 and 100. This was done here

for the sake of simplicity, and a little thought reveals it to be a very poor choice in general. A

good test case generator should generate all types of numbers, which for Racket includes integers

of unbounded magnitude, the usual floating point types, and even complex numbers. Further, a

good generator should favor corner cases such as 0 and 1, and, in Racket’s case, +inf.0, a number

larger than all other numbers. Similar issues arise when generating strings or symbols. Neglecting

this point is common in naive critiques of random test-case generators. Redex’s grammar generator

contains many such heuristics that have been tuned over years to make it more effective for random
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testing, which is why I refer to it as “ad-hoc.” (See Klein and Findler (2009) for a discussion of

some of these heuristics.)

Another concern about the testing effectiveness of generators of this type is that many proper-

ties that are desirable to test require preconditions that are much stronger than conformance to a

grammar. For example, they may require closed terms, or even well-typed terms. In such cases the

fraction of valid expressions conforming to a grammar that meet the stronger condition is usually

very small. Even the ratio of closed lambda terms to lambda terms becomes vanishingly small as

the size of terms increases, as shown by Grygiel and Lescanne (2013). To compensate, random

generation from a grammar can still be leveraged by post-processing the term to fix these deficien-

cies. It is straightforward, for example, to write a function to eliminate free variables by adding

new bindings or replacing them with closed subterms.

In spite of the issues with recursive grammar generation, it has been used many times over the

years to great effect, starting with the landmark study of Hanford (1970). In fact, it is referred to

as “the predominant generation strategy for language fuzzing” as recently as Dewey et al. (2014).

It has been the default strategy in Redex since Klein and Findler (2009) and has been shown to be

effective (when combined with a good post-processing function) in both a study testing the Racket

virtual machine in Klein et al. (2011) and a case-study of models from ICFP 2009 conducted

by Klein et al. (2012). Another recent tool based on this approach (although using sophisticated

ad-hoc additions) is Csmith (Yang et al. 2011).

3.2. Grammar-based Enumerations

Another way of generating terms from a grammar is to construct an enumeration of the set

of terms conforming to the grammar, a bijection between that set and the natural numbers. With

an enumeration in hand, we can either generate terms in order or, if the enumeration is efficient,
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chose random natural numbers and decode them into the appropriate terms. Enumerations have

been applied to property-based testing in a number of recent research efforts, notably Lazy Small

Check (Runciman et al. 2008) and FEAT (Duregard et al. 2012). Here I discuss their application

to grammars in Redex.

Redex enumerations are constructed using Racket’s data/enumerate library (New 2014),

which provides a rich set of combinators for constructing enumerations that are both efficient and

fair. Efficiency means roughly that very large natural numbers can be decoded without too much

computational cost. (In this case, it is usually linear in the size of the number in bits used to

represent the index.) Fairness means that when combining different enumerations, such as when

constructing an enumeration of an n-tuple out of n enumerations, the constituent enumerations

are indexed into approximately evenly. Here I won’t discuss the details of data/enumerate’s

implementation, those are presented in New et al. (2015) along with a formal semantics of the

library and a introduction to and proof of fairness. Instead I focus on its application in Redex,

presenting enough of the API to support a description of how grammars are used to generate

enumerations.

An enumeration in data/enumerate consists of a to-nat function that maps enumerated

objects into the natural numbers, a from-nat function that maps the naturals into the enumerated

objects, a size (the number of enumerated elements, possibly infinite), and a contract describing

the enumerated elements. The simplest enumeration is the enumeration of natural numbers, where

the bijection is just the identity. This is provided from data/enumerate as natural/e, and we

can both decode and encode with it as follows:

> (to-nat natural/e 42)

42

> (from-nat natural/e 42)

42
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Similarly, we can also construct enumerations of subsets of the naturals using below/e, which

takes a number as its argument and returns a finite enumeration of the naturals up to less than the

number.

Given some finite number of elements, we can construct an enumeration of them directly, using

fin/e:

> (define abc/e (fin/e 'a 'b 'c 'd 'e 'f 'g))

> (to-nat abc/e 'c)
2

> (from-nat abc/e 5)

'f

Given two enumerations, we can combine them with or/e, which takes some number of enu-

merations as its arguments and returns their disjoint union. For example, we could form the combi-

nations of the natural numbers and the enumeration above: (or/e natural/e abc/e). The first

18 elements in that enumeration are:

0 'a 1 'b 2 'c 3 'd 4

'e 5 'f 6 'g 7 8 9 10

Note that we were able to combine finite and infinte enumerations in this example with no trouble,

a necessary feature to build enumerations of Redex grammars.

Enumerations of tuples can be formed with list/e, which takes n enumerations as its argu-

ments and returns the enumeration of the corresponding n-tuple. For example, the first 12 elements

in the enumeration (list/e natural/e natural/e natural/e) are:

'(0 0 0) '(0 0 1) '(0 1 0) '(0 1 1)

'(1 0 0) '(1 1 0) '(1 0 1) '(1 1 1)

'(0 0 2) '(1 0 2) '(0 1 2) '(1 1 2)
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Only one more ingredient is necessary to be able to enumerate a simple grammar: delay/e,

which enables the construction of fixed-points for recursively defined enumerations. To see how it

works, we will build an enumeration for the same example grammar from the previous section:
�������������
����

�������������������
������������

We can define an enumeration for this grammar as follows:

(define arith-e/e

(letrec ([e/e (delay/e

(or/e n/e

(list/e o/e e/e e/e)))]

[o/e (fin/e '+ '- '* '/)]
[n/e (below/e 100)])

e/e))

constructing an enumerator for each non-terminal in a mutually recursive manner. Enumerators

for non-terminals that are self-recursive, such as e/e, are where delay/e is put to use, enabling

the evaluation of the body to be delayed and unfolded as necessary.

Now we can construct the first few elements in the enumeration of the grammar:

0 '(+ 0 0) 1

'(- 0 0) 2 '(* 0 0)

3 '(/ 0 0) 4

'(+ 0 (+ 0 0)) 5 '(- 0 (+ 0 0))

Or we can index more deeply into it:

> (from-nat arith-e/e 12345678987654321)

'(- (* (* 3 15) (/ 2 11)) (/ (* 3 15) (- 3 11)))
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The efficiency of the enumeration combinators ensures that the above example completes almost

instantaneously, as do even larger indices.

As with the ad-hoc grammar generator, given appropriate enumeration combinators, generat-

ing an enumeration from a grammar is for the most part straightforward. Each different pattern

that can appear in a grammar definition is mapped into an enumeration. At a high-level, the corre-

spondence between Redex patterns and the combinators is clear. Recursive non-terminals map into

uses of delay/e, alternatives map into or/e and sequences map into list/e. Some care is also

taken to exploit fairness. In particular, when enumerating the pattern, (λ (x : τ) e), instead

of generating list and pair patterns following the precise structure, which would lead to an unfair

nesting, the pattern (list/e x/e τ/e e/e) is generated, where x/e, τ/e and e/e correspond to

the enumerations for those non-terminals, from which the appropriate term is constructed.
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CHAPTER 4

Derivation Generation by Example

This chapter introduces an alternative method for generating test-cases from a Redex program.

In this approach, random derivations are constructed that satisfy judgment forms (and metafunc-

tions) in a Redex model. In actual Redex models, this approach can be used to generate terms

that are well-typed or satisfy some similar static property. Since such properties are frequently the

premise of a testable property, that makes the terms useful as test cases.

Here I present an overview of the method for generating well-typed terms by working through

the generation of an example term. (Section 5 provides a in-depth, formal explanation.) We will

build a derivation satisfying the rules in figure 8, a subset of the rules for the typing judgment from

the model in section 2.1. We begin with a goal pattern, which we will want the conclusion of the

generated derivation to match.

��⊢��������

���������⊢�������

��⊢��������������������→����

����������������

��⊢������

��⊢����������→��� ��⊢��������

��⊢������������

Figure 8: Type system rules used in the example derivation.
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Our goal pattern will be the following:

� ⊢ �� � ��

stating that we would like to generate an expression with arbitrary type in the empty type envi-

ronment. We then randomly select one of the type rules. This time, the generator selects the

abstraction rule, which requires us to specialize the values of �� and �� in order to agree with the

form of the rule’s conclusion. To do that, we first generate a new set of variables to replace the ones

in the abstraction rule, and then unify our conclusion with the specialized rule. We put a super-

script � on these variables to indicate that they were introduced in the first step of the derivation

building process, giving us this partial derivation.

���������� ⊢ �� � ��

� ⊢ ��������������� � �����→����

The abstraction rule has added a new premise we must now satisfy, so we follow the same process

with the premise. If the generator selects the abstraction rule again and then the application rule,

we arrive at the following partial derivation, where the superscripts on the variables indicate the

step where they were generated:

������������������� ⊢ ��� � �����→���� ������������������� ⊢ ��� � ���

������������������� ⊢ ��������� � ��

���������� ⊢ ���������������������� � �����→����

� ⊢ ����������������������������������� � �����→������→�����

Application has two premises, so there are now two unfinished branches of the derivation. Working

on the left side first, suppose the generator chooses the variable rule:

������������������������������� � �����→����

������������������� ⊢ �� � �����→���� ������������������� ⊢ ��� � ���

������������������� ⊢ �������� � ��

���������� ⊢ ��������������������� � �����→����

� ⊢ ���������������������������������� � �����→������→�����
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������������������ ��� �
�������������������� ��� �������������
������������ ��� ��

������������������ � �

������������ � ��

�� � �� ������������� � �

��������������������� � �

Figure 9: Lookup as a metafunction (left), and the corresponding judgment form (right).

To continue, we need to use the ������ metafunction, whose definition is shown on the left-

hand side of figure 9. Unlike judgment forms, however, Redex metafunction clauses are ordered,

meaning that as soon as one of the left-hand sides matches an input, the corresponding right-hand

side is used for the result. Accordingly, we cannot freely choose a clause of a metafunction without

considering the previous clauses. Internally, our method treats a metafunction as a judgment form,

however, adding premises to reflect the ordering.

For the lookup function, we can use the judgment form shown on the right of figure 9. The only

additional premise appears in the bottom rule and ensures that we only recur with the tail of the

environment when the head does not contain the variable we’re looking for. The general process

is more complex than ������ suggests and we return to this issue in section 5.2.

If we now choose that last rule, we have this partial derivation:

�� � �� ���������������������� � �����→����

������������������������������� � �����→����

������������������� ⊢ �� � �����→���� ��������������� ��� ⊢ ��� � ���

������������������� ⊢ �������� � ��

���������� ⊢ ��������������������� � �����→����

� ⊢ ���������������������������������� � �����→������→�����

The generator now chooses ������’s first clause, which has no premises, thus completing the

left branch.
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�� � �� ����������������→������������ � �����→����

������������������������→������������� � �����→����

���������������� →�������� ⊢ �� � �����→���� �����������������→�������� ⊢ ��� � ���

�����������������→�������� ⊢ �������� � ��

���������→������� ⊢ ��������������������� � �����→����

� ⊢ ������������→���������������������������� � ������→�����→������→�����

Because pattern variables can appear in two different premises (for example the application

rule’s �� appears in both premises), choices in one part of the tree affect the valid choices in other

parts of the tree. In our example, we cannot satisfy the right branch of the derivation with the same

choices we made on the left, since that would require ��� � �����→����.

This time, however, the generator picks the variable rule and then picks the first clause of the

������, resulting in the complete derivation:

⋮

�����������������→�������� ⊢ �� � �����→����

������������������������→������������� � ���

�����������������→�������� ⊢ �� � ���

�����������������→�������� ⊢ ������� � ��

���������→������� ⊢ �������������������� � �����→����

� ⊢ ������������→��������������������������� � ������→�����→������→�����

To finish the construction of a random well-typed term, we choose random values for the

remaining, unconstrained variables, e.g.:

� ⊢ �����������→������������������������� � ������→������→������→������

We must be careful to obey the constraint that �� and �� are different, which was introduced

earlier during the derivation, as otherwise we might not get a well-typed term. For example,

�����������→������������������������� is not well-typed but is an otherwise valid instantiation of

the non-terminals.
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CHAPTER 5

Derivation Generation in Detail

This chapter describes a formal model of the derivation generator. The centerpiece of the model

is a relation that rewrites programs consisting of metafunctions and judgment forms into the set of

possible derivations that they can generate. The Redex implementation has a structure similar to the

model, except that it uses randomness and heuristics to select just one of the possible derivations

that the rewriting relation can produce. The model is based on Jaffar et al. (1998)’s constraint logic

programming semantics.

The grammar in figure 10 describes the language of the model. A program � consists of

definitions �, which are sets of inference rules �������←�������, here written horizontally with the

conclusion on the left and premises on the right. Definitions can express both judgment forms and

�������������
�������������

�������������←�������
���������������
���������������

��������

�������∧��∧�������������
�∧��������

�������������

�������∀����������∨��������������

��������

�����������������
����
����

��������������
��������������

��������

Figure 10: The syntax of the derivation generator model.
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���⊢����������������∥���� ���������

���⊢����������������∥����

�������������������������������←������������������������������

��������←���������������������������←�����������
�������������������������

���⊢������������∥���� �����������������

���⊢���������∥����
����������������������������

Figure 11: Reduction rules describing generation of the complete tree of derivations.

metafunctions. They are a strict generalization of judgment forms, and metafunctions are compiled

into them via a process we discuss in section 5.2.

The conclusion of each rule has the form �����, where � is an identifier naming the definition

and � is a pattern. The premises � may consist of literal goals ����� or disequational constraints

�. We dive into the operational meaning behind disequational constraints later in this section,

but as their form in figure 10 suggests, they are a disjunction of negated equations, in which the

variables listed following ∀ are universally quantified. The remaining variables in a disequation

are implicitly existentially quantified, as are the variables in equations.

The reduction relation shown in figure 11 generates the complete tree of derivations for the

program � with an initial goal of the form �����, where � is the identifier of some definition in �

and � is a pattern that matches the conclusion of all of the generated derivations. The relation is

defined using two rules: �������� and ����������������. The states that the relation acts on are of

the form ���⊢���������∥���, where ������� represents a stack of goals, which can either be incomplete

derivations of the form �����, indicating a goal that must be satisfied to complete the derivation, or

disequational constraints that must be satisfied. A constraint store � is a set of simplified equations
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and disequations that are guaranteed to be satisfiable. The notion of equality we use here is purely

syntactic; two ground terms are equal to each other only if they are identical.

Each step of the rewriting relation looks at the first entry in the goal stack and rewrites to an-

other state based on its contents. In general, some reduction sequences are ultimately doomed, but

may still reduce for a while before the constraint store becomes inconsistent. In the implemen-

tation, discovery of such doomed reduction sequences causes backtracking. Reduction sequences

that lead to valid derivations always end with a state of the form ���⊢����∥���, and the derivation

itself can be read off of the reduction sequence that reaches that state.

When a goal of the form ����� is the first element of the goal stack (as is the root case, when

the initial goal is the sole element), then the �������� rule applies. For every rule of the form

��������←�������� in the program such that the definition’s id � agrees with the goal’s, a reduction step

can occur. The reduction step first freshens the variables in the rule, asks the solver to combine

the equation ��������� with the current constraint store, and reduces to a new state with the new

constraint store and a new goal state. If the solver fails, then the reduction rule doesn’t apply

(because ����� returns ⊥ instead of a ��). The new goal stack has all of the previously pending

goals as well as the new ones introduced by the premises of the rule.

The ���������������� rule covers the case where a disequational constraint � is the first ele-

ment in the goal stack. In that case, the disequational solver is called with the current constraint

store and the disequation. If it returns a new constraint store, then the disequation is consistent and

the new constraint store is used.

The remainder of this chapter fills in the details in this model and discusses the correspondence

between the model and the implementation in more detail. First, an example Redex metafunction

is translated into the model and used to generate a reduction graph in section 5.1. Section 5.2

describes the compilation of metafunctions, generalizing the process used for ������ in section 4.
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�����������
����

����������������

������ �������
�������������� ���������
������ ������

Figure 12: Grammar (left) and metafunction to be compiled and run in the derivation generator.

Section 5.3 describes how the solver handles equations and disequations. Section 5.4 discusses

the heuristics in the implementation and section 5.5 describes how the implementation scales up to

support features in Redex that are not covered in this model.

5.1. An Example

To get a better idea of how the model of the derivation generator works, this section works

through the translation of a Redex metafunction into a program � of the model. Then, to see how

the reduction in figure 11 works, a small but complete reduction graph is generated based on that

program with a given initial goal.

Our starting point will be the simple grammar and metafunction ��� shown in figure 12. The

language is a encoding of unary numbers �, and ��� is a function that takes an � and returns ����

or ���, depending on the number. It is written somewhat strangely to demonstrate some interesting

aspects of the model.

As we did for the lookup metafunction in section 4, we can translate ��� into a judgment form

defining a two-place relation by adding appropriate constraints as premises. The new judgment

had the output of ��� (���� or ���) in the first position and the corresponding unary number in

the second. The rules for the judgment, which we’ll call ������, are shown in figure 13.

Since there is no overlap between the left-hand sides of the first two clauses in ��� the first two

rules (reading left to right) have to additional premises. The third rule, however, has two premises
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���������������

������������

��������������������

������� �∀�����������������������
��������������

Figure 13: The metafunction of figure 12 as a judgment form.

to exclude both of the previous clauses. The next section discusses in detail the form of such

constraints and the need for universal quantification.

Finally, we would like to use ������ as a program for the derivation generator. We can directly

translate the judgment of figure 13 into a definition � of the model as defined in figure 11. It is

somewhat more difficult to read but is semantically identical:

������������������������←�
������������������������������������←��������������������
���������������������

←
�∀�������������������������������
���������

Note that sequence patterns all now have explicit ��� constructors, corresponding to patterns � of

the model, so that ��������� becomes �����������������. Also, the parameters of the judgment have

been combined into an ��� sequence as well, since in the model all judgments are unary, so we just

combine the parameters of any n-ary judgment into a tuple.

To generate a reduction graph for this program we need an appropriate initial goal, for which

we can chose ����������������������������������������������, asserting that three is odd, or that ���

should be the result of calling ��� with �. We then form a tuple from the program �, the goal, and

the empty set of constraints �∧� (the constraint set is shown as a single disjunction for simplicity),

which we use as an input for the reduction relation of figure 11. The resulting reduction graph is

shown in figure 14.
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Figure 14: Reduction graph for example generator program. The program is abbreviated as P.
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The first thing to notice about the reduction graph is that there are two possible reductions

using the �������� rule from the initial state. Theses correspond to the middle and right rules from

figure 13, both of which have conclusions that can be equated with the current goal. The right hand

reduction comes from the rule on the right (note the form of the added constraints) and is a stuck

state. Because it has a disequation � on the top of the goal stack, it could only take a step using

the ���������������� rule. However, inspecting the current set of constraints (the bottom or last

element of the state tuple) shows that it conflicts with the disequation at the top of the stack, so it

isn’t possible to take another step from this state.

The left hand reduction path takes a �������� step corresponding to a use of the middle rule

from figure 13. It then takes another �������� step, but this time it can only use the rule on the right

of the judgment, because n_2 in the goal conflicts with both of the other possibilities, as it is defined

by the constraint store to be (lst s z). This step adds two new disequations, however neither

of them conflict with the current constraint, and they are processed through two ����������������

steps, resulting in a final state with an empty goal stack, representing a successful derivation.

No terms could be randomly generated with this reduction graph, since we started with a fully

instantiated goal, and there is only one possible successful derivation. Starting with a different

goal, such as one specifying odd in the first position and n, the pattern representing any possible

unary number, in the second position would generate an infinitely branching reduction graph, with

successful branches corresponding to each odd number, and stuck states in branches that would

otherwise have led to an even number. The Redex implementation essentially executes a random-

ized search over such a reduction graph, looking for the successful branches.
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5.2. Compiling Metafunctions

The examples of chapter 4 and section 5.1 informally demonstrated how metafunctions can be

converted into judgment forms. This section discusses how to generalize this process.

The primary difference between a metafunction, as written in Redex, and a set of �������←�������

clauses from figure 10 is sensitivity to the ordering of clauses. Specifically, when the second clause

in a metafunction fires, then the pattern in the first clause must not match, in contrast to the rules

in the model, which fire regardless of their relative order. Accordingly, the compilation process

that translates metafunctions into the model must insert disequational constraints to capture the

ordering of the cases.

As an example, consider the metafunction definition of � on the left and some example appli-

cations on the right:
�������������� ��� �
���� ��� �

����������������
������������������

The first clause matches any two-element list, and the second clause matches any pattern at all.

Since the clauses apply in order, an application where the argument is a two-element list will

reduce to � and an argument of any other form will reduce to �. To generate conclusions of the

judgment corresponding to the second clause, we have to be careful not to generate anything that

matches the first.

Applying the same idea as ������ in section 4, we reach this incorrect translation:

�������������� � �

����������� � �

���� � �

This is wrong because it would let us derive ���������������, using � for �� and � for �� in the

premise of the right-hand rule. The problem is that we need to disallow all possible instantiations

of �� and ��, but the variables can be filled in with just specific values to satisfy the premise.

The correct translation, then, universally quantifies the variables �� and ��:
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�������������
�����������
�������������
����������
��������

�����������������
��������

Figure 15: Extensions to the language of figure 10 to add functions

�������������� � �

�∀������� ����������� � ��

���� � �

Thus, when we choose the second rule, we know that the argument will never be able to match the

first clause.

In general, when compiling a metafunction clause, we add a disequational constraint for each

previous clause in the metafunction definition. Each disequality is between the left-hand side pat-

terns of one of the previous clauses and the left-hand side of the current clause, and it is quantified

over all variables in the previous clause’s left-hand side.

To formalize this process as part of the model, we can first add (object-language) metafunctions

to the language and then write (Redex) metafunctions to eliminate then. To ease confusion between

the two language levels, I’ll refer to object-language metafunctions as simply “functions,” and the

Redex equivalent as “metafunctions.” The extensions adding functions to the language of the

model are shown in figure 15. Programs become a list of either �’s or �’s, where � is a function

definition as a list of clauses �. The name of the function � appears on the left-hand side of each

clause, as in Redex. The other wrinkle is that patterns � are now allowed to include function

applications �����, reflecting that in Redex such applications are allowed inside term.

The metafunctions for function compilation are shown in figure 16. The top-level metafunction,

�������, first calls ��������� with every function in the program until there are none, and then
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������������→��������
���������������� ��� �����������������������
������������������������ �����������������������������������������������������

��������������→��
��������������������������������

���������������������←��
���������������������������������������������������

���������������������������←��∀�����������∨�������������������
������������������������������������������������

Figure 16: Metafunctions for compiling metafunctions � into definitions �.

calls �������������� with every definition � in the program. The metafunction for compiling an

individual function, ���������, processes each prefix of the list of clauses individually, mapping

each to a rule �. It does nothing special with the prefix containing only one clause, other than

returning the equivalent rules, but in every other case it creates a rule based on the last clause in

the prefix, adding in constraints excluding every other clause in the prefix.

Finally, the metafunctions shown in figure 17 lift out function applications embedded in pat-

terns. An application of the form ����� is replaced with some fresh variable � representing its result.

The application itself is transformed into a premise of the form �������, since the function has been

compiled into a relation of that form. The pattern � is in the input position and the variable � is

in the output position. The premise is then lifted to the top level of the surrounding rule �. The

extraction of all applications from within patterns and transformation to premises is performed by

��������������, while the other metafunctions shown in figure 17 lift the premises to the rule level

along with the appropriate bookkeeping.

The technique of converting functions into relations for use in a logic-programming setting is

usually referred to as flattening and is not new, see for example Naish (1991) and Rouveirol (1994).

However, the addition of disequations as part of the process has not previously been applied
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�������������������������→��������
����������������������� ��� �����������������������

�������������������→��
����������������������←�������� ��� ��������←������������������������������������
�������������������������������������������������������������������������������������������������

�������������������→������������
��������������������� ��� ����������������������
���������������������������������������������

����������������∀����������∨������������� ��� ��∀����������∨����������������

�������������������→������������
���������������������� ��� �������������������������������
���������������������������������������������������������������
��������������������������� ��� ��������������������������������
���������������������������������������������������������
����������������� ��� ������
����������������� ��� ������

Figure 17: Metafunctions for extracting function applications from within patterns.

and it allows a broader set of function definitions to be flattened, since otherwise, as noted by

Naish (1991), one has to require that all left-hand sides be mutually non-unifiable. Further, and

more importantly for Redex, it allows the rules of the resulting relation to be tried in any order.

More recently, flattening has been applied to support test-case generation by Bulwahn (2013) for

the purpose of inverting functions.

5.3. The Constraint Solver

The constraint solver maintains a set of equations and disequations that captures invariants

of the current derivation that it is building. These constraints are called the constraint store and

are kept in the canonical form �, as shown in figure 10, with the additional constraint that the

equational portion of the store can be considered an idempotent substitution. That is, it always
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equates variables with with �s and, no variable on the left-hand side of an equality also appears

in any right-hand side. Whenever a new constraint is added, consistency is checked again and the

new set is simplified to maintain the canonical form.

Figure 18 shows �����, the entry point to the solver for new equational constraints. It accepts

an equation and a constraint store and either returns a new constraint store that is equivalent to the

conjunction of the constraint store and the equation or ⊥, indicating that adding � is inconsistent

with the constraint store. In its body, it first applies the equational portion of the constraint store as

a substitution to the equation. Second, it performs syntactic unification (Baader and Snyder 2001)

of the resulting equation with the equations from the original store to build a new equational portion

of the constraint. Third, it calls �����, which simplifies the disequational constraints and checks

their consistency. Finally, if all that succeeds, ����� returns a constraint store that combines the

results of ����� and �����. If either ����� or ����� fails, then ����� returns ⊥.

Figure 19 shows ��������, the disequational counterpart to �����. It applies the equational part

of the constraint store as a substitution to the new disequation and then calls ��������. It ��������

returns ⊤, then the disequation was already guaranteed in the current constraint store and thus does

not need to be recorded. If �������� returns ⊥ then the disequation is inconsistent with the current

constraint store and thus �������� itself returns ⊥. In the final situation, �������� returns a new

disequation, in which case �������� adds that to the resulting constraint store.

The �������� function exploits unification and a few cleanup steps to determine if the input

disequation is satisfiable. In addition, �������� is always called with a disequation that has had the

equational portion of the constraint store applied to it (as a substitution).

The key trick in this function is to observe that since a disequation is always a disjunction of

inequalities, its negation is a conjuction of equalities and is thus suitable as an input to unification.

The first case in �������� covers the case where unification fails. In this situation we know that the



55

������������→������⊥
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Figure 18: The Solver for Equations

disequation must have already been guaranteed to be false in constraint store (since the equational

portion of the constraint store was applied as a substitution before calling ��������). Accordingly,

�������� can simply return ⊤ to indicate that the disequation was redundant.

Ignoring the call to ���������� in the second case of �������� for a moment, consider the case

where ����� returns an empty conjunct. This means that �����’s argument is guaranteed to be true

and thus the given disequation is guaranteed to be false. In this case, we have failed to generate

a valid derivation because one of the negated disequations must be false (in terms of the original

Redex program, this means that we attempted to use some later case in a metafunction with an

input that would have satisfied an earlier case) and so �������� must return ⊥.
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Figure 19: The Solver for Disequations

But there is a subtle point here. Imagine that ����� returns only a single clause of the form

������� where � is one of the universally quantified variables. We know that in that case, the corre-

sponding disequation �∀������������� is guaranteed to be false because every pattern admits at least

one concrete term. This is where ���������� comes in. It cleans up the result of ����� by elim-

inating all clauses that, when negated and placed back under the quantifier, would be guaranteed

false, so the reasoning in the previous paragraph holds and the second case of �������� behaves

properly.

The last case in �������� covers the situation where ����� composed with ���������� returns

a non-empty substitution. In this case, we do not yet know if the disequation is true or false, so we

collect the substitution that ����� returned back into a disequation and return it, to be saved in the

constraint store.
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Figure 20: Metafunctions used to process disequational constaints.

This brings us to ����������, in figure 20. Its first argument is a unifier, as produced by a call

to ����� to handle a disequation, and the second argument is the universally quantified variables

from the original disequation. Its goal is to clean up the unifier by removing redundant and useless

clauses.

There are two ways in which clauses can be false. In addition to clauses of the form �������

where � is one of the universally quantified variables, it may also be the case that we have a clause

of the form �������� and, as before, � is one of the universally quantified variables. This clause also
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must be dropped, according to the same reasoning (since � is symmetric). But, since variables on

the right hand side of an equation may also appear elsewhere, some care must be taken here to

avoid losing transitive inequalities. The function ������ handles this situation, constructing a new

set of clauses without � but, in the case that we also have ��������, adds back the equation ���������.

Finally, we return to �����, shown in figure 20, which is passed the updated disequations after

a new equation has been added in ����� (see figure 18). It verifies the disequations and maintains

their canonical form, once the new substitution has been applied. It does this by applying ��������

to any non-canonical disequations.

Clearly, the soundness of the derivation generation process depends critically on the correctness

of the constraint solver defined by ����� and ��������. Appendix A provides a formal proof of

the correctness of the constraint solver. In addition, since it is comparatively inexpensive to do so,

Redex’s implementation checks that generated terms satisfy the judgment form or metafunction

whose definition was used to generate them.

5.4. Search Heuristics

To pick a single derivation from the set of candidates, Redex must make explicit choices when

there are differing states that a single reduction state reduces to. Such choices happen only in the

�������� rule, and only because there may be multiple different clauses, �������←�������, that could

be used to generate the next reduction state.

To make these choices, the implementation collects all of the candidate cases for the next

definition to explore. It then randomly permutes the candidate rules and chooses the first one of

the permuted rules, using it as the next piece of the derivation. It then continues to search for a

complete derivation. That process may fail, in which case the implementation backtracks to this

choice and picks the next rule in the permuted list. If none of the choices leads to a successful
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Figure 21: Density functions of the distributions used for the depth-dependent rule ordering, where
the depth limit is 4 and there are 4 rules.

derivation, then this attempt is failure and the implementation either backtracks to an earlier such

choice, or fails altogether.

There are two refinements that the implementation applies to this basic strategy. First, the

search process has a depth bound that it uses to control which production to choose. Each choice

of a rule increments the depth bound and when the partial derivation exceeds the depth bound, then

the search process no longer randomly permutes the candidates. Instead, it simply sorts them by

the number of premises they have, preferring rules with fewer premises in an attempt to finish the

derivation off quickly.

The second refinement is the choice of how to randomly permute the list of candidate rules, and

the generator uses two strategies. The first strategy is to just select from the possible permutations

uniformly at random. The second strategy is to take into account how many premises each rule

has and to prefer rules with more premises near the beginning of the construction of the derivation

and rules with fewer premises as the search gets closer to the depth bound. To do this, the imple-

mentation sorts all of the possible permutations in a lexicographic order based on the number of



60

premises of each choice. Then, it samples from a binomial distribution whose size matches the

number of permutations and has probability proportional to the ratio of the current depth and the

maximum depth. The sample determines which permutation to use.

More concretely, imagine that the depth bound was 4 and there are also 4 rules available.

Accordingly, there are 24 different ways to order the premises. The graphs in figure 21 show the

probability of choosing each permutation at each depth. Each graph has one x-coordinate for each

different permutation and the height of each bar is the chance of choosing that permutation. The

permutations along the x-axis are ordered lexicographically based on the number of premises that

each rule has (so permutations that put rules with more premises near the beginning of the list are

on the left and permutations that put rules with more premises near the end of the list are on the

right). As the graph shows, rules with more premises are usually tried first at depth 0 and rules

with fewer premises are usually tried first as the depth reaches the depth bound.

These two permutation strategies are complementary, each with its own drawbacks. Consider

using the first strategy that gives all rule ordering equal probability with the rules shown in figure 8.

At the initial step of our derivation, we have a 1 in 4 chance of choosing the type rule for numbers,

so one quarter of all expressions generated will just be a number. This bias towards numbers also

occurs when trying to satisfy premises of the other, more recursive clauses, so the distribution is

skewed toward smaller derivations, which contradicts commonly held wisdom that bug finding

is more effective when using larger terms. The other strategy avoids this problem, biasing the

generation towards rules with more premises early on in the search and thus tending to produce

larger terms. Unfortunately, experience testing Redex program suggests that it is not uncommon

for there to be rules with large number of premises that are completely unsatisfiable when they are

used as the first rule in a derivation (when this happens there are typically a few other, simpler rules

that must be used first to populate an environment or a store before the interesting and complex
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Figure 22: The subset of Redex's pattern language supported by the generator. Racket symbols are
indicated by s, and c represents any Racket constant.

rule can succeed). For such models, using all rules with equal probability still is less than ideal,

but is overall more likely to at least succeed.

Since neither strategy for ordering rules is always better than the other, Redex decides between

the two randomly at the beginning of the search process for a single term, and uses the same

strategy throughout that entire search. This is the approach the generator evaluated in section 7

uses.

Finally, in all cases searches that appear to be stuck in unproductive or doomed parts of the

search space are terminated by placing limits on backtracking, search depth, and a secondary, hard

bound on derivation size. When these limits are violated, the generator simply abandons the current

search and reports failure.

5.5. A Richer Pattern Language

The model of section 5 uses a much simpler pattern language than Redex itself. The portion of

Redex’s internal pattern language supported by the generator is shown in figure 22. The generator
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is not currently able to handle parts of the pattern language that deal with evaluation contexts or “re-

peat” patterns (ellipses). This section discusses the interesting differences between this language

and the language of the model, along with how they are supported in the implementation.

Named patterns of the form ���������� correspond to variables x in the simplified version of

the pattern language from figure 10, except that the variable � is paired with a pattern �. From the

matcher’s perspective, this form is intended to match a term with the pattern � and then bind the

matched term to the name �. The generator pre-processes all patterns with a first pass that extracts

the attached pattern � and attempts to update the current constraint store with the equation �������,

after which � can be treated as a logic variable.

The � and � non-terminals are built-in patterns that match subsets of Racket values. The pro-

ductions of � are straightforward; �������, for example, matches any Racket integer, and ���

matches any Racket s-expression. From the perspective of the unifier, ������� is a term that may

be unified with any integer, the result of which is the integer itself. The value of the term in the

current substitution is then updated. Unification of built-in patterns produces the expected results;

for example unifying ���� and ������� produces �������, whereas unifying ���� and ������ fails.

The productions of � match Racket symbols in varying and commonly useful ways; for ex-

ample, �������������������������������� matches any symbol that is not used as a literal else-

where in the language. These are handled similarly to the patterns of the � non-terminal within the

unifier.

Patterns of the from �������������������match the pattern � with the constraint that two oc-

currences of the same name � may never match equal terms. These are straightforward: whenever

a unification with a mismatch takes place, disequations are added between the pattern in question

and other patterns that have been unified with the same mismatch pattern.
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Patterns of the form ������ refer to a user-specified grammar, and match a term if it can be

parsed as one of the productions of the non-terminal � of the grammar. It is less obvious how

such non-terminal patterns should be dealt with in the unifier. To unify two such patterns, the

intersection of two non-terminals should be computed, which reduces to the problem of computing

the intersection of tree automata, for which there is no efficient algorithm (Comon et al. 2007).

Instead a conservative check is used at the time of unification. When unifying a non-terminal with

another pattern, an attempt is made to unify the pattern with each production of the non-terminal,

replacing any embedded non-terminal references with the pattern ���. We require that at least

one of the unifications succeeds. Because this is not a complete check for pattern intersection, the

names of the non-terminals are saved as extra information embedded in the constraint store until

the entire generation process is complete. Then, once a concrete term is generated, it is checked

to see if any of the non-terminals would have been violated (using a matching algorithm). This

means that it is possible to get failures at this stage of generation, but it tends not to happen very

often for practical Redex models. To be more precise, on the Redex benchmark (see Chapter 6)

such failures occur on all “delim-cont” models 2.9˘1.1% of the time, on all “poly-stlc” models

3.3˘0.3% of the time, on the “rvm-6” model 8.6˘2.9% of the time, and are not observed on the

other models.

5.6. Related Work in Disequational Constraints

Colmerauer (1984) is the first to introduce a method of solving disequational constraints of the

type used here, but his work handles only existentially quantified variables. Like him, Redex uses

the unification algorithm to simplify disequations.

Comon and Lescanne (1989) address the more general problem of solving all first order logical

formulas where equality is the only predicate, which they term “equational problems,” of which
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our constraints are a subset. They present a set of rules as rewrites on such formulas to transform

them into solved forms. Redex’s solver is essentially a way of factoring a stand-alone unifier out

of their rules.

Byrd (2009) notes that a related form of disequality constraints has been available in many

Prolog implementations and constraint programming systems since Prolog II. Notably, miniKan-

ren (Byrd 2009) and cKanren (Alvis et al. 2011) implement them in a way similar to Redex,

using unification as a subroutine. However, to my knowledge, none of these systems supports the

universally quantified constraints Redex requires.
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CHAPTER 6

The Redex Benchmark

This chapter introduces the Redex Benchmark, a suite of Redex models and bugs. The bench-

mark is intended to support the comparative evaluation of different methods of automated property-

based testing. Section 6.1 discusses the problem of evaluating test-case generators and the ap-

proach used in this research, and section 6.2 describes the models and bugs used in the benchmark

in detail. In section 7.1 the benchmark is applied to compare the different methods of random

generation used by Redex.

6.1. Benchmark Rationale and Related Work

As Claessen and Hughes (2000) point out in the original paper on QuickCheck, it is “notori-

ously difficult” to evaluate the effectiveness of an approach to testing. Their paper provided strong

anecdotal evidence that QuickCheck was effective for a variety of users with a variety of differ-

ent applications, but didn’t attempt a systematic study of its effectiveness. (A comparative study

wasn’t as easy to attempt at the time since their own tool was the first to popularize property-based

testing for functional programmers.) In their case, the success of QuickCheck over the years has

become the strongest evidence of its usefulness.

Subsequent efforts have made the attempt to be more systematic. In a study introducing Small-

Check, a property-based testing library for Haskell using exhaustive generation (as opposed to

random generation in QuickCheck’s case), Runciman et al. (2008) compare SmallCheck, Lazy

SmallCheck, and QuickCheck on a few different programs: implementations of red-black trees,
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Huffman coding/decoding, a compiler from lambda calculus to combinators, and a chess problem

solver. Since they are doing exhaustive testing, they give results for generation times of all inputs

up to a certain depth, which one can argue should be correlated to testing effectiveness. In terms

of finding actual faults, they report that two counterexamples were exposed during their study,

both by Lazy SmallCheck, and give a cursory a description of one, for red black trees, where “a

fault was fabricated in the rebalancing function by swapping two subtrees.” The small number of

counterexamples makes it difficult to draw solid conclusions about testing effectiveness.

A more recent comparative study was conducted by Bulwahn (2012) to evaluate a derivative of

QuickCheck for the Isabelle (Nipkow et al. 2011) proof assistant. In this study, a number of differ-

ent testing strategies were evaluated on a database of theorem mutations, faulty implementations

of functional data structures, and an implementation of a hotel key-card system. The mutation

database includes 400 mutated theorems from the areas of arithmetic, set theory, list data types,

and examples drawn from the Isabelle Archive of Formal Proofs. The mutations were introduced

by replacing constants and swapping arguments, and each testing method was given 30 seconds to

find a counterexample to a given mutation. For the functional data structures, typos in the delete

operation were introduced to create faulty versions of AVL, red-black, and 2-3 trees, and the prop-

erty that delete preserved balance and ordering was tested, again with a time limit of 30 seconds.

The hotel key-card system allowed a possible man-in-the-middle attack, which one method was

able to find in ten minutes.

The Redex benchmark attempts as much as possible to measure how effective different auto-

mated testing methods are at finding counterexamples to real-world bugs on real-world models.

Models come from two sources: pre-existing Redex models and those synthesized for the bench-

mark. In both cases an effort has been made to use models that are “typical” of those that Redex

users write. Bugs are inserted by hand into the models, and are either actual bugs introduced and
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found during the development of the model, or inserted because they are judged to be representa-

tive of bugs that could be introduced in a typical development. A short description of each model

and each bug is given in section 6.2.

The models themselves represent a wider variety and a deeper complexity than those used in

previous studies. As in both studies mentioned above, we include an implementation of a func-

tional data structure, namely red-black trees. The rest of the models, however, are programming

languages or virtual machines that typically have much richer properties to test, such as type-

soundness. This provides a broader range of models and properties to test and targets the domain

(PL semantics) for which Redex’s automated testing support is intended.

We also test the models for much longer time periods, up to 24 hours (or more, if uncertainty

remains large) for each generator/bug pair. This is intended to coincide more closely with actual

use cases, where a test run may frequently extend over lunch, overnight, or a weekend. It also

exposes differences at larger time scales that can be exploited through optimization of the testing

method or parallelism. (Since test runs are independent, it is easy to take advantage of parallelism

in this setting.)

Finally, as a metric we choose the (average) time to find a counterexample. This measures

exactly the property we desire in a test generator. Other possibilities, such as the time to exhaust a

finite space of possible test cases, or the ratio of attempts to counterexample, are also interesting,

but are not as general. A smaller number of attempts per counterexample, for example, may be

desirable, but not if the cost per attempt becomes too large. We regard such more specific properties

as useful in diagnosing or improving the performance of a specific generator, but not for making

the type of general comparisons we are interested in examining with the benchmark.
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Model synthesized artifact loc # of bugs
delim-cont ‚ 287 3
let-poly ‚ 640 7
list-machine ‚ 256 3
poly-stlc ‚ ‚ 277 9
rbtrees ‚ 187 3
rvm ‚ 712 7
stlc ‚ 211 9
stlc-sub ‚ 241 9

Figure 23: Benchmark Models

6.2. The Benchmark Models

The programs in the benchmark come from two sources: synthetic examples based on experi-

ence with Redex over the years and from pre-existing models along with bugs that were encoun-

tered during the development process.

The benchmark has six different Redex models, each of which provides a grammar of terms

for the model and a soundness property that is universally quantified over those terms. Most of the

models are of programming languages and most of the soundness properties are type-soundness,

but we also include red-black trees with the property that insertion preserves the red-black invari-

ant, as well as one richer property for one of the programming language models (discussed in

section 6.2.3). Figure 23 summarizes the models included, showing whether they are synthesized

for the benchmark or a pre-existing artifact that was included, the non-whitespace, non-comment

lines of code, and the number of bugs added to each model. The line number counts include the

model and the specification of the property.

For each model, bugs are manually introduced into a number of copies of the model, such that

each copy is identical to the correct one, except for a single bug. The bugs always manifest as a

term that falsifies the soundness property.
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Each bug has been classified by hand according to a qualitative scheme as S/M/D/U, meaning,

as follows:

‚ S (Shallow) Errors in the encoding of the system into Redex, due to typos or a misunder-

standing of subtleties of Redex.

‚ M (Medium) Errors in the algorithm behind the system, such as using too simple of a

data-structure that doesn’t allow some important distinction, or misunderstanding that

some rule should have a side-condition that limits its applicability.

‚ D (Deep) Errors in the developer’s understanding of the system, such as when a type

system really isn’t sound and the author doesn’t realize it.

‚ U (Unnatural) Errors that are unlikely to have come up in real Redex programs but are

included for our own curiosity. There are only two bugs in this category.

The table in Appendix B gives a more detailed overview, showing the classification, size of the

smallest known counterexample, and a short description for each bug. Each bug has a number and,

with the exception of the rvm model, the numbers count from 1 up to the number of bugs. The rvm

model bugs are all from Klein et al. (2013)’s work and we follow their numbering scheme (see

section 6.2.8 for more information about how we chose the bugs from that paper).

The following subsections each describe one of the models in the benchmark, along with the

errors introduced into each model. The bugs are described along with short justifications for how

they are categorized.

6.2.1. stlc

A simply-typed λ-calculus with base types of numbers and lists of numbers, including the constants

+, which operates on numbers, and cons, head, tail, and nil (the empty list), all of which operate
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only on lists of numbers. The property checked is type soundness: the combination of preservation

(if a term has a type and takes a step, then the resulting term has the same type) and progress (that

well-typed non-values always take a reduction step).

Nine different bugs wre introduced into this system. The first confuses the range and domain

types of the function in the application rule, and has the small counterexample: (hd 0). We

consider this to be a shallow bug, since it is essentially a typo and it is hard to imagine anyone with

any knowledge of type systems making this conceptual mistake. Bug 2 neglects to specify that a

fully applied cons is a value, thus the list ((cons 0) nil) violates the progress property. We

consider this be be a medium bug, as it is not a typo, but an oversight in the design of a system that

is otherwise correct in its approach.

We consider the next three bugs to be shallow. Bug 3 reverses the range and the domain of

function types in the type judgment for applications. Bug 4 assigns cons a result type of int. The

fifth bug returns the head of a list when tl is applied. Bug 6 only applies the hd constant to a

partially constructed list (i.e., the term (cons 0) instead of ((cons 0) nil)).

The seventh bug, also classified as medium, omits a production from the definition of evaluation

contexts and thus doesn’t reduce the right-hand-side of function applications.

Bug 8 always returns the type int when looking up a variable’s type in the context. This bug

(and the identical one in the next system) are the only bugs we classify as unnatural. It is included

because it requires a program to have a variable with a type that is more complex that just int and

to actually use that variable somehow.

Bug 9 is simple; the variable lookup function has an error where it doesn’t actually compare

its input to variable in the environment, so it effectively means that each variable has the type of

the nearest enclosing lambda expression.
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6.2.2. poly-stlc

This is a polymorphic version of the model in section 6.2.1, with a single numeric base type,

polymorphic lists, and polymorphic versions of the list constants. No changes were made to the

model except those necessary to make the list operations polymorphic. There is no type inference

in the model, so all polymorphic terms are required to be instantiated with the correct types in order

to type check. Of course, this makes it much more difficult to automatically generate well-typed

terms, and thus counterexamples. As with stlc, the property checked is type soundness.

All of the bugs in this system are identical to those in stlc, aside from any changes that had to

be made to translate them to this model.

This model is also a subset of the language specified in Pałka et al. (2011), who used a spe-

cialized and optimized QuickCheck generator for a similar type system to find bugs in GHC. This

system as adapted (along with its restriction in stlc) because it has already been used successfully

with random testing, which makes it a reasonable target for an automated testing benchmark.

6.2.3. stlc-sub

This is the same language and type system as section 6.2.1, except that in this case all of the errors

are in the substitution function.

Experience with Redex shows it is easy to make subtle errors when writing substitution func-

tions, and this set of tests specifically targets them with the benchmark. There are two soundness

checks for this system. Bugs 1-5 are checked in the following way: given a candidate counterex-

ample, if it type checks, then all βv-redexes in the term are reduced (but not any new ones that

might appear) using the buggy substitution function to get a second term. Then, these two terms
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are checked to see if they both still type check and have the same type and that the result of passing

both to the evaluator is the same.

Bugs 4-9 are checked using type soundness for this system as specified in the discussion of the

section 6.2.1 model. We included two predicates for this system because we believe the first to

be a good test for a substitution function but not something that a typical Redex user would write,

while the second is something one would see in most Redex models but is less effective at catching

bugs in the substitution function.

The first substitution bug introduced simply omits the case that replaces the correct variable

with the term to be substituted. We consider this to be a shallow error. Bug 2 permutes the order

of arguments when making a recursive call. This is also categorized as a shallow bug, although

it is a common one, at least based on experience writing substitutions in Redex. Bug 3 swaps the

function and argument positions of an application while recurring, again essentially a typo and a

shallow error, although one of the more difficult to find in this model.

The fourth substitution bug neglects to make the renamed bound variable fresh enough when

recurring past a lambda. Specifically, it ensures that the new variable is not one that appears in

the body of the function, but it fails to make sure that the variable is different from the bound

variable or the substituted variable. We categorized this error as deep because it corresponds to a

misunderstanding of how to generate fresh variables, a central concern of the substitution function.

Bug 5 carries out the substitution for all variables in the term, not just the given variable. We

categorized it as SM, since it is essentially a missing side condition, although a fairly egregious

one. Bugs 6-9 are duplicates of bugs 1-3 and bug 5, except that they are tested with type soundness

instead. (It is impossible to detect bug 4 with this property.)
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6.2.4. let-poly

A language with ML-style let polymorphism, included in the benchmark to explore the difficulty

of finding the classic let+references unsoundness. With the exception of the classic bug, all of

the bugs were errors made during the development of this model (and that were caught during

development).

The first bug is simple; it corresponds to a typo, swapping an x for a y in a rule such that a

type variable is used as a program variable. Bug number 2 is the classic let+references bug. It

changes the rule for let-bound variables in such a way that generalization is allowed even when

the initial value expression is not a value. This is a deep bug. Bug number 3 is an error in the

function application case where the wrong types are used for the function position (swapping two

types in the rule). Bugs 4, 5, and 6 were errors in the definition of the unification function that led

to various bad behaviors. Bug 4 is a simple typo, while 5 and 6 are actual errors although not deep

ones, and are classified as medium.

Finally, bug 7 is a bug that was introduced early on, but was only caught late in the development

process of the model. It used a rewriting rule for let expressions that simply reduced them to the

corresponding ((λ expressions. This has the correct semantics for evaluation, but the statement

of type-soundness does not work with this rewriting rule because the let expression has more

polymorphism that the corresponding application expression, a subtle point that is easy to get

wrong, so this was classified as a deep bug.

6.2.5. list-machine

An implementation of Appel et al. (2012)’s list-machine benchmark. This is a reduction semantics

(as a pointer machine operating over an instruction pointer and a store) and a type system for a
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seven-instruction first-order assembly language that manipulates cons and nil values. The prop-

erty checked is type soundness as specified in Appel et al. (2012), namely that well-typed programs

always step or halt. Three mutations are included.

The first list-machine bug incorrectly uses the head position of a cons pair where it should use

the tail position in the cons typing rule. This bug amounts to a typo and is classified as simple.

The second bug is a missing side-condition in the rule that updates the store that has the effect

of updating the first position in the store instead of the proper position in the store for all of the

store update operations. We classify this as a medium bug.

The final list-machine bug is a missing subscript in one rule that has the effect that the list cons

operator does not store its result. Essentially a typo, and classified as a simple bug.

6.2.6. rbtrees

A model that implements the red-black tree insertion function and checks that insertion preserves

the red-black tree invariant (and that the red-black tree is a binary search tree).

The first bug simply removes the re-balancing operation from insert. We classified this bug

as medium since it seems like the kind of mistake that a developer might make in staging the

implementation. That is, the re-balancing operation is separate and so might be put off initially,

but then forgotten.

The second bug misses one situation in the re-balancing operation, namely when a black node

has two red nodes under it, with the second red node to the right of the first. This is a medium bug.

The third bug is in the function that counts the black depth in the red-black tree predicate. It

forgets to increment the count in one situation. As a small oversight, this is a simple bug.



75

6.2.7. delim-cont

Takikawa et al. (2013)’s model of a contract and type system for delimited control. The language

is Plotkin’s PCF extended with operators for delimited continuations, continuation marks, and

contracts for those operations. The property checked is type soundness. We added three bugs to

this model.

The first was a bug found by mining the model’s git repository’s history. This bug fails to put a

list contract around the result of extracting the marks from a continuation, which has the effect of

checking the contract that is supposed to be on the elements of a list against the list itself instead.

We classify this as a medium bug.

The second bug was in the rule for handling list contracts. When checking a contract against

a cons pair, the rule didn’t specify that it should apply only when the contract is actually a list

contract, meaning that the cons rule would be used even on non-list contacts, leading to strange

contract checking. We consider this a medium bug because the bug manifests itself as a missing

list/c in the rule.

The last bug in this model makes a mistake in the typing rule for the continuation operator. The

mistake is to leave off one-level of arrows, something that is easy to do with so many nested arrow

types, as continuations tend to have. We classify this as a simple error.

6.2.8. rvm

A existing model and test framework for the Racket virtual machine and bytecode verifier (Klein et

al. 2013). The bugs were discovered during the development of the model and reported in section

7 of that paper. Unlike the rest of the models, bugs for this model are not numbered sequentially



76

but instead use the numbers from Klein et al. (2013)’s work. The bugs are described in detail in

Klein et al. (2013)’s paper.

Only some bugs from the paper were used, excluding bugs for two reasons:

‚ The paper tests two properties: an internal soundness property that relates the verifier to

the virtual machine model, and an external property that relates the verifier model to the

verifier implementation. Those that require the latter properties were excluded because it

requires building a complete, buggy version of the Racket runtime system to include in

the benchmark.

‚ All of the internal properties were included, except those numbered 1 and 7, for practical

reasons. The first is the only bug in the machine model, as opposed to just the verifier,

which would have required the inclusion of the entire VM model in the benchmark. The

second would have required modifying the abstract representation of the stack in the ver-

ifier model in contorted way to mimic a more C-like implementation of a global, impera-

tive stack. This bug was originally in the C implementation of the verifier (not the Redex

model) and to replicate it in the Redex-based verifier model would require programming

in a low-level imperative way in the Redex model, something not easily done.

This model is unique in our benchmark suite because it includes a function that makes terms

more likely to be useful test cases. In more detail, the machine model does not have variables,

but instead is stack-based; bytecode expressions also contain internal pointers that must be valid.

Generating a random (or in-order) term is relatively unlikely to produce one that satisfies these

constraints. For example, of the first 10,000 terms produced by the in-order enumeration only 1625

satisfy the constraints. The ad hoc random generator generators produces about 900 good terms in

10,000 attempts and the uniform random generator produces about 600 in 10,000 attempts.
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To make terms more likely to be good test cases, this model includes a function that looks

for out-of-bounds stack offsets and bogus internal pointers and replaces them with random good

values. This function is applied to each of the generated terms before using them to test the model.
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CHAPTER 7

Evaluation

This chapter reports on two studies. In the first, all of the generators described in this disserta-

tion are evaluated using the Redex benchmark. The second study compares the derivation generator

of section 5 to a similar generator that is the best-known hand-tuned typed term generator.

7.1. The Redex Benchmark

This section details a comparison of all of Redex’s approaches to generation on the Redex

benchmark. This includes the the three grammar-based generators of section 3 (the ad-hoc recur-

sive generator, in-order enumeration, and random selection from an enumeration) and the deriva-

tion generator of section 5.

The generators were compared using the Redex Benchmark of chapter 6. For a single test

run, we pair a generator with a model and its soundness property, and then repeatedly generate

test cases using the generator, testing them with the soundness property. We track the intervals

between instances where the test case causes the soundness property to fail. For this study, each

run continued for either 24 hours or until the uncertainty in the average interval between such

counterexamples became acceptably small.

The enumerations described in section 3.2 were used to build two generators, one that just

chooses terms in the order induced by the natural numbers (referred to below as in-order), and one

that selects a random natural and uses that to index into the enumeration (referred to as random

idnexing).



79

To pick a random natural number to index into the enumeration, first an exponent i in base 2

is chosen from the geometric distribution and then an integer that is between 2i´1 and 2i is picked

uniformly at random. This process is repeated three times and then the largest is chosen, which

helps make sure that the numbers are not always small. This distribution is used because it does

not have a fixed mean. That is, if you take the mean of some number of samples and then add more

samples and take the mean again, the mean of the new numbers is likely to be larger than from the

mean of the old. This is a good property to have when indexing into our enumerations to avoid

biasing indices towards a small size.

The random indexing results are sensitive to the probability of picking the zero exponent from

the geometric distribution. Because this method is the worst performing method, benchmark-

specific numbers were empirically chosen in an attempt to maximize the success of the random

enumeration method. Even with this artificial help, this method was still worse, overall, than the

other three.

All of the other generators except in-order enumeration have some parameter controlling the

maximum size of generated terms.

The ad-hoc random generator, which is based on the method of recursively unfolding non-

terminals, is parameterized over the depth at which it attempts to stop unfolding non-terminals. A

value of 5 was chosen for this depth since that seemed to be the most successful. This produces

terms of a similar size to those of the random enumeration method, although the distribution is

different.

The derivation generator is similarly parameterized over the depth at which it attempts to be-

gin finishing off the derivation, or where it begins to prefer less-recursive premises. Values that

produced terms of a similar size to the ad-hoc generator were chosen, except in cases where this
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caused too many search failures, in which case a smaller depth was used. The depths used range

from 3 to 5.

Each generator was applied to all of the bugs in the benchmark, with the exception of the

derivation generator, which isn’t able to handle the let-poly model. For reasons that have to do

with the way Redex handles variable freshness, the typing judgment for this model is written using

an explicit continuation and all recursive judgments have only one premise. Because of this, the

heuristics that the derivation generator uses fail when applied to this model. This causes a runaway

search process that is eventually terminated by constraints Redex imposes and deemed a failure.

Thus there are 7 bugs that the derivation generator could not be tested on.

There are 50 bugs total in the benchmark, for a total of 193 bug/generator pairs in this study.

For each of the bug and generator combinations, a script is run that repeatedly asks for terms and

checks to see if they falsify the model’s correctness property. As soon as it finds a counterexample

to the property, it reports the amount of time it has been running. The script was run in two

rounds. The first round ran all 193 bug and generator combinations until either 24 hours elapsed

or the standard error in the average became less than 10% of the average. Then all of the bugs

where the 95% confidence interval was greater than 50% of the average and where at least one

counterexample was found were run for an additional 8 days. All of the final averages have an

95% confidence interval that is less than 50% of the average.

Two identical 64 core AMD machines with Opteron 6274s running at 2,200 MHz with a 2 MB

L2 were used cache to run the benchmarks. Each machine has 64 gigabytes of memory. The script

typically runs each model/bug combination sequentially, although multiple different combinations

are run in parallel and, for the bugs that ran for more than 24 hours, tests are in parallel. We used

version 6.2.900.4 (from git on August 15, 2015) of Racket, of which Redex is a part.
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Figure 24: Benchmark results for all generators on all bugs. Error bars show 95% confidence
intervals.
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Figure 25: Random testing performance of all four generators, on models where all generators
apply.

Figure 24 summarizes the results of the comparison on a per-bug basis. The y-axis is time in

seconds, and for each bug the average time it took each generator to find a counterexample is plot-

ted. The bugs are arranged along the x-axis, sorted by the average time over all generators to find

the bug. The error bars represent 95% confidence intervals in the average, and in all cases where

the averages differ significantly the errors are small enough to clearly differentiate the averages.

The three blank columns on the right are bugs that no generator was able to find. The vertical scale

is logarithmic, and the average time ranges from a tenth of a second to several hours, an extremely

wide range in the rarity of counterexamples.

To depict more clearly the relative testing effectiveness of the generation methods, the same

data is plotted slightly differently in figure 25. Here the time in seconds is shown on the x-axis (the

y-axis from figure 24, again on a log scale), and the total number of bugs found for each point in
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time on the y-axis. This plot only includes bugs to which all generators can be applied, to avoid

having this aspect of the benchmark’s composition unduly affect the comparison. (Therefore, let-

poly is excluded since the derivation generator cannot handle it.) This plot makes it clear that the

derivation generator is much more effective when it applies, finding more bugs more quickly at

almost every time scale. In fact, an order of magnitude or more on the time scale separates it and

the next-best generator for almost the entire plot.

While the derivation generator is more effective when it is used, it cannot be used with every

Redex model, unlike the other generators. There are three broad categories of models to which

it may not apply. First, the language may not have a type system, or the type system’s imple-

mentation might use constructs that the generator fundamentally cannot handle (like escaping to

Racket code to run arbitrary computation). Second, the generator currently cannot handle ellipses

(aka repetition or Kleene star). And finally, some judgment forms thwart its termination heuris-

tics. Specifically, the heuristics make the assumptions that the cost of completing the derivation is

proportional to the size of the goal stack, and that terminal nodes in the search space are uniformly

distributed. Typically these are safe assumptions, but not always; as noted already, the let-poly

model breaks them.

Figure 26 shows the testing performance on all bugs in the benchmark for the generators that

are able to attempt all of them. This reveals that the ad hoc generator is better than the best

enumeration strategy after 22 minutes. Before that time, the in-order enumeration strategy is the

best approach, and often by a significant margin. Random indexing into an enumeration is never

the best strategy.
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Figure 26: Random testing performance of ad-hoc and enumeration generators on all models.

7.2. Testing GHC: A Comparison With a Specialized Generator

In this section, the derivation generator developed in this work for Redex is compared to a

specialized generator of typed terms. The specialized generator was designed to be used for dif-

ferential testing of GHC, and generates terms for a specific variant of the lambda calculus with

polymorphic constants, chosen to be close to the compiler’s intermediate language. The generator

is implemented using QuickCheck (Claessen and Hughes 2000), and is able to leverage its exten-

sive support for writing random test case generators. Writing a generator for well-typed terms in

this context required significant effort, essentially implementing a function from types to terms in

QuickCheck. The effort yielded significant benefit, however, as implementing the entire generator

from the ground up provided many opportunities for specialized optimizations, such as variations
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of type rules that are more likely to succeed, or varying the frequency with which different con-

stants are chosen. Pałka (2012) discusses the details.

Implementing this language in Redex was easy: the formal description in Pałka (2012) was

ported directly into Redex with little difficulty. Once a type system is defined in Redex, the deriva-

tion generator can be immediately used to generate well-typed terms. Such an automatically de-

rived generator is likely to make some performance tradeoffs versus a specialized one, and this

comparison provided an excellent opportunity to investigate those.

The generators were compared by testing two of the properties used in Pałka (2012), and using

same baseline version of the GHC (7.3.20111013) that was used there. Property 1 checks whether

turning on optimization influences the strictness of the compiled Haskell code. The property fails

if the compiled function is less strict with optimization turned on. Property 2 observes the order of

evaluation, and fails if optimized code has a different order of evaluation compared to unoptimized

code.

Counterexamples from the first property demonstrate erroneous behavior of the compiler, as the

strictness of Haskell expressions should not be influenced by optimization. In contrast, changing

the order of evaluation is allowed for a Haskell compiler to some extent, so counterexamples from

the second property usually demonstrate interesting cases of the compiler behavior, rather than

bugs.

Figure 27 summarizes the results of the comparison of the two generators. Each row represents

a run of one of the generators, with a few varying parameters. Pałka (2012)’s generator as is

referred to as “hand-written.” It takes a size parameter, which was varied over 50, 70, and 90 for

each property. “Redex poly” is the initial implementation of this system in the Redex, the direct

translation of the language from Pałka (2012). The Redex generator takes a depth parameter, which

we vary over 6, 7, 8, and, in one case, 10. The depths are chosen so that both generators target terms
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Generator Terms/Ctrex. Gen. Time (s) Check Time (s) Time/Ctrex. (s)
Property 1
Hand-written (size: 50) 25K 0.007 0.009 413.79
Hand-written (size: 70) 16K 0.009 0.01 293.06
Hand-written (size: 90) 12K 0.011 0.01 260.65
Redex poly (depth: 6) 8 0.361 0.008 8

Redex poly (depth: 7) 8 0.522 0.009 8

Redex poly (depth: 8)* 4000K 0.63 0.008 2549K
Redex non-poly (depth: 6)* 500K 0.038 0.008 23K
Redex non-poly (depth: 7) 668 0.082 0.01 61.33
Redex non-poly (depth: 8) 320 0.076 0.01 27.29
Property 2
Hand-written (size: 50) 100K 0.005 0.007 1K
Hand-written (size: 70) 125K 0.007 0.008 2K
Hand-written (size: 90) 83K 0.009 0.009 2K
Redex poly (depth: 6) 8 0.306 0.005 8

Redex poly (depth: 7) 8 0.447 0.005 8

Redex poly (depth: 8) 8 0.588 0.005 8

Redex non-poly (depth: 6) 8 0.059 0.005 8

Redex non-poly (depth: 7) 8 0.17 0.01 8

Redex non-poly (depth: 8) 8 0.142 0.008 8

Redex non-poly (depth: 10)* 4000K 0.196 0.01 823K

Figure 27: Comparison of the derivation generator and a hand-written typed term generator. 8
indicates runs where no counterexamples were found. Runs marked with * found only one coun-
terexample, which gives low confidence to their figures.

of similar size.1 (Figure 28 compares generated terms at targets of size 90 and depth 8). “Redex

non-poly” is a modified version of the initial implementation, the details of which are discussed

below. The columns show approximately how many tries it took to find a counterexample, the

average time to generate a term, the average time to check a term, and finally the average time per

counterexample over the entire run. Note that the goal type of terms used to test the two properties

differs, which may affect generation time for otherwise identical generators.

1Although it is possible to generate terms of larger depth, the runtime increases quickly with the depth. One possible
explanation is that well-typed terms become very sparse as term size increases. Grygiel and Lescanne (2013) show
how scarce well-typed terms are even for simple types. Polymorphism seems to exacerbate this problem.
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Figure 28: Histograms of the sizes (number of internal nodes) of terms produced by the different
runs. The vertical scale of each plot is one twentieth of the total number of terms in that run.

A generator based on the initial Redex implementation was able to find counterexamples for

only one of the properties, and did so and at significantly slower rate than the hand-written gen-

erator. The hand-written generator performed best when targeting a size of 90, the largest, on

both properties. Likewise, Redex was only able to find counterexamples when targeting the largest

depth on property one. There, the hand-written generator was able to find a counterexample ev-

ery 12K terms, about once every 260 seconds. The Redex generator both found counterexamples

much less frequently, at one in 4000K, and generated terms several orders of magnitude more

slowly. Property two was more difficult for the hand-written generator, and the first try in Redex

was unable to find any counterexamples there.

Comparing the test cases from both generators, we found that Redex was producing signifi-

cantly smaller terms than the hand-written generator. The left two histograms in figure 28 compare

the size distributions, which show that most of the terms made by the hand-written generator are
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larger than almost all of the terms that Redex produced (most of which are clumped below a size of

25). The majority of counterexamples produced with the hand-written generator fell in this larger

range.

Digging deeper, it seemed that Redex’s generator was backtracking an excessive amount. This

directly affects the speed at which terms are generated, and it also causes the generator to fail

more often because the search limits discussed in section 5.4 are exceeded. Finally, it skews the

distribution toward smaller terms because these failures become more likely as the size of the

search space expands. A reasonable hypothesis is that the backtracking was caused by making

doomed choices when instantiating polymorphic types and only discovering that much later in the

search, causing it to get stuck in expensive backtracking cycles. The hand-written generator avoids

such problems by encoding model-specific knowledge in heuristics.

A variant Redex model was created to test this hypothesis, identical to the first except with

a pre-instantiated set of constants, and removing all other polymorphism. The 40 most common

instantiations of constants were selected from a set of counterexamples to both models generated

by the hand-written generator. Runs based on this model are referred to as “Redex non-poly” in

both figure 27 and figure 28.

As figure 28 shows, we get a much better size distribution with the non-polymorphic model,

comparable to the hand-written generator’s distribution. A look at the second column of figure 27

shows that this model produces terms much faster than the first try in Redex, though still slower

than the hand-written generator. This model’s counterexample rate is especially interesting. For

property one, it ranges from one in 500K terms at depth 6 to, astonishingly, one in 320 at depth 8,

providing more evidence that larger terms make better test cases. This success rate is also much

better than that of the hand-written generator, and in fact, it was this model that was most effective

on property 1, finding a counterexample approximately every 30 seconds, significantly faster than
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the hand-written generator. Thus, it is interesting that it did much worse on property 2, only finding

a counterexample once every 4000K terms, and at very large time intervals. The reason for this

discrepancy remains unknown.

Overall, the derivation generator is not competitive with the hand-tuned generator when it has

to cope with polymorphism. Polymorphism is problematic because it requires the generator to

make parallel choices that must match up, but where the generator does not discover that those

choices must match until much later in the derivation. Because the choice point is far from the

place where the constraint is discovered, the generator spends much of its time backtracking. The

improvement in generation speed for the Redex generator when removing polymorphism provides

evidence for the explanation of what makes generating these terms difficult. The ease with which

this language could be implemented in Redex, and as a result, conduct this experiment, speaks to

the value of a general-purpose generator, and of lightweight semantics tools.
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CHAPTER 8

Related Work

Work related to the constraint solver is addressed in section 5.6, and studies on random testing

most closely related to those of this work are discussed in section 6.1. This chapter discusses

related work in random and property-based testing and its application in semantics engineering.

8.1. Property-based Testing

Quickcheck (Claessen and Hughes 2000) is a widely-used library for random testing in Haskell.

It provides combinators supporting the definition of testable properties, random generators, and

analysis of results. Although Quickcheck’s approach is much more general than the one taken

here, it has been used to implement a random generator for well-typed terms robust enough to find

bugs in GHC (Pałka 2012). This generator provides a good contrast to the approach of this work,

as it was implemented by hand, albeit with the assistance of a powerful test framework. Significant

effort was spent on adjusting the distribution of terms and optimization, even adjusting the type

system in clever ways. Redex’s approach, on the other hand, is to provide a straightforward way

to implement a test generator. The relationship to Pałka’s work is discussed in more detail in

section 7.2, including a direct comparison on a few of the properties tested by Pałka (2012).

SmallCheck and Lazy SmallCheck (Runciman et al. 2008) are other Haskell libraries for

property-based testing. They differ from QuickCheck in that they use exhaustive testing instead

of random testing. Lazy SmallCheck is particularly successful, using partial evaluation to prune
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the space from which test cases are drawn based on the property under test. They also perform a

comparative evaluation of SmallCheck, Lazy SmallCheck, and QuickCheck.

Perhaps the most closely related work is Claessen et al. (2014)’s typed term generator. Their

work addresses specifically the problem of generating well-formed lambda terms based an imple-

mentation of a type-checker (in Haskell). They measured their approach against property 1 from

section 7.2 and it performs better than Redex’s ’poly’ generator, but they are working from a lower-

level specification of the type system. Also, their approach observes the order of evaluation of the

predicate, and prunes the search space based on that; it does not use constraint solving.

Efficient random generation of abstract data types has seen some interesting advances in pre-

vious years, much of which focuses on enumerations. Feat (Duregard et al. 2012), or “Functional

Enumeration of Algebraic Types,” is a Haskell library that exhaustively enumerates a datatype’s

possible values. The enumeration is made very efficient by memoising cardinality metadata, which

makes it practical to access values that have very large indexes. The enumeration also weights all

terms equally, so a random sample of values can in some sense be said to have a more uniform

distribution. Feat was used to test Template Haskell by generating AST values, and compared fa-

vorably with Smallcheck in terms of its ability to generate terms above a certain size. (QuickCheck

was excluded from this particular case study because it was “very difficult” to write a QuickCheck

generator for “mutual recursive datatypes of this size”, the size being around 80 constructors. This

provides some insight into the effort involved in writing the generator described in Pałka (2012).)

Another, more specialized, approach to enumerations was taken by Grygiel and Lescanne (2013).

Their work addresses specifically the problem of enumerating well-formed lambda terms. (Terms

where all variables are bound.) They present a variety of combinatorial results on lambda terms,

notably some about the extreme scarcity of simply-typable terms among closed terms. As a by-

product they get an efficient generator for closed lambda terms. To generate typed terms their
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approach is simply to filter the closed terms with a typechecker. This approach is somewhat in-

efficient (as one would expect due to the rarity of typed terms) but it does provide a uniform

distribution.

Instead of enumerating terms, Kennedy and Vytiniotis (2012) develop a bit-coding scheme

where every string of bits either corresponds to a term or is the prefix of some term that does.

Their approach is quite general and can be used to encode many different types. They are able to

encode a lambda calculi with polymorphically-typed constants and discuss its possible extension

to even more challenging languages such as System-F. This method cannot be used for random

generation because only bit-strings that have a prefix-closure property correspond to well-formed

terms.

SciFe (Kuraj and Kuncak 2014) is a Scala library providing combinators that enable the con-

struction of enumerations similar to those of section 3.2. Kuraj and Kuncak (2014) conduct a

study comparing generation speed for 5 data structures with nontrivial invariants such a red-black

trees or sorted lists. They compare their approach, the CLP approach described by Senni and

Fioravanti (2012), and Korat (Boyapati et al. 2002), and find that their approach is the fastest at

exhaustively generating structures up to a given size.

Senni and Fioravanti (2012) study the application of CLP to the exhaustive generation of sev-

eral different data structures, including red-black trees and sorted lists. They report on a compar-

ison with Korat (Boyapati et al. 2002), finding that their approach is faster than Korat at enumer-

ating all inhabitants of such constrained types below a given size bound. They also include an

in-depth discussion of how to efficiently implement CLP generators, including the application of

several optimization passes.

Korat (Boyapati et al. 2002) is an approach to exhaustive testing in Java that uses a form of

state-space filtering to generate data types satisfying general structural invariants in Java. The



93

authors perform a study comparing its performance at generating all valid types of a certain size

with the Allow Analyzer, an auotmated analysis tool for a relational specification language. The

comparison is performed using red-black trees, binary heaps, and other data structures.

8.2. Testing and Checking Semantics

Random program generation for testing a semantics or programming language implementation

is certainly not a new idea, and goes back as least to the “syntax machine” of Hanford (1970), a

tool for producing random expressions from a grammar similar to the ad-hoc generation method

of section 3.1. The tool was intended for compiler fuzzing, a common use for that type of random

generation. Other applications of random testing to compilers throughout the years are discussed

in the 1997 survey of Bourjarwah and Saleh (1997).

In the area of random testing for compilers, of special note is Csmith (Yang et al. 2011) a

highly effective tool at generating C programs for compiler testing. Csmith generates C programs

that avoid undefined or unspecified behavior. These programs are then used for differential testing,

where the output of a given program is compared across several compilers and levels of optimiza-

tion, so that if the results differ, at least one of test targets must contain a bug. Csmith represents

a significant development effort at 40,000+ lines of C++ and the programs it generates are finely

tuned to be effective at finding bugs based on several years of experience. It had found over 300

bugs in mainstream C compilers as of 2011.

Cheney and Momigliano (2007) design an automated model-checking framework based on

αProlog (Cheney and Urban 2004), a programming language based on nominal logic, designed

for modeling formal systems. They advocate automating mechanized checking for semantics in a

manner similar to this work, although their approach is different, performing exhaustive checking

up to some bound on model size. They conduct a study demonstrating their approach’s ability
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to find bugs in both the substitution function and the typing judgment of a small lambda calculus

modeled in αProlog. For comparison, the bugs they evaluate in the substitution function are very

similar to stlc-sub bugs 1 and 2 from the Redex benchmark, and the type judgment bugs are very

similar to stlc or poly-stlc bugs 3 and 9, all of which were found by most generators in this paper

in interactive time periods as well.

Other recent work also applies constraint logic programming to test programming language

semantics and implementations. Dewey et al. (2014) conduct a study using CLP to generate

Javascript programs with richer constraints than traditional grammar-based fuzzers, but less com-

plex than full type soundness. They target specific variants of test cases, such as the use of

prototype-based inheritance or combinations of with statements with closures. They perform a

comparison with a baseline stochastic grammar generator, making a convincing case that CLP is

an improvement for this type of language fuzzing. A related study (Dewey et al. 2015a) demon-

strates that CLP can be competitive with the most efficient known methods for generating data

structures such as red-black trees, skip lists, and B-trees. The same approach is used in Dewey et

al. (2015b) to find bugs in the Rust typechecker, by specifying a system that will usually (but not

always)1 generate well-typed terms.

Isabelle/HOL (Nipkow et al. 2011) is a proof assistant equipped with a logic designed to

support semantics modeling. Significant work has been done to equip Isabelle with automatic

testing and checking capabilities similar to those in Redex, although in a proof-assistant as op-

posed to a lightweight modeling context. It has support for random testing via an implemen-

tation of QuickCheck (Berghofer and Nipkow 2004) and two methods of model checking, Nit-

pick (Blanchette and Nipkow 2010) and Refute (Weber 2008). Property-based testing in Isabelle

1For example, the specification of System F used as an example in the paper uses a definition of substitution that is
not capture-avoiding, which simplifies implementation and generation speed at the cost of sometimes producing terms
that are not well-typed.
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has recently been extended to try a number of different strategies by Bulwahn (2012), adding ex-

haustive testing, symbolic testing, and a narrowing-based strategy. Bulwahn (2012) also conducts

a study comparing the different methods of test-case generation, similar to that of this dissertation.

The K Framework (Rosu and Serbanuta 2010; Rosu and Serbanuta 2014) is a lightweight

semantics modeling framework with sophisticated rewriting rules. It provides testing via exe-

cutability (as in Redex) as a well as model checking in a linear temporal logic, symbolic execution,

and verification based on reachability using matching logic. It has been used to model, test, and

check/verify a number of different programming languages, including C (Ellsion 2012), Java (Bog-

danas and Rosu 2015), and Javascript (Park et al. 2015).
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CHAPTER 9

Conclusion

Mechanizing semantics gives programming languages researchers the ability to build models

of real-world programming languages. A lightweight framework combined with property-based

testing allows a semantics engineer to effectively and quickly develop their models, gaining confi-

dence in their correctness and consistency with actual implementations before attempting a formal

proof of correctness.

To support this approach to mechanization, this dissertation introduced a new approach to au-

tomatically derive generators for property-based testing from lightweight definitions: a derivation

generator based on relation and function definitions. It also developed a benchmark suite to eval-

uate generator performance, and used that to learn about the relative strengths of four generators:

ad-hoc recursive generators, two enumeration based generators derived from grammars, and the

derivation generator. The evaluation shows that all of them effectively find counterexamples for

realistic properties of real-world semantics models in reasonable time frames, and that generating

well-typed terms is significantly more effective. Overall, the evidence shows that automated check-

ing based on lightweight definitions is a productive avenue toward improved tools for semantics

engineering.

9.1. Future Work

The derivation generation approach proves to be the most effective when it can be applied, but

it cannot be used on all Redex models. As already noted, there are a number of different features
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of Redex that are commonly used yet are not supported by the derivation generation approach.

Addressing these issues, either by extending the derivation generation approach or by developing

a new generator better, would be a productive direction for further research.

Redex’s repeat patterns, or ellipses, a pattern language element analagous to the Kleene star,

are problematic for the derivation generator because of the challenges involved in creating a con-

straint solver capable of handling them. Kutsia (2002)’s work on sequence unification, which

handles patterns similar to Redex’s, shows how a similar constraint solving algorithm looks, and

should provide a good starting point for extending the constraint solver of section 5.3 to support

repeat patterns. That would enable the derivation generator to support all definitions except those

involving unquote.

Unquotes, or escapes from Redex to Racket, are even more problematic for an approach such

as the derivation generator, as they allows arbitrary computation. There are at least two approaches

to attempt to use definitions that include unquote as a basis for generators. One way to would be

to move operations that are commonly used in unquote, such as integer arithmetic, list operations,

or symbolic manipulations, into Redex, and extend the constraint solver to handle them as well.

Another would be to design a new generator. A possibility that seems promising would be some-

thing along the lines of Claessen et al. (2014), pruning a search space based on the behavior of a

predicate, which could be an arbitrary Racket function.
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APPENDIX A

Correctness of the Constraint Solver

A conjunction of equations �∧������� is satisfiable if there is a substitution that makes all of the

equations identical.

A disequational constraint � = �∀����������∨���������������� is satisfiable if there is a substitution α,

with V arspαq X ������� = H, such that for some ��, ��, there does not exist a substitution β where

βα�� is identical to βα��. (In this section substitutions are applied by prepending them to the term.)

For some � = �∧��∧���������∧��������, � is consistent if there is a substitution α that makes both

sides of all equations � identical, and for all disequational constraints �, the result α� of applying

α to � remains satisfiable.

A conjunction of equations �∧������� is in canonical form if �∧������� = �∧�������������, where if

�� P �������, then �� X V arsp�������q = H. Note that the equations themselves express an idempo-

tent substitution that makes the equations identically true, i.e. ��������������, so the equations are

immediately satisfiable.

Finally, � = �∧��∧���������������∧�������� is in canonical form if the equations are in canonical

form, and if α is the substitution expressed by the equations (as above), α������� = �������, and for

each � = �∀�����������∨����������������, there exists �� = ��, and �� X �������� =H, and �� X �������� =H,

i.e. at least one of the inequations in the disjunction has a left hand side that is a variable which is

not in the domain of the substitution expressed by the equations and is not universally quantified,

and a right hand side that is not a universally quantified variable. As above, we have α�� = ��, and

we can choose β such that there is no substitution γ where γβα�� and γβα�� are identical. (If ��
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is a variable, it is unconstrained, otherwise it is a constructor, and in either case we can choose to

make βα�� and βα�� conflict.) This gives us:

Lemma 1. If � is in canonical form, � is consistent.

This justifies the use of ����� in �����, which simply verifies that the disequational part of �

is in canonical form. That the equational portion of � is in canonical form is a property of �����.

We also need a few definitions regarding substitutions. Two substitutions α and β are equal

α “ β if for any any variable x, αx “ βx. A substitution α is more general than β, written α ď β,

if there exists some substitution γ such that β “ γα. A substitution α unifies two terms s and t if

αs “ αt (where “ means they are syntactically identical). Finally, if α is a unifier of s and t, and

for every unifier β of s and t, α ď β, then α is a most general unifier (mgu) of s and t. The notions

of unifier and mgu are extended naturally to sets of equations.

A standard result regarding syntactic unification adapted to this setting (see, for example,

Baader and Snyder (2001)) is:

Theorem 1. For any equations �������� and �∧������� in canonical form, �������������������∧��������

terminates with ⊥ if there is no unifier of �������� and the equations �∧�������. Otherwise, it terminates

with �∧�������� in canonical form, such that the substitution expressed by �∧�������� is an mgu of �

and �∧�������

We now prove some lemmas that justify the use of ����� to simplify disequational constraints

� in ��������.

Lemma 2. If a substitution α is idempotent then β “ βαô α ď β.
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PROOF. The forward direction holds by definition. For the reverse direction, by definition

there must be some γ such that γα “ β, so, for any x,

βαx “ γααx “ γαx “ βx

where the middle equality depends on the idempotency of α. �

Lemma 3. If ����������������∧�� “ �������������, then for any unifier θ of �������, for any �� and ��

paired in �������������, θ�� “ θ��.

PROOF. If γ is the mgu expressed by �������������, then since γ ď θ and γ is idempotent,

θ “ θγ (Lemma 1), so θ�� “ θγ�� “ θ��. �

Lemma 4. If ����������������∧�� “ �������������, then for any substitution �,

�����������������∧�� “ ⊥ô ������������������������∧�� “ ⊥.

PROOF. For the forward direction, we know there cannot be a unifier for the equations ��������].

Now suppose there were some unifier ρ for ��������������. Then ρ������� “ ρ�������, and if γ is the

mgu for �������, then ρ�γ������� “ ρ�������� “ ρ��������. That implies that γ ď ρ�, so ρ� unifies

�������, a contradiction. So there can be no such ρ.

For the reverse direction, by Lemma 2 any unifier ρ of ������� must make all the equations

ρ������������� identical, so if there is no unifier of �������������, there can be none for �������. �

That means that if some set of disequations �∨��������������� is satisfiable using substitution �,

then if ���������������������� �∧�� “ �������������, the disequations �∨������������� are satisfiable by the

exact same substituion �. That justifies the use ����� as a simplification in ��������.

After simplifying the disequations, ���������� is applied to restrict the satisfying substitu-

tion with respect to the quantifier. In the following, for a disequational constraint of the form
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�∀�������������������������, we will refer to the set of parameters tx...u as X . We refer to a substitution

α that makes the equations ������� “ ������ �������� impossible to satisfy (and thus satisfies the dis-

equation) as an excluding substitution. The excluding substitution must also satisfy the constraint

that V ariablespαq XX “ H. The following lemmas justify the steps used by ����������.

Lemma 5. If ������� “ �����������������������, and � P X , then α excludes ������� iff α excludes

���������������.

PROOF. We assume ������� has the property that � does not occur in ���������������, since it is

the result of unification and corresponds to an idempotent substitution. Since α� “ �, we know

that �����������������∧�� ‰ K. Thus if α excludes �������, it must exclude ���������������. Clearly if α

excludes ���������������, it excludes �������. �

In the following lemma, for convenience we refer to a list of equations in canonical form

������������� as a set tx1 “ p1utx2 “ pxu...txn “ pnu, where juxtaposition means union.

Lemma 6. If γ “ tx1 “ xu...txn “ xuγ1, where yi R X and x P X , then α excludes γ iff α

excludes tyi “ yj|1 ď i, j ď nu Y γ1.

PROOF. It must be the case that α excludes at least one equation xi “ xj for some i, j. But if

����������������������∧�� “ ⊥, then α excludes tx1 “ xu...txn “ xu, because there is no value for

�� that can satisfy the equations. Thus if α excludes tyi “ yj|1 ď i, j ď nu Y γ1, it excludes γ. If

��������������������������������∧�� “ ⊥, and αx “ x, since the right-hand sides will be identical, it

must be the case that ����������������������∧�� “ ⊥, and α excludes xi “ xj . �

The above lemma refers to the step in ���������� that makes use of ������. The above two

lemmas show that ���������� preserves the satisfiability criteria for a disequational constraint �.

Lemma 7. ���������� terminates.
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PROOF. Every recursive call decreases the number of equations that have a left or right hand

side that is a single parameter. (Parameters are the list of variables in ����������’s second argu-

ment.) �

The termination of all other functions in the constraint solver is obvious.

Lemma 8. Given a disequation �, ����������� terminates with ⊥ if � is unsatisfiable or ⊤ if � is

always satisfiable; otherwise it terminates with a disequation in canonical form that is equivalent

(satisfiable by the same substitutions) to �.

PROOF. Follows directly Lemmas 4, 5, 6, and 7. �

The correctness of the constraint solver follows directly from the correctness of �����, ��������,

and �����:

Theorem 2. For any � and � in canonical form, ����� terminates with ⊥ if there is no unifier

of � and the equations in � that preserves the consistency of �. Otherwise, it terminates with ��

in canonical form, such that the equations in �� are an mgu of � and the equations in �, and �� is

consistent.

Theorem 3. For any � and � in canonical form, �������� terminates with ⊥ if � and � are

inconsistent. Otherwise, it terminates with �� in canonical form, such that the disequations in ��

are satisfiable iff the union of those in � and � is, and �� is consistent.
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APPENDIX B

Detailed Listing of Benchmark Bugs

Model Bug# S/M/D/U Size Description of Bug
stlc 1 S 3 app rule the range of the function is matched

to the argument
2 M 5 the ((cons v) v) value has been omitted
3 S 8 the order of the types in the function position

of application has been swapped
4 S 9 the type of cons is incorrect
5 S 7 the tail reduction returns the wrong value
6 M 7 hd reduction acts on partially applied cons
7 M 9 evaluation isn't allowed on the rhs of applications
8 U 12 lookup always returns int
9 S 15 variables aren't required to match in lookup

poly-stlc 1 S 6 app rule the range of the function is matched
to the argument

2 M 11 the (([cons @ τ ] v) v) value has been omitted
3 S 14 the order of the types in the function position

of application has been swapped
4 S 15 the type of cons is incorrect
5 S 16 the tail reduction returns the wrong value
6 M 16 hd reduction acts on partially applied cons
7 M 9 evaluation isn't allowed on the rhs of applications
8 U 15 lookup always returns int
9 S 18 variables aren't required to match in lookup

stlc-sub 1 S 8 forgot the variable case
2 S 13 wrong order of arguments to replace call
3 S 10 swaps function and argument position in application
4 D 22 variable not fresh enough
5 SM 17 replace all variables
6 S 8 forgot the variable case
7 S 13 wrong order of arguments to replace call
8 S 10 swaps function and argument position in application
9 SM 17 replace all variables

let-poly 1 S 8 use a lambda-bound variable where a type variable
should have been
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2 D 28 the classic polymorphic let + references bug
3 M 3 mix up types in the function case
4 S 8 misspelled the name of a metafunction in a side-condition,

causing the occurs check to not happen
5 M 3 eliminate-G was written as if it always gets a

Gx as input
6 M 6 _ has an incorrect duplicated variable, leading

to an uncovered case
7 D 12 used let --ą left-left-λ rewrite rule for let,

but the right-hand side is less polymorphic
list-machine 1 S 22 confuses the lhs value for the rhs value in cons

type rule
2 M 22 var-set may skip a var with matching id (in reduction)
3 S 29 cons doesn't actually update the store

rbtrees 1 M 13 ins does no rebalancing
2 M 15 the first case is removed from balance
3 S 51 doesn't increment black depth in non-empty case

delim-cont 1 M 46 guarded mark reduction doesn't wrap results with
a list/c

2 M 25 list/c contracts aren't applied properly in the
cons case

3 S 52 the function argument to call/comp has the wrong
type

rvm 2 M 24 stack offset / pointer confusion
3 D 33 application slots not initialized properly
4 M 17 mishandling branches when then branch needs more

stack than else branch; bug in the boxenv case
not checking a stack bound

5 M 23 mishandling branches when then branch needs more
stack than else branch; bug in the let-rec case
not checking a stack bound

6 M 15 forgot to implement the case-lam branch in verifier
14 M 27 certain updates to initialized slots could break

optimizer assumptions
15 S 21 neglected to restrict case-lam to accept only

'val' arguments
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