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ABSTRACT

A Constructive Calculus for Esterel

Spencer P. Florence

The language Esterel has found success in many safety-critical applications, from aircraft landing gear to digital signal

processors. Its unique combination of powerful control operations, deterministic concurrency, and real time execution

bounds are indispensable to programmer in these kinds of safety-critical domains. However these features lead to an

interesting facet of the language, called Constructivity.

Constructivity is a non-local property of Esterel programs which makes defining semantics for the language subtle.

Existing semantics tend to sacrifice some desirable facet of a language semantics to handle this. Many sacrifice locality,

and only work on whole programs. Some sacrifice adequacy, allowing them to describe transformations to programs

at the cost of being able to actually run programs. Still more decide to work in a domain other than Esterel, such as

circuits, making Constructivity easier to capture, but forcing users of these semantics to reason in a domain which they

are not programming in.

This dissertation provides the first semantics for Esterel which captures all of the above facets, while still describing

Constructivity.
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CHAPTER 1

An Introduction

The language Esterel has found success in many safety-critical applications. It has been used in the creation and

verification of the maintenance and test computer, landing gear control computer, and virtual display systems of

civilian and military aircraft at Dassault Aviation (Berry et al. 2000) and the specification of part of digital signal

processors at Texas Instruments (Benveniste et al. 2002).

Its success can partially be attributed to how its computational model is radically different from other languages.

It gives the programmer the ability to use non-local communication mechanisms to coordinate powerful non-local

control (like suspension or preemption of whole groups of threads) while maintaining deterministic concurrency. This

non-local nature of evaluation leads to unexpected situations. For example the choice of which branch a conditional

takes may immediately affect the choice another conditional makes in a different part of the program, without any

explicit communication between those parts of the program. The selection of the other branch may render the entire

program invalid. This powerful and unique evaluation model makes giving a formal semantics to Esterel a subtle and

tricky business, and has lead to a plethora of different semantics suited to different purposes.

Some of these semantics are computationally adequate, giving an evaluator for programs, giving meaning to full pro-

grams by running them—such as the Constructive Operational Semantics (COS) (Potop-Butucaru 2002), and the State

Behavioral Semantics (SBS) (Berry 2002). Others are allow for compositional, modular reasoning about fragments of

full programs (i.e. constant propagation or modular compilation)—such as the Circuit Semantics (Berry 2002) or the

Axiomatic Semantics (AS) (Tini 2001). Still others give syntactic reasoning, which reason about programs directly

using their syntax, without going through an external domain—Such as the COS, SBS, and AS. This allows for more

direct communication with programmers in the domain they already understand. This is useful, for example, when giv-

ing good crash reports, explaining program refactorings, or for optimization coaching (St-Amour et al. 2012), which

helps explain to programmers why some optimization were not applied and how to fix it. Only one prior semantics
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is an equational theory, the AS, which allows one to reason about program fragments like one does terms in algrabra.

All of the existing semantics are (and must be) consistent and sound, in that they all describe the exact same language,

as opposed to subtly different variations on that language.

Each of Esterel’s many semantics do some of these jobs very well. However there is a gap in the these semantics:

there are no equational theories for Esterel which are simultaneously consistent, sound, and computationally adequate.

Such a semantics is the contribution of this dissertation.

I have shown that my equational theory is consistent, sound, and adequate. I show this using three pieces of evidence:

proofs, testing, and prior work. These flavors of evidence is necessary because not all parts of the calculus have proofs

for them. The proofs apply only to loop free, pure Esterel programs, and are proven with respect to the circuit semantics

for Esterel (Berry 2002). The full calculus, on the other hand, is tested against several different Esterel semantics and

implementations. Many parts of the calculus are also borrowed from the prior semantics, helping increase confidence

in their correctness.

Equational. Equational theories allow for algebra-like reasoning about programs: that is they can explain why frag-

ments of programs are equal using only the syntax of those program fragments.

The benefits of using only the syntax of the program fragments is primarily human: It allows reasoning about a

programming language to be expressed directly in terms of that language, rather than in terms of some external

domain. Often developing a semantics which uses only the syntax of a language is impractical, or even impossible.

See, for instance, the σ and ϱ forms of the Felleisen and Hieb (1992) state calculus which do not appear directly in

any language, or evaluation contexts (Felleisen and Friedman 1986) often used to describe non-local control operators

(e.g. exceptions, continuations) which while described in terms of existing syntax cannot be written directly by a

programmer. However, while these frameworks require extending the syntax of the language, they still map closely

to the syntax of the surface language, and the extensions they use are minor and either can be mapped directly to the

surface language syntax or require only minor annotations to the surface syntax. Therefore, even in the case of minor

syntactic extensions, a syntactic semantics still allows for explanations of program transformations using the notation
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users of that language are familiar with, rather than some external domain. In the end, this means that calculi are

syntactic by construction.

In order to make my calculus sound and adequate I have added two new forms to the syntax of Kernel Esterel: a

variant of Felleisen and Hieb (1992)’s ϱ, and a loop variant loop. They are discussed in more detail in chapter 3 and

chapter 5 respectively.

Reasoning about program fragments is useful for both human and machine reasoning. Reasoning about full programs

is difficult, impractical, and in often impossible in the case of libraries. Modular reasoning is essential for working

with large programs.

Consistent. Consistency is one of the most essential of these facets. A consistent semantics is one that does not allow

contradictions to be derived: for example, by not allowing two programs to be proven equal if they evaluate to different

values.

The Consistency of the calculus given by proof and by testing. Details may be found in section 4.4 and sec-

tion 5.4.

Sound. Soundness is necessary for a semantics which describes an already established language. A sound semantics

is one which agrees with an existing, ground truth semantics. In other words, a semantics which is not sound describes

a different language that the one it is supposed to describe. Thus soundness, like consistency is essential for any

semantics.

The soundness of the calculus is also given by proof and testing. Specifically it is proven with respect to the cir-

cuit semantics (Berry 2002), for pure, loop free, programs within a single instant. Evidence for the Soundness for

multi-instant, loop containing programs is given by random testing. This is discussed more in section 4.2 and sec-

tion 5.4.
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Adequate. Adequacy describes the power of a semantics. If we take the word semantics to mean “something which

allows for formal reasoning about a language”,1 then we can have semantics which allow for manipulations or trans-

formations of a language, but cannot actually run a complete program. Such semantics are not adequate for describing

an evaluator for a language. This is not ideal, as it means there is some aspect of the language the semantics does not

describe. Therefore, to make sure a semantics has broad coverage of the aspects of a language, an adequate semantics

is desirable.

Adequacy is also given by proof and testing. Like soundness, it is proven for pure, loop free, programs for one instant.

Evidence for the Adequacy of loop containing programs with host language expressions across multiple instants is

also given by random testing. This is discussed more in section 4.3 and section 5.4.

1.1. Overview

The dissertation is divided into six more chapters, and four appendices. Chapter 2 summarizes the background a

reader will need to understand this document, as well as pointers to the background reading I assume the reader has

an understanding of. Chapter 3 then describes the calculus I have designed on pure, loop free Esterel programs. Then

chapter 4 gives the proofs for Consistency, Soundness, and Adequacy on this part of the calculus. Next chapter 5 gives

the remainder of the calculus and describes the remainder of the evidence that the calculus is correct. Chapter 6 gives

existing work related to my calculus. Finally, chapter 7 gives some final thoughts and future directions.

Appendix A lists definitions for all of the notation I use here. Appendix B gives the proofs of the theorems. Appendix C

gives an overview of the implementation of a circuit solver I implemented for my proofs. Appendix D gives examples

of using the calculus to prove equalities.

1There are many ways to define what semantics means. Literally, a semantics is that which gives meaning to a language, but that just shifts the
question over to defining “meaning”. Therefore, I am intentionally using a very broad definition.
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CHAPTER 2

Background

This chapter provides the background material necessary to understand this dissertation. This chapter is meant as a

refresher on the material, as well as an introduction to the notation I am going to be using. As such, each section

has recommended reading, which the section is designed as a refresher for. Readers who are very familiar with the

background work of each area may wish to skim these sections for the notation I use.

Section 2.1 describes the language Esterel. It is meant as refresher on Chapters 1, 2, 4, 5, 7 and 12 of The Constructive

Semantics of Pure Esterel (Draft Version 3) (Berry 2002), as well as chapters 1 through 4 of Compiling Esterel (Potop-

Butucaru et al. 2007). Specifically an understanding of Kernel Esterel and the Constructive Behavioral Semantics will

be helpful. As my dissertation uses Kernel Esterel, this section only describes that language. For a description of Full

Esterel, please see the Chapter 1 and 2, and appendix B of Compiling Esterel (Potop-Butucaru et al. 2007).

Section 2.2 gives background on language semantics and calculi. It is meant as a refresher to chapters I.1-5, and I.8-I.9

of Semantics Engineering with PLT Redex (Felleisen et al. 2009) and sections 1 and 4 of The Revised Report on the

Syntactic Theories of Sequential Control and State (Felleisen and Hieb 1992).

Section 2.3 gives a semantics for circuits. It is meant as a refresher for Analysis of Cyclic Combinational Circuits (Ma-

lik 1994), Constructive Analysis of Cycle Circuits (Shiple et al. 1996), and borrows heavily from chapters 10.1 and

10.3 of The Constructive Semantics of Pure Esterel (Draft Version 3) (Berry 2002). The description of circuits here

also relies on the theorems of Constructive Boolean Circuits and the Exactness of Timed Ternary Simulation (Mendler

et al. 2012), although that work is in no way required to understand this dissertation.
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2.1. Esterel

This section is meant as a refresher on Kernel Esterel and its informal semantics. Specifically it is describes Kernel

Esterel as given in section 2 of Compiling Esterel (Potop-Butucaru et al. 2007), and section 2 of The Constructive

Semantics of Pure Esterel (Draft Version 3) (Berry 2002). The informal semantics I describe is roughly given in terms

of the descriptions in section 3 and 4 of Compiling Esterel (Potop-Butucaru et al. 2007) and sections 4.2, 5, and 7 of

The Constructive Semantics of Pure Esterel (Draft Version 3) (Berry 2002).

Kernel Esterel is a small subset of Esterel in which, for the most part, Full Esterel is trivially macro expressible. It’s

grammar is:

𝗽, 𝗾 ::= nothing | (exit 𝗻) | (emit 𝗦) | pause
 | (signal 𝗦 𝗽) | (seq 𝗽 𝗾) | (if 𝗦 𝗽 𝗾) | (par 𝗽 𝗾)
 | (loop 𝗽) | (suspend 𝗽 𝗦) | (trap 𝗽)
 | (shared 𝘀 := 𝗲 𝗽) | (+= 𝘀 𝗲) | (var 𝘅 := 𝗲 𝗽) | (:= 𝘅 𝗲) | (if!0 𝘅 𝗽 𝗾)

S ∈ signal variables
s ∈ shared variables

x ∈ sequential variables
e ∈ host expressions

The Kernel I am using is adapted from section 2.2 of Compiling Esterel (Potop-Butucaru et al. 2007). The translation

from Full Esterel to this Kernel is given in appendix B of that book.

2.1.1. Pure Esterel

The first three lines of the grammar give the subset of Esterel called Pure Esterel. Pure Esterel defines a “core” to the

language which we can use to introduce and examine the important concepts in the language. Pure here refers to just

the fragment of Esterel which contains only Esterel terms, without reference to a host language, not to a fragment of

Esterel without state.

Instants. Esterel divides computation into instants. Each instant begins in response to some external stimuli, and each

instant is atomic with respect to the outside world: its inputs may not change, nor may its outputs or internal state be

observed until the instant is completed.



2.1. ESTEREL 13

In addition code within each instant can be thought of as running in zero time. That is to say: to maintain deterministic

concurrency Esterel does not allow for the program to observe the order in which expressions are run. Without such a

total ordering being visible, there isn’t really an internal sense of “time” to an instant in Esterel.

The lack of an internal sense of time combined with the fact that the program doesn’t run at all outside of instants

means that the full execution of an instant is the only notion time in Esterel. Each instant represents one tick forward

on a global, discrete clock.1 In fact, this external-only view time is what gives “instants” their name. We think of every

computation in Esterel taking zero time, and so the entire instant completes in zero time.

Signals. Signals, declared with (signal 𝗦 𝗽), give local broadcast communication channels which carry one bit of

information: if the signal is present or absent. A signal may only have one value in a single instant.

The conditional form (if 𝗦 𝗽 𝗾) conditions on if a signal is present or absent, running 𝗽 or 𝗾 respectively.

The form (emit 𝗦) sets a signal to present. There is no way to explicitly set a single absent. This asymmetry ties into

Esterel’s deterministic concurrency and the fact that signals can only obtain one value in an instant. A signal is present

if and only if it has is emitted in the current instant. A signal is absent if and only if it is not emitted and cannot be

emitted in the current instant. The exact meaning of cannot is discussed in section 2.1.3.

Composition. Esterel terms can either be composed concurrently—(par 𝗽 𝗾)—or sequentially—(seq 𝗽 𝗾). seq

behaves, more or less, like the sequential composition from familiar languages. par is akin to a fork/join construct: it

determines the state of both of its branches and only finishes execution if they both have.

Pausing. The pause form tells the program to stop the instant at that point, and resume from that point in the next

instant. If both branches of a par pause, the next instant resumes at both, concurrently. Another way to see this is that

pause is the only expression in Esterel which takes time, and it always takes exactly one unit of time.

Non-local control flow. There are two forms of non-local control in Esterel. The first is a form of named, upward

jumps, in the form of (trap 𝗽) and (exit 𝗻). The (exit 𝗻) jumps to the 𝗻th outermost trap (counting from zero).

This form cooperates with (par 𝗽 𝗾) such that if both branchs of the par exit, the outer most trap is jumped to.

1 It should be noted that each instant may not match up to physical time. The outside environment can impose arbitrary and variable delays between
instants as each instant is only run on the outside world’s request.
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For example (par (exit 0) (exit 3)) will jump to the 4th outer most trap. If one branch exits, and the other either

pauses or completes, the whole par exits, preempting the non-exiting branch once it has paused. For example

both (par (seq (emit 𝗦) pause) (exit 3)) and (par (seq (emit 𝗦) (exit 0)) (exit 3)) emit the signal 𝗦 and jump to

the fourth outermost trap. I refer to traps as “named” upward jumps because the numbers in exit are really just

de Brujin indices for names that appear in Full Esterel. This representation is more convenient to work with in a

semantics.

The other kind of non-local control is (suspend 𝗽 𝗦). In the first instant a suspend is reached, the suspend behaves

like 𝗽. However in all future instants where the instant would resume in 𝗽, it only resumes when 𝗦 is absent. If 𝗦 is

present, then the whole form pauses, and continues in the next instant (following the same rules).

Loops. The final construct in Pure Esterel is (loop 𝗽). It continually repeats 𝗽 in an infinite loop. However, because

signals can only take on one value per instant in Esterel, any loop which both begins and ends in a single instant will

loop forever, causing the instant to never terminate. Therefore Esterel requires that all loops either pause or exit each

instant. This ensures that each instant, in fact, terminates.

Schizophrenia. Reincarnated and Schizophrenic variables are a problem related to improper handling of variables

and loops in Esterel semantics, particularly when compiling to circuits. Chapter 12 of The Constructive Semantics of

Pure Esterel (Draft Version 3) (Berry 2002) goes into this in detail. This section gives only a cursory overview.

Reincarnation occurs when loop which contains the declaration of a variable or signal completes execution and restarts

in the same instant. This results in two instances of the same variable, and the variable is said to be reincarnated.

Schizophrenia occurs when a reincarnated variable takes on a different value during the two instances of the loop body.

This can seem at odds with the statement that “A signal may only have one value in a single instant”, and is why these

two instances must be though of as separate variables to have a correct semantics. For instance, circuit compilers must

duplicate part of all of a loop body to ensure that there are, in fact, two distinct variables.
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2.1.2. The host language and Esterel

The last line of the grammar at the start of section 2.1 (shared through if!0) extends Pure Esterel with forms which

can track values, in addition to Boolean signals.

However Esterel does not have any notion of value: instead it borrows the outside world’s notion of value. That is,

Esterel is meant to be embedded in another programming language. This host language controls when instants in

Esterel run, and communicates with Esterel using Esterel’s signals and is own values. In turn, values in Esterel are

computed using the host language’s expressions, which may refer to variables bound by Esterel. Values can be stored

in either host language or shared variables.

Host Language Variables Host language variables are like traditional programming variables. They are declared

and initialized by the (var 𝘅 := 𝗲 𝗽) form, and written to with the (:= 𝘅 𝗲) form. Kernel Esterel also includes another

conditional form (if!0 𝘅 𝗽 𝗾), which conditions on the host languages notion of truth—which for purposes of this

model will be akin to C’s Booleans, with 0 begin false. To maintain deterministic concurrency these variables must be

used in a way where concurrent updates are not observable: for example by never using them in multiple branches of

a par. How exactly (and if) this is guaranteed depends on the Esterel implementation.

Shared Variables Shared variables give concurrent access to state that may be shared between branches of a par, such

that Esterel guarantees deterministic concurrency. Shared variables are declared with (shared 𝘀 := 𝗲 𝗽) and mutated

with (+= 𝘀 𝗲). To ensure determinism shared variables have two restrictions. The first is that they must be paired with

an associative, commutative combination function which will be used to combine multiple writes to the variable in a

given instant, to ensure the order of writes is not visible. The second is that a host language expression referring to a

shared variable cannot be evaluated unless no further writes to that shared variable can occur in a given instant. This

ensures that only one value for that variable is observed by the program in a given instant. Tracking if a shared variable

cannot be written anymore in the current instant uses the same mechanism as determining absence for a signal.2

2In fact, in Full Esterel shared variables and signals are combined into a single concept: the value carrying signal, which pairs the absence/presence
of a signal with a value that is computed the same way as with a shared variable. In Kernel Esterel value carrying signals are represented as a signal
paired with a shared variable.
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For simplicity’s sake, the Constructive Calculus assumes a host language which always uses the combination function

+, and that the host language only contains numerical literals, and the operations + and -.

2.1.3. Constructive programs

What is the mechanism used to determine if a signal can be set to absent? Specifically, what kind of reasoning can we

perform when showing that a signal cannot be emitted? To show that a signal is emitted or that it cannot be emitted

we build a chain of cause and effect which either shows that program Must reach an emit (setting the signal to present)

or shows the program Cannot reach an emit (setting the signal to absent).

For a first example, consider the program:

(signal S1
  (par

(if S1
pause
nothing)

(emit S1)))

In this example, we can say that the signal S1 is emitted, because we can establish the following chain of cause and

effect:

(signal S1
  (par

(if S1
pause
nothing)

(emit S1)))

We can read this graph as “emitting the signal S1 on the last line might cause the conditional to take its true branch.”

We get this interpretation by starting at the entry points of the causality graph and walking forward. In this case the

only entry point to the graph is the (emit S1). It points to the conditional that branches on S1, which we can interpret

as “this emit running or not running can cause this conditional to take its left or right branch”. Because the (emit S1)

is at the entry point to the graph we can also conclude that the emit must run. Therefore it must cause the conditional
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to take its then branch. This reasoning, where we say “the (emit S1) must happen, therefor the conditional must take

this branch” can also be interpreted as “the emit must run before the if”, because we are saying that it must cause the

present take some action. This prescribing of order to an instant, which is supposed to be timeless, may seem odd.

This is because the order we get out of a causality graph is a partial order: there isn’t really an internal sense of total

time, but rather there are just several possible chains of cause and effect that lead us to a single result. Anything that

does not violate the partial ordering goes: including true parallelism.3

Now consider this adjustment to the prior program, and its causality graph:

(signal S1
  (if S1

pause
nothing))

When we walk this causality graph from its entry points as before, we immediately run into the conditional without

hitting any (emit S1)s. In addition if we keep walking forward, neither branch can emit S1 either. From this we can

safely conclude that nothing can cause S1 to be emitted, therefore it cannot be emitted, therefore it is absent.

Notice that the asymmetry in the syntax—that we have a form for setting a signal to present but not for setting to

a signal absent—leads to an asymmetry in our reasoning. To reason about the presence of a signal we consider the

causality graph up to the conditional and what it must do. To reason about absence of a signal we look at the entire

graph and reason about what it cannot do. However the reasoning about what it cannot do is, itself, restricted by

causality. Consider the program in figure 1, which is the same as the previous one but with the pause replaced by

an emit. To make the graph easier to read it has been pulled out into a separate image. The darker edges4 describe

the parts of the causality graph that come from the control of the program. The lighter edges5 come from the data

flow. Conditions are represented as nodes labeled (? S), and their branches are labeled T and F, for the then and else

branches respectively. Other control flow edges are labeled with n if they pass control on in this instant, p if they pass

control on in the next instant (e.g. a pause), or a number if they exit with that code.

3To quote Gérard Berry: “Everything happens at the same time, just in the right order.”
4Blue if printed in color.
5Pink if printed in color.
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(signal S1
(if S1
(emit S1)
nothing))

(emit S1)

(? S1)

exit

nn

TF

Figure 1: A program with a separate causality graph

As before, we cannot set S1 to present, as there is no emit that must be reached before the conditional. However we

cannot set S1 to absent either, as the emit in the then branch might still be reached! One might assume that we could

analyze the conditional as if S1 were absent looking at only the else branch, as we know it cannot be present. However

this would amount justifying S1 being absent based on the assumption that it was absent. Such self justification doesn’t

leave a clear chain of cause and effect which result in showing the signal is absent: one of the reasoning steps is just

a guess. Esterel considers programs like this one, where some signals cannot be set to either absent or present, to be

illegal. Such programs are either rejected statically or raise a runtime error, depending on the Esterel implementation.

Programs like this are called non-constructive.6

Another way of seeing this is observing that causality graph for that program has a cycle in it: in a timeless world

the emit in the then branch could cause the conditional to make a particular choice, which could cause the emit to be

reached. Such a cycle in causality does not make sense (and does not give us even a partial ordering on events).

However causality cycles are not always nonsense. In some cases a cycle does not result in a non-constructive program

because prior steps in our reasoning may allow the cycle to be broken. Consider the program in figure 2.

6This comes from the analogous lack of self-justified reasoning in a constructive logic—that is we may not use the law of the excluded middle to
reason about signals.
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(signal S1
(signal S2
(if S1
(if S2
(emit S1)
nothing)

nothing)))

(? S1)

(emit S1)

(? S2)

exit

n n

TF

n

TF

Figure 2: A constructive program with a causality cycle

This program has a causality cycle, because the condition S1 might cause S1 to be emitted. However, we can also

see that no emit for S2 is reachable in the causality graph, which means we can set it to absent. But now that we

have justified setting S2 to absent, we can justify ignoring any code in that conditionals then branch. This causes the

(emit S1) is unreachable, so we can cut any edges in the causality graph leading to or from it. Now we have a causality

graph with no cycles that never reaches an (emit S1), so we can set S1 to absent.

Causality graphs also interact with pause. The pause ends an instant (and causes the next instant to pick up from

the pause), and the single value restriction for signals only pertains to a single instant. Therefore, pauses essentially

cut the causality graph, splitting it in two: one for the instants before the pause is reached, and one for the ones after.

For example consider the program and graph in figure 3. This program will emit S1, then pause. In the next instant it

will emit S2. This is represented in the graph by introducing a new node start, which has a choice: if it is starting this



2.1. ESTEREL 20

(signal S1
(signal S2
(seq (emit S1)

(seq pause
(emit S2)))))

exit

(emit S2)

(emit S1)

start

p n

n

n

n

Figure 3: A simple graph split by a pause.

program fresh it will go down the path which emits S1, and pauses, terminating that instant. If it is an instant where

it’s resuming for the pause, it will take the right hand branch and emit S2.

We can use this to see how pause can break what might otherwise be causality cycles. Look at the differences in the

programs and graphs in figure 4 and figure 5. In the first example when we walk the graph from start to finish we find

that we need the value for S1 first, but after that condition we might emit S1 so we cannot set it to absent. This cycle

renders the program non-constructive. But in the second example, where the last nothing is replaced by a pause we

have a different graph with no cycles! Because the emit cannot happen in the same instant as the condition (represented

by the choice of where start goes) this program is constructive, and its graph is acyclic.

Must/Cannot and Present/Absent. The description of constructivity in terms of program graphs and what Must

and Cannot happen gives a complete semantics for Pure Esterel. This is described by the Constructive Behavioral

Semantics (Berry 2002), which defines Esterel in terms of two functions: Can and Must. The first function, Can,
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(signal S2
(seq (if S1 nothing nothing)

(seq nothing
(emit S1))))

exit

(emit S1)

(? S1)

start

n

TF

n

n

n

n

Figure 4: A cycle

returns the set of signals which a program might emit. It’s complement, Cannot, gives us the set of signal which it

is impossible for a program to emit. The second function, Must, gives us the set of signals which the program will

definitely emit. It’s complement, Might Not, is the set of signals which the program could potentially not emit.

This divides up program behavior into the chart in figure 6. The upper left corner of this diagram, labeled 1, cor-

responds to a portion of the program being executed, and to a signal being present. The bottom right, labeled 0,
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(signal S2
(seq (if S1 nothing nothing)

(seq pause
(emit S1))))

exit

(emit S1)

(? S1)

start

p

T F

n

n

n

n

n

Figure 5: A cycle cut by a pause.

corresponds to a portion of the program not being executed and to a signal being absent. The upper right corner,

labeled ⊥ corresponds to a portion of the program being in an unknown state. The lower left is never realized.

Every edge in the program graph begins in the corner of the chart labeled ⊥, representing that it could be executed,

but might not be. As we execute the program, any control edge can be moved to the 1 corner (it both Must and Can

happen), if all of the incoming edges to the node it leads from are 1. Conversly, a control edge can be set to 0 if any

of it’s incoming edges are 0. Note that this means that the edges leading from start automatically have 1’s as they

have no incoming edges. Conversely a Data edge can be set to 1 if any of it’s incoming edges are 1, but can only be

set to 0 if all of it’s incoming edges are 0. This corresponds to control edges being linked by an extension of ∧ with
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Can

Cannot

Must Might Not

1 ⊥
0

Figure 6: Must/Can Lattice

⊥, and data edges being linked to by a similar extension of ∨. This is discussed in more detail in section 2.3, and

section 4.1.1, and this leads to the circuit semantics of Esterel.

The Must and Cannot corner in the diagram is not reachable, as it is a logical contradiction. No consistent and sound

semantics should be able to put programs in this corner. This will motivate some of the design decisions of the

Calculus.

It should also be noted that this description leads to a kind of asymmetry between the Must and Cannot corners. The

Must corner can be reached only if there is a chain of 1’s leading form the top of the program, as the only control

node that has zero incoming edges is start. The Cannot corner however can be reached without a connection to the

top of the program, as any signal with no emit can automatically get a 0. This leads to an odd fact: Must is less

compositional than Cannot. Any program can be put into a context where is wont be executed, therefore Must requires

knowledge about where the top of the program is. However if something Cannot happen, then no context can make

it happen. This means that given no information about its context, Cannot still gives may give us useful information,

whereas Must cannot. This asymmetry will show up several times in the design of the Calculus.

2.1.4. Summary of Notation

The syntax for Kernel Esterel I am using is:



2.2. LANGUAGE CALCULI 24

𝗽, 𝗾 ::= nothing | (exit 𝗻) | (emit 𝗦) | pause
 | (signal 𝗦 𝗽) | (seq 𝗽 𝗾) | (if 𝗦 𝗽 𝗾) | (par 𝗽 𝗾)
 | (loop 𝗽) | (suspend 𝗽 𝗦) | (trap 𝗽)
 | (shared 𝘀 := 𝗲 𝗽) | (+= 𝘀 𝗲) | (var 𝘅 := 𝗲 𝗽) | (:= 𝘅 𝗲) | (if!0 𝘅 𝗽 𝗾)

S ∈ signal variables
s ∈ shared variables

x ∈ sequential variables
e ∈ host expressions

I will often refer to the presence of a signal as 1, and the absence of a signal as 0.

2.2. Language Calculi

This section will give the background about language calculi. It covers the call-by-value λ-calculus (Plotkin 1975),

small step operational semantics, evaluation contexts (Felleisen and Friedman 1986) and the state calculus (Felleisen

and Hieb 1992). The material summarized here can be read about in depth in Chapters I.1-5, and I.8-I.9 of Seman-

tics Engineering with PLT Redex (Felleisen et al. 2009)—excluding the subsections that deal only with proofs—and

sections 1 and 4 of The Revised Report on the Syntactic Theories of Sequential Control and State (Felleisen and Hieb

1992).

A semantics is some mapping from (possibly partial) programs to their meaning. For example: evaluators are functions

mapping programs to the result of running them; and denotational semantics give meaning by mapping programs to

elements of some external domain, like the circuit semantics for Esterel. The semantics I plan to build will give

meaning to terms by mapping them to a set of terms to which they are equivalent—an equivalence class. Specifically

I will do this by giving a set of axioms that define an equivalence relation, which will implicitly define this mapping

from terms to sets of terms. This set of terms is defined as the set of terms which the given term can be simplified to

by the axioms of the calculus.

This equivalence relation will let us reason about programs like we reasoned about arithmetic in grade school: if

we can show two terms are equal, then we can safely replace of those terms for another in some larger program

without changing its meaning. I refer to kind of equality relation as a calculus (taking the name from Church’s

λ-calculus).
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This section walks through an example of a calculus—the call-by-value λ-calculus (Plotkin 1975), also called λv—and

the key definitions needed for a calculus. The grammar of this the example language is:

𝗲 ::= 𝘅
 | (λ 𝘅 𝗲)
 | (𝗲 𝗲 ...)
 | 𝗰

x ∈ Variable Names

That is, expressions consist of variables, anonymous functions of one argument, function applications, and built in

constants (which may contain primitive functions). Another useful grammatical definition is that of a value:

𝘃 ::= (λ 𝘅 𝗲) | 𝗰

which is to say, just functions and constants. They represent fully evaluated terms.

2.2.1. Notions of Reduction

To build a calculus we first build a small7 relation called the notions of reduction. This represents the core notions

of computation in this language. I will write this relation as ⇀. In general I will add a superscript relations to show

which language they refer to. For example the notions of reduction for λv will be written as ⇀
λ (the superscript drops

the 𝘃 to avoid a subscript in a superscript). The notions of reduction for λv are:

[β𝘃] ((λ 𝘅 𝗲) 𝘃) ⇀
λ subst⦗𝗲, 𝘅, 𝘃⦘

[δ] (𝗰 𝘃 ...) ⇀
λ δ⦗𝗰, 𝘃, ...⦘

The left most part of each line is the rule name. Then comes a pattern which describes what goes on the left of

the relation, what we might think of as its “input”: functions applied to a value for [β𝘃], and primitive constants

applied to many values for [δ]. On the right is a pattern which describes what is on the right of the relation, what

we might think of at its “output”. In this case both right hand sides consist of Metafunctions, that is functions in our

metalanguage, rather than functions in λv. Metafunction application is written name-of-function⦗args, ...⦘ . The

[β𝘃] rule, which describes anonymous function application, relates the application of a function to that functions body,

7Well, okay, technically the relation is infinite in size, but it has a small number of rules.
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but with every occurrence of the variable substituted with the argument. The rule [δ] handles primitive function

application, by calling out to the metafunction δ, which the calculus is parameterized over. In a sense this function

represents the “runtime” of the λv. So, for example, if 𝗰 includes + and numbers, then δ would include a specification

of addition.

The relation ⇀
λ can be called the notions of reduction because, at least so far, each clause of ⇀

λ is some atomic step

in evaluating the program. Since λv only contains functions, the only rules in ⇀
λ handle function application.

2.2.2. Alpha Equivalence

Not all rules may be computationally relevant, but may instead simply describe equivalences we wish to hold. For

example, a common rule in λ-calculi is [α]:

[α] (λ 𝘅 𝗲) ⇀
λ (λ 𝘅2 subst⦗𝗲, 𝘅, 𝘅2⦘ )

 if 𝘅2 ∉ 𝘍𝘝⦗𝗲⦘

This rule describes consistent renaming of terms: one term may step to another if we replace a bound variable with a

new name that is not free in the term. We can think of this rule as describing the renaming refactoring found in IDEs.

Two terms which can step to each other via only the [α] rule are said to be alpha equivalent.

2.2.3. Equality relation

Using the notions of reduction, a calculus is built as an equality relation which says, essentially, if some part of two

programs could be run forwards or backwards to new terms, such that the two programs are become textually equal,

then they two programs must be equivalent.

To start with, we must describe what “some part of the programs” means. To do this we use the notion of a context,

which lets us split programs into an inner and outer piece. For a calculus we use program contexts, 𝗖. In this case of

λv, these contexts are:
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𝗖 ::= ○
 | (𝗲 ... 𝗖 𝗲 ...)
 | (λ 𝘅 𝗖)

This states that we can break a program 𝗲1 into two parts, 𝗖 and 𝗲2, written 𝗲1 = 𝗖[𝗲2] by tracing down the top of

𝗲1 following the path laid out by the grammar of 𝗖. For instance, any program can be broken into the empty context

○ and itself: 𝗲1 = ○[𝗲1]. The program (+ 3 (+ 1 2)) could be broken into (+ ○ (+ 1 2))[3], (+ 3 ○)[(+ 1 2)], and

(+ 3 (+ 1 ○))[2], among others.

Note that the program contexts 𝗖 can be generated algorithmically for some non-terminal: they simply go under every

single recursive part of that non-terminal. Therefore from here on out I will not write out the definitions of 𝗖.

With this in hand we can describe the two axioms of the equality relation which describe evaluating anywhere in the

program:

𝗲i ⇀
λ 𝗲o

𝗲i ≡
λ 𝗲o

 [step]
𝗲1 ≡

λ 𝗲2

𝗖[𝗲1] ≡
λ 𝗖[𝗲2]

 [ctx]

The [𝘀𝘁𝗲𝗽] rule says that two terms are equal if they are related by the notions of reduction. The [𝗰𝘁𝘅] rule says that

our reasoning applies in any program context. From here we turn this into an equality relation: that is we make it

transitive, reflexive, and symmetric:

𝗲 ≡λ 𝗲
 [refl]

𝗲1 ≡
λ 𝗲 𝗲 ≡λ 𝗲2

𝗲1 ≡
λ 𝗲2

 [trans]
𝗲2 ≡

λ 𝗲1

𝗲1 ≡
λ 𝗲2

 [sym]

The [𝗿𝗲𝗳𝗹] rule says that all terms are equal to themselves. The [𝘁𝗿𝗮𝗻𝘀] rule says that we can chain reasoning steps

together, if 𝗔 is equal to 𝗕, and 𝗕 is equal to C, then 𝗔 must therefore be equal to C. The final rule, [𝘀𝘆𝗺] says that

if 𝗔 is equal to 𝗕 then 𝗕 is equal to 𝗔. This rule is the one that allows us to “run” programs backwards.

Sometimes it is valuable to be able to describe stepping forward. This relation is given as closure of the notion of

reduction under program contexts—the same as just the [𝘀𝘁𝗲𝗽] and [𝗰𝘁𝘅] rules of the equivalence relation. This is

noted with ⟶, and will be superscripted to show with language it comes from. This closure under program contexts

is also called the compatible closure.
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2.2.4. Reasoning with a calculus

Now that we have a calculus, what can we do with it? The core idea of how to reason with a calculus is the same as

how we reason in our algebra classes from grade school: we “run” our core equalities backwards and forwards until

we massage the term into the form we want.

For example, let us say we want to perform something like common subexpression elimination, and prove that:

(+ (+ 1 1) (+ 1 1)) ≡λ ((λ 𝘅 (+ 𝘅 𝘅)) (+ 1 1))

The reasoning process might go something like this:

(1) By [𝘀𝘁𝗲𝗽] and [δ], (+ 1 1) ≡λ 2. That is we can run parts of the program forward one step.

(2) By [𝗰𝘅𝘁] and (1), (twice, by [𝘁𝗿𝗮𝗻𝘀]) (+ (+ 1 1) (+ 1 1)) ≡λ (+ 2 2). That is we can use [𝗰𝘁𝘅] to substitute

≡λ terms in a larger term. Now we are working with (+ 2 2).

(3) By [𝘀𝘁𝗲𝗽] and [β𝘃], ((λ 𝘅 (+ 𝘅 𝘅)) 2) ≡λ (+ 2 2). We are just running the program forward again.

(4) By [𝘀𝘆𝗺] and (3), (+ 2 2) ≡λ ((λ 𝘅 (+ 𝘅 𝘅)) 2). [𝘀𝘆𝗺] lets us take our previous “run forwards” example

and use it to actually run backwards. Now we are working with ((λ 𝘅 (+ 𝘅 𝘅)) 2).

(5) By [𝘀𝘆𝗺], [𝗰𝘁𝘅], (1), and [𝘁𝗿𝗮𝗻𝘀], ((λ 𝘅 (+ 𝘅 𝘅)) 2) ≡λ ((λ 𝘅 (+ 𝘅 𝘅)) (+ 1 1)). We’re running backwards

again, and substituting into a larger context. Now we have our final term ((λ 𝘅 (+ 𝘅 𝘅)) (+ 1 1)).

2.2.5. Evaluators

For a calculus to be adequate, it must be able to define an evaluator for its language. I don’t, by this, mean it gives an

effective means to compute a program, but rather that it gives a mathematical definition of what the results of such a

function should be. For example, the λv evaluator might be:

Definition: 𝘦𝘷𝘢𝘭 λ⦗𝗲⦘
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𝘦𝘷𝘢𝘭 λ : 𝗲 → 𝗰 or procedure
𝘦𝘷𝘢𝘭 λ⦗𝗲⦘  = 𝗰  if 𝗲 ≡λ 𝗰
𝘦𝘷𝘢𝘭 λ⦗𝗲⦘  = procedure  if 𝗲 ≡λ (λ 𝘅 𝗲1)

Which says that if a program is equivalent to a constant, then that program must evaluate to that constant. If the

program is equivalent to an anonymous function, then the result is the special symbol procedure. Note that it is not

a given that 𝘦𝘷𝘢𝘭 λ is a function: it is entirely possible it could map one expression to two different results. This gives

us the definition of consistency for a calculus: the evaluator it defines is a function.

2.2.6. State

One more important piece of background is how one can handle state in calculi. State is tricky because it is inherently

non-local. The two key pieces for handling state are evaluation contexts (Felleisen and Friedman 1986) and local

environments (Felleisen and Hieb 1992). The description I give here is adapted from the state calculus in Felleisen

and Hieb (1992). In this section we extend λv to support state, and call the extension λσ. To start with, we must be

able to control the order of evaluation of terms, as state is order sensitive. To do this we need a new kind of context,

which only allows holes in specific places depending on how far along the program is in its evaluation. For λσ they

are:

𝗘 ::= ○
 | (𝘃 ... 𝗘 𝗲 ...)

These contexts limit where holes may be place, so that evaluation can only take place at the first non-value term of a

function application. From here we add local state to the syntax of the language, represented by the form, (ϱ 𝛉. 𝗲),

and a form to mutate variables, (σ 𝘅 𝗲):

𝗲 ::= ....
 | (ϱ 𝛉. 𝗲)
 | (σ 𝘅 𝗲)

𝗘 ::= .... | (σ 𝘅 𝗘)
𝛉 : 𝘅 → 𝘃
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The ϱ form adds a map 𝛉 to a term. This map associates bound mutable variables with their current values. From here

we can define the notions of reduction:

[βσ] ((λ 𝘅 𝗲) 𝘃) ⇀
σ (ϱ { 𝘅 ↦ 𝘃 }. 𝗲)

[σ] (ϱ 𝛉. 𝗘[(σ 𝘅 𝘃)]) ⇀
σ (ϱ 𝛉 ← { 𝘅 ↦ 𝘃 }. 𝗘[42])

 if 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉⦘
[𝗗] (ϱ 𝛉. 𝗘[𝘅]) ⇀

σ (ϱ 𝛉. 𝗘[𝛉(𝘅)])
 if 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉⦘

[𝗹𝗶𝗳𝘁] (ϱ 𝛉1. 𝗘[(ϱ 𝛉2. 𝗲)]) ⇀
σ (ϱ (𝛉1 ← 𝛉2). 𝗘[𝗲])

[δ] (𝗰 𝘃 ...) ⇀
σ δ⦗𝗰, 𝘃, ...⦘

The first rule is our β rule, which handles function application by allocating a new local environment for that term.

The next two rules handle setting and dereferencing variables. If a σ is within an evaluation context of an environment

which contains its variable, that means that the σ is the next term to run with respect to that environment. Therefore

it can be run, changing the mapping in the environment to the new value. An arbitrary value is left in place of the

σ.8 Dereferencing works in a similar way: if a variable is within an evaluation context of its environment, then

dereferencing that variable is the next step than can be taken with respect to that environment. Environments can be

shifted around via the [𝗹𝗶𝗳𝘁] rule, exposing new redexs. The final rule is the same [δ] rule as in λv.

From here we define the equality relation ≡σ the same way we defined ≡λ: by closing the notions of reduction over

program contexts, transitivity, reflexively, and symmetry:

𝗲i ⇀
σ 𝗲o

𝗲i ≡
σ 𝗲o

 [step]
𝗲1 ≡

σ 𝗲2

𝗖[𝗲1] ≡
σ 𝗖[𝗲2]

 [ctx]

𝗲 ≡σ 𝗲
 [refl]

𝗲1 ≡
σ 𝗲 𝗲 ≡σ 𝗲2

𝗲1 ≡
σ 𝗲2

 [trans]
𝗲2 ≡

σ 𝗲1

𝗲1 ≡
σ 𝗲2

 [sym]

8In the grand tradition of The Hitchhikers Guide to the Galaxy, the best arbitrary value is 42.
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2.2.7. Contextual equivalence

The strongest notion of equivalence between programs we can have is called contextual equivalence (Morris 1963),

which I will write as ≃. Contextual equivalence is, generally, defined as a relation between programs which cannot be

distinguished in any context. For example, for λv, we could define contextual equivalence as

Definition: 𝗲1 ≃λ 𝗲2

𝗲1 ≃λ 𝗲2 if and only if, for all contexts 𝗖, 𝘦𝘷𝘢𝘭 λ⦗𝗖[𝗲1]⦘  = 𝘦𝘷𝘢𝘭 λ⦗𝗖[𝗲1]⦘ .

The definition of contextual equivalence depends on the language in question.

In general contextual equivalence is a “stronger” equivalence relation than the relation defined by a calculus; however

for a calculus to be sound it must be that ≡E is a subrelation of ≃. That is, if 𝗲1 ≡
λ 𝗲2 then it must be that 𝗲1 ≃λ 𝗲2,

but the converse does not need to hold.

2.2.8. Summary of Notation

‚ name-of-function⦗args, ...⦘ : Metafunction application.

‚ 𝘦𝘷𝘢𝘭: The evaluator for a language.

‚ ⇀: The notions of reduction for a language.

‚ ≡: The equivalence relation defined by a calculus. Defined as closure of ⇀ under program contexts, sym-

metry, reflexivity, and transitivity.

‚ ⟶: The equivalence relation defined by a calculus. Defined as closure of ⇀ under program contexts.

‚ ≃: Contextual Equivalence.
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‚ 𝗖: Program Contexts.

I will, in general, use superscripts to distinguish evaluators and relations from different languages.

2.3. Circuits

This section refreshes background needed to understand the potentially cyclic circuits that Esterel compiles to. It sum-

maries Analysis of Cyclic Combinational Circuits (Malik 1994) and Constructive Analysis of Cycle Circuits (Shiple et

al. 1996), and Chapter 10 of The Constructive Semantics of Pure Esterel (Draft Version 3) (Berry 2002).

2.3.1. Circuits as Graphs

Circuits can be thought of as graphs, where each edge represents a wire, and each node represents a gate. This also

gives the usual pictorial representation of circuits. As an example, the left of figure 7 is a circuit for the XOr of two

bits. This is implemented by taking the nand’ing and or’ing both of the two inputs, and and’ing the outputs of those

two gates. The right of figure 7 gives an overview of the notation I am using, which is fairly standard. Buffers here do

not impose a delay, but rather just specify the direction voltage propagates through the circuit. Registers save values

between cycles in the circuit. The are always initialized to 0 in the first cycle, and then output their input value from

the previous cycle afterwards. A small circle on the input or output of a gate represents negating that wire.

A side note on diagrams: Sometime circuit diagrams may refer to wires in a sub-circuits that are not present. For

example, see figure 8, which shows the compilation rules for two of Esterel’s forms. The first circuit has five input

wires: Ei, SEL, RES, SUSP, and KILL. It has two named output wires, SEL and Eo, and some number of output

wires labeled K0 through Kn. It has a subcircuit, which for now we can think of as being named ⟦𝗽p⟧. This subcircuit

has the same interface as the overall circuit. All input wires are passed to ⟦𝗽p⟧ unchanged, except for KILL. The

KILL for ⟦𝗽p⟧ is given as the Or of the KILL of the outer circuit, and the K2 output from ⟦𝗽p⟧. The outputs of the

overall circuit shift Kn to Kn-1, except for K1 which is just the K1 of ⟦𝗽p⟧, and K0 which is the Or of the K0 from

⟦𝗽p⟧ and the K2 of ⟦𝗽p⟧.
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A 2-bit XOr circuit

And Gate Or Gate
Bufer

Negated Gate
Register

Splitting a wire

1

A wire with a constant 1

0

A wire with a constant 0

Figure 7: Circuit Diagram Overview
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KILL

SEL
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K2

K3

...

EoEi

K0

K2

K1

SEL

EoEi

GO K0

Figure 8: An example in which the sub-circuit may be missing wires

If we take ⟦𝗽p⟧ to be the second circuit in figure 8, then we have missing wires, as the only input to this circuit is

GO, and the only output is K0. In this case we may just ignore the inputs to the inner circuit which are not used. In

addition we take the outputs which the outer circuit expects but that the input does not define as begin a constant 0.
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Therefore when the second circuit is inserted into the first, we get that every output of the outer circuit except for K1

is a constant 0.9

2.3.2. Interpreting a circuit

As an intuition for how to execute a circuit: initialize internal and output wire to the special value ⊥ and each input

wire to the input value given by the environment. This special value ⊥ represents that we do not yet know the value

on that wire. From here iterate through each gate in the circuit, updating the output of each gate if the inputs allow it

to change, using the truth tables extended with ⊥ in figure 9. Continue this until a fixed-point is reached.

The extended truth tables follow the principle that if a value is enough to determine the output of a gate one its own

(i.e. would “short circuit” evaluation), then that value controls the output when combined with ⊥, otherwise the output

is ⊥. This ensures that the output of gates is monotonic: once its output transitions from ⊥ to 0 or 1 its output will

never change.

Once a fixed point has been reached, the input values will have propagated through the entire circuit, with each gate

settling on its final value. From here the values of each output wire will we be on those wires.

As and example of this, let us explore the evaluation of the XOr circuit, when run on the values 1 and 1. The initial

state looks like:

1

1
⊥

⊥

⊥

From here we can either evaluate the Nand or the Or gate. If we evaluate the Nand gate we get:

9Using this rule for composition we can in fact simplify the combined circuit back to the second circuit.
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a ∧b =o
1 1 1
1 0 0
1 ⊥ ⊥
0 1 0
0 0 0
0 ⊥ 0
⊥ 1 ⊥
⊥ 0 0
⊥ ⊥ ⊥

a ∨b =o
1 1 1
1 0 1
1 ⊥ 1
0 1 1
0 0 0
0 ⊥ ⊥
⊥ 1 1
⊥ 0 ⊥
⊥ ⊥ ⊥

¬a =o
1 0
0 1
⊥ ⊥

Figure 9: Truth tables for each gate, extended with ⊥

1

1
0

⊥

⊥

Next we can evaluate either the Or or the And gate, as 0 short circuits And. If we evaluate the And gate we get:

1

1
0

⊥

0

Finally we can evaluate the Or gate:
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1

0
0

1

0

From here evaluating any gate gives the same result, therefore a fixed-point has been reached and the final result is

0. This, however, may make you wonder: Why do a fixed point? Is it not enough to evaluate the gates in topological

order? The answer to this is that, in general, circuits may contain cycles.

2.3.3. Cycles & Constructivity

The circuits generated by the Esterel compiler may contain cycles. The semantics of cyclic circuits I present here is

based on Malik (1994), Shiple et al. (1996), Mendler et al. (2012), and Berry (2002).

A circuit with a cycle may or may not be electrically stable. Wires which do not stabilize will have the value ⊥ when

a fixed-point is reached. Initially, all wires are in this state, as we do not yet know their value.

A circuit which does not stabilize is called non-constructive. Like constructivity in Esterel, this term is an allusion to

Constructive Logic, a connection which (Mendler et al. 2012) formalizes. But to a first approximation: using three

values for Booleans 1, 0, and ⊥ is one way of formalizing a logic without the law of the excluded middle. That is, the

circuit X ∨ ¬X may not always produce 1, but can also produce ⊥.

Any circuit, even ones with a cycle, can be computed in finite time. On the electrical side of things, this is because, for

constructive circuits, for any delay time in the computation of a gate there exists some clock time for which the circuit

will always stabilize. On the logic side, the functions which define the gates are monotonic: once a value transitions

from ⊥ to 0 or 1 it can never change. This means that there is always a fixed-point when evaluating that circuit, and

it should take no more iterations through the whole circuit to find that fixed-point than the number of gates in the

circuit.
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ɕ ::= 𝗘𝗤 × 𝗜 × 𝗢
𝗜, 𝗢 ::= (𝘄 ...)
𝗘𝗤 ::= {(𝘄 = 𝗲) ...}
𝗕⊥ ::= 0 | 1 | ⊥
𝗲 ::= 𝘄 | 𝗕

 | ¬𝗲
 | 𝗲 ∧ 𝗲 ...
 | 𝗲 ∨ 𝗲 ...

w ∈ wire names

Figure 10: A Grammar for Circuits

2.3.4. Circuits, more formally

Now, on to a formal definition of a circuit. A circuit ɕ can be defined as a triple 𝗘𝗤 × 𝗜 × 𝗢 where 𝗜 is a set of names

of input wires, 𝗢 is a set of names of output wires, and 𝗘𝗤 is a set of equations (𝘄 = 𝗲), which defines the internal

wire named 𝘄 by the expression 𝗲, which is drawn from the grammar given in figure 10. Wire names are assumed to

be unique.

Circuit evaluation takes place on a circuit state which is, in essence and environment for the circuit. It takes the form

of a mapping from the wire names of the circuit to the current state of the circuit. I will denote a circuit state for a

circuit ɕ as 𝛉ɕ. There is a special circuit state 𝛉ɕ0 for every circuit in which every internal wire 𝘄 which is not equal

to a constant 0 or 1 is assigned the initial value ⊥. Any wires in the set 𝗜 or 𝗢 which do not have a corresponding

internal wire are given the value 0. For example, the circuit

ɕ = ⟨{(internal = input)}, {input}, {output1, internal}⟩

would have the initial state

𝛉ɕ0 = {{internal ↦ ⊥}, {input ↦ 0}, {output1 ↦ ⊥}}

We would write the XOr circuit from before as:

ɕxor = ⟨{(a = ¬(i1 ∧ i2) ), (b = i1 ∨ i2), (out = a ∧ b)}, {i1, i2}, {out}⟩
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[𝗲𝘃𝗮𝗹-𝘄𝗶𝗿𝗲] 𝛉ɕ ⇀
C (𝛉ɕ ← { 𝘄 ↦ 𝗕 })

 if 𝘄 ∈ 𝘥𝘰𝘮⦗𝛉ɕ⦘ , ⊥ = 𝛉ɕ(𝘄), 𝛉ɕ ⊢ ɕ(𝘄) ↪ 𝗕

Figure 11: Reduction relation for circuits

𝛉ɕ ⊢ 𝗕 ↪ 𝗕
 [id]

𝛉ɕ ⊢ 𝘄 ↪ 𝛉ɕ(𝘄)
 [deref]

𝛉ɕ ⊢ 𝗲 ↪ 0

𝛉ɕ ⊢ ¬𝗲  ↪ 1
 [not-0]

𝛉ɕ ⊢ 𝗲 ↪ 1

𝛉ɕ ⊢ ¬𝗲  ↪ 0
 [not-1]

𝛉ɕ ⊢ 𝗲1 ↪ 0

𝛉ɕ ⊢ 𝗲1 ∧ 𝗲2 ↪ 0
 [and-0-left]

𝛉ɕ ⊢ 𝗲2 ↪ 0

𝛉ɕ ⊢ 𝗲1 ∧ 𝗲2 ↪ 0
 [and-0-right]

𝛉ɕ ⊢ 𝗲1 ↪ 1 𝛉ɕ ⊢ 𝗲2 ↪ 1

𝛉ɕ ⊢ 𝗲1 ∧ 𝗲2 ↪ 1
 [and-1]

𝛉ɕ ⊢ 𝗲1 ↪ 1

𝛉ɕ ⊢ 𝗲1 ∨ 𝗲2 ↪ 1
 [or-1-left]

𝛉ɕ ⊢ 𝗲2 ↪ 1

𝛉ɕ ⊢ 𝗲1 ∨ 𝗲2 ↪ 1
 [or-1-right]

𝛉ɕ ⊢ 𝗲1 ↪ 0 𝛉ɕ ⊢ 𝗲2 ↪ 0

𝛉ɕ ⊢ 𝗲1 ∧ 𝗲2 ↪ 0
 [or-0]

Figure 12: Reduction relation for wire expressions

And we would write its initial state, when run on 1 and 1 to be:

θɕxor0 = {{a ↦ ⊥}, {b ↦ ⊥}, {out ↦ ⊥}, {i1 ↦ 1}, {i2 ↦ 1}}

I will write ɕ(𝘄) for accessing the expression in the circuit ɕ for the wire 𝘄. I will write 𝛉ɕ(𝘄) for accessing the value

of 𝘄 in 𝛉ɕ. I will write 𝘥𝘰𝘮⦗𝛉ɕ⦘ for the set of all wires defined in 𝛉ɕ.

The circuit can then be evaluated by the reduction relation ⇀
C, which is defined in figure 11. This reduction relation

has only one rule, which selects one wire in the circuit which currently has the value ⊥, and attempts to evaluate it

using the relation 𝛉ɕ ⊢ 𝗲 ↪ 𝗕. This relation is adapted from Section 10.3.1 of The Constructive Semantics of Pure

Esterel (Draft Version 3) (Berry 2002). This relation evaluates Boolean expressions, giving back a Boolean when the

expression is constructive. The relation does not hold when the truth table in figure 9 would give back ⊥.

The evaluator for circuits 𝘦𝘷𝘢𝘭 C has the signature:

𝘦𝘷𝘢𝘭 C : 𝗢 ɕ → ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩
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It takes in a set of wires 𝗢 we wish to observe and a circuit, and fully evaluates the circuit by calling ⇀
C until it

reaches the fixed-point. The result a pair of 𝛉 and 𝗯𝗼𝗼𝗹. The first part is a map 𝛉 that maps the wires in 𝗢 to the

values they have after evaluating the circuit. The second part is a Boolean which is tt if and only if the circuit has no

wires which are ⊥—that is it is true when the circuit is constructive. Otherwise it is ff.

Registers. This model can extend to registers by treating each register as a pair of an input and an output wire. Initially

these input wires is set to 0, and on each subsequent cycle (e.g. each subsequent call to 𝘦𝘷𝘢𝘭 C) these input wires are

given the value of their corresponding output wire in the previous cycle.

Contextual Equivalence. I take the following to be the definition of contextual equivalence on circuits:

Definition: ɕ1 ≃
C ɕ2

For all assignments to the inputs, and all output sets 𝗢, 𝘦𝘷𝘢𝘭 C⦗𝗢, ɕ1⦘  = ⟨𝛉 , 𝗕⟩ if and only if

𝘦𝘷𝘢𝘭 C⦗𝗢, ɕ2⦘  = ⟨𝛉 , 𝗕⟩.

Intuitively, we can understand this to mean that the only observables of a circuit are the values of its output wires and

if it is constructive, and the only observation a circuit can make about its context is the state of its input wires.

I base this definition on the procedure given by Malik (1994). This procedure is equivalent to the reduction relation I

give here, which is proved by Mendler et al. (2012) and Berry (2002). Specifically Lemma 7 of Berry (2002) gives us

that this reduction relation is equivalent to what Mendler et al. (2012) call ternary simulation of the circuits. Corollary

3 of Mendler et al. (2012) tells us that this is equivalent to the algorithm given by Malik (1994) for evaluating a circuit.

Theorems 1, 2, 3, and 5 of Mendler et al. (2012) also give us that ternary simulation is equivalent to their UN-delay

model of circuits, which is a model of electrical characteristics of circuit (See definition 6 in that paper). This UN-delay

model is compositional, and thus can be used when analyzing a circuit without knowing its context.

Other definitions. I write inputs⦗ɕ⦘ to access the input set of the circuit, and outputs⦗ɕ⦘ for the output set.

At times the expression of a single wire will be equivalent in a particular circuit to some other expression. I will

describe this with the notation:

Definition: ɕ(𝘄) ≃ 𝗲
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ɕ is contextually equivalent to a circuit in which the definition of the wire 𝘄 is replace by 𝗲.

which equates the wire 𝘄 of the circuit ɕ to the expression 𝗲. For example ɕ1(𝘄1) ≃ 1 says that in all situations the

wire 𝘄 in the circuit ɕ1 will have the value 1, and ɕ2(𝘄2) ≃ ɕ3(𝘄2) says that not matter what, the 𝘄2 wire in both

circuits will always have the same value.
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CHAPTER 3

Loop-free, pure Esterel

With the background out of the way, this section dives directly into describing the calculus for Esterel. Specifically this

describes the calculus for single instants of Pure Esterel without loops. This section relies heavily on the background

given in section 2.1 and section 2.2.

3.1. The Constructive Calculus

This section will walk through the rules of the calculus to explain their function. The calculus is built around the

relation ⇀
E, which defines the notions of reduction for the equality relation ≡E. These relations work within a single

instant of execution, which leads to an evaluator 𝘦𝘷𝘢𝘭 E which evaluates a single instant. Multi-instant evaluation is

described in section 5.3.

The rules of ⇀
E, broadly, be broken up into two categories: Administrative reductions which shuffle the term around

to find the next redex; and Signal Reductions, which manipulate and read signal states. The description here is

incremental, introducing concepts as it goes along. The complete rules and grammars can be found in one place in

Appendix A.

3.1.1. Administrative rules

To begin, the administrative rules rely on three categories of programs that represent various ways a program fragment

may be in a completed state:
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𝗽D ::= 𝗽S | 𝗽̂
𝗽S ::= nothing | (exit 𝗻)
𝗽̂ ::= pause

 | (seq 𝗽 ̂𝗾)
 | (loop 𝗽̂ 𝗾)
 | (par 𝗽̂ 𝗽̂)
 | (suspend 𝗽̂ 𝗦)
 | (trap 𝗽̂)

Stopped terms (𝗽S) can no longer evaluate and will do nothing further in future instants. Paused terms (𝗽̂) are terms

which will not reduce further this instant, but will evaluate further in future instants. Done terms (𝗽D) are stopped or

paused. A 𝗽D term is analogous to a value in other languages. A 𝗽S is analogous to a primitive value (e.g. a number),

in that it is atomic, and contains no future behaviors. A 𝗽̂ term is analogous to a λ term in the λ-calculus in that

it is a value which is awaiting input, and once that input is received it can continue reducing. A 𝗽̂ term, unlike λ,

cannot be immediately be given inputs by the program—rather its inputs are provided by the outer context in the next

instant.

The first two rules deal with sequencing:

[𝘀𝗲𝗾-𝗱𝗼𝗻𝗲] (seq nothing 𝗾) ⇀
E 𝗾

[𝘀𝗲𝗾-𝗲𝘅𝗶𝘁] (seq (exit 𝗻) 𝗾) ⇀
E (exit 𝗻)

The first rule reduces to the second part of the sequence when the first part has completed and will not preempt the

whole sequence. The second rule preempts the sequence when the first part reduces to an exit, by discarding the

second part of the seq and reducing to the exit.

The next rule handles traps:

[𝘁𝗿𝗮𝗽] (trap 𝗽S) ⇀
E ↓p 𝗽S

This rule reduces when the inner program can reduce no more, via the metafunction:

↓p  : 𝗽S → 𝗽S

↓p nothing  = nothing
↓p (exit 0)  = nothing
↓p (exit 𝗻)  = (exit 𝗻-1)
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which will decrement a exit by one, unless the exit is bound by this trap, in which case it reduces to nothing, allowing

execution to continue from this point.

The next rules handle par:

[𝗽𝗮𝗿-𝘀𝘄𝗮𝗽] (par 𝗽 𝗾) ⇀
E (par 𝗾 𝗽)

[𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴] (par nothing 𝗽D) ⇀
E 𝗽D

[𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁] (par (exit 𝗻) 𝗽̂) ⇀
E (exit 𝗻)

[𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁] (par (exit 𝗻1) (exit 𝗻2)) ⇀
E (exit 𝘮𝘢𝘹⦗𝗻1 , 𝗻2⦘ )

The first rule swaps the two branches of a par. This rule is useful for exposing redexes to the next two rules. The

second rule allows a par to reduce to its second branch when it is 𝗽D and the other branch has completed. Combined

with [𝗽𝗮𝗿-𝘀𝘄𝗮𝗽], it means that the program will progress with the behavior of one branch if the other is nothing.

The last two rules handle exits in pars. In short, an exit will preempt a paused term, and two exits will abort to

whichever one is bound higher up.

Note that all of the par administrative reductions only take effect when both branches have completed. This is because

pars acts akin to a fork/join, synchronizing the results of both branches, which gives us determinism in that we cannot

observe which branch completes first.

Next up is suspend:

[𝘀𝘂𝘀𝗽𝗲𝗻𝗱] (suspend 𝗽S 𝗦) ⇀
E 𝗽S

Which just states that the suspension of a 𝗽S term is equivalent to just that term. This is because ⇀
E only works within

one instant, and suspend has different behaviors on initial versus future instants. This is the only rule that touches

suspend. The rest of suspend’s behavior is not handled by ⇀
E, but is rather handled by the inter-instant translation

function Ɛ, which is discussed in section 5.3.
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3.1.2. Signal rules

The signal rules are more subtle than the administrative rules. They must reason about state, which is difficult to do in a

local way. To handle this, we need to add three new pieces: Environments, Evaluation Contexts, and the metafunction

𝘊𝘢𝘯 .

Environments. Like in the state calculus, environments represent local state information. In the constructive calculus

environments look like:

𝗽, 𝗾 ::= .... | (ϱ ⟨𝛉r, 𝗔⟩. 𝗽)
𝘀𝘁𝗮𝘁𝘂𝘀 ::= 1 | 0 | ⊥
𝘀𝘁𝗮𝘁𝘂𝘀r ::= 1 | ⊥

𝗔 ::= GO | WAIT
𝛉 : 𝗦 ⟶ 𝘀𝘁𝗮𝘁𝘂𝘀
𝛉r : 𝗦 ⟶ 𝘀𝘁𝗮𝘁𝘂𝘀r

Local environments ϱ contain two parts: a map 𝛉r, and a control variable 𝗔. The information contained in these

environments is scoped to the program fragment 𝗽. The map 𝛉r maps signals that are in scope of the term 𝗽 to their

status. The maps used for local stores are restricted maps 𝛉r, which only map to a subset of signal statuses. Other

parts of the calculus will use full maps 𝛉.1

The control variable 𝗔 tracks whether or not control has reached this point in the program. This control variable is

needed because signal emissions represent what must happen in the program. However, as discussed in section 2.1.3,

this is inherently a non-local property. Therefore we add a new piece to the environment, 𝗔, which will be GO

if control will reach the portion of the program inside the ϱ, or WAIT, if it might not. In essence this tracks a 1

propagating through the control edges of the causality graphs discussed in section 2.1.3.

To understand why this is needed in the setting of the calculus specifically, consider the program in figure 13. This

program has a cycle between the test of S1, the test of S2, and the emit of S1. This cycle cannot be broken, therefore

this program is non-constructive: evaluation would demand a value for S1 before determining a value for S2, which

1You may notice that these three statuses correspond to wire values in Circuits. This is because signals correspond exactly to wire in compilation,
and this fact will be crucial in proving soundness of the calculus.
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(signal S1
(if S1
(signal S2
(seq (emit S2)

(if S2 nothing (emit S1))))
nothing))

(emit S2)

(? S1)

(emit S1)

(? S2)

exit

n

n

T F

n

n

T

F

Figure 13: A non-constructive program

cannot happen. However we might try to reason about a fragment of this program locally, ignoring it’s context. For

example we might ignore the context:

(signal S1 (if S1 ○ nothing))

and focus on the fragment

(signal S2
(seq (emit S2)

(if S2 nothing (emit S1))))
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(signal S1
(if S1
(signal S2 nothing)
nothing))

(? S1)

exit

n

TF

n

Figure 14: Breaking the cycle, illegally

If we live in a world without the control variable 𝗔, then we must assume that control reaches this part of the program.

Therefore we can emit the S2, allowing the fragment to reduce to

(signal S2 nothing)

which, when plugged back into its context gives us the program in figure 14. But this program no longer has the

non-constructive cycle! Therefore this local reasoning was not valid: we did not know that the (emit S2) must be

reached, so it was not safe to emit it.

But when using a calculus we can never assume that we have full knowledge of the program: there may always been

an outer context, meaning we can never know for sure if a term will be reached or not. To handle this the control

variable 𝗔 adds local information that tells us if the program term must be reached or not. When 𝗔 is GO, this means

that the term must be executed. If 𝗔 is WAIT the term may or may not be executed.2

2These control variables are adapted from the microstep semantics of Berry and Rieg (2019). This semantics defines an evaluator for Esterel which
tracks execution state via three colors: Red (0/Cannot), Green (1/Must), and Gray(⊥/unknown). My adaptation makes these colors local, which
allows the Red color to be discarded. Green corresponds to GO, and Grey corresponds to WAIT.
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The calculus itself will never introduce GO’s, but rather only propagate them through the program. A GO can only

safely be introduced by the evaluator—as it knows the whole program—and, theoretically, when the whole program

is guaranteed to be acyclic. However, the calculus assumes that GO is only at the top of the program, and therefore

while a programmer may choose to add GO to acyclic programs, doing so is not proven to be sound.

To understand why restricted maps 𝛉r are necessary, cast your eye back to figure 6 from section 2.1.3. That must and

cannot corner of that diagram is an nonsensical state. If we used unrestricted maps for environments, however, the

syntax of the language would allow for representing such program. Consider the program

(ϱ ⟨{ S1 ↦ 0 }, GO⟩. (emit S1))

The GO and (emit S1) tells us that this program must emit S1. However the 0 in the environment tells us that S1

cannot be emitted. This is the exact contradiction we wish to avoid. Therefore the calculus forbids directly recording 0

in the environment. While such a program should never be reachable from a program without environments, it makes

proofs about the calculus simpler to exclude such programs from the grammar altogether. Section 3.1.2.3 explains

how 0 is recorded in the calculus.

Note that a term which swaps things around, recording that something must be emitted in a program that cannot

emit it (e.g. (ϱ ⟨{ S1 ↦ 1 }, GO⟩. nothing)) does not contain a contraction. This is because the 1 in the environment

records that at some point in the reduction sequence prior to the current state S1 must have been emitted. Therefore it

is the case that this program actually states that S1 must be emitted (and resp. can be emitted). This is a manifestation

of the asymmetry between must and can.

A small example of how environments work can be seen in the rule:

[𝘀𝗶𝗴𝗻𝗮𝗹] (signal 𝗦 𝗽) ⇀
E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽)

which transforms a signal into a local environment. The map in this environment contains only the signal, mapped

to ⊥, representing that we do not yet know its value. The control variable is set to WAIT as we cannot know if this

program fragment will be executed yet or not.
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Evaluation Contexts. The next set of rules require evaluation contexts. Like the evaluation contexts we saw in

section 2.2, these control where evaluation may take place (and therefore where state is valid), however, in this case

the evaluation contexts can decompose non-deterministically because of par:

𝗘 ::= ○
 | (seq 𝗘 𝗾)
 | (par 𝗘 𝗾)
 | (par 𝗽 𝗘)
 | (suspend 𝗘 𝗦)
 | (trap 𝗘)

With these in hand we can now look at the next three rules. Firstly, local environments may be merged together if they

are within an evaluation context of each other:

[𝗺𝗲𝗿𝗴𝗲] (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘[(ϱ ⟨𝛉r

2, 𝗔2⟩. 𝗽)]) ⇀
E (ϱ ⟨(𝛉r

1 ← 𝛉r
2), 𝗔1⟩. 𝗘[𝗽])

 if 𝗔1 ≥ 𝗔2

This merge overwrites bindings in the outer map with the inner one. In addition this merge may only happen if it

would not expose the outer environment to more control information that it had before. That is, GO ≥ WAIT. So the

merge will happen if the outer environment has a GO, or if both environments have a WAIT.

Next we may emit a signal when that signal is in an evaluation context relative to its binder, and when we know control

will reach this point in the program:

[𝗲𝗺𝗶𝘁] (ϱ ⟨𝛉r, GO⟩. 𝗘[(emit 𝗦)]) ⇀
E (ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘[nothing])

 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

Emission is accomplished by updating the environment to map 𝗦 to 1, and replacing the emit with nothing.

Once there is a 1 in the environment we may reduce to the then branch of a conditional:

[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]) ⇀
E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗽])  if 𝛉r(𝗦) = 1

These [𝗲𝗺𝗶𝘁] and [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] rules together describe how the calculus handles signals that must be emitted. The

handling of signals that cannot be emitted requires a different mechanism altogether.
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𝞳 ∈ Natural Numbers

𝘊𝘢𝘯  : 𝗽 𝛉 → { S: 𝕊, K: 𝕜, sh: 𝕤 }
𝘊𝘢𝘯⦗nothing, 𝛉⦘  = { S = ∅, K = { 0 }, sh = ∅ }
𝘊𝘢𝘯⦗pause, 𝛉⦘  = { S = ∅, K = { 1 }, sh = ∅ }
𝘊𝘢𝘯⦗ (exit 𝗻), 𝛉⦘  = { S = ∅, K = { 𝗻 + 2 }, sh = ∅ }
𝘊𝘢𝘯⦗ (emit 𝗦), 𝛉⦘  = { S = { 𝗦 }, K = { 0 }, sh = ∅ }
𝘊𝘢𝘯⦗ (if 𝗦 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
 if 𝛉(𝗦) = 1
𝘊𝘢𝘯⦗ (if 𝗦 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗾, 𝛉⦘
 if 𝛉(𝗦) = 0
𝘊𝘢𝘯⦗ (if 𝗦 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

𝘊𝘢𝘯⦗ (suspend 𝗽 𝗦), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (seq 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
 if 0 ∉ 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (seq 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  \ { 0 } ∪ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

𝘊𝘢𝘯⦗ (par 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,
K = { 𝘮𝘢𝘹⦗𝞳1 , 𝞳2⦘  | κ1 ∈ 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  , κ2 ∈ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘  },

sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }
𝘊𝘢𝘯⦗ (signal 𝗦 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉 ← { 𝗦 ↦ 0 }⦘  \ { 𝗦 },

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉 ← { 𝗦 ↦ 0 }⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉 ← { 𝗦 ↦ 0 }⦘  }

 if 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽, 𝛉 ← { 𝗦 ↦ ⊥ }⦘
𝘊𝘢𝘯⦗ (signal 𝗦 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉2⦘  \ { 𝗦 }, K = 𝘊𝘢𝘯K⦗𝗽, 𝛉2⦘ , sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉2⦘  }
 if 𝛉2 = 𝛉 ← { 𝗦 ↦ ⊥ }
𝘊𝘢𝘯⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  = { S = 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  \ 𝘥𝘰𝘮⦗𝛉1⦘ ,
K = 𝘊𝘢𝘯ϱ

K⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘ ,
sh = 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  \ 𝘥𝘰𝘮⦗𝛉1⦘  }

↓κ  : 𝞳 → 𝞳
↓κ 0  = 0
↓κ 1  = 1
↓κ 2  = 0
↓κ 𝗻  = 𝗻-1
if 𝗻 > 2

Figure 15: Can on pure, loop free terms

Can. If 0 cannot be put intro restricted environments, how are we to take the else branch? The answer lies the

meaning of 0. A signal is 0 only when it has not been emitted (that is, is not 1) and cannot be emitted. Thus to take

the else branch we analyze the program for what can be emitted. This is done by the metafunctions in figure 15 and

figure 16.
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The first metafunction, 𝘊𝘢𝘯 , computes what might happen during the execution of a program, given an environment

of signals. The metafunction 𝘊𝘢𝘯 returns three sets. The first set S is a set of the signals that might be emitted during

execution. The second set K is a set of return codes (𝞳), which describe in what ways the program might terminate.

The code 0 means the program may reduce to nothing. The code 1 means the program might pause (reduce to 𝗽̂). A

code of 𝞳 = 2 or greater means the program might reduce to (exit 𝞳 - 2). The final set sh is a set of shared variables

which may be written to during execution of the program. This third set is discussed when the host language portion

of the calculus is introduced in section 5.2.1.

I will denote accessing only one of these sets with a superscript: 𝘊𝘢𝘯S for the S set, 𝘊𝘢𝘯K for the K set, and 𝘊𝘢𝘯sh for

the sh set.

Note that 𝘊𝘢𝘯 takes in a map 𝛉 not a restricted map 𝛉r. While 𝘊𝘢𝘯 will record 0s into this map, it cannot arrive at a

contraction. This is because it only records a signal 𝗦 as 0 in the map if 𝗦 cannot be emitted, therefore it cannot enter

the contradictory corner of figure 6.

While I explain this version of 𝘊𝘢𝘯 here, a much more detailed explanation can be found in chapters 4 and 5 of

Compiling Esterel (Potop-Butucaru et al. 2007), from which this version of 𝘊𝘢𝘯 is adapted.

The first three clauses of 𝘊𝘢𝘯 handle the return codes for irreducible terms: nothing gets 0, etc. The S and sh sets

are empty for these, as they can neither emit signals nor write to shared variables.

The next clause, for emit, puts 𝗦 in the S set, and 0 in the K set, as (emit 𝗦) can reduce to only nothing, and can

emit only 𝗦.

The next three clauses handle if. When 𝛉 knows that 𝗦 is 1, then 𝘊𝘢𝘯 will only inspect the 𝗽 branch, as the 𝗾 branch

cannot be reached. The reverse is true when 𝛉 maps 𝗦 to 0. Otherwise, both branches are analyzed and, as both

branches can happen, their result sets are unioned.

The next clause handles suspend, which just gives the result of analyzing the body of the suspend. This is because

suspend does nothing on the first instant, and the inter-instant metafunction Ɛ will transform suspend into other

forms, therefore no special reasoning is needed.
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The next two clauses handle seq. If 0 is not in the possible return codes of the first part of the seq, we know that it

cannot reduce to nothing, therefore the 𝗾 can never be reached. Therefore in this case 𝘊𝘢𝘯 only analyzes 𝗽. If 0 is in

the possible return codes of 𝗽, 𝘊𝘢𝘯 analyzes both parts, and unions the results. However 0 is removed from the return

codes of 𝗽, as if 𝗽 does in fact reduce to nothing then the return code will given by only 𝗾.

Next is par. The S and sh sets are just the union of the sets from the recursive calls. The return codes are give by

the set of pairwise max of each possible return code of the subterm. This mimics exactly what the [𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴],

[𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁], and [𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁] rules do.

The next clause handles trap. Again the S and sh sets are the same as the sets for the subterm. The return codes are

given by the metafunction ↓κ , which does for return codes what ↓p does for terms.

The next two clauses handle signal forms. If the signal 𝗦 cannot be emitted by the body 𝗽, then the term is re-analyzed

with 𝗦 set to 0, as this refined information may give a more accurate result of what the term can do. Otherwise the

recursive call is used as is. In both cases 𝗦 is removed from the result set, as its name may not be unique and

thus emissions from within this signal form need to be hidden to avoid conflicts with other signals of the same

name.

The clause for ϱ delegates to the 𝘊𝘢𝘯ϱ metafunction. Like the signal case, it removes all of its bound variables from

its result. The 𝘊𝘢𝘯ϱ function handles the analysis of ϱ forms. It essentially behaves as if the form was made of nested

signal forms: for each signal, if the signal is ⊥ and not in the S set of the recursive call then the form is re-analyzed

with that signal set to 0. Otherwise the signal’s value remains unchanged. The primary difference between this and

the signal rule is that the bound variables are not removed from the resulting S set—this is handled by 𝘊𝘢𝘯 . We can

understand why this is by looking at the rule which uses 𝘊𝘢𝘯ϱ:

[𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]) ⇀
E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗾])

 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝛉r(𝗦) = ⊥, 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]), {}⦘

This rule says that we may take the else branch of a conditional only when the signal is bound in an environment in a

relative evaluation context to the conditional, an the signal cannot be emitted by the program. If the signals in 𝛉r were

removed from the result of 𝘊𝘢𝘯ϱ this rule would always fire.
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𝘊𝘢𝘯ϱ : (ϱ ⟨𝛉, 𝗔⟩. 𝗽) 𝛉 → { S: 𝕊, K: 𝕜, sh: 𝕤 }
𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗽), 𝛉2⦘  = 𝘊𝘢𝘯ϱ⦗ (ϱ ⟨(𝛉 \ {𝗦}), 𝗔⟩. 𝗽), 𝛉2 ← { 𝗦 ↦ 0 }⦘
 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 

𝛉(𝗦) = ⊥, 
𝗦 ∉ 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨(𝛉 \ {𝗦}), 𝗔⟩. 𝗽), 𝛉2 ← { 𝗦 ↦ ⊥ }⦘
𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗽), 𝛉2⦘  = 𝘊𝘢𝘯ϱ⦗ (ϱ ⟨(𝛉 \ {𝗦}), 𝗔⟩. 𝗽), 𝛉2 ← { 𝗦 ↦ 𝛉(𝗦) }⦘
 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘
𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉2⦘

Figure 16: 𝘊𝘢𝘯ϱ

𝗽 ⇀
E 𝗾

𝗽 ≡E 𝗾
 [step]

𝗽 ≡E 𝗽
 [refl]

𝗾 ≡E 𝗽

𝗽 ≡E 𝗾
 [sym]

𝗽 ≡E r r ≡E 𝗾

𝗽 ≡E 𝗾
 [trans]

𝗽 ≡E 𝗾

𝗖[𝗽] ≡E 𝗖[𝗾]
 [ctx]

Figure 17: The full equality relation

3.1.3. The equality relation

As a calculus should be congruent equality relation, the relation⇀
E generates this relation via its symmetric, transitive,

reflexive, compatible closure, seen in figure 17.

3.2. The evaluator

The evaluator defined by the calculus is a partial function which evaluates one instant of execution. Its signature is

similar to that of the circuit evaluator 𝘦𝘷𝘢𝘭 C:

𝘦𝘷𝘢𝘭 E : 𝗢 𝗽 → ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩

It takes a set of output signals and a program, and gives back a pair containing a map with the status of each of those

signals and a Boolean which tells us if the program is constructive or not. The evaluator itself has two clauses, the first

clause handling constructive programs, and the second clause handling non-constructive programs:
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𝘦𝘷𝘢𝘭 E⦗𝗢, (ϱ ⟨𝛉r
1, GO⟩. 𝗽

p)⦘  = ⟨restrict⦗𝛉r
2, 𝗢, (ϱ ⟨𝛉r

2, GO⟩. 𝗽
D)⦘  , tt⟩

 if (ϱ ⟨𝛉r
1, GO⟩. 𝗽

p) ≡E (ϱ ⟨𝛉r
2, GO⟩. 𝗽

D), 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r
2, 𝗽

D⦘
𝘦𝘷𝘢𝘭 E⦗𝗢, (ϱ ⟨𝛉r

1, GO⟩. 𝗽
p)⦘  = ⟨restrict⦗𝛉r

2, 𝗢, (ϱ ⟨𝛉r
2, GO⟩. 𝗾

p)⦘  , ff⟩
 if (ϱ ⟨𝛉r

1, GO⟩. 𝗽
p) ≡E (ϱ ⟨𝛉r

2, GO⟩. 𝗾
p), 𝛉r

2; GO; ○ ⊢B 𝗾
p

If a program is ≡E to another program which is done (𝗽D), and that program has an environment which is complete

with respect to that program, then, the program is constructive. The 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵 relation holds if every signal is

either set to 1, or is set to ⊥ and that signal is not in the result of 𝘊𝘢𝘯ϱ
S:

Definition: 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r, 𝗽D⦘

For all 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , either 𝛉r(𝗦) = 1 or 𝛉r(𝗦) = ⊥ and 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, GO⟩. 𝗽D), {}⦘ .

This completeness means that every signal in the environment has a definite value. From there the value of the signals

is extracted using the metafunction 𝘳𝘦𝘴𝘵𝘳𝘪𝘤𝘵, which gives back a map like 𝛉r
2, but with every signal that can be set to

0 set to 0, and with the domain restricted to 𝗢:

Definition: restrict⦗𝛉, 𝗢, 𝗽⦘

read as: Restrict 𝛉 to signals in 𝗢, given their values as determined by the program 𝗽.

restrict⦗𝛉, 𝗢, 𝗽⦘ (𝗦)={0  where 𝗦 ∈ 𝗢, 𝛉(𝗦) = ⊥, and 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗𝗽, {}⦘

𝛉(𝗦) where 𝗦 ∈ 𝗢

The second clause of 𝘦𝘷𝘢𝘭 E recognizes programs which are non-constructive. This is accomplished with a special

judgment, 𝛉r; 𝗔; 𝗘 ⊢B 𝗽, which can be read as “In the program context consisting of the state 𝛉r, the control variable

𝗔 and the evaluation context 𝗘 the program 𝗽 is blocked on some signal or shared variable”. In this case the program

is non-constructive, and its signal statuses are given by the same 𝘳𝘦𝘴𝘵𝘳𝘪𝘤𝘵 metafunction. The resulting signal statuses

may, however, contain ⊥ in this case.
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𝛉r(𝗦) = ⊥ 𝗦 ∈ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]), {}⦘

𝛉r; 𝗔; 𝗘 ⊢B (if 𝗦 𝗽 𝗾)
 [if]

𝛉r; WAIT; 𝗘 ⊢B (emit 𝗦)
 [emit-wait]

𝛉r; 𝗔; 𝗘[(suspend ○ 𝗦)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (suspend 𝗽 𝗦)
 [suspend]

𝛉r; 𝗔; 𝗘[(trap ○)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (trap 𝗽)
 [trap]

𝛉r; 𝗔; 𝗘[(seq ○ 𝗾)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (seq 𝗽 𝗾)
 [seq]

𝛉r; 𝗔; 𝗘[(par ○ 𝗽D)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (par 𝗽 𝗽D)
 [parl]

𝛉r; 𝗔; 𝗘[(par 𝗽D ○)] ⊢B 𝗾

𝛉r; 𝗔; 𝗘 ⊢B (par 𝗽D 𝗾)
 [parr]

𝛉r; 𝗔; 𝗘[(par ○ 𝗾)] ⊢B 𝗽 𝛉r; 𝗔; 𝗘[(par 𝗽 ○)] ⊢B 𝗾

𝛉r; 𝗔; 𝗘 ⊢B (par 𝗽 𝗾)
 [par-both]

Figure 18: The blocked judgment on pure terms

3.2.1. The blocked judgment

The 𝛉r; 𝗔; 𝗘 ⊢B 𝗽 judgment traverses the program and checks that at the leaf of each evaluation context there is either

an if which is blocked on an signal or an emit which is awaiting a GO.

The relation is in figure 18. The first case, [𝗶𝗳], checks that, for a conditional, the status of its signal is ⊥, and

that the signal is not in the result of 𝘊𝘢𝘯ϱ
S for the whole program. These conditions mean that the [𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁] and

[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] rules cannot fire. The second rule [𝗲𝗺𝗶𝘁-𝘄𝗮𝗶𝘁] says that the program is blocked on an emit if the

control variable is telling us to WAIT. Note that both of these clauses assume that 𝗦 is in 𝛉r. We will return to this in

section 3.2.2.

The remainder of the judgment recurs through the term following the grammar of evaluation contexts, copying each

layer of the context into the evaluation context on the left of the judgment, so that the overall program can be recon-

structed in the base cases.

The interesting part here is the handling of par which requires three clauses. Together these clauses ensure that at

least one branch of the par is blocked, and that the other branch is either blocked, or is done evaluating.
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⊢CB  nothing
 [nothing]

⊢CB  pause
 [pause]

⊢CB  (emit 𝗦)
 [emit]

⊢CB  (exit 𝗻)
 [exit]

⊢CB  𝗽

⊢CB  (trap 𝗽)
 [trap]

⊢CB  𝗽

⊢CB  (signal 𝗦 𝗽)
 [signal]

⊢CB  𝗽 ⊢CB  𝗾

⊢CB  (if 𝗦 𝗽 𝗾)
 [if]

𝘉𝘝⦗𝗽⦘  ∩ 𝘍𝘝⦗𝗾⦘  = ∅ ⊢CB  𝗽 ⊢CB  𝗾

⊢CB  (seq 𝗽 𝗾)
 [seq]

{ 𝗦 } ∩ 𝘉𝘝⦗𝗽⦘  = ∅ ⊢CB  𝗽

⊢CB  (suspend 𝗽 𝗦)
 [suspend]

⊢CB  𝗽

⊢CB  (ϱ ⟨𝛉r, 𝗔⟩. 𝗽)
 [ρ]

𝘉𝘝⦗𝗽⦘  ∩ 𝘉𝘝⦗𝗾⦘  = ∅ 𝘍𝘝⦗𝗽⦘  ∩ 𝘉𝘝⦗𝗾⦘  = ∅ 𝘉𝘝⦗𝗽⦘  ∩ 𝘍𝘝⦗𝗾⦘  = ∅ 

⊢CB (par 𝗽 𝗾)
 [par]

Figure 19: The correct binding judgment

3.2.2. Open programs

There are two major cases that make 𝘦𝘷𝘢𝘭 E is a partial function. One of these involves loops, and we will return to this

in section 5.1.4. The other is the case of open programs. If a program has a free variable it may reach a state where it

is not ⊢B or 𝗽D, but it cannot progress. For example, the program (ϱ ⟨{}, GO⟩. (emit 𝗦)) can never be equal to a term

which is ⊢B, because the ⊢B judgment will see that the control variable is not WAIT, and will therefore determine

that emits can be run. On the other hand (emit 𝗦) is not in the grammar of 𝗽D, because emits are terms which can

execute. Therefore this particular program is stuck. Therefore 𝘦𝘷𝘢𝘭 E is not defined on such terms.

3.3. Correct Binding & Schizophrenia

A natural question about the calculus for someone familiar with the lambda calculus might be “is there an [α] rule?”.

Instead of using the variable convention (Barendregt 1984) and working up to α-equivalence, as is common in the

lambda calculus world, I take a different approach inspired by Esterel, circuits, and schizophrenia and work up to what

I have called correct binding. The judgment for a program with correct binding is given in figure 19.
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This judgment captures the class of programs that cannot accidentally capture a variable when it takes a reduction step.

To understand this look at the rule for seq in ⊢CB. It states that the bound variables of 𝗽 must not overlap with the free

variables of 𝗾. This means that if an environment is lifted out of 𝗽, it cannot capture any variables in 𝗾.

This approach explains all the rules of ⊢CB in fact. For any term, if that term could be part of an evaluation context

or could reduce to a term which could be part of an evaluation context, then the term that would be in the hole of that

context must have distinct bound variables from any possible adjacent free variables.

Lemma 1 (Correct binding is preserved).

For all 𝗽, 𝗾, if 𝗽 ⇀
E 𝗾 and ⊢CB  𝗽 them ⊢CB  𝗾

The full proof is given in lemma 53 (Correct binding is preserved). This follows by case analysis over the rules of ⇀
E.

Note that any program can be renamed into a program with correct binding by making all variable names unique.

Therefore, I assume that any program used in the calculus or in my proofs has correct binding.

Using correct binding instead of α-equivalence also explains the lack of a [𝗴𝗰] rule, as appears in the state calcu-

lus (Felleisen and Hieb 1992). As the calculus does not rename variables, but instead constantly replaces instances of

variables in the environment with the new instances, there is a maximum size to every environment. This matches with

actual Esterel implementations which, absent host language allocation, use a bounded amount of memory. In addition

correct binding explains how the calculus avoids schizophrenic variables, which is discussed in section 5.1.3.

3.4. Using the calculus, by example

The calculus is designed to prove equivalences between program fragments because any two expressions that are ≡E

are contextually equivalent, which is proved in section 4.2. This section is designed to give some examples of what

can and cannot be proved in the calculus, to give some sense of its limits. The proofs for the equalities in this section

are given in appendix D. The first example is that adjacent signals can be swapped:
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Theorem 2 (Can swap adjacent signals).

For all 𝗽, 𝗦1, 𝗦2, (signal 𝗦1 (signal 𝗦2 𝗽)) ≃
E (signal 𝗦2 (signal 𝗦1 𝗽))

The full proof is given in theorem 84 (Can swap adjacent signals). This proof mainly relies on the [𝗺𝗲𝗿𝗴𝗲] and [𝘀𝗶𝗴𝗻𝗮𝗹]

axioms of ⇀
E, as well as the transitivity and symmetry of the equality relation.

The second proof shows that we can take the else branch of an if when the signal cannot be emitted:

Theorem 3 (Can take the else branch for adjacent signals).

For all 𝗦, 𝗽, 𝗾, If 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽, { 𝗦 ↦ ⊥ }⦘ and, 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗾, { 𝗦 ↦ ⊥ }⦘ , then

(signal 𝗦 (if 𝗦 𝗽 𝗾)) ≃E (signal 𝗦 𝗾)

The full proof is given in theorem 85 (Can take the else branch for adjacent signals).

The next proof demonstrates some of the weaknesses of the calculus. Specifically, in order to lift a signal out of an

evaluation context an out environment is needed:

Theorem 4 (Lifting signals).

For all 𝗦, 𝗽, 𝗘, 𝗔, (ϱ ⟨{}, 𝗔⟩. 𝗘[(signal 𝗦 𝗽)]) ≃E (ϱ ⟨{}, 𝗔⟩. (signal 𝗦 𝗘[𝗽]))

The full proof is given in theorem 86 (Lifting signals). The environment is needed because the only rule that allows

for moving environments around is the [𝗺𝗲𝗿𝗴𝗲] rule, which requires two environments. This could be fixed by

adding the axiom 𝗽 ≡E (ϱ ⟨{}, WAIT⟩. 𝗽). Such an axiom should be sound because, as is shown in section 4.1.1, the

compilation of 𝗽 and (ϱ ⟨{}, WAIT⟩. 𝗽) should be identical.

Next, we have another weakness in the calculus. The next theorem holds, but cannot be proven in the calculus:
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Conjecture 5 (Lift Signal Emission (not provable)).

For all 𝗘, 𝗦, 𝗘[(emit 𝗦)] ≃E (par (emit 𝗦) 𝗘[nothing])

In fact it cannot prove even this weaker statement:

Conjecture 6 (Lift Signal Emission, with Binder (not provable)).

For all 𝗘, 𝗦, (signal 𝗦 𝗘[(emit 𝗦)]) ≃E (signal 𝗦 (par (emit 𝗦) 𝗘[nothing]))

This is because in order to lift up an emit we must run the emit, putting a 1 in an environment, then using [𝘀𝘆𝗺]

run the emit backwards to place it elsewhere. However this can only be done if the environment has a GO, which the

calculus cannot insert. Possible solutions to this, to strengthen the calculus, are discussed in section 7.2.
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CHAPTER 4

Proving the calculus correct

The three properties for the calculus which require proof are consistency, soundness, and adequacy. This section

provides an overview of those proofs. This section relies heavily on the background given in section 2.3, as well as

the descriptions of the properties given in chapter 1.

4.1. Setup for the proofs

The purpose of this section is to give the setup needed to understand the statements of the theorems and their proofs.

To start with, the proofs in this section are only for the pure loop free portion of Esterel. However some other proofs

in this document are defined on the full kernel. To distinguish these I use the superscript p to denote pure, loop free

terms (e.g 𝗽p, 𝗾p). Similarly contexts over pure, loop free programs are labeled with the same superscript (e.g. 𝗘p).

These pure terms also may only contain the control variable WAIT. In some cases I will need to discuss terms which

may have the control variable set to GO. I will write these terms as 𝗽GO
p . Figure 20 gives the grammars for these

terms.

4.1.1. The compiler

The proofs of soundness and adequacy are proved with respect the circuit semantics of Esterel. This semantics is,

in general, the ground truth semantics and guides the actual implementation of an Esterel compiler. The core of this

semantics is the compilation function ⟦·⟧. This function translates Pure Esterel programs into circuits of the shape

given in figure 21. The circuit compiler I describe here is the same as the one given in Berry (2002), except for two

changes in the compilation of par. These changes are necessary for soundness, and were derived from the Esterel v7

compiler. I will describe them more later.
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𝗘p ::= (seq 𝗘p 𝗾p)
 | (par 𝗘p 𝗾p)
 | (par 𝗽p 𝗘p)
 | (suspend 𝗘p 𝗦)
 | (trap 𝗘p)
 | ○

𝗽p, 𝗾p, 𝗿p ::= nothing
 | pause
 | (seq 𝗽p 𝗽p)
 | (par 𝗽p 𝗽p)
 | (trap 𝗽p)
 | (exit 𝗻)
 | (signal 𝗦 𝗽p)
 | (suspend 𝗽p 𝗦)
 | (if 𝗦 𝗽p 𝗽p)
 | (emit 𝗦)
 | (ϱ ⟨𝛉r, WAIT⟩. 𝗽p)

𝗽GO
p  ::= nothing

 | pause
 | (seq 𝗽GO

p  𝗽GO
p )

 | (par 𝗽GO
p  𝗽GO

p )
 | (trap 𝗽GO

p )
 | (exit 𝗻)
 | (signal 𝗦 𝗽GO

p )
 | (suspend 𝗽GO

p  𝗦)
 | (if 𝗦 𝗽GO

p  𝗽GO
p )

 | (emit 𝗦)
 | (ϱ ⟨𝛉r, 𝗔⟩. 𝗽GO

p )

Figure 20: Flavors of loop-free, pure terms

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Figure 21: The shape of circuits returned by ⟦𝗽p⟧
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The circuit compilation function, in essence, expresses the causality graphs described in section 2.1.3 as circuits. The

circuits are more complex, as they handle more of Esterel than the causality diagrams do, but at their core they have

the same execution model. The four input wires on the left of the diagram in figure 21 (GO, RES, SUSP, KILL) are

control wires which guide the execution of the circuit. The GO wire is true when the circuit is supposed to start for

the first time—it corresponds to an coming control edge that connects to the start of the program in the causality graph

model. The RES wire is true when the circuit may resume execution in a previous instant (when, say, it has a register

containing an 1)—it corresponds to an control edge that connects start node to a pause. The SUSP wire is used by

the compilation of suspend to suspend a term. The KILL wire is used by trap and exit to abort the execution of a

circuit. Neither SUSP nor KILL are expressed in the causality graph model.

The two wires on the top 𝗘i and 𝗘o represent bundles of wires that are input and output signals of the term. Any free

signal which is tested by an if will have a corresponding wire in 𝗘i. Any free signal which occurs in an (emit 𝗦) will

have a corresponding wire in 𝗘o.

The bottom output wires on the right (K0 et al.) encode the return codes. The wire K0 is 1 when the term completes,

K1 is 1 when the term would pause, K2 is 1 when the term would exit to the first trap, etc. Only one of the Kn

wires may be 1 at a given time. In circuit speak, the Kn wires are a one-hot encoding of the set of return codes from

𝘊𝘢𝘯K.

The final output wire SEL is 1 if there is any register in the circuit which holds a 1. Such a circuit is said to be selected.

Registers are used to encode whether or not the program paused with the term. That is, each pause will generate a

register, and that register will have an 1 when the term should resume from that pause.

A quick note about these circuits: their activation is completely controlled by GO, RES, and SEL: if GO and either

RES or SEL are 0, then all of the output signals and return codes will be 0 and the circuit will be constructive. This is

proven formally in lemma 76 (Activation Condition), and follows fairly easily by induction. In addition the compilation

function assumes that GO and SEL are mutually exclusive: a selected term may not be started for the first time. This

assumption, however, can be removed with a small change, which is discussed about in section 7.1.
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GO K0

Figure 22: The compilation of ⟦nothing⟧

GO Kn+2

Figure 23: The compilation of ⟦(exit 𝗻)⟧

GO

𝗦o

K0

Figure 24: The compilation of ⟦(emit 𝗦)⟧

The simplest clause of the compiler is ⟦nothing⟧, shown in figure 22. Its compilation connects the GO wire directly

to K0, as when nothing is reached it immediately terminates. Remember that any wire not draw in the diagram is

taken to be 0, therefore this term can never be selected, and can never have a different exit code.

The next simplest compilation clause is exit, which justGO to corresponding return code wire for that exit code.

Next, we have the compilation of emit, found in figure 24. Like nothing, this connects GO to K0 as this term

terminates immediately. It also adds the wire 𝗦o to the output environment, as this signal will be emitted immediately

when the term executes. Note that I will always name the output wires for a signal 𝗦 as 𝗦o, and the input wires

𝗦i.

The last term without subterms, pause, is also more complex than the others. Its compilation is in figure 25. Firstly,

the GO wire is connected to the K1 wire, as a pause will pause the first time is reached. The SEL wire is similarly

straightforward: it is true when the register is true. The K0 wire just says that a pause finishes when it is selected and
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GO

RES

SUSP

KILL

K0

K1

SEL

Figure 25: The compilation of ⟦pause⟧

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi Si So

Figure 26: The compilation of ⟦(signal 𝗦 𝗽p)⟧

resumed. The complex part goes into determining if the term will be selected in the next instant. The register will get

a 1 if it is not killed, and if either it is reached for the first time (GO) or it was already selected and it is being resumed,

in which case it’s selection status needs to be maintained.

The compilation of signal (figure 26) is fairly simple: the inner term is compiled, and the wires for the given signal

are connected to each other, and removed from the input and output signal sets.

The compilation of if (figure 27) compiles both terms, and broadcasts all inputs except for GO to both subcircuits. All

outputs are or’ed. The GO wire of both subcircuits is given by the overall GO and value of the conditioned signal.
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⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

GO

RES

SUSP

KILL

Ei
Eo

SEL

K0

K1

K2

Si

Figure 27: The compilation of ⟦(if 𝗦 𝗽p 𝗾p)⟧

The ⟦𝗽p⟧ subcircuit activates if and only if both GO and 𝗦i are 1. The ⟦𝗽p⟧ subcircuit activates if and only if GO

is 1 and 𝗦i is 0. That is a branch is activated if and only if the if is activated and the signal is in the corresponding

state.

The compilation of suspend (figure 28) does nothing special to GO: remember suspended terms behave normally

on the first instant they are reached. However the compilation intercepts the RESwire, and only resumes the subcircuit

if the suspension signal 𝗦 is 0. If the signal is 1 then the circuit is resumed instead, and this information is passed to

the K1 wire. All of this only occurs, however, if the subcircuit is selected. If it is not, the RES and SUSP wires are

suppressed.
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GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Ei
S

Eo

SEL

K0

K2

K1

Figure 28: The compilation of ⟦(suspend 𝗽p 𝗦)⟧

The compilation of seq (figure 29) wires the K0 wire of the first subcircuit to the GO wire of the second, causing the

second subcircuit to start when the first finishes. The overall K0 wire is thus just the K0 wire of the second subcircuit,

as the seq only completes when it does. The remainder of the outputs are or’ed, and the remainder of the inputs are

broadcast to the subciruits.

The compilation of trap (figure 30) intercepts the K2 wire (which represents the abortion of this term) and passes it

back to the KILL wire of the subcircuit, killing it when this trap catches its corresponding exit. It then shifts the

return codes in the same way as ↓κ .

The par circuit (figure 31) circuit is the most complex of the compilation clauses, and has two changes from the

compiler given in Berry (2002). To start with, the inputs part: The GO, RES, SUSP and 𝗘i wires are broadcast to

the subcircuits. The SEL and 𝗘o wires are the or’ed from the subcircuits. The complex part is in handling the return

codes and the KILL wire.

To start with, the return codes are joined together by a synchronizer, which is given in figure 32. The synchronizer

implements the max operation, as is used in 𝘊𝘢𝘯 . That is, the return code for the overall circuit is the max of the
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GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Ei

SEL

K0

K1

K2

Eo

Figure 29: The compilation of ⟦(seq 𝗽p 𝗾p)⟧

return code of the subcircuits (the Ln and Rn wires). However this is complicated by multi-instant execution: special

behavior is needed if one branch finished in a previous instant. In this case the return code of the live branch must be

used. This is handled by the LEM and REM wires, which encode if the other branch is the only live branch. Which

is to say, LEM is true if and only if the circuit is resuming, the 𝗽p branch is dead, and the 𝗾p branch is selected. The

reverse holds for REM. There LEM and REM wires make it look like the dead branch has exit code 0, which, as the

lowest return code, causes the synchronizer to output the other branches return code.

The last part of the synchronizer is the handling of KILL. Compilationing par must account for the scenario where

one branch has an exit code greater than 1, which must abort the other branch. Normally this would be handled by the

compilation of trap, but in this case we would loose local reasoning if we did that, as we do not know if the program
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GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

K3

...

EoEi

K0

K2

K1

SEL

EoEi

Figure 30: The compilation of ⟦(trap 𝗽p)⟧

is in fact, closed, by a trap. Therefore both subcircuits are killed if the outer KILL wire is 1, or if the over all return

code is 2 or greater.

The two changes to this from the compiler in Berry (2002) are the KILL wire including the return codes, and the

definition of the LEM and REM wires. These changes are to handle a violation of soundness, and so are discussed in

detail section 4.2.2.

The compilation of ϱ follows along similar lines to the compilation of signal: we take one signal at a time out of the

environment and connect its input wire to it’s output wire (figure 33), with one exception. The wire connection goes

through ⟦𝘀𝘁𝗮𝘁𝘂𝘀r⟧ which connects the two wires if 𝘀𝘁𝗮𝘁𝘂𝘀r = ⊥. However if 𝘀𝘁𝗮𝘁𝘂𝘀r = 1 then the connection is cut,

and the input wire is defined to be 1. This is shown in figure 34.

Once all signals have been compiled, the 𝗔 part is compiled in a similar manner (figure 35). If the 𝗔 is WAIT, the

GO wire is taken from the environment. If 𝗔 is GO, then the GO wire will be defined to be 1. This is shown in

figure 36.
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Figure 31: The compilation of ⟦(par 𝗽p 𝗾p)⟧

4.1.2. The Circuit Solver, Circuitous

To reason about circuits in a more automated fashion, I have implemented a symbolic reasoning engine—a solver—for

concrete circuits. The solver I use is an implementation of the algorithm for executing constructive circuits given by

Malik (1994) (and extended by Shiple et al. (1996) to handle registers) in the language Rosette (Torlak and Bodik

2013).
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LEM

L0

R0

K0

L1

R1

K1

L2

R2

L3

K2 K3...

R3

LEM4...

REM4...REM

IN-KILL
KILL

Figure 32: The parallel synchronizer

⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi Si So

⟦𝘀𝘁𝗮𝘁𝘂𝘀r⟧

Figure 33: The compilation of ⟦(ϱ ⟨𝛉r ← { 𝗦 ↦ 𝘀𝘁𝗮𝘁𝘂𝘀r }, 𝗔⟩. 𝗽p)⟧

⟦⊥⟧= Si So

⟦1⟧= Si 1

Figure 34: Compiling statuses
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⟦𝗽p⟧

GO
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SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Figure 35: The compilation of ⟦(ϱ ⟨{}, 𝗔⟩. 𝗽p)⟧

⟦WAIT⟧= GOin GOout

⟦GO⟧= 1 GOout

Figure 36: Compiling control variables

Rosette is an domain specific language embedded within Racket (Flatt and PLT 2010), which is designed for defining

other domain specific languages so that the programs written in those language can be reasoned about using an SMT

solver. Specifically Rosette allows for symbolic execution of programs such that the result of a program is not a value,

but a symbolic expression which represents the value. This symbolic value may then be turned into a logic formal that

can be given to an SMT solver.

Circuitous is capable of evaluating a given circuit on some inputs, verifying if two circuits are contextually equivalent,

and verifying if a circuit is constructive for set of inputs which do not contain ⊥. This solver is combined with a

mechanized version of the compiler presented in section 4.1.1, which is in the codebase for this dissertation. Using

these, the base cases of many of the proofs in this section simply invoke the circuit solver to complete the proof.
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The source for this solver may be found at https://github.com/florence/circuitous/, and the core of the solver is listed

in appendix C.

4.1.3. On Instants

The proofs in this section only look at a single instant of execution. This is accomplished by each proof having the

assumption that the SEL wire is 0, thus forcing evaluation to occur in the first instant only. The calculus will be

extended to multiple instants in section 5.3.

4.1.4. Agda Codebase

Some proofs I reference are not given in this document. Instead they are given in a separate Agda code base. which

was attempt to prove the correctness of a previous version of the calculus (Florence et al. 2019). While the calculus

has since changed, 𝘊𝘢𝘯 has not. Therefore I re-use some of the proofs from that work which relate to 𝘊𝘢𝘯 . This

Agda codebase is located in the repository for this dissertation.

4.1.5. Notation

At times my theorem statements will say something to the effect of For all 𝗽p. This is a pun which is meant to read as

For all terms 𝗽p drawn from the set of terms 𝗽p. Similarly I will sometimes say For all 𝗿p = 𝗘p[𝗽p]. This is shorthand

for For all 𝗿p, 𝗘p, and 𝗽p such that 𝗿p = 𝗘p[𝗽p].

4.2. Justifying Soundness

Theorem 7 (Soundness).

For all 𝗽p and 𝗾p, if ⊢CB  𝗽
p, 𝗽p ≡E 𝗾p, ⟦𝗽p⟧(SEL) ≃ 0, and ⟦𝗾p⟧(SEL) ≃ 0 then ⟦𝗽p⟧ ≃C ⟦𝗾p⟧
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The proof is given in the appendix as theorem 29 (Soundness). To pick the statement apart, it says that if two terms

are ≡E, and those terms have correct binding, then, when we restrict ourselves to looking at a single instant, the

compilation of those circuits is ≃C.

This proof proceeds by induction over the structure of the equality relation ≡E. Thus, the majority of the work in the

proof goes into showing that it holds for each rule of ⇀
E. Each rule in ⇀

E is proved sound, in general, by induction

on 𝗽p. The base cases have concrete circuits, so in general the base cases are proven by the circuit solver.

4.2.1. Important lemmas

This section will discuss the proof sketches of the most interesting or informative lemmas needed to prove soundness

of the various rules of ⇀
E. Many of the lemmas are trivial or uninformative, and so will not be discussed here. The

interested reader can find them in appendices A.2 and A.3.

A first informative proof to look at is the proof that [𝘁𝗿𝗮𝗽] is sound:

Lemma 8 (trap is sound).

For all 𝗽S, ⟦(trap 𝗽S)⟧ ≃C ⟦↓p 𝗽S⟧

The full proof may be found at lemma 40 (trap is sound). The first thing to note is that this proof does not require

the premise that we are in the first instant, or correct binding. Many of the equations do not touch pause or binding

forms, and therefore are not sensitive to instants or binding. This proofs proceeds by cases on the structure of 𝗽S. The

case where are 𝗽S = nothing invokes the solver.

We can also see that these two are the same if we draw out the circuits on paper: they give us the same graph! The

last case is 𝗽S = (exit 𝗻). In this case we do cases on ↓p . In the first of these cases we have 𝗽S = (exit 0), we have

a concrete circuit, and so can use the solver again. In the last case we have 𝗽S = (exit 𝗻), where 𝗻 > 0. Again if we

draw this out we get the exact same graph.
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The next proof of interest is the proof that [𝗲𝗺𝗶𝘁] is sound. This proof is more complex because it must deal with

both evaluation contexts and environments.

Lemma 9 (Emit is sound).

For all 𝗿p = (ϱ ⟨𝛉r, GO⟩. 𝗘p[(emit 𝗦)]),

⟦(ϱ ⟨𝛉r, GO⟩. 𝗘p[(emit 𝗦)])⟧ ≃C ⟦(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘p[nothing])⟧

The full proof is given in lemma 47 (Emit is sound). This proof proceeds by induction over 𝗘p. The base case is rather

trivial: when 𝗘p = ○ the two circuits look identical, as the 1 from the GOwire is directly connected to the 𝗦 wire. The

inductive case is more interesting: the proof uses the idea that evaluation contexts obey the property that in ⟦𝗘p[𝗽p]⟧,

the GO and signal wires from the top of the term are passed, unchanged, to the subcircuit for ⟦𝗽p⟧. This is stated

formally with these two lemmas:

Lemma 10 (S is maintained across E).

For all 𝗽pi = 𝗘p[𝗾pi], and 𝗦, if 𝗦i ∈ inputs⦗⟦𝗽pi⟧⦘ then ⟦𝗾pi⟧(𝗦
i) ≃ ⟦𝗽pi⟧(𝗦

i)

Lemma 11 (GO is maintained across E).

For all 𝗽p = 𝗘p[𝗾p], ⟦𝗾p⟧(GO) ≃ ⟦𝗽p⟧(GO)

The full proofs of which are given in lemma 79 (S is maintained across E) and lemma 80 (GO is maintained across E). Both

lemmas follow directly by induction on 𝗘p and the definition of ⟦·⟧. These two lemmas together give that the inputs of

the subcircuit are unchanged by the context. The remainder of the inductive case for lemma 47 (Emit is sound) follows

from the notion that the 𝗦o wires are always or’ed with each other, therefore a 1 in any subterm leads to the overall

signal wire being 1.

The last proof described here is the proof for [𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁]:
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Lemma 12 (is-absent is sound).

For all 𝗿p = (ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)]),

if 𝛉(𝗦) = ⊥,

𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)]), {}⦘ and,

⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⟧(SEL) ≃ 0,

then

⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⟧ ≃C ⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[𝗾p])⟧

The full proof is given in lemma 49 (is-absent is sound). This proof is one of key proofs which requires the premise

that we are in the first instant. This is because this proof relies on 𝘊𝘢𝘯 , which assumes that control will not resume

from within a term—that is, it assumes it is in the first instant. Other variations of 𝘊𝘢𝘯 , such as those from the

State Behavioral Semantics (Berry 2002) or the Constructive Operation Semantics (Potop-Butucaru 2002) drop this

assumption by reflecting register state back in the syntax of the program.

This proof is essentially a chaining of several other lemmas. As with lemma 47 (Emit is sound), lemma 79 (S is maintained

across E) and lemma 80 (GO is maintained across E) are used to shed the evaluation contexts in the rule. From there the

proof follows from the following lemma:

Lemma 13 (Can S is sound).

For any term and environment 𝗽p and 𝛉 and any signal 𝗦, if ⟦𝗽p⟧ \ 𝛉, 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽p, 𝛉⦘ , and ⟦𝗽p⟧(SEL) ≃ 0, then

⟦𝗽p⟧(𝗦o) ≃ 0

To understand this proof statement, I must explain a little bit of notation. The phrase ⟦𝗽p⟧ \ 𝛉 exists to tie the syntactic

world of Esterel to the circuit world. It, in essence, states that the knowledge contained in the map 𝛉 also holds when

reasoning about the circuit. Formally, it is defined as:
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Definition: ⟦𝗽p⟧ \ 𝛉

read as: 𝛉 binds ⟦𝗽p⟧

⟦𝗽p⟧ \ 𝛉 if and only if ∀ 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 𝛉(𝗦) = 1ô ⟦𝗽p⟧(𝗦i) ≃ 1, and 𝛉(𝗦) = 0ô ⟦𝗽p⟧(𝗦i) ≃ 0.

With this in hand we can interpret lemma 71 (Can S is sound): If we restrict our view to the first instant, and the

environment given to 𝘊𝘢𝘯 is valid with respect to the circuit, then 𝘊𝘢𝘯 accurately predicts when signal wires will be

set to 0 (or rather, the complement of 𝘊𝘢𝘯 accurately predicts this).

The proof of lemma 71 (Can S is sound) proceeds by induction over the structure of 𝗽p, following the cases laid out by

𝘊𝘢𝘯 . The majority of this lemma consists of tracing how the definition of 𝘊𝘢𝘯 walks the program, and compares that

to the structure of the generate circuit. In most cases the result follows directly. In the end there are two interesting

cases: signal and seq. The signal case in interesting only when the bound signal is not in the result of 𝘊𝘢𝘯 . In this

case we must use our inductive hypothesis to show that the output of the bound signal is 0, and use that to invoke our

inductive hypothesis to show that the goal signal is also 0. The seq case of 𝘊𝘢𝘯 relies on the return codes. Thus we

use an auxiliary lemma to reason about those codes:

Lemma 14 (Can K is sound).

For any term and environment 𝗽p and 𝛉 and any return code 𝞳, if ⟦𝗽p⟧ \ 𝛉, 𝞳 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ , and

⟦𝗽p⟧(SEL) ≃ 0, then ⟦𝗽p⟧(K𝞳) ≃ 0

This lemma is similar to lemma 71 (Can S is sound), except that it tells us which return code wires must be 0. It is

proved in essentially the same way as lemma 71 (Can S is sound).

These two lemmas also have counterparts for 𝘊𝘢𝘯ϱ:



4.2. JUSTIFYING SOUNDNESS 76

Lemma 15 (Can rho S is sound).

For all 𝗽p, 𝛉, 𝗔, 𝗦, if 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p), {}⦘ and ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(SEL) ≃ 0 then ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(𝗦o) ≃ 0

Lemma 16 (Can rho K is sound).

For any term and environment 𝗽p and 𝛉 and 𝗔, and return code 𝞳 if 𝞳 ∉ 𝘊𝘢𝘯ϱ
K⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p), {}⦘ ,

and ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(SEL) ≃ 0, then ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(K𝞳) ≃ 0

However as 𝘊𝘢𝘯ϱ is essentially just repeated applications of the signal case of 𝘊𝘢𝘯 , these proofs are relatively

uninteresting.

4.2.2. Changing the compiler for Soundness

The compiler used here differs from the compiler in Berry (2002) in how it handles the compilation of par. Specifically

the changes are the KILL wire including the return codes, and the definition of the LEM and REM wires. The old

compiler broadcasts the KILL wires directly to the subcircuit. In addition it defines REM = ¬GO ∨ p-SEL (and

LEM similarly q-SEL). Both of these definitions result in unsoundness under local rewrites to the syntax of the

program that should hold. Both of these changes were used in the Esterel v7 compiler, however they have not yet been

published anywhere.1

The change to the REM and LEM wires can be explained by noticing that we expect

(trap (par (exit 0) pause)) ≃E nothing

as this circuit will always abort, and immediately catch the exit. Therefore we want

⟦(trap (par (exit 0) pause))⟧ ≃C ⟦nothing⟧

1The information about these changes comes from personal communication with Gérard Berry.
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to hold. However in this equivalence did not hold in the Berry (2002) compiler, specifically in the case where GO = ⊥.

In that case both LEM and REM are ⊥, causing K2 to be ⊥. However in the circuit for nothing, K2 is defined to be

0. The Esterel v7 compiler handles this case correctly.

The change to the KILL wire can be seen by a similar example. We expect

(par (exit 2) pause) ≃E (exit 2)

for a similar reason as before. As before, this means we want

⟦(par (exit 2) pause)⟧ ≃C ⟦(exit 2)⟧

to hold. With the Berry (2002) compiler, however, we are free to let KILL be 0, even when GO is 1. This means that

in the second instant the pause is selected. However there is no pause in (exit 2), therefore its SEL wire must be 0.

The new compiler handles this correctly by killing the other branch of the par even if the outer KILL wire is 0.

Note that these two issues both rely on both subcircuits being simultaneously active at some point to trigger the

change in behavior. As par is the only case where two subcircuits can be active simultaneously, this is the only case

that requires this special care.

It should be noted that equality violations above do not constitute a bug in actual Esterel compiler implementations.

In actual compilers, if GO is ⊥, then the program raise an error and the different in wire states cannot be observed.

In addition if an exit code is raised, then the KILL wire will be set, as full programs must be closed and therefore

an external trap will catch the code and set the KILL wire. Therefore, behaviorally at least, the changes used here

should not effect an actual Esterel implementation.

4.3. Justifying Adequacy

Adequacy is the statement that a calculus can define an evaluator for it’s language. In this case, we want Computational

Adequacy, which is the statement that the calculus’s evaluator is equivalent to the ground truth evaluator:
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Theorem 17 (Computational Adequacy).

For all 𝗽p, 𝗢, if closed⦗𝗽GO
p ⦘ and ⟦𝗽GO

p ⟧(SEL) ≃ 0 then

𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽GO
p ⦘  = ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩ if and only if 𝘦𝘷𝘢𝘭 C⦗𝗢, ⟦𝗽GO

p ⟧⦘  = ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩

The full proof can be found at theorem 30 (Computational Adequacy). The first premise of this theorem requires that the

program be 𝘤𝘭𝘰𝘴𝘦𝘥, as the evaluator is only really meant to work on full programs. However 𝘤𝘭𝘰𝘴𝘦𝘥 here is slightly

different from the usual definition, because it restricts programs to those which will also generate closed circuits which

will execute their first instant. Formally, a program is 𝘤𝘭𝘰𝘴𝘦𝘥 if it is a ϱ term with the control variable GO, and it has

no free variables:

Definition: closed⦗𝗽GO
p ⦘

𝘍𝘝⦗ (ϱ ⟨𝛉r, GO⟩. 𝗾p)⦘  = ∅

closed⦗ (ϱ ⟨𝛉r, GO⟩. 𝗾p)⦘

By setting 𝗔 to GOwe force the GOwire in the compilation to be 1, which causes the circuit to execute its first instant.

The next premise is the usual statement that we are only observing the first instant of execution. The conclusion of the

proof states that the output signals and constructivity from the two evaluators are the same.

To complete the proof we use a set of canonical forms for terms in the calculus. Any closed term is equal to such

a canonical term, and that these canonical forms are the exact cases that 𝘦𝘷𝘢𝘭 E looks at. These canonical forms are

equivalent modulo [𝗽𝗮𝗿-𝘀𝘄𝗮𝗽], meaning that, while a canonical form, they may still step via [𝗽𝗮𝗿-𝘀𝘄𝗮𝗽], but may

not take any other steps. To prove this ⟶E is broken up into two parts: ⟶S, which contains only the compatible

closure of [𝗽𝗮𝗿-𝘀𝘄𝗮𝗽], and ⟶R, which is the compatible closure of every other rule.2 With that we can state theorem

about these canonical forms like so:

2The S stands for “swap”, and the R stands for “remainder”.
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Lemma 18 (Non-stepping terms are values).

For all 𝗾p = (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p),

If closed⦗𝗾p⦘ , and there does not exists any 𝛉r
o and 𝗽po such that (either 𝗾p ⟶R (ϱ ⟨𝛉r

o, 𝗔⟩. 𝗘p[𝗽po]) or there ex-

ists some r such that 𝗾p ⟶S (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗿p]) ⟶R (ϱ ⟨𝛉o, 𝗔⟩. 𝗘p[𝗽po])) then either 𝗽p ∈ 𝗽D or 𝛉r; 𝗔; ○ ⊢B 𝗽
p

The full proof is in lemma 69 (Non-stepping terms are values). To unpack this: The proof states that canonical forms are

forms which both cannot step by ⟶R and if they step by ⟶S, then the resulting form also cannot step by ⟶R. We

only need to check for one step of ⟶S, because if multiple ⟶S could uncover a reduction in ⟶R, then there would

exist some term which would be one step ⟶S away from a ⟶R reduction which would violate the lemma. The

negative existential in this would make it tricky to prove. However, we are in luck: everything used in this statement

is decidable. Therefore this is proved by proving it’s contrapositive:

Lemma 19 (Not values must step).

For all 𝗾p = (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗽p]), If closed⦗𝗾p⦘ , 𝗽p ∉ 𝗽D, and𝛉r; 𝗔; 𝗘p ⊬B 𝗽
p then there exists some𝛉r

o and 𝗽po such

that either 𝗾p ⟶R (ϱ ⟨𝛉o, 𝗔⟩. 𝗘p[𝗽po]) or there exists some 𝗿p such that 𝗾p ⟶S (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗿p]) ⟶R (ϱ ⟨𝛉r
o, 𝗔⟩. 𝗘p[𝗽po])

The full proof can be found at lemma 70 (Not values must step). This proof states that if a term is not one of our

canonical forms, then it must be able to either take a step in ⟶R, or step by ⟶S then by ⟶R. The proof of this

follows by induction of 𝗽p, with some case analysis on ⊢B and 𝗽D along the way.

Beyond this, it is the case that ⟶R is a strongly canonicalizing relation. Therefore it must be the case that we can

reach a canonical form using a finite number of ⟶R and ⟶S steps:

Lemma 20 (Strongly Canonicalizing).

For all 𝗽GO
p , 𝗾GO

p , if 𝗽GO
p  ⟶R 𝗾GO

p , then 𝒮⦗𝗽GO
p ⦘  > 𝒮⦗𝗾GO

p ⦘ .
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The full proof is given in lemma 57 (Strongly Canonicalizing). The function 𝒮 acts as an estimate on the number of

steps that a term can take. Because it is strictly decreasing and gives back a non-negative number, we must eventually

reach a case where no more ⟶R steps can be taken. Whats more its easy to show that ⟶S does not change the

count, therefore there always exists a finite reduction path to one of these canonical forms. Therefore all closed terms

are ≡^esterel to some canonical term.

Now that we have show that there exist canonical forms, and that every closed pure Esterel term is ≡^esterel to one

of these forms, we know that 𝘦𝘷𝘢𝘭 E is defined on all closed pure terms. The next step in proving adequacy is to show

that these two canonical forms give back the same signal set as their circuit compilation. Fortunately this follows fairly

directly from soundness, as we know that our canonical forms are ≡E to the original term, and that ≡E is sound with

respect to the circuit compilation.

The final step is to show that the two types of canonical forms map exactly to constructive and non-constructive circuits

respectively. The simpler of these is:

Lemma 21 (Esterel Value is Circuit Value).

Forall (ϱ ⟨𝛉r, GO⟩. 𝗽D), if 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r, 𝗽D⦘ , (ϱ ⟨𝛉r, GO⟩. 𝗽D) is closed, and

⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(RES) = ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(SUSP) = ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(KILL) = 0, and ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(GO) = 1.

then ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧ is constructive.

Which is proved fully in lemma 61 (Done is Constructive). Note that the premise 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r, 𝗽D⦘ always holds,

by the proof canₛ-done from the Agda code base which states that the result of 𝘊𝘢𝘯S on any 𝗽D is empty. The

premises about the control wires are given by the definition of ⟦·⟧, and by the fact that unassigned input wires are set

to 0 by 𝘦𝘷𝘢𝘭 C. This proof follows by induction on the structure of 𝗽D.

The other side, the statement that ⊢B corresponds to non-constructive circuits is given by:
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Lemma 22 (Blocked terms are non-constructive).

For all 𝗿pouter = (ϱ ⟨𝛉r, GO⟩. 𝗿p), if 𝛉r; GO; ○ ⊢B 𝗿
p, and ⟦(ϱ ⟨𝛉r, GO⟩. 𝗿p)⟧(SEL) ≃ 0 then ⟦𝗿pouter⟧ is non-

constructive.

The proof of which can be found at lemma 62 (Blocked terms are non-constructive). The proof of this lemma is complex.

It relies on a subject-reduction lemma which shows that, as the circuit reduction relation ⟶C steps through the term,

the wires which are in 𝘊𝘢𝘯S cannot change from ⊥. The core of this lemma is another subject-reduction lemma which

shows that, assuming GO is ⊥, 𝘊𝘢𝘯 is perfectly adequate to describe evaluation:

Lemma 23 (Adequacy of Can).

For all 𝗿p, 𝛉, 𝛉ɕ1, 𝛉
ɕ
2 let ɕ = ⟦𝗿p⟧, if 𝛉ɕ1 ⟶

C 𝛉ɕ2, ⟦𝗿p⟧(SEL) ≃ 0, ⟦𝗿p⟧ \ 𝛉, 𝛉ɕ1(GO) = ⊥, and 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ1⦘

then 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘

The full proof is in lemma 67 (Adequacy of Can). To unpack: If we are given some term 𝗿p, and two circuit states 𝛉ɕ1

and 𝛉ɕ2 such that both circuit states are states of the compilation of 𝗿p, and 𝛉ɕ1 steps to 𝛉ɕ2, and we know about the

signals of ⟦𝗿p⟧ via 𝛉, and we know that the GO wire of 𝛉ɕ1 is currently bottom, then the invariant 𝘯𝘤 is preserved. The

invariant 𝘯𝘤 (figure 37) is formed of three judgments. The first of these, 𝘯𝘤-𝘚, says that any signal wire is currently ⊥ if

it is both 𝘊𝘢𝘯S and is ⊥ in 𝛉. The second, all-bot-κ says the same, but for 𝘊𝘢𝘯K, return codes, and their wires.

The last of the judgments, 𝘯𝘤-𝘳 (figure 38) looks complex, but all it says is that the 𝘯𝘤 judgment holds for subterms,

subcircuits, and environments that match how 𝘊𝘢𝘯 recurs over the term. Together all of these properties mean that

“𝘊𝘢𝘯 accurately predicts when wires are ⊥”. Therefore the overall proof states that “𝘊𝘢𝘯 accurately predicts when

wires are ⊥ when GO is ⊥”3 The last step in completing this proof is to argue that initial states are always 𝘯𝘤, but this

follows fairly directly since wires are internal and output wires are initialized to ⊥ in the initial state. Note that in this

judgment the metafunction 𝘴𝘶𝘣 extracts the substate of the circuit corresponding to the given subterm.

3 This is why I call this proof “adequacy”. When combined with the soundness of 𝘊𝘢𝘯 , it tells us when 𝘊𝘢𝘯 gives a complete evaluator.



4.4. JUSTIFYING CONSISTENCY 82

Definition: 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ⦘

𝘯𝘤-κ⦗𝗽p, 𝛉, 𝛉ɕ⦘ 𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ⦘ 𝘯𝘤-𝘳⦗𝗽p, 𝛉, 𝛉ɕ⦘

𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ⦘

Definition: 𝘯𝘤-κ⦗𝗽p, 𝛉, 𝛉ɕ⦘

∀ 𝗻 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ , 𝛉ɕ(K𝗻) = ⊥

𝘯𝘤-κ⦗𝗽p, 𝛉, 𝛉ɕ⦘

Definition: 𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ⦘

∀ 𝗦 ∈ 𝘊𝘢𝘯S⦗𝗽p, 𝛉⦘ , 𝛉(𝗦) = ⊥ ⇒ 𝛉ɕ(𝗦i) = 𝛉ɕ(𝗦o) = ⊥

𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ⦘

Figure 37: The smaller judgments for 𝘯𝘤

At it’s core the proof of lemma 67 (Adequacy of Can) holds because all return code and signal wires are and’ed with

the GO wire, therefore they can never be set to 1 unless the GO wire is 1, and they can only be set to 0 when they

are not in 𝘊𝘢𝘯S. From this we can argue that lemma 62 (Blocked terms are non-constructive) holds, essentially, because

the GO wires the leaves of the ⊢B must be blocked on a signal wire, and therefore they depend on a GO which itself

depends on one of these signal, and therefore that GO wire must always remain bottom.

4.4. Justifying Consistency

Consistency, at it’s core, means that a theory cannot disagree with itself. In the case of Esterel this can be boiled down

to a single property: That 𝘦𝘷𝘢𝘭 E is a function. Or, more formally:
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𝘯𝘤-𝘳⦗nothing, 𝛉, 𝛉ɕ⦘
 [nothing]

𝘯𝘤-𝘳⦗ (exit 𝗻), 𝛉, 𝛉ɕ⦘
 [exit]

𝘯𝘤-𝘳⦗ (emit 𝗦), 𝛉, 𝛉ɕ⦘
 [emit]

𝘯𝘤-𝘳⦗pause, 𝛉, 𝛉ɕ⦘
 [pause]

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (trap 𝗽p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (trap 𝗽p), 𝛉, 𝛉ɕ⦘
 [trap]

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (suspend 𝗽p 𝗦), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (suspend 𝗽p 𝗦), 𝛉, 𝛉ɕ⦘
 [suspend]

𝛉(𝗦) = 0 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (if 𝗦 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [if-0]

𝛉(𝗦) = 1 𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (if 𝗦 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [if-1]

𝛉(𝗦) = ⊥ 𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘ 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (if 𝗦 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [if-⊥]

0 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (seq 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (seq 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [seq-¬0]

0 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (seq 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘ 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (seq 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (seq 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [seq-0]

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (par 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘ 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (par 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (par 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [par]

𝘯𝘤-𝘳⦗𝗽p, 𝛉, sub⦗ (ϱ ⟨{}, WAIT⟩. 𝗽p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨{}, WAIT⟩. 𝗽p), 𝛉, 𝛉ɕ⦘
 [ρ-{}]

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ 𝛉r(𝗦) = ⊥ 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉 ← { 𝗦 ↦ ⊥ }⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉 ← { 𝗦 ↦ 0 }, sub⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), 𝛉, 𝛉ɕ⦘
 [ρ-0]

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ 𝛉(𝗦) ≠ ⊥

𝘯𝘤-𝘳⦗ (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉 ← { 𝗦 ↦ 1 }, sub⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), 𝛉, 𝛉ɕ⦘
 [ρ-¬⊥]

Figure 38: The recursive judgment part of 𝘯𝘤
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Theorem 24 (Consistency of Eval).

For all 𝗽GO
p and 𝗢, if closed⦗𝗽GO

p ⦘ , 𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽GO
p ⦘  = ⟨𝛉1 , 𝗯𝗼𝗼𝗹1⟩,

and 𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽GO
p ⦘  = ⟨𝛉2 , 𝗯𝗼𝗼𝗹2⟩,

then ⟨𝛉1 , 𝗯𝗼𝗼𝗹1⟩ = ⟨𝛉2 , 𝗯𝗼𝗼𝗹2⟩.

The full proof is given in the appendices as theorem 31 (Consistency of Eval). Usually, consistency is proven using

the confluence of the underlying reduction semantics. However, in this case proving confluence is not necessary:

consistency here follows as a corollary of the adequacy of the calculus. This is because we know from works such

as Berry (2002) and Mendler et al. (2012) that 𝘦𝘷𝘢𝘭 C is a consistent model4 of circuits, therefore by theorem 30

(Computational Adequacy), 𝘦𝘷𝘢𝘭 E as the same function as 𝘦𝘷𝘢𝘭 C composed with the compiler, then it too must be

consistent.

4Specifically, Lemma 7 from Berry (2002), and Theorem 1 of Mendler et al. (2012), assuming that the Algabraic semantics they give is equivalent
to the reduction semantics. This equivalence is given as Theorem 4 from Berry (2002).
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CHAPTER 5

Adding in the rest of Esterel

The evidence that the calculus stands on includes prior work and testing, alongside the proofs. So far I have only given

one of those legs, the proofs, and only for the pure, loop free, single instant, fragment of Esterel. This chapter fills in

the parts of the calculus which handle loops, host language expressions, and multi-instant execution. It will also give

the other kinds of evidence I have for the correctness of the calculus: testing and prior work. While the parts of the

calculus given so far stand on all three legs, these new parts are supported only by testing and prior work.

5.1. Loops

The calculus handles loops with two new administrative rules, which rely on the new form:

𝗽 ::= .... | (loop 𝗽 𝗾)
𝗘 ::= .... | (loop 𝗘 𝗾)
𝗽̂ ::= .... | (loop 𝗽̂ 𝗾)

This new form, loop represents a loop which has been unrolled once. To understand its usage, the loop rules

are:

[𝗹𝗼𝗼𝗽] (loop 𝗽) ⇀
E (loop 𝗽 𝗽)

[𝗹𝗼𝗼𝗽^𝘀𝘁𝗼𝗽-𝗲𝘅𝗶𝘁] (loop (exit 𝗻) 𝗾) ⇀
E (exit 𝗻)

The first rule, [𝗹𝗼𝗼𝗽] expands a loop into a loop. This (loop 𝗽 𝗾) is essentially equivalent to (seq 𝗽 (loop 𝗽))—that

is, it represent one unrolling of a loop—however, unlike seq, the second part is inaccessible: if 𝗽 reduces to nothing,

the loop cannot restart, instead the program gets stuck. This handles instantaneous loops, which are an error in Esterel.

The second loop rule, [𝗹𝗼𝗼𝗽^𝘀𝘁𝗼𝗽-𝗲𝘅𝗶𝘁], is analogous to [𝘀𝗲𝗾-𝗲𝘅𝗶𝘁], aborting the loop if its body exits.
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𝘉𝘝⦗𝗽⦘  ∩ 𝘍𝘝⦗𝗽⦘  = ∅ ⊢CB  𝗽

⊢CB  (loop 𝗽)
 [loop]

𝘉𝘝⦗𝗽⦘  ∩ 𝘍𝘝⦗𝗾⦘  = ∅ 𝘉𝘝⦗𝗾⦘  ∩ 𝘍𝘝⦗𝗾⦘  = ∅ ⊢CB  𝗽 ⊢CB  𝗾

⊢CB  (loop 𝗽 𝗾)
 [loop^stop]

Figure 39: Correct Binding and Loops

5.1.1. Loops and Can

To handle loops we must add two clauses below, which both behave as their bodies do. In the case of loop the right

hand side, which is the loops original body, is not analyzed as it cannot be reached in this instant.

𝘊𝘢𝘯⦗ (loop 𝗽), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (loop 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘

5.1.2. Loops and Blocked

As adding loops adds a new evaluation context, the blocked relation must be extended to handle it. This extension,

listed below, treats loop the same as seq.

𝛉r; 𝗔; 𝗘[(loop ○ 𝗾)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (loop 𝗽 𝗾)
 [loop^stop]

5.1.3. Loops and Correct Binding

We can now turn to the issue of Schizophrenia in the calculus. Correct binding prevents schizophrenia, because at

their heart schizophrenic variables are variables which have two instances, and one captures the other. Thus, the loop

clause in ⊢CB (figure 39) forbids the bound and free variables of the loop body from overlapping at all. This way then

the loop expands into loop, the constraint given the corresponding clause (which is the same as the constraint given

for seq) is preserved, preventing any variable capture.
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5.1.4. Loops and the evaluator

Loops give us another scenario where the evaluator is undefined: instantaneous loops. Instantaneous loops will always

reach a state where they contain a program fragment which matches (loop nothing 𝗾). Such a program has had

the loop body terminate in the current instant, and there is no rule which can reduce this term. This term is not 𝗽D,

however, because it is not a complete program state. In addition, this program is not counted as ⊢B. This is because

if such a program were to be counted as non-constructive then the definitions of non-constructive in Esterel would

not cleanly match the definition of non-constructive in circuits. The Esterel compiler from Berry (2002) requires

that instantaneous loops be eliminated statically before compilation, and therefore is not defined on such programs.

Therefore I have chosen to make 𝘦𝘷𝘢𝘭 E also not defined on such programs.

5.1.5. Leaving loops out of the proofs

There are two reasons I have left loops out of my proofs, both of which relate to difficulties in stating the theorems

correctly. Firstly there is a subtle difference in how the circuit semantics and the evaluator handle instantaneous loops.

The circuit semantics requires that all loops be checked statically to ensure that they can never be instantaneous. The

evaluator, however, is undefined only on programs that trigger instantaneous loops dynamically. This means that the

evaluator is defined on more programs than the circuit semantics.

The next issue is the issue of schizophrenia. The correct binding judgment ensures that the calculus never suffers

from schizophrenia. However the circuit semantics requires that programs be transformed to eliminate possibly

schizophrenic variables. The simplest of these is to fully duplicate every loop body, by transforming every (loop 𝗽)

into (loop (seq 𝗽 𝗽)). This is not what is done in practice: in general parts of the program are selectively duplicated,

using methods such as those given by Schneider and Wenz (2001) or chapter 12 of Berry (2002). This however means

in practice that the loops that the circuit semantics operates on look different to those that the evaluator operates on, in

a way that is difficult to formalize.

The handling of in the calculus loops is adapted from the COS (Potop-Butucaru 2002), which annotates loops with

STOP and GO to determine if the loop can restart.
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GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

E_i

SEL

K1

K2

E_o

Figure 40: The compilation of ⟦(loop 𝗽p 𝗾p)⟧

Loops are handled by the circuit semantics by duplicating the loop body, in a manner described by Berry (2002). To

see how this works, it is easiest to look at the compilation of loop, seen in figure 40. This is essentially the compilation

of seq, except that the output K0 wire is removed (and is therefore 0), and the K0 wire of 𝗾p is or’ed with the GO

wire, restarting the whole loop when it terminates. From here we can define ⟦(loop 𝗽p)⟧ = ⟦(loop 𝗽p 𝗽p)⟧. Note

that this loop compilation assumes that the loop is never instantaneous.
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5.2. Host language rules

To handle host language forms, 𝛉 and 𝛉r must be extended to accept shared and host language variables. Thus 𝛉 will

also map 𝘅s to their values, and 𝘀s to a pair of a value and their current status:

shared-status ::= old | new

To understand these shared-statuses, observe the rules for shared variables:

[𝘀𝗵𝗮𝗿𝗲𝗱] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(shared 𝘀 := 𝗲 𝗽)]) ⇀
E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘀 ↦ ⟨𝗻 , old⟩ }, WAIT⟩. 𝗽)])

 if 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(shared 𝘀 := 𝗲 𝗽)]), ·⦘ , 

𝗻 = 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘
[𝘀𝗲𝘁-𝗼𝗹𝗱] (ϱ ⟨𝛉r, GO⟩. 𝗘[(+= 𝘀 𝗲)]) ⇀

E (ϱ ⟨(𝛉r ← { 𝘀 ↦ ⟨𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  , new⟩ }), GO⟩. 𝗘[nothing])
 if 𝛉r(𝘀) = ⟨_ , old⟩, 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉r, GO⟩ 𝗘[(+= 𝘀 𝗲)]), ·⦘
[𝘀𝗲𝘁-𝗻𝗲𝘄] (ϱ ⟨𝛉r, GO⟩. 𝗘[(+= 𝘀 𝗲)]) ⇀

E (ϱ ⟨(𝛉r ← { 𝘀 ↦ ⟨𝗻 + 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  , new⟩ }), GO⟩. 𝗘[nothing])
 if 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝛉r(𝘀) = ⟨𝗻 , new⟩, ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉r, GO⟩ 𝗘[(+= 𝘀 𝗲)]), ·⦘

The first rule is analogous to the [𝘀𝗶𝗴𝗻𝗮𝗹] rule, converting a shared variable binder into a local environment with

the control variable WAIT. However the rule [𝘀𝗵𝗮𝗿𝗲𝗱] must evaluate a host language expression to determine the

default value for the shared variable. To do this it checks if every single shared and host language variable in the

host language expression is bound in the local environment, and that all of the referenced shared variables cannot be

written to, according to 𝘊𝘢𝘯ϱ
sh. Only if this is true can the expression 𝗲 be given to the host language evaluator 𝘦𝘷𝘢𝘭 H,

which accepts the host language expression and the binding environment. The new environment initializes the shared

variable’s status to old, because the default value of the shared value acts as if it came from the previous instant and

should only be used if the shared variable is not written to.

The [𝘀𝗲𝘁-𝗼𝗹𝗱] and [𝘀𝗲𝘁-𝗻𝗲𝘄] rules both update the value of a shared variable, using the same rules as [𝘀𝗵𝗮𝗿𝗲𝗱] to

decide if the host language expression can be evaluated. The difference is in the actual updating. If the status is old,

then the new value replaces the old value, and the status is set to new. If the status is already new, then the value

gotten from evaluating 𝗲 is combined by the associative and commutative operator for that variable. In this model the

only operator is +, however in a real program the operator is given by the program itself. Like [𝗲𝗺𝗶𝘁], these rules

may only fire when the control variable is GO, for a similar reason as to [𝗲𝗺𝗶𝘁].

Initializing and updating host language variables is simpler:
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[𝘃𝗮𝗿] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(var 𝘅 := 𝗲 𝗽)]) ⇀
E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  }, WAIT⟩. 𝗽)])

 if 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(var 𝘅 := 𝗲 𝗽)]), ·⦘

[𝘀𝗲𝘁-𝘃𝗮𝗿] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(:= 𝘅 𝗲)]) ⇀
E (ϱ ⟨(𝛉r ← { 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  }), 𝗔⟩. 𝗘[nothing])

 if 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(:= 𝘅 𝗲)]), ·⦘

The initialization of the host language variable via [𝘃𝗮𝗿] is nearly identical to the initialization of shared variables,

the only difference being the type of variable, and the lack of a status. Updating a host language variable is also akin

to [𝘀𝗲𝘁-𝗼𝗹𝗱], except that because Esterel doesn’t directly provide guarantees about concurrency with host language

variables, the new value just replaces the old one in the environment.

We can condition on host language variables using the if!0 form:

[𝗶𝗳-𝘁𝗿𝘂𝗲] (ϱ ⟨𝛉r, GO⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)]) ⇀
E (ϱ ⟨𝛉r, GO⟩. 𝗘[𝗽])

 if 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝛉r(𝘅) ≠ 0
[𝗶𝗳-𝗳𝗮𝗹𝘀𝗲] (ϱ ⟨𝛉r, GO⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)]) ⇀

E (ϱ ⟨𝛉r, GO⟩. 𝗘[𝗾])  if 𝛉r(𝘅) = 0

Which, for this model, behaves like C’s if, treating 0 as false and everything else as true. These rules requires the

control variable to be GO as well, as picking a branch of the if!0 might break existing causality cycles, and therefore

change the constructivity of the program.

5.2.1. Host language and Can

We must add several clauses to 𝘊𝘢𝘯 to handle shared variables and host language expressions(figure 41). The analysis

of the shared from is like that of the signal form, except that there is no special case for when the shared variable

cannot be written to. Because Esterel does not make control flow decisions based on the writability of shared variable,

there is no need for the extra step. Writing to a shared variable behaves akin to emitting a signal: the return code is 0

and the variable is added to the sh set.

The last three clauses handle host language variables. No special analysis is done for these forms as Esterel does not

link them into its concurrency mechanism.
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𝘊𝘢𝘯⦗ (shared 𝘀 := 𝗲 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘ , K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘ , sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  \ { 𝘀 } }
𝘊𝘢𝘯⦗ (+= 𝘀 𝗲), 𝛉⦘  = { S = ∅, K = { 0 }, sh = { 𝘀 } }
𝘊𝘢𝘯⦗ (var 𝘅 := 𝗲 𝗽), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (:= 𝘅 𝗲), 𝛉⦘  = { S = ∅, K = { 0 }, sh = ∅ }
𝘊𝘢𝘯⦗ (if!0 𝘅 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

Figure 41: Can and the Host Language

𝛉r; WAIT; 𝗘 ⊢B (+= 𝘀 𝗲)
 [set-shared-wait]

𝛉r; 𝗔; 𝗘[(shared 𝘀 := 𝗲 𝗽)]⊢e𝗲

𝛉r; 𝗔; 𝗘 ⊢B (shared 𝘀 := 𝗲 𝗽)
 [shared]

𝛉r; 𝗔; 𝗘[(+= 𝘀 𝗲)]⊢e𝗲

𝛉r; 𝗔; 𝗘 ⊢B (+= 𝘀 𝗲)
 [set-shared]

𝛉r; 𝗔; 𝗘[(var 𝘅 := 𝗲 𝗽)]⊢e𝗲

𝛉r; 𝗔; 𝗘 ⊢B (var 𝘅 := 𝗲 𝗽)
 [var]

𝛉r; 𝗔; 𝗘[(:= 𝘅 𝗲)]⊢e𝗲

𝛉r; 𝗔; 𝗘 ⊢B (:= 𝘅 𝗲)
 [set-seq]

Figure 42: The blocked judgment on terms using the host language

𝘀 ∈ 𝘍𝘝⦗𝗲⦘ 𝘀 ∈ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽), {}⦘

𝛉r; 𝗔; 𝗽⊢e𝗲
 [not ready]

Figure 43: The blocked judgment host language expressions

5.2.2. Host language and Blocked

The ⊢B relation must be extended to forms that refer to the host language in figure 42. They are all base cases, and are

either blocked because a write to a shared variable may not be performed due to the control variable ([𝘀𝗲𝘁-𝘀𝗵𝗮𝗿𝗲𝗱-𝘄𝗮𝗶𝘁]),

or because a host language expression is blocked. The blocked judgment for a host language expression (figure 43)

says that the expression may not be evaluated if at least one of the shared variables that the expression references might

still be written to by the full program.
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⊢CB  𝗽

⊢CB  (shared 𝘀 := 𝗲 𝗽)
 [shared]

⊢CB  (+= 𝘀 𝗲)
 [<=]

⊢CB  𝗽

⊢CB  (var 𝘅 := 𝗲 𝗽)
 [var]

⊢CB  (:= 𝘅 𝗲)
 [:=]

⊢CB  𝗽 ⊢CB  𝗾

⊢CB  (if!0 𝘅 𝗽 𝗾)
 [if0]

Figure 44: Correct Binding and the host language

5.2.3. Host language and Correct Binding

The extensions to correct-binding for the host language (figure 44) only require that all subforms have correct

binding.

5.2.4. Leaving the host language out of the proofs

There are two reasons I have left the host language out of the proofs. The primary one is that the ground truth semantics

I am using does not include these forms, thus writing proofs about them would involve extending that semantics in

a non-trivial way. The second reason is that the host language forms reuse many of the mechanisms from the pure

language. Therefore the proofs about the pure section of the language give some confidence for the correctness of the

host language part.

The handling of shared variables is adapted from the COS, which uses the same extension to 𝘊𝘢𝘯 .

5.3. Future Instants

While both the calculus and the evaluator only handle single instants, we can still describe multiple instants. This is

done via the inter-instant transition metafunction Ɛ. This relies on the notion of a complete term:

𝗽C ::= 𝗽D | (ϱ ⟨𝛉, GO⟩. 𝗽D)
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Definition: Ɛ⦗𝗽C⦘

Ɛ : 𝗽C → 𝗽
Ɛ⦗ (ϱ ⟨𝛉r, GO⟩. 𝗽)⦘  = (ϱ ⟨⌊𝛉r⌋, WAIT⟩. Ɛ⦗𝗽⦘ )
Ɛ⦗pause⦘  = nothing
Ɛ⦗nothing⦘  = nothing
Ɛ⦗ (loop 𝗽 𝗾)⦘  = (seq Ɛ⦗𝗽⦘  (loop 𝗾))
Ɛ⦗ (seq 𝗽 𝗾)⦘  = (seq Ɛ⦗𝗽⦘  𝗾)
Ɛ⦗ (par 𝗽 𝗾)⦘  = (par Ɛ⦗𝗽⦘  Ɛ⦗𝗾⦘ )
Ɛ⦗ (suspend 𝗽 𝗦)⦘  = (suspend (seq (if 𝗦 pause nothing) Ɛ⦗𝗽⦘ ) 𝗦)
Ɛ⦗ (trap 𝗽)⦘  = (trap Ɛ⦗𝗽⦘ )
Ɛ⦗ (exit 𝗻)⦘  = (exit 𝗻)

Figure 45: The inter-instant transition function

which is a term which is either constructive or 𝗽D. Such a term is either a program or a fragment of a program which

has finished evaluating for the current instant. The Ɛ metafunction turns such a term into a term which will begin

execution at the start of the next instant. The function is defined in figure 45.

This function walks down the program updating it so that it will unpause, replacing every pause which is an evaluation

context with respect to the given term with nothing, allowing the program to resume from those points. In addition,

the first clause uses the metafunction ⌊·⌋, which takes an environment and sets the status of every signal to ⊥, and the

status of every shared variable to old.

The metafunction Ɛ also modifies the forms loop and suspend. A loop is replaced with the traditional unfolding of

a loop, because in the next instant the loop is allowed to restart. The suspend transformation is more complex. We

want a term which entered a suspend to pause in that suspend if the given signal is 1 in the next instant. Therefore we

transform an suspend to do exactly that: if the signal is 1 then pause, otherwise do nothing and resume executing

the suspend’s body.
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5.3.1. Leaving instants out of the proofs

I have left instants out of the proofs because of how 𝘊𝘢𝘯 is defined in the calculus. The version of 𝘊𝘢𝘯 I give here

assumes that the top of the program is where execution will occur, rather than execution starting from some pause.

However I postulate that the calculus should still be correct for multi-instant execution. In addition to the tests, the

inter-instant translation function Ɛ is nearly identical to the same function from Berry (2002)1 which as been proven

correct2 in Coq (Berry and Rieg 2019), but with extensions to handle loop and ϱ.

5.4. Evidence via Testing

I have evidence the theorems I have proven should hold for the extensions in this chapter. This evidence comes in the

form of random tests. To do this, I use the following

‚ Redex COS model I built a Redex (Felleisen et al. 2009) model of the COS semantics. The semantics is

a rule-for-rule translation of the COS semantics from Potop-Butucaru et al. (2007), aside from some minor

syntax differences. This provides an executable model of the COS semantics.

‚ Redex calculus model I have also build a Redex model of the calculus. This defines two relations: the

core relation of the calculus ⇀
E, and a new relation ⇁ which gives an evaluation strategy for ⇀

E. The ⇁

relation and the Ɛ function is used to define a multi-instant evaluator for Esterel. This evaluator checks at

every reduction step that the step taken by ⇁ is also in ⇀
E. The relation ⇁ is given in the appendix A.

‚ Racket Frontend The actual execution of this Redex model of the calculus is embedded into Racket, and

may use Racket as its host language in addition to the numeric language the calculus comes equipped with.

There is also a Racket frontend compiler which compiles Full Esterel into the Kernel used by the Redex

model with the extensions to use Racket as its host language.

1Section 8.3, page 89 of the current draft
2Specifically, it is proven that, up to bisimilarity, a program passed through Ɛ under the Constructive Semantics remains the same program with
respect to the State Semantics. See Theorem 5 of Berry and Rieg (2019).
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‚ Redex/Hiphop.js bridge HipHop.js is an Esterel implementation embedded into Javascript. We built a

library that can translate Redex expressions into Hiphop.js (Berry et al. 2011) programs and then evaluate

them.3 There is also a compiler form a subset of Hiphop.js to the Redex model of the calculus, allowing

many of the Hiphop.js tests be run directly against the calculus. This translator does not accept all Hiphop.js

programs, because Hiphop.js programs embed JavaScript code which the Redex model cannot evaluate.

‚ Redex/Esterel v5 bridge We also built a translator from Redex terms to Esterel v5 programs.

‚ Redex circuit compiler Finally I have built a compiler from pure Esterel (with loops) to circuits, which runs

on top of the circuit solver.

I have run 1537900 random tests which on Full Esterel programs with loops. These tests check that the Hiphop.js,

Esterel v5, the COS, the calculus, and the circuit compiler agree on the result of running programs for multiple in-

stants.4 These tests are to provide evidence for consistency and adequacy, not just against the circuit semantics but

against real implementations as well. The real implementations are important because they accept Esterel terms that

use host language expressions, which the circuit compiler does not. Therefore these tests in particular give evidence

that adequacy holds in the presence of Full Esterel. Whenever the generated program contains host language variables

or is not guaranteed to have no possible instantaneous loops the circuit compiler is skipped.

In addition I have run 11500 random tests which generate a random pure program (with loops), and apply all rules from

the calculus (specifically from ⟶E, the compatible closure of ⇀
E), and then check that the circuits are equal using

the Circuitous library. These tests provide evidence for soundness, and especially for the soundness with loops.

Together these tests took approximately six CPU weeks. The logs of these test cases and all of the code discussed

above is stored at https://github.com/florence/esterel-calculus.

3Special thanks to Jesse Tov for helping out with this.
4Each test runs for a random number of instants.
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CHAPTER 6

Related Work

This section gives existing work related to the Constructive Calculus. Most of this work is other Esterel semantics. In

addition there are some related works on the development of calculi in general.

6.1. Other Esterel semantics

To show why a new semantics for Esterel contributes to the existing work on Esterel, this section covers some existing

semantics, how they related to properties the calculus captures, and how they capture the notion of constructiveness.

Many of the semantics in this section are given the label “Constructive”. This is because earlier semantics for Esterel

captured a slightly different language which accepted more programs. Those semantics are called “logical”, such as

the original semantics, given in Berry and Cosserat (1992). While some more recent work such as Tardieu (2007)

use a logical semantics, they mostly have out of favor, and no modern Esterel implementation uses them. As Logical

Esterel is a slightly different language than Constructive Esterel, I will not discuss logical semantics futher here, but

rather focus on the constructive semantics, of which the Constructive Calculus is one.

6.1.1. Constructive Behavioral and State Behavioral Semantics

This section actually covers two semantics, the Constructive Behavioral Semantics (CBS), and the State Behavioral

Semantics (SBS), as they are the same in all but one respect. Both are given in Berry (2002).

These semantics largely consist of two metafunctions: 𝘔𝘶𝘴𝘵 and 𝘊𝘢𝘯 . 𝘔𝘶𝘴𝘵 determines what code must be reached

by execution, and therefore what signals must be emitted. 𝘊𝘢𝘯 determines what code might be reached, walking

the causality graph and pruning branches that cannot be reached, and is used to set signals to absent. Constructive
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programs are ones in which all signals in the program either 𝘔𝘶𝘴𝘵 or Cannot be emitted, and non-Constructive

programs have signals which fall into neither set.

CBS tracks the state of pauses via an administrative reduction, reducing the program to one which will resume from

the appropriate points. SBS does the same, but instead of rewriting the program it decorates pause statements to

see which ones were reached, and uses these decorations to figure out where to resume. In essence, these reductions

propagate the information from 𝘔𝘶𝘴𝘵 and 𝘊𝘢𝘯 .

These semantics both give a syntactic evaluator for Esterel: that is they give a function that gives the final result of

several instants of execution. They are not equational theories. These semantics, as given in Berry (2002), only handle

Pure Esterel.

6.1.2. Constructive Operational Semantics

The Constructive Operational Semantics (COS), in some sense, provides a bridge between the SBS and an actual

implementation of Esterel. It replaces the 𝘔𝘶𝘴𝘵 metafunction with a reduction relation (which also doubles as the

administrative reduction relation from the SBS). The core idea here is that the reduction relation represents running

the program, and if something runs then it must happen.

In the COS, non-constructive programs are ones which get stuck during execution, e.g. programs that cannot reduce

further and are not in a fully executed state. In general, this is because the reduction cannot make progress without

executing some conditional, but the value of the signal being conditioned on is unknown and cannot be set to absent.

This approach inspired how the Constructive Calculus handles constructiveness.

Like the CBS and CSS, the COS gives defines a syntactic evaluator for Esterel, and is not an equational theory. The

COS is defined on all of Kernel Esterel.
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6.1.3. Circuit Semantics

The circuit semantics gives meaning to Esterel programs by transforming them into circuits. This works by transform-

ing the control flow part of Esterel programs into a dataflow problem where the data is encoded as power flowing down

a wire. This is then combined with the original dataflow (e.g. signals) to give a full circuit. In essence, the circuit

semantics treats the causality graph as a dataflow problem in the domain of circuits. A pauses is encoded as a register

which passes on whether or not control reached a given point onto a future instant.

There are multiple circuit semantics. Potop-Butucaru (2002) splits the program into two circuits, the Surface, which

handles the first instant a term is reached, and the Depth which handles future instants. Whether or not the Surface or

Depth circuit is reached is controlled by the state of the registers within those terms.

The circuit semantics I prove the calculus equivalent to comes from Berry (2002), which is based on the original circuit

compiler from Berry (1992). This compiler is discussed in depth in section 4.1.1.

In both semantics, the constructivity of Esterel programs is transformed into the constructivity of circuits (Shiple et

al. 1996): an Esterel program is constructive on some inputs if and only if all wires in its circuit always settle to a

single value in a bounded amount of time. Just as with causality graphs, circuits are non-constructive if some cycle in

the circuit demands a value be settled on for some wire, and the value for that wire value depends on the state of the

cycle.

The circuit semantics allow for local reasoning about equality between programs. It also provides an evaluator, through

circuit simulation. In addition circuit semantics can be used to prove equivalences between programs, as we have a

computable equality relation between circuits. However its reasoning is non-syntactic: the transformations done to a

circuit may not result in a new circuit that can be transformed back into an Esterel program, and even when they can

be, the reasoning used to explain why the circuit can be transformed in that way might not map cleanly back to Esterel.

Therefor, it is not an equational theory. The circuit semantics in Berry (2002) is defined on only pure Esterel. The

circuit semantics in Potop-Butucaru (2002) is extended to handle a host language.
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6.1.4. The Axiomatic Semantics

Tini (2001) gives two semantics. The first is a labeled transition system that gives an evaluator for Esterel programs,

and the second is a series of logical axioms which give an equality relation for Esterel programs, which they call the

Axiomatic Semantics. Of all the semantics presented so far, these axioms are the closest to the goal that I have, as it is

an equational theory. However it is built from fundamentally different techniques,1 and it is not adequate to define an

evaluator for Esterel. This is because it cannot reason about emits, as it lacks the control variable my calculus adds.

However it is much stronger in other respects: in fact it is complete modulo bisimilarity on constructive programs.

Adding the axioms of the Axiomatic Semantics to the Construtive Calculus would result in a much more powerful

reasoning framework. The Axiomatic Semantics only handles Pure Esterel.

6.1.5. The Color Semantics

Berry and Rieg (2019) gives a a microstep semantics which I call here the Color Semantics.2 It replaces both Must

and Can with colors that propagate throughout the program, mimicking how 1 and 0 propagate through circuits. The

control variables of the constructive calculus are based off this. The Color semantics is computationally adequate, and

is not an equational theory. The Color Semantics handles only Pure Esterel.

6.1.6. Quartz

Quartz (Schneider 2001) is a variant of Esterel embedded into the interactive theorem prover HOL (Gordon and Mel-

ham 1993). Quartz is defined by a transformation to a set of control flow predicates and guarded commands. The full

semantics is given by the conjunction of the logical formula these define. This allows properties of Quartz programs to

be verified by both model checking and theorem proving using HOL. The generation of the guarded commands used

for defining dataflow requires knowledge of the precondition for that command, which requires knowledge about the

context. Like the circuit semantics, this means it is not an equational theory, but it still can prove equivalences between

1For instance, their notion of equality is based on bisimulation, whereas mine is based on contextual equivalence.
2This is called the “Microstep semantics” by Berry and Rieg (2019). I use a different name here to avoid confusion with other microstep semantics
like the COS.
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program using the underlying model it maps programs to. It is adequate, and in fact can be used for verified code gen-

eration. Quartz handles host language data, and also extends Kernel Esterel with forms such as delayed emission and

non-deterministic choice.

6.2. Circuits

The handling of cyclic circuits is derived from the seminal work of Malik (1994). It uses the extensions for registers

given by Shiple et al. (1996), which have been proven correct by Mendler et al. (2012). The notion of constructivity

used here is what Shiple et al. (1996) call strong constructivity, as Malik’s original definition of constructivity only

demanded that interface wires be non-⊥, and allowed internal wires to take on any value.

6.3. Calculi

The Constructive Calculus for Esterel draws heavily from the State Calculus (Felleisen and Hieb 1992)—specifically

in the usage of local maps and evaluation contexts (Felleisen and Friedman 1986) to track the state locally.

This calculus is the second draft, the first introduced in Florence et al. (2019). That calculus, however, was not

constructive, as it allowed for local rewrites which could bypass signals who’s value was not yet known. The local

control variables 𝗔 was introduced to solve this issue.
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CHAPTER 7

Future Work

The constructive calculus presented here is the first calculus for Esterel which captures both Constructivity and which

is Adequate. However, research is never complete—the proofs do not cover the entire language, the handling of emit

makes the calculus somewhat weak, and there are stronger compilation guarantees one might wish to have proven. This

section is meant to give a small starting point for any ambitious researcher who wants to tackle these problems.

7.1. Extending proofs to multiple instants, and guarding compilation

Future work may wish to extend the proofs for the Consistency, Soundness, and Adequacy of the Constructive Calculus

to multiple instants. This should be possible with a tweak to the compilation of terms.

This tweak enforces an assumption that the compilation function makes: that GO and SEL are mutually exclusive.

The circuits generated by ⟦·⟧ do not behave properly if this condition is not met: in essence it is undefined behavior.

This undefined behavior ruins many equalities that should hold, as having both GO and SEL true simultaneously can

expose details of the internals of a term that are not observable in Esterel, but are observable in the circuit. Consider

the equation:

(signal S1
(seq
(if S1 (emit S2) nothing)
(seq pause

(emit S1))))

≃E (signal S1
(seq pause (emit S1)))

These two programs should be ≃E, as the signal S1 can never be emitted in the same instant in which it is conditioned

on. However consider their circuit compilations: in the first program there will be a wire S2 = GO ∧ S1. However in

the compilation of the second term there will be no S2 wire, therefore it will be taken to be 0. If, in the second cycle,
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guard⦗ɕ⦘=

GO

RES

SUSP

KILL

ɕ

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Figure 46: Guarding the top of a circuit to avoid protocol violations

GO is 1, (making it 1 at the same time as SEL) the wire S2 will get a 1, as both GO and S1 will be 1. But this differs

from the second program! This means that the two circuits are not ≃C, which violates soundness.

No Esterel context would ever produce a violation like this, as this only occurs when the outer circuit context violates

the protocol that GO and SEL are mutually exclusive. Therefore we can fix this by wrapping any compilation in a

guard which, if this condition is violated, forces the circuit to have consistent behavior. Such a wrapper is given in

figure 46. This guard suppresses GO if the protocol is violated, preventing the circuit from behavior from chang-

ing.

From here we can modify the statement of soundness to:

Conjecture 25 (Soundness over multiple instants).

For all 𝗽p and 𝗾p, if ⊢CB  𝗽
p and 𝗽p ≡E 𝗾p, then guard⦗⟦𝗽p⟧⦘  ≃C guard⦗⟦𝗾p⟧⦘

Which removes the requirement that the SEL be 0, but adds in the guard. One should also prove that

Conjecture 26 (guard is correct).

For all 𝗽p, if ⟦𝗽p⟧(GO) ∧ ⟦𝗽p⟧(SEL) ≃ 0 then ⟦𝗽p⟧ ≃C guard⦗⟦𝗽p⟧⦘



7.2. REMOVING θ FROM ρ 103

Which shows that the guard never changes the program behavior if the protocol is never violated.

I believe that this is the only guard necessary. This belief comes from the proofs I have done so far: Other than proofs

involving 𝘊𝘢𝘯 , the mutual exclusion of GO and SEL is the strongest precondition needed.1

The RES and SUSP wires do not need a similar guard procedure, because of lemma 76 (Activation Condition). While

their is a similar protocol for them (e.g. GO and RES are mutually exclusive), this protocol only matters while SEL

is 1, as RES and SUSP only have an effect on program resumption. Therefore the guard procedure above is enough to

protect against errant uses of these wires by a (non-Esterel) outer context.

I suspect that the KILL wire should not need a guard either. This is because of the changes to the compilation of par

from section 4.1.1. These changes remove the reliance on the protocol that return codes above 1 trigger the KILL

wire, and therefore no protocol, and no guard, should be needed.

Adequacy must also be extended in a similar manner. However the new statement of Adequacy must be extended to

involve the inter-instant translation function Ɛ.

7.2. Removing θ from ρ

I suspect that there is a variant of my calculus which is both stronger (in the sense that it can prove more things equal)

and does not require the 𝛉r portion of the environment. The idea behind is this that a 𝛉r can always be removed by

running the existing [𝗲𝗺𝗶𝘁] and [𝘀𝗶𝗴𝗻𝗮𝗹] rules backwards, so why add it in the first place? Specifically, I believe that

the [𝗲𝗺𝗶𝘁] and [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] rules can be replaced with:

[𝗲𝗺𝗶𝘁] 𝗘[(emit 𝗦)] ⇀
E (par (emit 𝗦) 𝗘[nothing])

[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] (ϱ GO. 𝗘[(if 𝗦 𝗽 𝗾)]) ⇀
E (ϱ GO. 𝗘[𝗽])  if 𝗘′[(emit 𝗦)] = 𝗘[(if 𝗦 𝗽 𝗾)], 𝘧𝘰𝘳 𝘴𝘰𝘮𝘦 𝗘′

In this new system the [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] rule says that we may take the then branch of an if when the environment is GO

and there is an emit for that signal in a relative evaluation context. The correctness of this rule can be validated by

1As we always take SEL to be 0, this condition is given by the existing preconditions on soundness and adequacy.
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the current calculus (modulo the different environment shape), because the emit could be run, putting { 𝗦 ↦ 1 } in the

environment, and then the rule old [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] rule could take over.

The [𝗲𝗺𝗶𝘁] rule is where the extra power comes in. It lets us reshuffle emits arbitrarily within evaluation contexts.

This would let us, for example, lift an emit out of a seq. We could prove equations like (par (emit 𝗦) 𝗾) ≡E (seq (emit 𝗦) 𝗾),

and conjecture 5 (Lift Signal Emission (not provable)) which was discussed in section 3.4. The new [𝗲𝗺𝗶𝘁] rule cannot

be proven by the current calculus, because in enables reasoning about emits when there is no GO, and when the

binding form is not in an evaluation context with respect to the emit.

This new rule would require changing the formalization of lemma 57 (Strongly Canonicalizing), as the new [𝗲𝗺𝗶𝘁]

rule could always execute, using 𝗘 = ○. However this does not seem like it would make a similar proof impossible,

using a different formulation of the ⟶S and ⟶R relations. Or perhaps this could be solved by enforcing that the

evaluation context never be empty. Both paths would be worth exploring.

The definition of 𝘊𝘢𝘯 would also need to change in this variant of the calculus. The 𝘊𝘢𝘯 function would likely still

need an 𝛉 argument, therefore 𝘊𝘢𝘯 will need to add 1s to 𝛉 somehow. This could likely be done by replicating the

relative evaluation context reasoning from the [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] rule, but it is not clear how this would work.

7.3. Fully Abstract Compilation

A future semanticist may wish to prove that the Esterel compiler (augmented with guard) is fully abstract. I believe

that the Constructive Calculus gives the tools to do this. Specifically, the theorem to prove would be:

Conjecture 27 (Fully Abstract Compilation).

For all 𝗽p and 𝗾p, 𝗽p ≃E 𝗾p if and only if guard⦗⟦𝗽p⟧⦘  ≃C guard⦗⟦𝗽p⟧⦘

The reasons that such a proof may be within reach follows from the following chain of reasoning. First, the definition

of ≃C used here is defined by analyzing all of the possible inputs to the circuits. Second, the inputs to the circuits

can be simulated using Esterel contexts. For example, if we have one input signal SI, we can simulate all inputs on it
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using the contexts (signal SI ○), (signal SI (par (emit SI) ○)), and (signal SI (par (if SI (emit SI) nothing) ○)),

which correspond to 0, 1, and ⊥ respectively. Third, we know that the evaluator given by the Constructive Calculus

is equivalent to the circuit evaluator by theorem 30 (Computational Adequacy). Therefore if the contexts which simulate

the inputs to the circuit are sufficient to decide ≃E, it must be that the notions of contextual equivalence between Esterel

and Circuits is the same. I believe that these contexts, plus some which change 𝗔, are enough to decide ≃E. Formally,

let these be defined as:

Definition: input-contexts⦗𝕊⦘

input-contexts⦗∅⦘  = { (ϱ ⟨{}, GO⟩. ○) , (ϱ ⟨{}, WAIT⟩. ○) }
input-contexts⦗ { 𝗦 } ∪ 𝕊⦘  = { (signal 𝗦 𝗖) | 𝗖 ∈ input-contexts⦗𝕊⦘}

 ∪ 
 { (signal 𝗦 (par (emit 𝗦) 𝗖)) | 𝗖 ∈ input-contexts⦗𝕊⦘}

 ∪ 
 { (signal 𝗦 (par (if 𝗦 (emit 𝗦) nothing) 𝗖)) | 𝗖 ∈ input-contexts⦗𝕊⦘}

If one could prove:

Conjecture 28 (Signals decide contextual equivalence).

For all 𝗽p and 𝗾p, 𝗽p ≃E 𝗾p if and only if for all 𝗖 ∈ input-contexts⦗𝘍𝘝⦗𝗽p⦘  ∪ 𝘍𝘝⦗𝗾p⦘⦘ , 𝗖[𝗽p] ≡E 𝗖[𝗾p]

then the argument laid out here should be enough to complete a proof of fully abstract compilation. I do not know how

this proof would proceed, however my intuition is that if there exists some context which shows that two terms are

not ≃E, then one could inductively walk that context, and build a context which is in the input-contexts and which

also shows that the two terms are not equivalent. Or perhaps the proof of Böhm’s Theorem for the λ-calculus could

provide inspiration.
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APPENDIX A

Definitions

A.1. Circuits

Definition: ⟦𝗽p⟧
⟦nothing⟧=

GO K0

⟦(exit 𝗻)⟧=

GO Kn+2

⟦(emit 𝗦)⟧=

GO

𝗦o

K0

⟦pause⟧=

GO

RES

SUSP

KILL

K0

K1

SEL
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⟦(signal 𝗦 𝗽p)⟧=

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi Si So

⟦(if 𝗦 𝗽p 𝗾p)⟧=

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

GO

RES

SUSP

KILL

Ei
Eo

SEL

K0

K1

K2

Si
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⟦(suspend 𝗽p 𝗦)⟧=

GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Ei
S

Eo

SEL

K0

K2

K1

⟦(seq 𝗽p 𝗾p)⟧=

GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Ei

SEL

K0

K1

K2

Eo
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⟦(trap 𝗽p)⟧=

GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

K3

...

EoEi

K0

K2

K1

SEL

EoEi
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⟦(par 𝗽p 𝗾p)⟧=

S
Y
N
C
H
R
O
N
I
Z
E
R

LEM

L0

L1

L2

...

IN-KILL

REM

R0

R1

R2

...

K0

K1

K2

...

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi
RES

RES

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

GO

RES

SUSP

KILL

Ei

Eo

SEL

K0

K1

K2
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⟦(loop 𝗽p 𝗾p)⟧=

GO

RES

SUSP

KILL

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

⟦𝗾p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

E_i

SEL

K1

K2

E_o

⟦(loop 𝗽p)⟧=
⟦(loop 𝗽p 𝗽p)⟧
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⟦(ϱ ⟨𝛉r ← { 𝗦 ↦ 𝘀𝘁𝗮𝘁𝘂𝘀r }, 𝗔⟩. 𝗽p)⟧=

⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi Si So

⟦𝘀𝘁𝗮𝘁𝘂𝘀r⟧

⟦(ϱ ⟨{}, 𝗔⟩. 𝗽p)⟧=

GO

RES

SUSP

KILL

⟦𝗔⟧

⟦𝗽p⟧

GO

RES

SUSP

KILL

SEL

K0

K1

K2

...

EoEi

Definition: ⟦𝗽p⟧ \ 𝛉

read as: 𝛉 binds ⟦𝗽p⟧

⟦𝗽p⟧ \ 𝛉 if and only if ∀ 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 𝛉(𝗦) = 1ô ⟦𝗽p⟧(𝗦i) ≃ 1, and 𝛉(𝗦) = 0ô ⟦𝗽p⟧(𝗦i) ≃ 0.

Definition: ⟦𝗽p⟧ \ 𝗔

read as: 𝗔 binds ⟦𝗽p⟧

⟦𝗽p⟧ \ 𝗔 if and only if 𝗔 = GO implies that ⟦𝗽p⟧(GO) = 1.
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Definition: ɕ(𝘄) ≃ 𝗲

ɕ is contextually equivalent to a circuit in which the definition of the wire 𝘄 is replace by 𝗲.

A.2. Calculus

Definition: 𝗽, 𝗾

𝗽, 𝗾 ::= nothing | (exit 𝗻) | (emit 𝗦) | pause
 | (signal 𝗦 𝗽) | (seq 𝗽 𝗾) | (if 𝗦 𝗽 𝗾) | (par 𝗽 𝗾)
 | (loop 𝗽) | (suspend 𝗽 𝗦) | (trap 𝗽)
 | (shared 𝘀 := 𝗲 𝗽) | (+= 𝘀 𝗲) | (var 𝘅 := 𝗲 𝗽) | (:= 𝘅 𝗲) | (if!0 𝘅 𝗽 𝗾)

S ∈ signal variables
s ∈ shared variables

x ∈ sequential variables
e ∈ host expressions

Definition: 𝗽p, 𝗾p

𝗽p, 𝗾p ::= nothing
 | pause
 | (seq 𝗽p 𝗽p)
 | (par 𝗽p 𝗽p)
 | (trap 𝗽p)
 | (exit 𝗻)
 | (signal 𝗦 𝗽p)
 | (suspend 𝗽p 𝗦)
 | (if 𝗦 𝗽p 𝗽p)
 | (emit 𝗦)
 | (loop 𝗽p)
 | (loop 𝗽p 𝗾p)
 | (ϱ ⟨𝛉r, WAIT⟩. 𝗽p)

S ∈ signal variables
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Definition: 𝗽 ⇀
E 𝗾

si
gn

al
s

[𝘀𝗶𝗴𝗻𝗮𝗹] (signal 𝗦 𝗽)⇀
E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽)

[𝗲𝗺𝗶𝘁] (ϱ ⟨𝛉r, GO⟩. 𝗘[(emit 𝗦)])⇀
E (ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘[nothing])

 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘
[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)])⇀

E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗽])  if 𝛉r(𝗦) = 1
[𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)])⇀

E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗾])
 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝛉r(𝗦) = ⊥, 𝗦 ∉ 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]), {}⦘

sh
ar

ed
 v

ar
ia

bl
es

[𝘀𝗵𝗮𝗿𝗲𝗱] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(shared 𝘀 := 𝗲 𝗽)])⇀
E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘀 ↦ ⟨𝗻 , old⟩ }, WAIT⟩. 𝗽)])

 if 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(shared 𝘀 := 𝗲 𝗽)]), ·⦘ , 

𝗻 = 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘
[𝘀𝗲𝘁-𝗼𝗹𝗱] (ϱ ⟨𝛉r, GO⟩. 𝗘[(+= 𝘀 𝗲)])⇀

E (ϱ ⟨(𝛉r ← { 𝘀 ↦ ⟨𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  , new⟩ }), GO⟩. 𝗘[nothing])
 if 𝛉r(𝘀) = ⟨_ , old⟩, 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉r, GO⟩ 𝗘[(+= 𝘀 𝗲)]), ·⦘
[𝘀𝗲𝘁-𝗻𝗲𝘄] (ϱ ⟨𝛉r, GO⟩. 𝗘[(+= 𝘀 𝗲)])⇀

E (ϱ ⟨(𝛉r ← { 𝘀 ↦ ⟨𝗻 + 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  , new⟩ }), GO⟩. 𝗘[nothing])
 if 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝛉r(𝘀) = ⟨𝗻 , new⟩, 
∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉r, GO⟩ 𝗘[(+= 𝘀 𝗲)]), ·⦘

se
qu

en
ti

al
 v

ar
ia

bl
es [𝘃𝗮𝗿] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(var 𝘅 := 𝗲 𝗽)])⇀

E (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  }, WAIT⟩. 𝗽)])
 if 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(var 𝘅 := 𝗲 𝗽)]), ·⦘
[𝘀𝗲𝘁-𝘃𝗮𝗿] (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(:= 𝘅 𝗲)])⇀

E (ϱ ⟨(𝛉r ← { 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  }), 𝗔⟩. 𝗘[nothing])
 if 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘ , ∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(:= 𝘅 𝗲)]), ·⦘
[𝗶𝗳-𝘁𝗿𝘂𝗲] (ϱ ⟨𝛉r, GO⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)])⇀

E (ϱ ⟨𝛉r, GO⟩. 𝗘[𝗽])
 if 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , 𝛉r(𝘅) ≠ 0

[𝗶𝗳-𝗳𝗮𝗹𝘀𝗲] (ϱ ⟨𝛉r, GO⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)])⇀
E (ϱ ⟨𝛉r, GO⟩. 𝗘[𝗾])  if 𝛉r(𝘅) = 0

ϱ [𝗺𝗲𝗿𝗴𝗲] (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘[(ϱ ⟨𝛉r

2, 𝗔2⟩. 𝗽)])⇀
E (ϱ ⟨(𝛉r

1 ← 𝛉r
2), 𝗔1⟩. 𝗘[𝗽])

 if 𝗔1 ≥ 𝗔2

se
q [𝘀𝗲𝗾-𝗱𝗼𝗻𝗲] (seq nothing 𝗾)⇀

E 𝗾
[𝘀𝗲𝗾-𝗲𝘅𝗶𝘁] (seq (exit 𝗻) 𝗾)⇀

E (exit 𝗻)

tr
ap [𝘁𝗿𝗮𝗽] (trap 𝗽S)⇀

E ↓p 𝗽S

pa
r

[𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴] (par nothing 𝗽D)⇀
E 𝗽D

[𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁] (par (exit 𝗻) 𝗽)̂⇀
E (exit 𝗻)

[𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁] (par (exit 𝗻1) (exit 𝗻2))⇀
E (exit 𝘮𝘢𝘹⦗𝗻1 , 𝗻2⦘ )

[𝗽𝗮𝗿-𝘀𝘄𝗮𝗽] (par 𝗽 𝗾)⇀
E (par 𝗾 𝗽)

[𝘀𝘂𝘀𝗽𝗲𝗻𝗱] (suspend 𝗽S 𝗦)⇀
E 𝗽S

lo
op [𝗹𝗼𝗼𝗽] (loop 𝗽)⇀

E (loop 𝗽 𝗽)
[𝗹𝗼𝗼𝗽^𝘀𝘁𝗼𝗽-𝗲𝘅𝗶𝘁] (loop (exit 𝗻) 𝗾)⇀

E (exit 𝗻)
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Definition: 𝗽 ⟶ 𝗾

The compatible closure of ⇀
E.

Definition: 𝗽 ≡E 𝗾

The transitive, reflexive, symmetric, compatible closure of ⇀
E.

Definition: 𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽⦘

𝘦𝘷𝘢𝘭 E : 𝗢 𝗽 → ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩
𝘦𝘷𝘢𝘭 E⦗𝗢, (ϱ ⟨𝛉r

1, GO⟩. 𝗽
p)⦘  = ⟨restrict⦗𝛉r

2, 𝗢, (ϱ ⟨𝛉r
2, GO⟩. 𝗽

D)⦘  , tt⟩
 if (ϱ ⟨𝛉r

1, GO⟩. 𝗽
p) ≡E (ϱ ⟨𝛉r

2, GO⟩. 𝗽
D), 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r

2, 𝗽
D⦘

𝘦𝘷𝘢𝘭 E⦗𝗢, (ϱ ⟨𝛉r
1, GO⟩. 𝗽

p)⦘  = ⟨restrict⦗𝛉r
2, 𝗢, (ϱ ⟨𝛉r

2, GO⟩. 𝗾
p)⦘  , ff⟩

 if (ϱ ⟨𝛉r
1, GO⟩. 𝗽

p) ≡E (ϱ ⟨𝛉r
2, GO⟩. 𝗾

p), 𝛉r
2; GO; ○ ⊢B 𝗾

p

Definition: restrict⦗𝛉, 𝗢, 𝗽⦘

read as: Restrict 𝛉 to signals in 𝗢, given their values as determined by the program 𝗽.

restrict⦗𝛉, 𝗢, 𝗽⦘ (𝗦)={0  where 𝗦 ∈ 𝗢, 𝛉(𝗦) = ⊥, and 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗𝗽, {}⦘

𝛉(𝗦) where 𝗦 ∈ 𝗢
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Definition: 𝛉r; 𝗔; 𝗘p ⊢B 𝗽
p

𝛉r(𝗦) = ⊥ 𝗦 ∈ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]), {}⦘

𝛉r; 𝗔; 𝗘 ⊢B (if 𝗦 𝗽 𝗾)
 [if]

𝛉r; WAIT; 𝗘 ⊢B (emit 𝗦)
 [emit-wait]

𝛉r; 𝗔; 𝗘[(suspend ○ 𝗦)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (suspend 𝗽 𝗦)
 [suspend]

𝛉r; 𝗔; 𝗘[(trap ○)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (trap 𝗽)
 [trap]

𝛉r; 𝗔; 𝗘[(seq ○ 𝗾)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (seq 𝗽 𝗾)
 [seq]

𝛉r; 𝗔; 𝗘[(par ○ 𝗽D)] ⊢B 𝗽

𝛉r; 𝗔; 𝗘 ⊢B (par 𝗽 𝗽D)
 [parl]

𝛉r; 𝗔; 𝗘[(par 𝗽D ○)] ⊢B 𝗾

𝛉r; 𝗔; 𝗘 ⊢B (par 𝗽D 𝗾)
 [parr]

𝛉r; 𝗔; 𝗘[(par ○ 𝗾)] ⊢B 𝗽 𝛉r; 𝗔; 𝗘[(par 𝗽 ○)] ⊢B 𝗾

𝛉r; 𝗔; 𝗘 ⊢B (par 𝗽 𝗾)
 [par-both]
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Definition: 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
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𝞳 ∈ Natural Numbers

𝘊𝘢𝘯  : 𝗽 𝛉 → { S: 𝕊, K: 𝕜, sh: 𝕤 }
𝘊𝘢𝘯⦗nothing, 𝛉⦘  = { S = ∅, K = { 0 }, sh = ∅ }
𝘊𝘢𝘯⦗pause, 𝛉⦘  = { S = ∅, K = { 1 }, sh = ∅ }
𝘊𝘢𝘯⦗ (exit 𝗻), 𝛉⦘  = { S = ∅, K = { 𝗻 + 2 }, sh = ∅ }
𝘊𝘢𝘯⦗ (emit 𝗦), 𝛉⦘  = { S = { 𝗦 }, K = { 0 }, sh = ∅ }
𝘊𝘢𝘯⦗ (if 𝗦 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
 if 𝛉(𝗦) = 1
𝘊𝘢𝘯⦗ (if 𝗦 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗾, 𝛉⦘
 if 𝛉(𝗦) = 0
𝘊𝘢𝘯⦗ (if 𝗦 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

𝘊𝘢𝘯⦗ (suspend 𝗽 𝗦), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (seq 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
 if 0 ∉ 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (seq 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  \ { 0 } ∪ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

𝘊𝘢𝘯⦗ (loop 𝗽), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (loop 𝗽 𝗾), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (par 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = { 𝘮𝘢𝘹⦗𝞳1 , 𝞳2⦘  | κ1 ∈ 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  , κ2 ∈ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘  },
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

𝘊𝘢𝘯⦗ (trap 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘ , K = {↓κ x | x ∈ 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘ }, sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  }
𝘊𝘢𝘯⦗ (signal 𝗦 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉 ← { 𝗦 ↦ 0 }⦘  \ { 𝗦 },

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉 ← { 𝗦 ↦ 0 }⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉 ← { 𝗦 ↦ 0 }⦘  }

 if 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽, 𝛉 ← { 𝗦 ↦ ⊥ }⦘
𝘊𝘢𝘯⦗ (signal 𝗦 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉2⦘  \ { 𝗦 }, K = 𝘊𝘢𝘯K⦗𝗽, 𝛉2⦘ , sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉2⦘  }
 if 𝛉2 = 𝛉 ← { 𝗦 ↦ ⊥ }
𝘊𝘢𝘯⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  = { S = 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  \ 𝘥𝘰𝘮⦗𝛉1⦘ ,
K = 𝘊𝘢𝘯ϱ

K⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘ ,
sh = 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  \ 𝘥𝘰𝘮⦗𝛉1⦘  }
𝘊𝘢𝘯⦗ (shared 𝘀 := 𝗲 𝗽), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘ , K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘ , sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  \ { 𝘀 } }
𝘊𝘢𝘯⦗ (+= 𝘀 𝗲), 𝛉⦘  = { S = ∅, K = { 0 }, sh = { 𝘀 } }
𝘊𝘢𝘯⦗ (var 𝘅 := 𝗲 𝗽), 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉⦘
𝘊𝘢𝘯⦗ (:= 𝘅 𝗲), 𝛉⦘  = { S = ∅, K = { 0 }, sh = ∅ }
𝘊𝘢𝘯⦗ (if!0 𝘅 𝗽 𝗾), 𝛉⦘  = { S = 𝘊𝘢𝘯S⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾, 𝛉⦘ ,

K = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯K⦗𝗾, 𝛉⦘ ,
sh = 𝘊𝘢𝘯sh⦗𝗽, 𝛉⦘  ∪ 𝘊𝘢𝘯sh⦗𝗾, 𝛉⦘  }

↓κ  : 𝞳 → 𝞳
↓κ 0  = 0
↓κ 1  = 1
↓κ 2  = 0
↓κ 𝗻  = 𝗻-1
if 𝗻 > 2
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Definition: 𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘

𝘊𝘢𝘯ϱ : (ϱ ⟨𝛉, 𝗔⟩. 𝗽) 𝛉 → { S: 𝕊, K: 𝕜, sh: 𝕤 }
𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗽), 𝛉2⦘  = 𝘊𝘢𝘯ϱ⦗ (ϱ ⟨(𝛉 \ {𝗦}), 𝗔⟩. 𝗽), 𝛉2 ← { 𝗦 ↦ 0 }⦘
 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 

𝛉(𝗦) = ⊥, 
𝗦 ∉ 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨(𝛉 \ {𝗦}), 𝗔⟩. 𝗽), 𝛉2 ← { 𝗦 ↦ ⊥ }⦘
𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗽), 𝛉2⦘  = 𝘊𝘢𝘯ϱ⦗ (ϱ ⟨(𝛉 \ {𝗦}), 𝗔⟩. 𝗽), 𝛉2 ← { 𝗦 ↦ 𝛉(𝗦) }⦘
 if 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘
𝘊𝘢𝘯ϱ⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽), 𝛉2⦘  = 𝘊𝘢𝘯⦗𝗽, 𝛉2⦘

Definition: 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r, 𝗽D⦘

For all 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ , either 𝛉r(𝗦) = 1 or 𝛉r(𝗦) = ⊥ and 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, GO⟩. 𝗽D), {}⦘ .

A.3. Auxiliary

Definition: Ɛ⦗𝗽C⦘

Ɛ : 𝗽C → 𝗽
Ɛ⦗ (ϱ ⟨𝛉r, GO⟩. 𝗽)⦘  = (ϱ ⟨⌊𝛉r⌋, WAIT⟩. Ɛ⦗𝗽⦘ )
Ɛ⦗pause⦘  = nothing
Ɛ⦗nothing⦘  = nothing
Ɛ⦗ (loop 𝗽 𝗾)⦘  = (seq Ɛ⦗𝗽⦘  (loop 𝗾))
Ɛ⦗ (seq 𝗽 𝗾)⦘  = (seq Ɛ⦗𝗽⦘  𝗾)
Ɛ⦗ (par 𝗽 𝗾)⦘  = (par Ɛ⦗𝗽⦘  Ɛ⦗𝗾⦘ )
Ɛ⦗ (suspend 𝗽 𝗦)⦘  = (suspend (seq (if 𝗦 pause nothing) Ɛ⦗𝗽⦘ ) 𝗦)
Ɛ⦗ (trap 𝗽)⦘  = (trap Ɛ⦗𝗽⦘ )
Ɛ⦗ (exit 𝗻)⦘  = (exit 𝗻)
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Definition: 𝒮⦗𝗽⦘

read as: An upper bound in the number of ⟶R steps 𝗽 may take. (The name is a very bad pun on the physics notation

for an Action.)

𝒮 : 𝗽GO
p  → 𝗻

𝒮⦗nothing⦘  = 0
𝒮⦗pause⦘  = 0
𝒮⦗ (exit 𝗻)⦘  = 0
𝒮⦗ (emit 𝗦)⦘  = 1
𝒮⦗ (signal 𝗦 𝗽GO

p )⦘  = 2 + 𝒮⦗𝗽GO
p ⦘

𝒮⦗ (if 𝗦 𝗽GO
p  𝗾GO

p )⦘  = 1 + 𝒮⦗𝗽GO
p ⦘  + 𝒮⦗𝗾GO

p ⦘
𝒮⦗ (par 𝗽GO

p  𝗾GO
p )⦘  = 1 + 𝒮⦗𝗽GO

p ⦘  + 𝒮⦗𝗾GO
p ⦘

𝒮⦗ (seq 𝗽GO
p  𝗾GO

p )⦘  = 1 + 𝒮⦗𝗽GO
p ⦘  + 𝒮⦗𝗾GO

p ⦘
𝒮⦗ (trap 𝗽GO

p )⦘  = 1 + 𝒮⦗𝗽GO
p ⦘

𝒮⦗ (suspend 𝗽GO
p  𝗦)⦘  = 1 + 𝒮⦗𝗽GO

p ⦘
𝒮⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽GO

p )⦘  = 1 + 𝒮⦗𝗽GO
p ⦘

𝒮⦗ (loop 𝗽GO
p )⦘  = 2 + 𝒮⦗𝗽GO

p ⦘  + 𝒮⦗𝗽GO
p ⦘

𝒮⦗ (loop 𝗽GO
p  𝗾GO

p )⦘  = 1 + 𝒮⦗𝗽GO
p ⦘  + 𝒮⦗𝗾GO

p ⦘

Definition: closed⦗𝗽GO
p ⦘

𝘍𝘝⦗ (ϱ ⟨𝛉r, GO⟩. 𝗾p)⦘  = ∅

closed⦗ (ϱ ⟨𝛉r, GO⟩. 𝗾p)⦘

Definition: 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ⦘

𝘯𝘤-κ⦗𝗽p, 𝛉, 𝛉ɕ⦘ 𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ⦘ 𝘯𝘤-𝘳⦗𝗽p, 𝛉, 𝛉ɕ⦘

𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ⦘

Definition: 𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ⦘
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∀ 𝗦 ∈ 𝘊𝘢𝘯S⦗𝗽p, 𝛉⦘ , 𝛉(𝗦) = ⊥ ⇒ 𝛉ɕ(𝗦i) = 𝛉ɕ(𝗦o) = ⊥

𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ⦘

Definition: 𝘯𝘤-κ⦗𝗽p, 𝛉, 𝛉ɕ⦘

∀ 𝗻 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ , 𝛉ɕ(K𝗻) = ⊥

𝘯𝘤-κ⦗𝗽p, 𝛉, 𝛉ɕ⦘

Definition: sub⦗𝗽p, 𝗾p, 𝛉ɕ⦘

When ɕ is the compilation of 𝗽p, get the substate of 𝛉ɕ corresponding to the subterm 𝗾p.
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Definition: 𝘯𝘤-𝘳⦗𝗽p, 𝛉, 𝛉ɕ⦘
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𝘯𝘤-𝘳⦗nothing, 𝛉, 𝛉ɕ⦘
 [nothing]

𝘯𝘤-𝘳⦗ (exit 𝗻), 𝛉, 𝛉ɕ⦘
 [exit]

𝘯𝘤-𝘳⦗ (emit 𝗦), 𝛉, 𝛉ɕ⦘
 [emit]

𝘯𝘤-𝘳⦗pause, 𝛉, 𝛉ɕ⦘
 [pause]

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (trap 𝗽p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (trap 𝗽p), 𝛉, 𝛉ɕ⦘
 [trap]

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (suspend 𝗽p 𝗦), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (suspend 𝗽p 𝗦), 𝛉, 𝛉ɕ⦘
 [suspend]

𝛉(𝗦) = 0 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (if 𝗦 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [if-0]

𝛉(𝗦) = 1 𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (if 𝗦 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [if-1]

𝛉(𝗦) = ⊥ 𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘ 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (if 𝗦 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (if 𝗦 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [if-⊥]

0 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (seq 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (seq 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [seq-¬0]

0 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (seq 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘ 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (seq 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (seq 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [seq-0]

𝘯𝘤⦗𝗽p, 𝛉, sub⦗ (par 𝗽p 𝗾p), 𝗽p, 𝛉ɕ⦘⦘ 𝘯𝘤⦗𝗾p, 𝛉, sub⦗ (par 𝗽p 𝗾p), 𝗾p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (par 𝗽p 𝗾p), 𝛉, 𝛉ɕ⦘
 [par]

𝘯𝘤-𝘳⦗𝗽p, 𝛉, sub⦗ (ϱ ⟨{}, WAIT⟩. 𝗽p), 𝗽p, 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨{}, WAIT⟩. 𝗽p), 𝛉, 𝛉ɕ⦘
 [ρ-{}]

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ 𝛉r(𝗦) = ⊥ 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉 ← { 𝗦 ↦ ⊥ }⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉 ← { 𝗦 ↦ 0 }, sub⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), 𝛉, 𝛉ɕ⦘
 [ρ-0]

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ 𝛉(𝗦) ≠ ⊥

𝘯𝘤-𝘳⦗ (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉 ← { 𝗦 ↦ 1 }, sub⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), (ϱ ⟨(𝛉r \ {𝗦}), WAIT⟩. 𝗽p), 𝛉ɕ⦘⦘

𝘯𝘤-𝘳⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), 𝛉, 𝛉ɕ⦘
 [ρ-¬⊥]
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Definition: ⊢CB  𝗽

⊢CB  nothing
 [nothing]

⊢CB  pause
 [pause]

⊢CB  (emit 𝗦)
 [emit]

⊢CB  (exit 𝗻)
 [exit]

⊢CB  𝗽

⊢CB  (trap 𝗽)
 [trap]

⊢CB  𝗽

⊢CB  (signal 𝗦 𝗽)
 [signal]

⊢CB  𝗽 ⊢CB  𝗾

⊢CB  (if 𝗦 𝗽 𝗾)
 [if]

𝘉𝘝⦗𝗽⦘  ∩ 𝘍𝘝⦗𝗾⦘  = ∅ ⊢CB  𝗽 ⊢CB  𝗾

⊢CB  (seq 𝗽 𝗾)
 [seq]

{ 𝗦 } ∩ 𝘉𝘝⦗𝗽⦘  = ∅ ⊢CB  𝗽

⊢CB  (suspend 𝗽 𝗦)
 [suspend]

⊢CB  𝗽

⊢CB  (ϱ ⟨𝛉r, 𝗔⟩. 𝗽)
 [ρ]

𝘉𝘝⦗𝗽⦘  ∩ 𝘉𝘝⦗𝗾⦘  = ∅ 𝘍𝘝⦗𝗽⦘  ∩ 𝘉𝘝⦗𝗾⦘  = ∅ 𝘉𝘝⦗𝗽⦘  ∩ 𝘍𝘝⦗𝗾⦘  = ∅ 

⊢CB (par 𝗽 𝗾)
 [par]

A.4. Reduction Strategy

Definition: ⇁
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si
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[𝘀𝗶𝗴𝗻𝗮𝗹] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(signal 𝗦 𝗽)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽)])

 if leftmost⦗𝛉, 𝗔, (signal 𝗦 𝗽), 𝗘⦘
[𝗲𝗺𝗶𝘁] (ϱ ⟨𝛉, GO⟩. 𝗘[(emit 𝗦)])⇁

E (ϱ ⟨(𝛉 ← { 𝗦 ↦ 1 }), GO⟩. 𝗘[nothing])
 if leftmost⦗𝛉, GO, (emit 𝗦), 𝗘⦘ , 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘

[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[𝗽])  if leftmost⦗𝛉, 𝗔, (if 𝗦 𝗽 𝗾), 𝗘⦘ , 𝛉(𝗦) = 1

[𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[𝗾])

 if leftmost⦗𝛉, 𝗔, (if 𝗦 𝗽 𝗾), 𝗘⦘ , 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 𝛉(𝗦) = ⊥, 
𝗦 ∉ 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]), {}⦘

sh
ar

ed
 v

ar
ia
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[𝘀𝗵𝗮𝗿𝗲𝗱] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(shared 𝘀 := 𝗲 𝗽)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘀 ↦ ⟨𝗻 , old⟩ }, WAIT⟩. 𝗽)])

 if leftmost⦗𝛉, 𝗔, (shared 𝘀 := 𝗲 𝗽), 𝗘⦘ , 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉⦘ , 
∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉, 𝗔⟩ 𝗘[(shared 𝘀 := 𝗲 𝗽)]), ·⦘ , 𝗻 = 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉⦘
[𝘀𝗲𝘁-𝗼𝗹𝗱] (ϱ ⟨𝛉, GO⟩. 𝗘[(+= 𝘀 𝗲)])⇁

E (ϱ ⟨(𝛉 ← { 𝘀 ↦ ⟨𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉⦘  , new⟩ }), GO⟩. 𝗘[nothing])
 if leftmost⦗𝛉, GO, (+= 𝘀 𝗲), 𝗘⦘ , 𝛉(𝘀) = ⟨_ , old⟩, 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉⦘ , 
∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉, GO⟩ 𝗘[(+= 𝘀 𝗲)]), ·⦘
[𝘀𝗲𝘁-𝗻𝗲𝘄] (ϱ ⟨𝛉, GO⟩. 𝗘[(+= 𝘀 𝗲)])⇁

E (ϱ ⟨(𝛉 ← { 𝘀 ↦ ⟨𝗻 + 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉⦘  , new⟩ }), GO⟩. 𝗘[nothing])
 if leftmost⦗𝛉, GO, (+= 𝘀 𝗲), 𝗘⦘ , 𝛉(𝘀) = ⟨𝗻 , new⟩, 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉⦘ , 
∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉, GO⟩ 𝗘[(+= 𝘀 𝗲)]), ·⦘

se
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[𝘃𝗮𝗿] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(var 𝘅 := 𝗲 𝗽)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉⦘  }, WAIT⟩. 𝗽)])

 if leftmost⦗𝛉, 𝗔, (var 𝘅 := 𝗲 𝗽), 𝗘⦘ , 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉⦘ , 
∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉, 𝗔⟩ 𝗘[(var 𝘅 := 𝗲 𝗽)]), ·⦘
[𝘀𝗲𝘁-𝘃𝗮𝗿] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(:= 𝘅 𝗲)])⇁

E (ϱ ⟨(𝛉 ← { 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉⦘  }), 𝗔⟩. 𝗘[nothing])
 if leftmost⦗𝛉, 𝗔, (:= 𝘅 𝗲), 𝗘⦘ , 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉⦘ , 
∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ

sh⦗ (ϱ ⟨𝛉, 𝗔⟩ 𝗘[(:= 𝘅 𝗲)]), ·⦘
[𝗶𝗳-𝘁𝗿𝘂𝗲] (ϱ ⟨𝛉, GO⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)])⇁

E (ϱ ⟨𝛉, GO⟩. 𝗘[𝗽])
 if leftmost⦗𝛉, GO, (if!0 𝘅 𝗽 𝗾), 𝗘⦘ , 𝘅 ∈ 𝘥𝘰𝘮⦗𝛉⦘ , 𝛉(𝘅) ≠ 0

[𝗶𝗳-𝗳𝗮𝗹𝘀𝗲] (ϱ ⟨𝛉, GO⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)])⇁
E (ϱ ⟨𝛉, GO⟩. 𝗘[𝗾])  if leftmost⦗𝛉, GO, (if!0 𝘅 𝗽 𝗾), 𝗘⦘ , 𝛉(𝘅) = 0

ϱ [𝗺𝗲𝗿𝗴𝗲] (ϱ ⟨𝛉1, 𝗔1⟩. 𝗘[(ϱ ⟨𝛉2, 𝗔2⟩. 𝗽)])⇁
E (ϱ ⟨(𝛉1 ← 𝛉2), 𝗔1⟩. 𝗘[𝗽])

 if leftmost⦗𝛉1, 𝗔1, (ϱ ⟨𝛉2, 𝗔2⟩. 𝗽), 𝗘⦘ , 𝗔1 ≥ 𝗔2

se
q [𝘀𝗲𝗾-𝗱𝗼𝗻𝗲] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(seq nothing 𝗾)])⇁

E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[𝗾])  if leftmost⦗𝛉, 𝗔, (seq nothing 𝗾), 𝗘⦘
[𝘀𝗲𝗾-𝗲𝘅𝗶𝘁] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(seq (exit 𝗻) 𝗾)])⇁

E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(exit 𝗻)])  if leftmost⦗𝛉, 𝗔, (seq (exit 𝗻) 𝗾), 𝗘⦘

tr
ap [𝘁𝗿𝗮𝗽] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(trap 𝗽S)])⇁

E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[↓p 𝗽S])  if leftmost⦗𝛉, 𝗔, (trap 𝗽S), 𝗘⦘

pa
r [𝗽𝗮𝗿𝗿] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(par 𝗽S 𝗽D)])⇁

E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[𝗽S ⊓∥ 𝗽
D])  if leftmost⦗𝛉, 𝗔, (par 𝗽S 𝗽D), 𝗘⦘

[𝗽𝗮𝗿𝗹] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(par 𝗽̂ 𝗽S)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[𝗽̂ ⊓∥ 𝗽

S])  if leftmost⦗𝛉, 𝗔, (par 𝗽̂ 𝗽S), 𝗘⦘

[𝘀𝘂𝘀𝗽𝗲𝗻𝗱] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(suspend 𝗽S 𝗦)])⇁
E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[𝗽S])  if leftmost⦗𝛉, 𝗔, (suspend 𝗽S 𝗦), 𝗘⦘

lo
op [𝗹𝗼𝗼𝗽] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(loop 𝗽)])⇁

E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(loop 𝗽 𝗽)])  if leftmost⦗𝛉, 𝗔, (loop 𝗽), 𝗘⦘
[𝗹𝗼𝗼𝗽^𝘀𝘁𝗼𝗽-𝗲𝘅𝗶𝘁] (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(loop (exit 𝗻) 𝗾)])⇁

E (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(exit 𝗻)])  if leftmost⦗𝛉, 𝗔, (loop (exit 𝗻) 𝗾), 𝗘⦘
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Definition: leftmost⦗𝛉r, 𝗔, 𝗽, 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽, ○, 𝗘⦘

leftmost⦗𝛉, 𝗔, 𝗽, 𝗘⦘

Definition: leftmost*⦗𝛉r, 𝗔, 𝗽, 𝗘1, 𝗘2⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, ○⦘
 [hole]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(seq ○ 𝗾)], 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (seq 𝗘 𝗾)⦘
 [seq]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(loop ○ 𝗾)], 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (loop 𝗘 𝗾)⦘
 [loop^stop]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(par ○ 𝗾)], 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (par 𝗘 𝗾)⦘
 [parl]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(par 𝗽D ○)], 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (par 𝗽D 𝗘)⦘
 [par-done]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(par 𝗽 ○)], 𝗘⦘ 𝛉; 𝗔; 𝗘[(par ○ 𝗘[𝗽o])] ⊢B 𝗽

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (par 𝗽 𝗘)⦘
 [par-blocked]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(suspend ○ 𝗦)], 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (suspend 𝗘 𝗦)⦘
 [suspend]

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘[(trap ○)], 𝗘⦘

leftmost*⦗𝛉, 𝗔, 𝗽o, 𝗘, (trap 𝗘)⦘
 [trap]
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APPENDIX B

Proofs

B.1. Core Theorems

This section contains the core proofs to justify soundness, adequacy, and consistency of the calculus with respect to

the compilation function. The core theorem for soundness is theorem 29 (Soundness), however the most informative

theorem is theorem 34 (Soundness of Step). The core theorem for adequacy is theorem 30 (Computational Adequacy),

but the most informative theorems are lemma 57 (Strongly Canonicalizing), lemma 60 (Esterel Value is Circuit Value),

and lemma 67 (Adequacy of Can). The theorem for consistency is theorem 31 (Consistency of Eval), which in this case

is essentially a corollary of theorem 30 (Computational Adequacy). Some proofs are proved using Circuitous in Jypter

notebooks using the Racket kernel: https://github.com/rmculpepper/iracket. These Notebooks may be found in the

repository for this Dissertation.

Theorem 29 (Soundness).

For all 𝗽p and 𝗾p, if ⊢CB  𝗽
p, 𝗽p ≡E 𝗾p, ⟦𝗽p⟧(SEL) ≃ 0, and ⟦𝗾p⟧(SEL) ≃ 0 then ⟦𝗽p⟧ ≃C ⟦𝗾p⟧

Interpretation.This theorem says that, at least for the first instant/cycle ≡E agrees with ≃C. Therefore any change to

a program which can be proven correct by ≡E is correct under ≃C.

Proof.

Cases of ≡E:
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Case 1:sym

In this case we have 𝗽p ≡E 𝗾p because 𝗾p ≡E 𝗽p. This case follows by induction and by lemma 35 (Symmetry of circuit

contextual equality).

Case 2:trans

In this case we have 𝗽p ≡E 𝗾p there exists some 𝗿p where 𝗽p ≡E 𝗿p and 𝗿p ≡E 𝗾p. This case case follows induction and

by lemma 36 (Transitivity of circuit contextual equality).

Case 3:refl

In this case we have 𝗽p ≡E 𝗾p because 𝗽p = 𝗾p. This case follows by lemma 37 (Reflexivity of circuit contextual

equality).

Case 4:ctx

𝗽p ≡E 𝗾p because 𝗽p = 𝗖p[𝗽pi], 𝗾
p = 𝗖p[𝗾pi], and 𝗽pi ≡

E 𝗾pi.

This case follows by lemma 33 (Soundness of context closure), and induction on 𝗽pi ≡
E 𝗾pi.

Case 5:step

In this case we have 𝗽p ≡E 𝗾p because 𝗽p ⇀
E 𝗾p. This case is given by theorem 34 (Soundness of Step).

�

Theorem 30 (Computational Adequacy).

For all 𝗽p, 𝗢, if closed⦗𝗽GO
p ⦘ and ⟦𝗽GO

p ⟧(SEL) ≃ 0 then

𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽GO
p ⦘  = ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩ if and only if 𝘦𝘷𝘢𝘭 C⦗𝗢, ⟦𝗽GO

p ⟧⦘  = ⟨𝛉 , 𝗯𝗼𝗼𝗹⟩

Interpretation.This theorem states that the calculus can defined an evaluator which is the same an evaluator for Esterel

which we take as the ground-truth semantics.

Proof.
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1. By lemma 57 (Strongly Canonicalizing) and lemma 69 (Non-stepping terms are values) we the fact that

⟶E is a subrelation of ≡E, and the fact that 𝗽GO
p is closed, we can conclude that there exists some

𝗾 = (ϱ ⟨𝛉r, GO⟩. 𝗿p), where 𝗽 ≡E 𝗾, such that either 𝗿p ∈ 𝗽D which (by canₛ-done, is 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r, 𝗿p⦘ ,

or we have 𝛉r; GO; ○ ⊢B 𝗿
p.

2. Cases of (1):

Case 1:𝗿p ∈ 𝗽D

By the definition of 𝘦𝘷𝘢𝘭 E, it must return tt for the constructiveness of 𝗽p. By lemma 61 (Done is Construc-

tive), 𝘦𝘷𝘢𝘭 C must do the same.

By theorem 29 (Soundness), both evaluators must agree on the value of the signal wires, and thus give back

the same 𝛉.

Case 2:𝛉r; GO; ○ ⊢B 𝗿
p

The constructiveness of both evaluators follows direclty from lemma 62 (Blocked terms are non-constructive).

By theorem 29 (Soundness), both evaluators must agree on the value of the signal wires, and thus give back

the same 𝛉.

�

Theorem 31 (Consistency of Eval).

For all 𝗽GO
p and 𝗢, if closed⦗𝗽GO

p ⦘ , 𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽GO
p ⦘  = ⟨𝛉1 , 𝗯𝗼𝗼𝗹1⟩,

and 𝘦𝘷𝘢𝘭 E⦗𝗢, 𝗽GO
p ⦘  = ⟨𝛉2 , 𝗯𝗼𝗼𝗹2⟩,

then ⟨𝛉1 , 𝗯𝗼𝗼𝗹1⟩ = ⟨𝛉2 , 𝗯𝗼𝗼𝗹2⟩.

Interpretation.This theorem states that 𝘦𝘷𝘢𝘭 E is a function.

Proof.
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This follows directly from theorem 30 (Computational Adequacy). As theorem 30 (Computational Adequacy) states that

the relations defined by 𝘦𝘷𝘢𝘭 E and 𝘦𝘷𝘢𝘭 C ∘ ⟦·⟧, thus as 𝘦𝘷𝘢𝘭 C and ⟦·⟧ are functions, 𝘦𝘷𝘢𝘭 E must be as well. �

B.2. Soundness

This section contains some of the basic lemma’s needed for soundness.

Theorem 32 (Soundness of guarded terms).

For all 𝗽p and 𝗾p, if ⊢CB  𝗽
p, 𝗽p ≡E 𝗾p, ⟦𝗽p⟧(SEL) ≃ 0, ⟦𝗾p⟧(SEL) ≃ 0, and then ⟦𝗽⟧ ≃C ⟦𝗾⟧

Interpretation.This theorem says that, at least for the first instant/cycle ≡E agrees with ≃C. Therefore any change to

a program which can be proven correct by ≡E is correct under ≃C.

Proof.

Cases of ≡E:

Case 1:sym

In this case we have 𝗽p ≡E 𝗾p because 𝗾p ≡E 𝗽p. This case follows by induction and by lemma 35 (Symmetry of circuit

contextual equality).

Case 2:trans

In this case we have 𝗽p ≡E 𝗾p there exists some 𝗿p where 𝗽p ≡E 𝗿p and 𝗿p ≡E 𝗾p. This case case follows induction and

by lemma 36 (Transitivity of circuit contextual equality).

Case 3:refl

In this case we have 𝗽p ≡E 𝗾p because 𝗽p = 𝗾p. This case follows by lemma 37 (Reflexivity of circuit contextual

equality).
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Case 4:ctx

𝗽p ≡E 𝗾p because 𝗽p = 𝗖p[𝗽pi], 𝗾
p = 𝗖p[𝗾pi], and 𝗽pi ≡

E 𝗾pi.

This case follows by lemma 33 (Soundness of context closure), and induction on 𝗽pi ≡
E 𝗾pi.

Case 5:step

In this case we have 𝗽p ≡E 𝗾p because 𝗽p ⇀
E 𝗾p. This case is given by theorem 34 (Soundness of Step).

�

Lemma 33 (Soundness of context closure).

For all 𝗖p, 𝗽p and 𝗾p, if ⟦𝗽p⟧ ≃C ⟦𝗾p⟧, then ⟦𝗖p[𝗽p]⟧ ≃C ⟦𝗖p[𝗾p]⟧

Proof.

This proof follows direclty by induction on 𝗖p, as ⟦·⟧ is defined inductively on the same structure, and will add the

same out circuit contexts to each term. �

Theorem 34 (Soundness of Step).

For all 𝗽p and 𝗾p, if ⊢CB  𝗽
p, 𝗽p ⇀

E 𝗾p, ⟦𝗽p⟧(SEL) = 0, and ⟦𝗾p⟧(SEL) = 0 then ⟦𝗽p⟧ ≃C ⟦𝗾p⟧

Interpretation.This theorem says that, at least for the first instant/cycle ⇀
E agrees with ≃C.

Proof.

Cases of 𝗽p ⇀
E 𝗾p:

Case 1:[𝗽𝗮𝗿-𝘀𝘄𝗮𝗽]

In this case we have (par 𝗽p 𝗾p)⇀
E(par 𝗾p 𝗽p)

This is given by lemma 38 (par-swap is sound).
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Case 2:[𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴]

In this case we have (par nothing 𝗽D)⇀
E𝗽D

This is given by lemma 39 (par-nothing is sound).

Case 3:[𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁]

In this case we have (par (exit 𝗻) 𝗽̂)⇀
E(exit 𝗻)

This is given by lemma 44 (par1-exit is sound).

Case 4:[𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁]

In this case we have (par (exit 𝗻1) (exit 𝗻2))⇀
E(exit 𝘮𝘢𝘹⦗𝗻1 , 𝗻2⦘ )

This is given by lemma 43 (par2-exit is sound).

Case 5:[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗽p])

where

𝛉r(𝗦) = 1

This is given by lemma 48 (is-present is sound).

Case 6:[𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗾p])

where

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

𝛉r(𝗦) = ⊥

𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩.𝗘p[(if 𝗦𝗽p𝗾p)]), {}⦘

This is given by lemma 49 (is-absent is sound).

Case 7:[𝘀𝗲𝗾-𝗱𝗼𝗻𝗲]

In this case we have (seq nothing 𝗾p)⇀
E𝗾p

This is given by lemma 42 (seq-done is sound).
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Case 8:[𝘀𝗲𝗾-𝗲𝘅𝗶𝘁]

In this case we have (seq (exit 𝗻) 𝗾p)⇀
E(exit 𝗻)

This is given by lemma 45 (seq-exit is sound).

Case 9:[𝘀𝘂𝘀𝗽𝗲𝗻𝗱]

In this case we have (suspend 𝗽S 𝗦)⇀
E𝗽S

This is given by lemma 41 (suspend is sound).

Case 10:[𝘁𝗿𝗮𝗽]

In this case we have (trap 𝗽S)⇀
E↓p 𝗽S

This is given by lemma 40 (trap is sound).

Case 11:[𝘀𝗶𝗴𝗻𝗮𝗹]

In this case we have (signal 𝗦 𝗽p)⇀
E(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽p)

This is given by lemma 46 (signal is sound).

Case 12:[𝗺𝗲𝗿𝗴𝗲]

In this case we have (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘

p[(ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽

p)])⇀
E(ϱ ⟨(𝛉r

1 ← 𝛉r
2), 𝗔1⟩. 𝗘

p[𝗽p])

where

𝗔1 ≥ 𝗔2

This is given by lemma 50 (merge is sound).

Case 13:[𝗲𝗺𝗶𝘁]

In this case we have (ϱ ⟨𝛉r, GO⟩. 𝗘p[(emit 𝗦)])⇀
E(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘p[nothing])

where

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

This is given by lemma 47 (Emit is sound).

�
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Lemma 35 (Symmetry of circuit contextual equality).

For all ɕ1, ɕ2, if ɕ1 ≃
C ɕ2 then ɕ2 ≃

C ɕ1

Proof.

As ≃C is defined, at its core, on equality of sequences of booleans, and that equality is symmetric, ≃C must be as

well. �

Lemma 36 (Transitivity of circuit contextual equality).

For all ɕ1, ɕ2, ɕ3 if ɕ1 ≃
C ɕ2 and ɕ2 ≃

C ɕ3 then ɕ1 ≃
C ɕ3

Proof.

As ≃C is defined, at its core, on equality of sequences of Booleans, and that equality is transitive, ≃C must be as

well. �

Lemma 37 (Reflexivity of circuit contextual equality).

For all ɕ, ɕ ≃C ɕ

Proof.

This follows directly from the definition of ≃C, which relies on running the two circuits. As, in this case, the two

circuits are the same then they will behave the same on all inputs. �
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B.3. Reduction Relation Properties

This section contains lemmas and proofs that justify that the reduction relation ⇀
E is sound with respect to the

compilation function.

Lemma 38 (par-swap is sound).

For all 𝗽p and 𝗾p, ⟦(par 𝗽p 𝗾p)⟧ ≃C ⟦(par 𝗾p 𝗽p)⟧

Proof.

This can be seen trivally, as the graphs of ⟦(par 𝗽p 𝗾p)⟧ and ⟦(par 𝗾p 𝗽p)⟧ are symmetric. �

Lemma 39 (par-nothing is sound).

For all 𝗽D, ⟦(par nothing 𝗽D)⟧ ≃C ⟦𝗽D⟧

Proof.

This proof is given in the notebook [par-done], which actually shows the more general

⟦(par nothing 𝗽p)⟧ ≃C ⟦𝗽p⟧. �

Lemma 40 (trap is sound).

For all 𝗽S, ⟦(trap 𝗽S)⟧ ≃C ⟦↓p 𝗽S⟧

Proof.

Cases of 𝗽S:

Case 1:𝗽S=nothing
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Example:

> (assert-same

(compile-esterel (term (trap nothing)))

(compile-esterel (term (harp nothing))))

.

Case 2:𝗽S=(exit 0)

Example:

> (assert-same

(compile-esterel (term (trap (exit 0))))

(compile-esterel (term (harp (exit 0)))))

.

Case 3:𝗽S=(exit 𝗻)

Where 𝗻 > 0.

In this case, ↓p (exit 𝗻) = (exit 𝗻-1).

If we draw the circuit for ⟦(exit 𝗻)⟧ and ⟦(exit 𝗻-1)⟧, we see that they give us the same graph.

�

Lemma 41 (suspend is sound).

For all 𝗽D and 𝗦, ⟦(suspend 𝗽D 𝗦)⟧ ≃C ⟦𝗽D⟧

Proof.
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This is proved in the [suspend] notebook. �

Lemma 42 (seq-done is sound).

For all 𝗾p, ⟦(seq nothing 𝗾p)⟧ ≃C ⟦𝗾p⟧

Proof.

⟦(seq nothing 𝗾p)⟧ just connections the GO wire to ⟦𝗾p⟧(GO), which is exactly ⟦𝗾p⟧. Thus the two circuits are

identical. �

Lemma 43 (par2-exit is sound).

For all 𝗻1 and 𝗻2, ⟦(par (exit 𝗻1) (exit 𝗻2))⟧ ≃C ⟦(exit 𝘮𝘢𝘹⦗𝗻1 , 𝗻2⦘ )⟧

Proof.

Cases of 𝗻1 = 𝗻2, 𝗻1 > 𝗻2, and 𝗻1 < 𝗻2:

Case 1:𝗻1 = 𝗻2

Induction on 𝗻1:

Case 1.i:𝗻1=0

See [par-2exit] notebook

Case 1.ii:𝗻1=1+𝗺

Note that in this case the lem-n wire in the the synchronizer will be equal to lem, as all other exit codes will be 0,

and therefore lem-n = lem ∨ 0 .... The same will hold for rem-n. We now can see that we have a synchronizer of

the same shape as in the previous subcase. Thus the remainder of this proof proceeds in the same way.

Case 2:𝗻1 > 𝗻2

Induction on 𝗻2:
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Case 2.i:𝗻2=0

Note that all ln up to l2+n1 must be 0. Therefore all kn up to that point must be 0. The notebook [par-2exit] shows

that the remainder of the synchronizer behaves as ⟦(exit 𝗻1)⟧.

Case 2.ii:𝗻2=1+𝗺

All kn up to kn2 must be zero as there are no corresponding ln or rn wires. From this point we can use analogous

reasoning to the previous subcase.

Case 3:𝗻1 < 𝗻2

This case analogous to the previous case, as the synchronizer (and par) are symmetric.

�

Lemma 44 (par1-exit is sound).

For all 𝗻 and 𝗽̂, ⟦(par (exit 𝗻) 𝗽̂)⟧ ≃C ⟦(exit 𝗻)⟧

Proof.

The proof of this is given in the [par1-exit] notebook. �

Lemma 45 (seq-exit is sound).

For all 𝗻 and 𝗾p, if ⟦(seq (exit 𝗻) 𝗾p)⟧(SEL) ≃ 0 then ⟦(seq (exit 𝗻) 𝗾p)⟧ ≃C ⟦(exit 𝗻)⟧

Proof.

By ⟦(seq (exit 𝗻) 𝗾p)⟧(SEL) ≃ 0, it must be that ⟦𝗾p⟧(SEL) ≃ 0. Thus by lemma 76 (Activation Condition) all out-

put wires of ⟦𝗾p⟧ are 0. Thus the only wire which can be true is K2+n, which in this case will be equal to

⟦(exit 𝗻)⟧(K2+n). In addition by lemma 78 (Constructive unless Activated) ⟦𝗾p⟧ never exhibits non-constructive

behavior, thus this circuit is always constructive. Thus the two circuits are equal. �
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Lemma 46 (signal is sound).

For all 𝗦 and 𝗽p, ⟦(signal 𝗦 𝗽p)⟧ ≃C ⟦(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽p)⟧

Proof.

⟦(signal 𝗦 𝗽p)⟧ connects the input and output𝗦wires to each other, and passesGO along unchanged. ⟦(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽p)⟧

does the same, therefore the two circuits are identical. �

Lemma 47 (Emit is sound).

For all 𝗿p = (ϱ ⟨𝛉r, GO⟩. 𝗘p[(emit 𝗦)]),

⟦(ϱ ⟨𝛉r, GO⟩. 𝗘p[(emit 𝗦)])⟧ ≃C ⟦(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘p[nothing])⟧

Proof.

Induction on 𝗘p:

Case 1:𝗘p=○

This follows trivially, as an empty context connects GO directly so the signal, which is forced to be 1 by our environ-

ment.

Case 2:𝗘p=𝗘𝟭p[𝗘p
i]

Note that the right hand side of the reduction forces ⟦𝛉r(𝗦)⟧ to compile as ⟦1⟧ and it replaces ⟦(emit 𝗦)⟧ a circuit

that sets ⟦(emit 𝗦)⟧(𝗦o) = 0. Nothing else is changed. By lemma 82 (S output irrelevant) any 𝗦o is only read by

its corresponding binder, which in this case is 𝛉 by lemma 79 (S is maintained across E). Finally we know that the

⟦(emit 𝗦)⟧(𝗦o) ≃ ⟦𝗽p⟧(GO) by lemma 80 (GO is maintained across E). Therefore we change the value of no wires, so

the circuits are the same.

�
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Lemma 48 (is-present is sound).

For all 𝗿p = (ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)]),

if ⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⟧(SEL) ≃ 0 and 𝛉(𝗦) = 1 then,

⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⟧ ≃C ⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[𝗽p])⟧

Proof.

As ⟦𝛉⟧ will force the 𝗦i wire to be 1, by lemma 79 (S is maintained across E) we know that

⟦(if 𝗦 𝗽p 𝗾p)⟧(𝗦i) ≃ 1. Thus it suffices to show that ⟦(if 𝗦 𝗽p 𝗾p)⟧ ≃C ⟦𝗽p⟧ under this condition. This proof is given

in the [is-present] notebook. �

Lemma 49 (is-absent is sound).

For all 𝗿p = (ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)]),

if 𝛉(𝗦) = ⊥,

𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)]), {}⦘ and,

⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⟧(SEL) ≃ 0,

then

⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)])⟧ ≃C ⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[𝗾p])⟧

Proof.

Let 𝗽outer be (ϱ ⟨𝛉, 𝗔⟩. 𝗘p[(if 𝗦 𝗽p 𝗾p)]), the left hand side of the reduction. This can be proved by the following

steps:

1. By lemma 79 (S is maintained across E) and lemma 80 (GO is maintained across E) we know that ⟦𝗽pouter⟧(𝗦
i) ≃ ⟦(if 𝗦 𝗽p 𝗾p)⟧(𝗦i)

and ⟦𝗽pouter⟧(GO) ≃ ⟦(if 𝗦 𝗽p 𝗾p)⟧(GO)

2. By lemma 71 (Can S is sound) and our premise that ⟦𝗽pouter⟧(SEL) ≃ 0, we know that ⟦𝗽pouter⟧(𝗦
o) ≃ 0.
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3. By the definition of ⟦·⟧ on ϱ, we know that ⟦(if 𝗦 𝗽p 𝗾p)⟧(𝗦i) ≃ ⟦(if 𝗦 𝗽p 𝗾p)⟧(𝗦o)

4. By (1), (2) & (3), we know that ⟦(if 𝗦 𝗽p 𝗾p)⟧(𝗦i) ≃ 0.

5. By lemma 81 (Selection Definition), ⟦𝗽pouter⟧(SEL) ≃ ⟦𝗽p⟧(SEL) ∨ ⟦𝗾p⟧(SEL) ∨ 𝘄others ...

6. By (5) and our premise that ⟦𝗽pouter⟧(SEL) ≃ 0, we know that ⟦(if 𝗦 𝗽p 𝗾p)⟧(SEL) ≃ 0

7. Under (6) and lemma 76 (Activation Condition) we can show that ⟦(if 𝗦 𝗽p 𝗾p)⟧ ≃C ⟦𝗾p⟧. This is done in

the [is-absent] notebook.

�

Lemma 50 (merge is sound).

For all 𝗿p = (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘

p[(ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽

p)]) if 𝗔1 ≥ 𝗔2 and ⊢CB  (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘

p[(ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽

p)]) then

⟦(ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘

p[(ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽

p)])⟧ ≃C ⟦(ϱ ⟨𝛉r
1 ← 𝛉r

2, 𝗔1⟩. 𝗘
p[𝗽p])⟧

Proof.

This is a direct consequence of lemma 52 (Can Lift Environments) and lemma 51 (Merge Adjacent Environments). �

Lemma 51 (Merge Adjacent Environments).

For all 𝗽p, 𝛉r
1, 𝛉

r
2, 𝗔1 and 𝗔2, if 𝗔1 ≥ 𝗔2 then ⟦(ϱ ⟨𝛉r

1, 𝗔1⟩. (ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽

p))⟧ ≃C ⟦(ϱ ⟨𝛉r
1 ← 𝛉r

2, 𝗔1⟩. 𝗽
p)⟧

Proof.

Sketch: The compilation of ϱ only changes the outputs of its inner circuit in that it closes some of the signal wires,

and that it only changes input values of some signals and the GO wire. Thus, we can argue that that equivalence base

on three facts. First, that 𝛉r
1 ← 𝛉r

2 closes the same signals as the two nested environments. Second that these signals

are closed in the same way: that is they input part of the signal will receive the same value. Third, that the value of the
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GO wire does not change. In a sense, this means that the only effect of this rule is to move wires from one ”spot” in

the circuit to another, without changing their connections.

1. By the definition of ←, 𝘥𝘰𝘮⦗𝛉r
1 ← 𝛉r

2⦘  = 𝘥𝘰𝘮⦗𝛉r
1⦘  ∪ 𝘥𝘰𝘮⦗𝛉r

2⦘ .

2. by the definition of ⟦·⟧, compiling a ϱ closes only the wires in its 𝛉r’s domain, we can see that the same

wires are closed both expressions.

3. By (1) and (2), inputs⦗⟦(ϱ ⟨𝛉r
1, 𝗔1⟩. (ϱ ⟨𝛉r

2, 𝗔2⟩. 𝗽
p))⟧⦘  = inputs⦗⟦(ϱ ⟨𝛉r

1 ← 𝛉r
2, 𝗔1⟩. 𝗽

p)⟧⦘ and

outputs⦗⟦(ϱ ⟨𝛉r
1, 𝗔1⟩. (ϱ ⟨𝛉r

2, 𝗔2⟩. 𝗽
p))⟧⦘  = outputs⦗⟦(ϱ ⟨𝛉r

1 ← 𝛉r
2, 𝗔1⟩. 𝗽

p)⟧⦘

4. The compilation of (ϱ ⟨𝛉r
2, 𝗔2⟩. ○) will prevent the compilation of (ϱ ⟨𝛉r

1, 𝗔1⟩. ○) from modifying any

signals in the domain of 𝛉2, meaning those signals will get values as specified by the compilation of 𝛉r
2. In

addition 𝛉r
1 ← 𝛉r

2 keep the value of any signal in 𝛉r
2, therefore those signals will compile the same way.

Thus the value of no input signal is changed.

5. By (3) and (4), we know that for all𝗦 ∈ inputs⦗⟦𝗽p⟧⦘ , in ⟦(ϱ ⟨𝛉r
1, 𝗔1⟩. (ϱ ⟨𝛉r

2, 𝗔2⟩. 𝗽
p))⟧ ⟦𝗽p⟧ \ 𝛉r

1 ← 𝛉r
2,

and in ⟦(ϱ ⟨𝛉r
1 ← 𝛉r

2, 𝗔1⟩. 𝗽
p)⟧, ⟦𝗽p⟧ \ 𝛉r

1 ← 𝛉r
2.

6. As 𝗔1 ≥ 𝗔2 we know that either both are GO, both are WAIT, or 𝗔1 = GO and 𝗔2 = WAIT. In each

case we can see that the actual value on ⟦𝗽p⟧(GO) remains the same. That is, in both cases, ⟦𝗽p⟧ \ 𝗔1.

7. The compilation of ϱ does not change the other control inputs and outputs of ⟦𝗽p⟧.

8. By (5), (6), and (7), the inputs and outputs of ⟦𝗽p⟧ are not changed, thus the behavior of the circuit is not

changed.

�

Lemma 52 (Can Lift Environments).

For all 𝗽, 𝗘, 𝛉, and𝗔, if either𝗔 = WAIT or𝗔 = GO and ⟦𝗘p[(ϱ ⟨𝛉, 𝗔⟩. 𝗽p)]⟧(GO) = 1, and⊢CB  𝗘
p[(ϱ ⟨𝛉, 𝗔⟩. 𝗽p)],

then
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⟦𝗘p[(ϱ ⟨𝛉, 𝗔⟩. 𝗽p)]⟧ ≃C ⟦(ϱ ⟨𝛉, 𝗔⟩. 𝗘p[𝗽p])⟧

Proof.

This proof proceeds in two parts. First, by lemma 80 (GO is maintained across E), we know that lifting 𝗔 across won’t

change the value of the GO wire of any subcircuit because either 𝗔 = WAIT, in which case its compilation does not

change the GO wire at all, or 𝗔 = GO, in which case it will force the GO wire to be 1. But in this second case our

hypothesis states that the GO wire was already 1, so nothing has changed.

Second, by ⊢CB  𝗘
p[(ϱ ⟨𝛉, 𝗔⟩. 𝗽p)] we know that the free variables of 𝗘 and the bound variables of (ϱ ⟨𝛉, 𝗔⟩. 𝗽p) are

distinct. Thus lifting 𝛉 will not capture any new variables, therefore by lemma 83 (Free Variables are Input/Outputs),

the compilation of 𝛉 will connect the exact same wires resulting in a circuit that is structurally the same after the lift.

Thus lifting the signal environment also changes nothing. �

Lemma 53 (Correct binding is preserved).

For all 𝗽, 𝗾, if 𝗽 ⇀
E 𝗾 and ⊢CB  𝗽 them ⊢CB  𝗾

Proof.

Cases of 𝗽 ⇀
E 𝗾:

Case 1:[𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴]

In this case we have (par nothing 𝗽D)⇀
E𝗽D

By the definition of ⊢CB, our premise gives us that ⊢CB  𝗽
D.

Case 2:[𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁]

In this case we have (par (exit 𝗻) 𝗽̂)⇀
E(exit 𝗻)

For any 𝗻, ⊢CB  (exit 𝗻) by the definition of ⊢CB.
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Case 3:[𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁]

In this case we have (par (exit 𝗻1) (exit 𝗻2))⇀
E(exit 𝘮𝘢𝘹⦗𝗻1 , 𝗻2⦘ )

For any 𝗻, ⊢CB  (exit 𝗻) by the definition of ⊢CB.

Case 4:[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗽])

where

𝛉r(𝗦) = 1

1. By the definition of 𝘉𝘝 and 𝘍𝘝 𝘉𝘝⦗ (if 𝗦 𝗽 𝗾)⦘  ⊆ 𝘉𝘝⦗𝗾⦘ and 𝘍𝘝⦗ (if 𝗦 𝗽 𝗾)⦘  ⊆ 𝘍𝘝⦗𝗾⦘

2. By lemma 56 (Subterms have correct binding), we know that ⊢CB  𝗾.

3. By (1), (2), and lemma 54 (Correct binding in preserve by context insertion) we know that ⊢CB  𝗘[𝗾].

4. By (3), we can conclude that ⊢CB  (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗽]).

Case 5:[𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗾])

where

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

𝛉r(𝗦) = ⊥

𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩.𝗘[(if 𝗦𝗽𝗾)]), {}⦘

This case is analogous to the previous one

Case 6:[𝘀𝗲𝗾-𝗱𝗼𝗻𝗲]

In this case we have (seq nothing 𝗾)⇀
E𝗾

by the definition of ⊢CB  (seq nothing 𝗾), we know that ⊢CB  𝗾
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Case 7:[𝘀𝗲𝗾-𝗲𝘅𝗶𝘁]

In this case we have (seq (exit 𝗻) 𝗾)⇀
E(exit 𝗻)

For any 𝗻, ⊢CB  (exit 𝗻) by the definition of ⊢CB.

Case 8:[𝘀𝘂𝘀𝗽𝗲𝗻𝗱]

In this case we have (suspend 𝗽S 𝗦)⇀
E𝗽S

By the definition of ⊢CB  (suspend 𝗽S 𝗦), we know that ⊢CB  𝗽
S

Case 9:[𝘁𝗿𝗮𝗽]

In this case we have (trap 𝗽S)⇀
E↓p 𝗽S

As 𝗽S is either nothing or (exit 𝗻), we know by the definition of ⊢CB that ⊢CB  𝗽
S.

Case 10:[𝘀𝗶𝗴𝗻𝗮𝗹]

In this case we have (signal 𝗦 𝗽)⇀
E(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽)

As this proof does not change the bound or free variables, the term should remain ⊢CB.

Case 11:[𝗺𝗲𝗿𝗴𝗲]

In this case we have (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘[(ϱ ⟨𝛉r

2, 𝗔2⟩. 𝗽)])⇀
E(ϱ ⟨(𝛉r

1 ← 𝛉r
2), 𝗔1⟩. 𝗘[𝗽])

where

𝗔1 ≥ 𝗔2

This case is given by R-maintain-lift-0 in the Agda codebase.

Case 12:[𝗲𝗺𝗶𝘁]

In this case we have (ϱ ⟨𝛉r, GO⟩. 𝗘[(emit 𝗦)])⇀
E(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘[nothing])

where

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

This follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 13:[𝗹𝗼𝗼𝗽]

In this case we have (loop 𝗽)⇀
E(loop 𝗽 𝗽)
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The premise of ⊢CB  (loop 𝗽) gives us that the bound and free variables of 𝗽 are distinct. This give us the premise of

⊢CB  (loop 𝗽 𝗽).

Case 14:[𝗹𝗼𝗼𝗽^𝘀𝘁𝗼𝗽-𝗲𝘅𝗶𝘁]

In this case we have (loop (exit 𝗻) 𝗾)⇀
E(exit 𝗻)

For any 𝗻, ⊢CB  (exit 𝗻) by the definition of ⊢CB.

Case 15:[𝗽𝗮𝗿-𝘀𝘄𝗮𝗽]

In this case we have (par 𝗽 𝗾)⇀
E(par 𝗾 𝗽)

As set intersection is associative, this follows directly.

Case 16:[𝘀𝗵𝗮𝗿𝗲𝗱]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(shared 𝘀 := 𝗲 𝗽)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘀 ↦ ⟨𝗻 , old⟩ }, WAIT⟩. 𝗽)])

where

𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘

∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(shared𝘀:=𝗲𝗽)]), ·⦘

𝗻 = 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘

This follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 17:[𝘃𝗮𝗿]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(var 𝘅 := 𝗲 𝗽)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(ϱ ⟨{ 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  }, WAIT⟩. 𝗽)])

where

𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘

∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(var𝘅:=𝗲𝗽)]), ·⦘

This follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 18:[𝘀𝗲𝘁-𝘃𝗮𝗿]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(:= 𝘅 𝗲)])⇀
E(ϱ ⟨(𝛉r ← { 𝘅 ↦ 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  }), 𝗔⟩. 𝗘[nothing])

where

𝘅 ∈ 𝘥𝘰𝘮⦗𝛉r⦘
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𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘

∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗔⟩ 𝗘[(:=𝘅𝗲)]), ·⦘

This follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 19:[𝗶𝗳-𝗳𝗮𝗹𝘀𝗲]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗾])

where

𝛉r(𝘅) = 0

This case follows by an analogous argument to the case for [𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁].

Case 20:[𝗶𝗳-𝘁𝗿𝘂𝗲]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if!0 𝘅 𝗽 𝗾)])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗽])

where

𝘅 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

𝛉r(𝘅) ≠ 0

This case follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 21:[𝘀𝗲𝘁-𝗼𝗹𝗱]

In this case we have (ϱ ⟨𝛉r, GO⟩. 𝗘[(+= 𝘀 𝗲)])⇀
E(ϱ ⟨(𝛉r ← { 𝘀 ↦ ⟨𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  , new⟩ }), GO⟩. 𝗘[nothing])

where

𝛉r(𝘀) = ⟨_ , old⟩

𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘

∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗘[(+= 𝘀𝗲)]⟩ )), ·⦘

This case follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 22:[𝘀𝗲𝘁-𝗻𝗲𝘄]

In this case we have (ϱ ⟨𝛉r, GO⟩. 𝗘[(+= 𝘀 𝗲)])⇀
E(ϱ ⟨(𝛉r ← { 𝘀 ↦ ⟨𝗻 + 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘  , new⟩ }), GO⟩. 𝗘[nothing])

where

𝘍𝘝⦗𝗲⦘  ⊆ 𝘥𝘰𝘮⦗𝛉r⦘
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𝛉r(𝘀) = ⟨_ , new⟩

∀ 𝘀 ∈ 𝘍𝘝⦗𝗲⦘ . 𝘀 ∉ 𝘊𝘢𝘯ϱ
sh⦗ (ϱ ⟨𝛉r, 𝗘[(+= 𝘀𝗲)]⟩ )), ·⦘

𝗻 = 𝘦𝘷𝘢𝘭 H ⦗𝗲 , 𝛉r⦘

This case follows by an analogous argument to the case for [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

�

Lemma 54 (Correct binding in preserve by context insertion).

For all 𝗘, 𝗽, 𝗾, if 𝘍𝘝⦗𝗾⦘  ⊆ 𝘍𝘝⦗𝗽⦘ , 𝘉𝘝⦗𝗾⦘  ⊆ 𝘉𝘝⦗𝗽⦘ , ⊢CB  𝗘[𝗽], ⊢CB  𝗾 then ⊢CB  𝗘[𝗾]

Proof.

Induction on 𝗘:

Case 1:𝗘=○

This follows trivially by the premise that ⊢CB  𝗾.

Case 2:𝗘=(seq 𝗘o r)

1. By the definition of ⊢CB and the premise that ⊢CB  𝗘[𝗽], we know that ⊢CB  𝗘o[𝗽].

2. By (1) we may invoke our induction hypothesis to conclude that ⊢CB  𝗘o[𝗾]

3. By lemma 55 (FV and in-hole maintain subset), we know that 𝘍𝘝⦗𝗘o[𝗽]⦘  ⊆ 𝘍𝘝⦗𝗘o[𝗾]⦘ and𝘉𝘝⦗𝗘o[𝗽]⦘  ⊆ 𝘉𝘝⦗𝗘o[𝗾]⦘ .

4. By (3) and the definition of ⋂, we can conclude that 𝘉𝘝⦗𝗘o[𝗾]⦘  ∩ 𝘍𝘝⦗r⦘  = ∅ 

5. By (2) and (4), we can conclude that ⊢CB  𝗘[𝗾].

Case 3:𝗘=(loop 𝗘o r)

As loop has the same conditions as seq, this case is analogous to the previous one.
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Case 4:𝗘=(par 𝗘o r)

1. By the definition of ⊢CB and the premise that ⊢CB  𝗘[𝗽], we know that ⊢CB  𝗘o[𝗽].

2. By (1) we may invoke our induction hypothesis to conclude that ⊢CB  𝗘o[𝗾]

3. By lemma 55 (FV and in-hole maintain subset), we know that 𝘍𝘝⦗𝗘o[𝗽]⦘  ⊆ 𝘍𝘝⦗𝗘o[𝗾]⦘ and𝘉𝘝⦗𝗘o[𝗽]⦘  ⊆ 𝘉𝘝⦗𝗘o[𝗾]⦘ .

4. By (3) and the definition of⋂, we can conclude that𝘉𝘝⦗𝗘o[𝗾]⦘  ∩ 𝘍𝘝⦗r⦘  = ∅ and that 𝘍𝘝⦗𝗘o[𝗾]⦘  ∩ 𝘉𝘝⦗r⦘  = ∅ 

5. By (2) and (4), we can conclude that ⊢CB  𝗘[𝗾].

Case 5:𝗘=(par r 𝗘o)

This case is analogous to the previous one.

Case 6:𝗘=(trap 𝗘o)

This case follows by a straightforward induction.

Case 7:𝗘=(suspend 𝗘o 𝗦)

This case follows by a straightforward induction and lemma 55 (FV and in-hole maintain subset).

�

Lemma 55 (FV and in-hole maintain subset).

For all 𝗘, 𝗽, 𝗾, if 𝘍𝘝⦗𝗾⦘  ⊆ 𝘍𝘝⦗𝗽⦘ and 𝘉𝘝⦗𝗾⦘  ⊆ 𝘉𝘝⦗𝗽⦘ , then 𝘍𝘝⦗𝗘[𝗽]⦘  ⊆ 𝘍𝘝⦗𝗘[𝗾]⦘ and 𝘉𝘝⦗𝗘[𝗽]⦘  ⊆ 𝘉𝘝⦗𝗘[𝗾]⦘

Proof.

This follows by a straightforward induction over 𝗘. �

Lemma 56 (Subterms have correct binding).

For all 𝗖, 𝗾, if ⊢CB  𝗖[𝗾], then ⊢CB  𝗾
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Proof.

This follows by a straightforward induction over 𝗖. �

B.4. Adequacy

This section contains the various lemma’s needed for proving Adequacy of 𝘦𝘷𝘢𝘭 E.

Lemma 57 (Strongly Canonicalizing).

For all 𝗽GO
p , 𝗾GO

p , if 𝗽GO
p  ⟶R 𝗾GO

p , then 𝒮⦗𝗽GO
p ⦘  > 𝒮⦗𝗾GO

p ⦘ .

Interpretation.As 𝒮 only returns natural numbers, by this we can conclude that eventually all terms will reach a state

where there can only reduce by ⟶S.

Proof.

Induction on ⟶R:

Case 1:𝗽GO
p  ⇀

R 𝗽GO
p

This case is given by lemma 58 (Strongly Canonicalizing on Compatible Closure).

Case 2:𝗖GO
p [𝗽GO

p
i] ⟶

R 𝗖GO
p [𝗾GO

p
i]

In this case we have 𝗽GO
p

i ⟶
R 𝗾GO

p
i. By induction𝒮⦗𝗽GO

p
i⦘  > 𝒮⦗𝗾GO

p
i⦘ . Thus by lemma 58 (StronglyCanonicalizing

on Compatible Closure) we can conclude that 𝒮⦗𝗖GO
p [𝗽GO

p
i]⦘  > 𝒮⦗𝗖GO

p [𝗾GO
p

i]⦘ .

�

Lemma 58 (Strongly Canonicalizing on Compatible Closure).

For all 𝗖GO
p , 𝗽GO

p , 𝗾GO
p , if 𝒮⦗𝗽GO

p ⦘  > 𝒮⦗𝗾GO
p ⦘ then 𝒮⦗𝗖GO

p [𝗽GO
p ]⦘  > 𝒮⦗𝗖GO

p [𝗾GO
p ]⦘
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Proof.

This follows by a trivial induction over 𝗖GO
p , as each case of 𝒮⦗𝗽GO

p ⦘ only addes constants to the 𝒮 of the subterms.

�

Lemma 59 (Strongly Canonicalizing on single step).

For all 𝗽GO
p , 𝗾GO

p , if 𝗽GO
p  ⇀

R 𝗾GO
p then 𝒮⦗𝗽GO

p ⦘  > 𝒮⦗𝗾GO
p ⦘ .

Proof.

Cases of 𝗽GO
p  ⇀

R 𝗾GO
p :

Case 1:[𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴]

In this case we have (par nothing 𝗽D)⇀
E𝗽D

This case follows immediately from the definition of 𝒮.

Case 2:[𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁]

In this case we have (par (exit 𝗻) 𝗽̂)⇀
E(exit 𝗻)

This case follows immediately from the definition of 𝒮.

Case 3:[𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁]

In this case we have (par (exit 𝗻1) (exit 𝗻2))⇀
E(exit 𝘮𝘢𝘹⦗𝗻1 , 𝗻2⦘ )

This case follows immediately from the definition of 𝒮.

Case 4:[𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽GO
p  𝗾GO

p )])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗽GO

p ])

where

𝛉r(𝗦) = 1

By lemma 58 (Strongly Canonicalizing on Compatible Closure), we can establish our result if 𝒮⦗ (if 𝗦 𝗽GO
p  𝗾GO

p )⦘  > 𝗽GO
p .

This is trivially true.
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Case 5:[𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁]

In this case we have (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽GO
p  𝗾GO

p )])⇀
E(ϱ ⟨𝛉r, 𝗔⟩. 𝗘[𝗾GO

p ])

where

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

𝛉r(𝗦) = ⊥

𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩.𝗘[(if 𝗦𝗽GO

p 𝗾GO
p )]), {}⦘

This case follows by an analgous argument to the previous case.

Case 6:[𝘀𝗲𝗾-𝗱𝗼𝗻𝗲]

In this case we have (seq nothing 𝗾GO
p )⇀

E𝗾GO
p

This case follows immediately from the definition of 𝒮.

Case 7:[𝘀𝗲𝗾-𝗲𝘅𝗶𝘁]

In this case we have (seq (exit 𝗻) 𝗾GO
p )⇀

E(exit 𝗻)

This case follows immediately from the definition of 𝒮.

Case 8:[𝘀𝘂𝘀𝗽𝗲𝗻𝗱]

In this case we have (suspend 𝗽S 𝗦)⇀
E𝗽S

This case follows immediately from the definition of 𝒮.

Case 9:[𝘁𝗿𝗮𝗽]

In this case we have (trap 𝗽S)⇀
E↓p 𝗽S

This case follows immediately from the definition of 𝒮.

Case 10:[𝘀𝗶𝗴𝗻𝗮𝗹]

In this case we have (signal 𝗦 𝗽GO
p )⇀

E(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽GO
p )

This case follows immediately from the definition of 𝒮.

Case 11:[𝗺𝗲𝗿𝗴𝗲]

In this case we have (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘GO

p [(ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽GO

p )])⇀
E(ϱ ⟨(𝛉r

1 ← 𝛉r
2), 𝗔1⟩. 𝗘GO

p [𝗽GO
p ])
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where

𝗔1 ≥ 𝗔2

1. 𝒮⦗ (ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽GO

p )⦘  > 𝒮⦗𝗽GO
p ⦘ , by the definition of 𝒮.

2. for any r. 𝒮⦗ (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘GO

p [r])⦘  = 𝒮⦗(ϱ ⟨(𝛉r
1 ← 𝛉r

2), 𝗔1⟩. 𝗘GO
p [𝗿GO

p ])⦘ , by the definition of 𝒮.

3. By (2) on 𝗽, 𝒮⦗ (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘[𝗽GO

p ])⦘  = 𝒮⦗(ϱ ⟨(𝛉r
1 ← 𝛉r

2), 𝗔1⟩. 𝗘[𝗽GO
p ])⦘ .

4. By (3), (1), and lemma 58 (Strongly Canonicalizing on Compatible Closure),

𝒮⦗ (ϱ ⟨𝛉r
1, 𝗔1⟩. 𝗘GO

p [(ϱ ⟨𝛉r
2, 𝗔2⟩. 𝗽GO

p )])⦘  > (ϱ ⟨(𝛉r
1 ← 𝛉r

2), 𝗔1⟩. 𝗘GO
p [𝗽GO

p ])

Case 12:[𝗲𝗺𝗶𝘁]

In this case we have (ϱ ⟨𝛉r, GO⟩. 𝗘GO
p [(emit 𝗦)])⇀

E(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘GO
p [nothing])

where

𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘

1. For all r, 𝒮⦗ (ϱ ⟨𝛉r, GO⟩. 𝗘[𝗿GO
p ])⦘  = 𝒮⦗(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘[𝗿GO

p ])⦘ , By the definition of 𝒮.

2. 𝒮⦗ (emit 𝗦)⦘  > 𝒮⦗nothing⦘ , by the definition of 𝒮.

3. 𝒮⦗ (ϱ ⟨𝛉r, GO⟩. 𝗘[(emit 𝗦)])⦘  > 𝒮⦗(ϱ ⟨(𝛉r ← { 𝗦 ↦ 1 }), GO⟩. 𝗘[nothing])⦘ by (1), (2), and lemma 58 (Strongly

Canonicalizing on Compatible Closure).

�

B.4.1. Positive

Lemma 60 (Esterel Value is Circuit Value).

Forall (ϱ ⟨𝛉r, GO⟩. 𝗽D), if 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦-𝘸𝘳𝘵⦗𝛉r, 𝗽D⦘ , (ϱ ⟨𝛉r, GO⟩. 𝗽D) is closed, and
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⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(RES) = ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(SUSP) = ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(KILL) = 0, and ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧(GO) = 1.

then ⟦(ϱ ⟨𝛉r, GO⟩. 𝗽D)⟧ is constructive.

Proof.

To do this we must show that all wires in by (ϱ ⟨𝛉r, GO⟩. 𝗽D) settle to a given value. First, we turn to the inputs. By

the hypothesis of this lemma SUSP, RES, KILL, and GO have all settled.

For all signal wires in 𝛉r, by our hypothesis they are set to 1 by the defintion compilation of 𝛉r, or they are 0 by

lemma 77 (Selection Start) and lemma 71 (Can S is sound).

For the remaining wires, they all settle by lemma 61 (Done is Constructive). �

Lemma 61 (Done is Constructive).

For all 𝗽D and 𝛉, if forall 𝘄 ∈ inputs⦗⟦𝗽D⟧⦘ , ⟦𝗽D⟧(𝘄) ≠ ⊥,

⟦𝗽D⟧(GO) = 1,

⟦𝗽D⟧(RES) = ⟦𝗽D⟧(SUSP) = ⟦𝗽D⟧(KILL) = 0,

and ⟦𝗽D⟧ \ 𝛉 then ⟦𝗽D⟧ is constructive

Proof.

Induction on 𝗽D:

Case 1:𝗽D=nothing

Example:

> (assert-totally-constructive (compile-esterel (term nothing)))
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Case 2:𝗽D=(exit 𝗻)

Example:

> (assert-totally-constructive (compile-esterel (term (exit 5))))

Case 3:𝗽D=pause

Example:

> (assert-totally-constructive (compile-esterel (term pause)))

Case 4:𝗽D=(seq 𝗽̂ 𝗾p)

1. The compilation of seq passes all of its inputs to 𝗽̂ unchanged, therefor we can invoke our induction hypothesis

to show that all wires in pause are defined.

2. by lemma 75 (Can K on paused is 1) we know that, for any possible binding environment 𝛉, 0 ∉ 𝘊𝘢𝘯K⦗𝗽̂, 𝛉⦘ .

3. By (2) and lemma 77 (Selection Start) and lemma 72 (Can K is sound) we know that either K0 ∉ inputs⦗⟦𝗽D⟧⦘

or ⟦𝗽D⟧(K0) = 0.

4. By (3) and lemma 78 (Constructive unless Activated), ⟦𝗾p⟧ is constructive.

5. By (1) and (4), the entire circuit is constructive.

Case 5:𝗽D=(trap 𝗽)̂

The compilation of trap passes all of its inputs to 𝗽̂ unchanged, therefor we can invoke our induction hypothesis to

show that all wires in pause are defined. Therefore the entire circuit is constructive.
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Case 6:𝗽D=(par 𝗽1̂ 𝗽̂2)

The compilation of par passes all of its inputs to 𝗽̂1 and 𝗽̂2 unchanged, therefore by induction both are constructive.

Note that the synchronizer is acyclic, therefore as all of its inputs are defined it too is constructive. Therefore the entire

circuit is constructive.

Case 7:𝗽D=(suspend 𝗽̂ 𝗦)

1. By the definition of ⟦·⟧, ⟦𝗽̂⟧(GO) = ⟦(suspend 𝗽̂ 𝗦)⟧(GO) = 1.

2. By the definition of ⟦·⟧, ⟦𝗽̂⟧(KILL) = ⟦(suspend 𝗽̂ 𝗦)⟧(KILL) = 0.

3. let ɕ = ⟦(suspend 𝗽 ̂𝗦)⟧,

By the definition of ⟦·⟧, ⟦𝗽̂⟧(SUSP) = ɕ(SUSP) ∨ (ɕ(𝗦) ∧ ɕ(RES) ∧ ɕ(SEL)). which by our premises is:

⟦𝗽̂⟧(SUSP) = 0 ∨ (ɕ(𝗦) ∧ 0 ∧ ɕ(SEL)) = 0.

4. let ɕ = ⟦(suspend 𝗽 ̂𝗦)⟧,

By the definition of ⟦·⟧, ⟦𝗽̂⟧(RES) = ɕ(RES) ∧ ɕ(SEL) ∧ ¬ɕ(𝗦) .

which by our premises is: ⟦𝗽̂⟧(RES) = 0 ∧ 1 ∧ ¬ɕ(𝗦)  = 0.

5. By the definition of ⟦·⟧, the input environment is passed in unchanged, therefore ⟦𝗽̂⟧ \ 𝛉.

6. By (1), (2), (3), (4), and (5), we an invoke our inductive hypothesis to conclude that ⟦𝗽̂⟧ is constructive.

7. let ɕ = ⟦(suspend 𝗽 ̂𝗦)⟧.

By the definition of ⟦·⟧, the outputs of ɕ are the same as the outputs of 𝗽̂, except for the

ɕ(K1) = ⟦𝗽⟧̂(K1) ∨ (ɕ(𝗦) ∧ ɕ(RES) ∧ ⟦𝗽⟧̂(SEL)).

By our premises, this is:

ɕ(K1) = ⟦𝗽⟧̂(K1) ∨ (ɕ(𝗦) ∧ 0 ∧ ⟦𝗽̂⟧(SEL)) = ⟦𝗽̂⟧(K1) ∨ 0 = ⟦𝗽̂⟧(K1).
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8. By (6) and (7) we can conclude that a wires are defined, and therefore ⟦(suspend 𝗽̂ 𝗦)⟧ is constructive.

�

Lemma 62 (Blocked terms are non-constructive).

For all 𝗿pouter = (ϱ ⟨𝛉r, GO⟩. 𝗿p), if 𝛉r; GO; ○ ⊢B 𝗿
p, and ⟦(ϱ ⟨𝛉r, GO⟩. 𝗿p)⟧(SEL) ≃ 0 then ⟦𝗿pouter⟧ is non-

constructive.

Proof.

1. By lemma 64 (blocked implies can-rho), we know that there is some signal𝗦 such that𝗦 ∈ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉1, 𝗔⟩. 𝗽

p), {}⦘ .

2. By lemma 63 (initial configurations are nc), we know that any initial configuration is nc.

3. By (2) and lemma 65 (reachable states from blocked terms non-constructive), we know that all reachable

states will be 𝘯𝘤.

4. By (1) and (3) we can conclude that there will be some signal wire 𝗦o such all reachable states will have

that signal wire set to ⊥.

5. By (4), the circuit is non-constructive.

�

Lemma 63 (initial configurations are nc).

For all (ϱ ⟨𝛉r, GO⟩. 𝗽p), if closed⦗ (ϱ ⟨𝛉r, GO⟩. 𝗽p)⦘ then all possible initial configurations𝛉ɕ0 are 𝘯𝘤⦗ (ϱ ⟨𝛉r, WAIT⟩. 𝗽p), {}, 𝛉ɕ0⦘ .

Proof.

As all internal and output wires start as ⊥, and all return code and signal wires start are internal or output, and 𝘯𝘤 only

makes demands about internal and output wires being ⊥ this follows trivially.
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The change form GO to WAIT is only necessary to enforce the grammar of 𝗽p, as 𝘯𝘤 does not observe 𝗔 ever this

does not have any meaningful effect on our statements. �

Lemma 64 (blocked implies can-rho).

For all 𝗽, 𝛉r, 𝗔, if (𝛉r); GO; ○ ⊢B 𝗽
p then there exits some 𝗦 such that 𝗦 ∈ 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨𝛉r, GO⟩. 𝗽p), {}⦘

Proof.

This follows directly by induction over ⊢B, as the only bases cases involve either 𝗦 ∈ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p), {}⦘ or

𝗔 = WAIT, and the second case is excluded by our premises. �

Lemma 65 (reachable states from blocked terms non-constructive).

For all 𝗿pouter = (ϱ ⟨𝛉r, GO⟩. 𝗿p),

𝛉ɕ0, 𝛉ɕ2,

let ɕ = ⟦𝗿p⟧. Let 𝛉ɕ0 be an initial state.

if (⟶* 𝛉ɕ0 𝛉
ɕ
1), ⟦(ϱ ⟨𝛉r, GO⟩. 𝗿p)⟧(SEL) ≃ 0, 𝛉r; GO; ○ ⊢B 𝗿

p, and 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ0⦘ then 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘

Proof.

1. By the definition of 𝘯𝘤, there must exist some 𝛉, such that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ0⦘ .

2. As 𝘯𝘤 follows the same structure as 𝘊𝘢𝘯ϱ, we can use lemma 73 (Can rho S is sound) to conclude that 𝗿p \ 𝛉.

3. By (1) and (2) we may use lemma 66 (Blocked terms remain non-constructive). Thus by induction on the

length of the reduction sequence (⟶* 𝛉ɕ0 𝛉
ɕ
1), we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

�
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Lemma 66 (Blocked terms remain non-constructive).

For all 𝗿pouter = (ϱ ⟨𝛉r, GO⟩. 𝗘p[𝗿p]), 𝛉, 𝛉ɕ1, and 𝛉ɕ2,

let ɕ = ⟦𝗿p⟧.

if 𝛉ɕ1 ⇀
C 𝛉ɕ2, ⟦𝗿p⟧(SEL) ≃ 0, ⟦𝗿p⟧ \ 𝛉, 𝛉r; GO; 𝗘p ⊢B 𝗿

p, and 𝘯𝘤⦗𝗿p, 𝛉r, 𝛉ɕ1⦘ then 𝘯𝘤⦗𝗿p, 𝛉r, 𝛉ɕ2⦘

Proof.

Induction on 𝛉r; GO; 𝗘p ⊢B 𝗿
p:

Case 1:[𝗶𝗳]

Let 𝛉ɕ1p and 𝛉ɕ2p be the substates that correspond to 𝗽p in 𝛉ɕ1 and 𝛉ɕ2 respectively. Let 𝛉ɕ1q and 𝛉ɕ2q be defined

similarly.

1. By the definition of ⊢B, we know that 𝗦 ∈ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗘[(if 𝗦 𝗽 𝗾)]), {}⦘ .

2. By the definition of ⊢B, we know that 𝛉r(𝗦) = ⊥.

3. By Canθₛ⊆Canₛ and (1), we know that 𝗦 ∈ 𝘊𝘢𝘯S⦗𝗘[(if 𝗦 𝗽 𝗾)], 𝛉r⦘ .

4. By (3), lemma 79 (S is maintained across E) and our premise that 𝘯𝘤⦗𝗿p, 𝛉r, 𝛉ɕ1⦘ , we know that𝛉ɕ1(𝗦
i) = 𝛉ɕ1(𝗦

o) = ⊥.

5. By lemma 80 (GO is maintained across E), we know that 𝛉ɕ1i(GO) = 1.

6. By lemma 79 (S is maintained across E) and (4), we know that 𝛉ɕ1i(𝗦
i) = ⊥.

7. By the definition of ⟦·⟧, (5), and (6), we know that 𝛉ɕ1p(GO) = ⊥ and 𝛉ɕ1q(GO) = ⊥.

8. By the definition of 𝘯𝘤, 𝘯𝘤-𝘳, (2) and (3) we know that 𝘯𝘤⦗𝗽p, 𝛉r, 𝛉ɕ1p⦘ and 𝘯𝘤⦗𝗽p, 𝛉r, 𝛉ɕ1q⦘ .

9. By our premise that ⟦𝗿p⟧(SEL) ≃ 0, ⟦𝗿p⟧ \ 𝛉r, (7), and (8), we may use lemma 67 (Adequacy of Can) to conclude

𝘯𝘤⦗𝗽p, 𝛉r, 𝛉ɕ2p⦘ and 𝘯𝘤⦗𝗽p, 𝛉r, 𝛉ɕ2q⦘ .
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10. By the definition of ⟦·⟧, the output signals are either ∨ed from both branches. For any signal that is in 𝘊𝘢𝘯 of

the other branch it must either be in 𝘊𝘢𝘯 of the other branch, and therefore by (9) be ⊥, or it is not in 𝘊𝘢𝘯 , and

therefore by lemma 71 (Can S is sound), and therefore must be 0. Therefore is a signal is in 𝘊𝘢𝘯 of the overall

term, it is ⊥ in 𝛉ɕ2. The same argument holds for the return codes.

11. By (9) and (10) we may conclude that 𝘯𝘤⦗ (if 𝗦 𝗽p 𝗾p), 𝛉r, 𝛉ɕ2⦘ .

Case 2:[𝗲𝗺𝗶𝘁-𝘄𝗮𝗶𝘁]

This clause is not possible, as we specified our 𝗔 to be GO.

Case 3:[𝘀𝘂𝘀𝗽𝗲𝗻𝗱]

This case follows by a relatively straight forward induction.

Case 4:[𝘁𝗿𝗮𝗽]

This case follows by a relatively straight forward induction.

Case 5:[𝘀𝗲𝗾]

Cases of 0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉
r⦘ :

Case 5.i:0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉
r⦘=0 ∉ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉

r⦘

Let 𝛉ɕ1p and 𝛉ɕ2p be the substates that correspond to 𝗽p in 𝛉ɕ1 and 𝛉ɕ2 respectively. Let 𝛉ɕ1q and 𝛉ɕ2q be defined

similarly.

1. By lemma 72 (CanK is sound), we know that the K0 wire of ⟦𝗽pi⟧ is either currently 0 or is ⊥ and will eventually

step to 0.

2. By (1) and lemma 76 (Activation Condition) We know that all wires in the second subcircuit will be ⊥ and

eventually step to 0, or are currently 0.

3. By induction we know that (nc 𝗽pi 𝛉
r 𝛉ɕp2).

4. By (2) and (3) we can conclude that (nc 𝗽pi 𝛉
r 𝛉ɕ2)
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Case 5.ii:0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉
r⦘=0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉

r⦘

This case follows similarly to the previous subcase.

Case 6:[𝗽𝗮𝗿-𝗯𝗼𝘁𝗵]

This case follows by a relatively straight forward induction.

Case 7:[𝗽𝗮𝗿𝗹]

This case follows by a relatively straight forward induction.

Case 8:[𝗽𝗮𝗿𝗿]

This case follows by a relatively straight forward induction.

�

Lemma 67 (Adequacy of Can).

For all 𝗿p, 𝛉, 𝛉ɕ1, 𝛉
ɕ
2 let ɕ = ⟦𝗿p⟧, if 𝛉ɕ1 ⟶

C 𝛉ɕ2, ⟦𝗿p⟧(SEL) ≃ 0, ⟦𝗿p⟧ \ 𝛉, 𝛉ɕ1(GO) = ⊥, and 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ1⦘

then 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘

Interpretation.The core idea of this proof is that not only is 𝘊𝘢𝘯 sound, but is adequite to tell us when wires are ⊥.

Now this is subtle, as wires can be set to 1 without 𝘊𝘢𝘯 knowing, as it only analizes what Can happen, not what Must

happen. Therefore this proof requires that GO is ⊥, which is essense says that nothing must happen, as GO reprenents

must in the circuit.

Proof.

Induction on 𝗿p:

Case 1:𝗿p=nothing
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1. 𝘊𝘢𝘯S⦗𝗿p, 𝛉⦘ is empty, therefore 𝘯𝘤-𝘚⦗nothing, 𝛉, 𝛉ɕ2⦘ vacuously holds.

2. 𝘊𝘢𝘯K⦗𝗿p, 𝛉⦘  = { 0 }, therefore we must only show that K0 is ⊥. This holds trivially by the definition of ⟦·⟧ and

the fact that ɕs1(GO) = ⊥. Therefore 𝘯𝘤-𝘚⦗nothing, 𝛉, 𝛉ɕ2⦘ also holds.

3. 𝘯𝘤-𝘳⦗nothing, 𝛉, 𝛉ɕ2⦘ trivially holds.

4. By (1), (2), (3), 𝘯𝘤⦗nothing, 𝛉, 𝛉ɕ2⦘ holds.

Case 2:𝗿p=pause

This is analagous to the previous clause.

Case 3:𝗿p=(exit 𝗻)

This is analagous to the previous clause.

Case 4:𝗿p=(emit 𝗦e)

This clause is analgous to the previous clauses, except the argument for Kn is repeated for 𝗦e.

Case 5:𝗿p=(trap 𝗽p)

let 𝛉ɕ1i and 𝛉ɕ2i be the substates of 𝛉ɕ1 and 𝛉ɕ2 which corrispond to ⟦𝗽p⟧.

1. By the defintion of 𝘯𝘤 and 𝘯𝘤-𝘳, we know that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ1i⦘ .

2. By the defintion of ⟦·⟧ we know that the inner GO wire is unchanged, therefore it is ⊥.

3. By the defintion of ⟦·⟧ the signals are passed in unchanged, therefore ⟦𝗽p⟧ \ 𝛉

4. By the defintion of ⟦·⟧ SEL is unchanged, therefore ⟦𝗽p⟧(SEL) ≃ 0.

5. If the step from 𝛉ɕ1 to 𝛉ɕ2 changes the substate By (1) through (4) we can invoke our induction hypothesis to

learn that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2i⦘ for the inner circuit. Otherwise the substate remains unchanged therefore we still have

𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2i⦘

6. By the definition of compile the output signals remain unchanged. Therefore (5) gives us that 𝘯𝘤-𝘚⦗𝗿p, 𝛉, 𝛉ɕ2⦘
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7. Now we inspect the return codes and their wires. To show 𝘯𝘤-𝘚⦗𝗿p, 𝛉, 𝛉ɕ2i⦘ from 𝘯𝘤-𝘚⦗𝗽p, 𝛉, 𝛉ɕ2⦘ (by (5)), we

must case on each 𝗻 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ : Cases of 𝗻:

Case 5.i:𝗻 = 0

In this case we know that 𝛉ɕ2i(K0) = ⊥, and 0 ∈ 𝘊𝘢𝘯K⦗𝗿p, 𝛉⦘ . We have two subcases, either, 2 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ ,

in which case by (5) we know that 𝛉ɕ2i(K2) = ⊥, or 2 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ , in which case ⟦𝗽p⟧(K2) ≃ 0. In either

case the only possible value for 𝛉ɕ2(K0) = ⊥ is ⊥.

Case 5.ii:𝗻 = 1

In this case K1 is pass out unchanged, thus it must still be ⊥.

Case 5.iii:𝗻 = 2

This follow by the same arugment as the case for 0.

Case 5.iv:𝗻 > 3

In this case In this case Kn is pass out unchanged, but renamed to Kn-1. This matches exactly with the behavior

of 𝘊𝘢𝘯 , therefore the wire will remain ⊥

8. by (5), (6), and (7), we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘

Case 6:𝗿p=(suspend 𝗽p 𝗦s)

This case follows by a similar argument to trap, but relies on ⟦𝗿p⟧(SEL) ≃ 0 instead of reasoning about the ∨ of K0

and K2.

Case 7:𝗿p=(if 𝗦f 𝗽
p 𝗾p)

Let 𝛉ɕ1p and 𝛉ɕ2p be the substates of 𝛉ɕ1 and 𝛉ɕ2 that corrispond to ⟦𝗽p⟧. Let 𝛉ɕ1q and 𝛉ɕ2q be defined similarly.

Cases of 𝛉(𝗦f):

Case 7.i:𝛉(𝗦f)=1
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1. By the definition of 𝘯𝘤 and 𝘯𝘤-𝘳, we know that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ1p⦘ .

2. By ⟦𝗿p⟧ \ 𝛉 we know that ⟦𝗾⟧(GO) ≃ 0.

3. By ⟦𝗿p⟧(SEL) ≃ 0 and the definition of ⟦·⟧ we know that ⟦𝗽p⟧(SEL) ≃ 0 and ⟦𝗾p⟧(SEL) ≃ 0.

4. By (2), (3), and lemma 76 (Activation Condition) we know that all outputs of ⟦𝗾p⟧ are 0.

5. By the definition of ⟦·⟧ we know that 𝛉ɕ1p(GO) = ⊥.

6. As the signals are passed in unchanged we may conlcude that ⟦𝗽p⟧ \ 𝛉.

7. By (1), (5) and (3), (6) and our induction hypothesis we know that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ2p⦘

8. By (4) we know that the outputs of the circuit are given by the output of ⟦𝗽p⟧.

9. By (8) and (7) we know that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ2⦘

Case 7.ii:𝛉(𝗦f)=0

This case follows by an analagous arugment to the previous one.

Case 7.iii:𝛉(𝗦f)=⊥

1. If 𝗦f ∈ 𝘊𝘢𝘯K⦗𝗿p, 𝛉⦘ , we may repeat the argument from the 0 case, by lemma 71 (Can S is sound). Therefore we

must show this for 𝗦f ∉ 𝘊𝘢𝘯K⦗𝗿p, 𝛉⦘ .

2. By the definition of 𝘯𝘤 and 𝘯𝘤-𝘳, we know that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ1p⦘ and 𝘯𝘤⦗𝗾p, 𝛉, 𝛉ɕ1q⦘ .

3. By (1), and 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ1⦘ , we know that 𝛉ɕ1(𝗦
o
f) = ⊥.

4. By (3) and 𝛉ɕ1(GO) = ⊥, and the definition of ⟦·⟧ we can conclude that 𝛉ɕ1p(GO) = ⊥ and 𝛉ɕ1q(GO) = ⊥

5. By ⟦𝗿p⟧(SEL) ≃ 0 and the definition of ⟦·⟧ we know that ⟦𝗽p⟧(SEL) ≃ 0 and ⟦𝗾p⟧(SEL) ≃ 0.
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6. As the signals are passed in unchanged we may conlcude that ⟦𝗽p⟧ \ 𝛉 and ⟦𝗾p⟧ \ 𝛉.

7. By (5), (6), (4), and (2) we may conclude that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ2p⦘ and 𝘯𝘤⦗𝗾p, 𝛉, 𝛉ɕ2q⦘

8. By the definition of ⟦·⟧, the output signals are either ∨ed from both branches. For any signal that is in 𝘊𝘢𝘯 of

the other branch it must either be in 𝘊𝘢𝘯 of the other branch, and therefore by (7) be ⊥, or it is not in 𝘊𝘢𝘯 , and

therefore by lemma 71 (Can S is sound), and therefore must be 0. Therefore is a signal is in 𝘊𝘢𝘯 of the overall

term, it is ⊥ in 𝛉ɕ2. The same argument holds for the return codes.

9. By (7) and (8) we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

Case 8:𝗿p=(seq 𝗽p 𝗾p)

Let 𝛉ɕ1p and 𝛉ɕ2p be the substates of 𝛉ɕ1 and 𝛉ɕ2 that corrispond to ⟦𝗽p⟧. Let 𝛉ɕ1q and 𝛉ɕ2q be defined similarly.

1. By the definitions of 𝘯𝘤 and 𝘯𝘤-𝘳, we have two cases but both let us conclude that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ1p⦘ .

2. As GO is sent directly to ⟦𝗽p⟧, we may conclude that 𝛉ɕ1i(GO) = ⊥.

3. By the definition of ⟦·⟧, all of the signals are broadcast to the both subcircuits, thus we may conclude that ⟦𝗽p⟧ \ 𝛉

and ⟦𝗾p⟧ \ 𝛉.

4. By the definition of ⟦·⟧ and the premise that

⟦𝗿p⟧(SEL) ≃ 0 we may conclude that ⟦𝗽p⟧(SEL) ≃ 0 and ⟦𝗾p⟧(SEL) ≃ 0.

5. By (4), (1), (2), and (3) we may conclude that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ2p⦘ .

6. Following the structure of 𝘊𝘢𝘯 and 𝘯𝘤-𝘳, we have: Cases of 0 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ :

Case 8.i:0 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘

6.1. By lemma 72 (Can K is sound), we can conclude that ⟦𝗽p⟧(K0) ≃ 0.
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6.2. By (6.1) and the definition of ⟦·⟧, we can conclude that ⟦𝗾p⟧(GO) ≃ 0.

6.3. By (6.2), the premise that ⟦𝗿p⟧(SEL) ≃ 0, and lemma 76 (Activation Condition), we may conclude that all the

outputs of ⟦𝗾p⟧ are 0.

6.4. By the definition of ⟦·⟧ and (6.3), all signals and control wires will have their value defined by ⟦𝗽p⟧. Thus

we may conclude that 𝘯𝘤-𝘚⦗𝗿p, 𝛉, 𝛉ɕ2⦘ and 𝘯𝘤-κ⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

6.5. By (6.4) and (5) we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

Case 8.ii:0 ∈ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘

6.1. By the definitions of 𝘯𝘤 and 𝘯𝘤-𝘳 we may conclude that 𝘯𝘤⦗𝗾p, 𝛉, 𝛉ɕ2p⦘ .

6.2. By (1) and the premise of this case we may conclude that 𝛉ɕ1p(K0) = ⊥.

6.3. By (6.2) and the definition of ⟦·⟧ we may conclude that 𝛉ɕ1q(GO) = ⊥.

6.4. By (4), (3), (6.3), and (6.1) we may conclude that 𝘯𝘤⦗𝗽p, 𝛉, 𝛉ɕ2q⦘ .

6.5. By the same argument as in the 1 case, using (5) and (6.4), we may conclude that 𝘯𝘤-𝘚⦗𝗿p, 𝛉, 𝛉ɕ2⦘ and

𝘯𝘤-κ⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

6.6. By (5), (6.4), and (6.5) we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

Case 9:𝗿p=(par 𝗽p 𝗾p)

This case proceeds by a similar argument to the previous two cases, except that GO is broadcast to both subcircuits,

therefore no argument is needed to show that the GO of the subcircuits are ⊥.

Case 10:𝗿p=(signal 𝗦s 𝗽
p)

Let 𝛉ɕ1i and 𝛉ɕ2i be the substates of 𝛉ɕ1 and 𝛉ɕ2 which corrispond to ⟦𝗽p⟧.
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1. By the definition of ⟦·⟧, the SEL wire is unchanged, thus we may conclude that ⟦𝗽p⟧(SEL) ≃ 0.

2. By the definition of ⟦·⟧, the GO wire is unchanged, thus we may conclude that 𝛉ɕ1i(GO) = ⊥.

3. By the definitions of 𝘊𝘢𝘯 , and 𝘯𝘤-𝘳, we have the following cases: Cases of 𝗦s ∈ 𝘊𝘢𝘯S⦗𝗽p, 𝛉 ← { 𝗦s ↦ ⊥ }⦘ :

Case 10.i:𝗦s ∈ 𝘊𝘢𝘯S⦗𝗽p, 𝛉 ← { 𝗦s ↦ ⊥ }⦘

3.1. By the definitions of 𝘯𝘤 and 𝘯𝘤-𝘳, we know that 𝘯𝘤⦗𝗽p, 𝛉 ← { 𝗦 ↦ ⊥ }, 𝛉ɕ1i⦘ .

3.2. As 𝛉 ← { 𝗦s ↦ ⊥ } puts no restrictions on the values for 𝗦s, and the remainder of signal wires are passed

in unchanged, we may conclude that 𝗽p \ 𝛉 ← { 𝗦s ↦ ⊥ }.

3.3. By (3.1), (3.2), (1), and (2), we may conclude that 𝘯𝘤⦗𝗽p, 𝛉 ← { 𝗦 ↦ ⊥ }, 𝛉ɕ2i⦘ .

3.4. As all signal wires that are not 𝗦s and all control wires are passed out unchanged, and as 𝗦s is removed from

the output of 𝘊𝘢𝘯 , we may use (3.3) to conclude that 𝘯𝘤-𝘚⦗𝗿p, 𝛉, 𝛉ɕ2⦘ and 𝘯𝘤-κ⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

3.5. By (3.3) and (3.4) we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .

Case 10.ii:𝗦s ∉ 𝘊𝘢𝘯S⦗𝗽p, 𝛉 ← { 𝗦 ↦ ⊥ }⦘

3.1. By the definitions of 𝘯𝘤 and 𝘯𝘤-𝘳, we know that 𝘯𝘤⦗𝗽p, 𝛉 ← { 𝗦 ↦ 0 }, 𝛉ɕ1i⦘ .

3.2. By lemma 71 (Can S is sound), we may conclude that ⟦𝗽p⟧(𝗦o
s) ≃ 0.

3.3. By (3.2) and the defintion of complie (which links 𝗦o to 𝗦i
s), we may conclude that ⟦𝗽p⟧(𝗦i

s) ≃ 0.

3.4. As the remainder of the signal wires are unchanged, we may conclude that ⟦𝗽p⟧ \ 𝛉 ← { 𝗦 ↦ 0 }

3.5. By (3.1), (3.4), (1), and (2), we may conclude that 𝘯𝘤⦗𝗽p, 𝛉 ← { 𝗦 ↦ 0 }, 𝛉ɕ2i⦘ .

3.6. By the same arguments in the previous subcase, we may conclude that 𝘯𝘤⦗𝗿p, 𝛉, 𝛉ɕ2⦘ .
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Case 11:𝗿p=(ϱ ⟨𝛉r, WAIT⟩. 𝗽p)

As this case is essentially the same as many nested signals, it follows by a similar argument to the previous case.

�

Auxiliary Lemmas.

Lemma 68 (blocked is separable).

for all 𝗽, 𝛉, 𝗔, 𝗘1, and 𝗘2 𝛉; 𝗔; 𝗘1 ⊢B 𝗘2[𝗽] implies 𝛉; 𝗔; 𝗘1[𝗘2] ⊢B 𝗽.

Proof.

Induction on 𝗘2:

Case 1:𝗘2=○

Trivial, as ○[𝗽] = 𝗽 and 𝗘1[○] = 𝗘1.

Case 2:𝗘2=(suspend 𝗘3 𝗦)

Try by induction on the premise of this clause of ⊢B.

Case 3:𝗘2=(trap 𝗘3)

Same as above.

Case 4:𝗘2=(seq 𝗘3 𝗾)

Same as above.

Case 5:𝗘2=(par 𝗘3 𝗾)

Same as above.

Case 6:𝗘2=(par 𝗽 𝗘3)

Same as above.
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�

B.4.2. Negative

Lemma 69 (Non-stepping terms are values).

For all 𝗾p = (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p),

If closed⦗𝗾p⦘ , and there does not exists any 𝛉r
o and 𝗽po such that (either 𝗾p ⟶R (ϱ ⟨𝛉r

o, 𝗔⟩. 𝗘p[𝗽po]) or there ex-

ists some r such that 𝗾p ⟶S (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗿p]) ⟶R (ϱ ⟨𝛉o, 𝗔⟩. 𝗘p[𝗽po])) then either 𝗽p ∈ 𝗽D or 𝛉r; 𝗔; ○ ⊢B 𝗽
p

Proof.

As ⊢B and whether or not a term is 𝗽D are decidable properties, we may act as if we have the law of the excluded

middle here.

Thus we may take the contrapositive of lemma 70 (Not values must step), gives us this exactly. �

Lemma 70 (Not values must step).

For all 𝗾p = (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗽p]), If closed⦗𝗾p⦘ , 𝗽p ∉ 𝗽D, and𝛉r; 𝗔; 𝗘p ⊬B 𝗽
p then there exists some𝛉r

o and 𝗽po such

that either 𝗾p ⟶R (ϱ ⟨𝛉o, 𝗔⟩. 𝗘p[𝗽po]) or there exists some 𝗿p such that 𝗾p ⟶S (ϱ ⟨𝛉r, 𝗔⟩. 𝗘p[𝗿p]) ⟶R (ϱ ⟨𝛉r
o, 𝗔⟩. 𝗘p[𝗽po])

Interpretation.This proof is the contrapositive of the notion that “terms that do not reduce, modulo [𝗽𝗮𝗿-𝘀𝘄𝗮𝗽], are

values”. As we are working in a closed universe with decidable properties, the contrapositive will give us our

Proof.

Induction on 𝗽p:

Case 1:𝗽p=nothing

This case violates our hypothesis that 𝗽p ∉ 𝗽D.
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Case 2:𝗽p=pause

This case violates our hypothesis that 𝗽p ∉ 𝗽D.

Case 3:𝗽p=(exit 𝗻)

This case violates our hypothesis that 𝗽p ∉ 𝗽D.

Case 4:𝗽p=(emit 𝗦)

1. By the definition of 𝘤𝘭𝘰𝘴𝘦𝘥, it must be the case that 𝗔 = GO

2. As closed⦗𝗾p⦘ and as 𝗘 contains no binders, It must be the case that 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ .

3. Thus let 𝛉o = 𝛉 ← { 𝗦 ↦ 1 } and 𝗽po = nothing. Let the step we take be [𝗲𝗺𝗶𝘁].

Case 5:𝗽p=(seq 𝗽po 𝗾po)

1. By the definition of 𝗽D, we know that 𝗽po ∉ 𝗽̂.

2. By the definition of ⊢B, we know that 𝛉; 𝗔; 𝗘p[(seq ○ 𝗾po)] ⊬B 𝗽
p
o.

3. We by (1) know that 𝗽po is not 𝗽̂, but we must consider of 𝗽po is 𝗽D. By the definition of 𝗽D, this gives:

Cases of 𝗽po ∈ 𝗽S:

Case 5.i:𝗽po ∈ 𝗽S

Cases of 𝗽po:

Case 5.i.a:𝗽po=nothing

In this case, 𝛉r
o = 𝛉r, the resulting 𝗽po = 𝗾po, and we step by [𝘀𝗲𝗾-𝗱𝗼𝗻𝗲].

Case 5.i.b:𝗽po=(exit 𝗻)

In this case, 𝛉r
o = 𝛉, the resulting 𝗽po = (exit 𝗻), and we step by [𝘀𝗲𝗾-𝗲𝘅𝗶𝘁].
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Case 5.ii:𝗽o ∉ 𝗽S

3.1. As we know that 𝗽po ∉ 𝗽S and 𝗽po ∉ 𝗽̂, we know that 𝗽po ∉ 𝗽D.

3.2. By (3.1), (1), and (2), we can use our induction hypothesis on 𝗽po and 𝗘p[(seq ○ 𝗾po)]. As the result we

get back differs from what we need only in that (seq ○ 𝗾po) was shifted from 𝗽po to 𝗘, we can shift it back

an return the result unchanged.

Case 6:𝗽p=(par 𝗽po 𝗾po)

There is only one way for a par to 𝗽D, thus we know that ¬(𝗽po ∈ 𝗽̂ ∧ 𝗾po ∈ 𝗽)̂.

There are three ways for an par to be ⊢B, thus we know that

¬((𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊢B 𝗽
p
o  ∧ 𝛉r; 𝗔; 𝗘p[(par 𝗽po ○)] ⊢B 𝗾

p
o )

∨
(𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊢B 𝗽

p
o  ∧ 𝗾po ∈ 𝗽D)

∨
(𝗽po ∈ 𝗽D ∧ 𝛉; 𝗔; 𝗘[(par 𝗽po ○)] ⊢B 𝗾

p
o ))

On the whole this gives us the following expression:

¬(𝗽po ∈ 𝗽̂ ∧ 𝗾po ∈ 𝗽)̂
∧
¬((𝛉; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊢B 𝗽

p
o  ∧ 𝛉r; 𝗔; 𝗘[(par 𝗽po ○)] ⊢B 𝗾

p
o )

∨
(𝛉; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊢B 𝗽

p
o  ∧ 𝗾po ∈ 𝗽D)

∨
(𝗽po ∈ 𝗽D ∧ 𝛉r; 𝗔; 𝗘[(par 𝗽po ○)] ⊢B 𝗾

p
o ))

Note that a term which is 𝗽̂ is also 𝗽D. Given this, we can find the the disjuctive normal form of the above expression,

giving us four cases:

𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊬B 𝗽
p
o  ∧ 𝛉r; 𝗔; 𝗘[(par 𝗽po ○)] ⊬B 𝗾

p
o  ∧ 𝗽po ∉ 𝗽̂

𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊬B 𝗽
p
o  ∧ 𝛉r; 𝗔; 𝗘p[(par 𝗽po ○)] ⊬B 𝗾

p
o  ∧ 𝗾po ∉ 𝗽̂
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𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊬B 𝗽
p
o  ∧ 𝗽po ∉ 𝗽D

𝛉r; 𝗔; 𝗘p[(par 𝗽po ○)] ⊬B 𝗾
p
o  ∧ 𝗾po ∉ 𝗽D

Cases of the above:

Case 6.i:𝛉r; 𝗔; 𝗘[(par ○ 𝗾po)] ⊬B 𝗽
p
o  ∧ 𝛉r; 𝗔; 𝗘p[(par 𝗽po ○)] ⊬B 𝗾

p
o  ∧ 𝗾po ∉ 𝗽̂

In this case we have

1. We know that 𝛉r; 𝗔; 𝗘[(par ○ 𝗽po)] ⊬B 𝗾
p
o

2. We know that 𝗾po ∉ 𝗽̂

3. Cases of 𝗾po ∈ 𝗽S:

Case 6.i.a:𝗾po ∈ 𝗽S

Cases of 𝗽po ∈ 𝗽D:

Case 6.i.a.1:𝗽po ∈ 𝗽D

Cases of ⟨𝗽po, 𝗾po⟩:

Case 6.i.a.1.i:⟨𝗽po, 𝗾po⟩=⟨nothing, (exit 𝗻2)⟩

In this case let 𝛉r
o = 𝛉r and 𝗽po = (exit 𝗻2), and our reduction be a single use of [𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴].

Case 6.i.a.1.ii:⟨𝗽po, 𝗾po⟩=⟨(exit 𝗻1), (exit 𝗻2)⟩

In this case let 𝛉r
o = 𝛉r and 𝗽po = (exit (max 𝗻1 𝗻2)), and our reduction be a single use of [𝗽𝗮𝗿-𝟮𝗲𝘅𝗶𝘁].

Case 6.i.a.1.iii:⟨𝗽po, 𝗾po⟩=⟨𝗽,̂ (exit 𝗻2)⟩

In this case let𝛉r
o = 𝛉r, 𝗽po = (exit 𝗻2), and 𝗿p = (par (exit 𝗻2) 𝗽̂). Our reductions are one use of [𝗽𝗮𝗿-𝘀𝘄𝗮𝗽]

and one use of [𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁].

Case 6.i.a.1.iv:⟨𝗽po, 𝗾po⟩=⟨𝗽
D

, nothing⟩

This is analogues to the previous case, but using [𝗽𝗮𝗿-𝗻𝗼𝘁𝗵𝗶𝗻𝗴] instead of [𝗽𝗮𝗿-𝟭𝗲𝘅𝗶𝘁].
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Case 6.i.a.2:𝗽po ∉ 𝗽D

In this case we may invoke our induction hypothesis on 𝗽po, as we know 𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊬B 𝗽
p
o and

𝗽po ∉ 𝗽D. As usual we may reassemble the result of the induction by shifting one frame of the 𝗘 back over and

using the same reductions.

Case 6.i.b:𝗾po ∉ 𝗽S

3.1.As we know 𝗾po ∉ 𝗽S and 𝗾po ∉ 𝗽̂, we know 𝗾po ∉ 𝗽D.

3.2.We may invoke our induction hypothesis on 𝗘p[(par 𝗽po ○)] and 𝗾po. This gives us that exists some

𝛉r
o1 and 𝗽po1 using (1) and (3.1) such that 𝗾p ⟶R (ϱ ⟨𝛉r

o1, 𝗔⟩. 𝗘
p[𝗽po1]) or there exists some r such that

𝗾p ⟶S 𝗿p ⟶R (ϱ ⟨𝛉r
o1, 𝗔⟩. 𝗘

p[(par 𝗽po ○)][𝗽po1]).

3.3.In this case we can take the result from (3.2) and shift The (par 𝗽po ○) over to 𝗽po1. Giving us a resulting

𝗽po2 = (par 𝗽po 𝗽po1), and an unchanged 𝛉r
o1. As the overall terms have not changed, the reductions form

(3.2) are unchanged. Thus we return those reductions.

Case 6.ii:𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊬B 𝗽
p
o  ∧ 𝛉r; 𝗔; 𝗘p[(par 𝗽po ○)] ⊬B 𝗾

p
o  ∧ 𝗽po ∉ 𝗽̂

This case is the same as the previous, but finding a reduction in the other branch. As in this case in the subcase where

we concider one branch begin 𝗽D and the other being 𝗽S, 𝗽po is the branch that is 𝗽S we do not need to use ⟶S.

Case 6.iii:𝛉r; 𝗔; 𝗘p[(par ○ 𝗾po)] ⊬B 𝗽
p
o  ∧ 𝗽po ∉ 𝗽D

As we know that 𝗽po is not ⊢B or 𝗽D we can induct on 𝗽po and 𝗘p[(par ○ 𝗾po)]. As usual we may reassemble the

result of the induction by shifting one frame of the 𝗘p back over and using the same reductions.

Case 6.iv:𝛉r; 𝗔; 𝗘p[(par 𝗽po ○)] ⊬B 𝗾
p
o  ∧ 𝗾po ∉ 𝗽D

This case is the same as the previous, but finding a reduction in the other branch.
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Case 7:𝗽p=(trap 𝗽po)

1. By the definition of 𝗽D we know that 𝗽o ∉ 𝗽̂.

2. By the definition of ⊢B we know that 𝛉r; 𝗔; 𝗘p[(trap ○)] ⊬B 𝗽
p
o.

3. Cases of 𝗽po ∈ 𝗽S:

Case 7.i:𝗽po ∈ 𝗽S

In this case we may reduced by [𝘁𝗿𝗮𝗽].

Case 7.ii:𝗽po ∉ 𝗽S

3.1. Given 𝗽po ∉ 𝗽S and (1), we know that 𝗽po ∉ 𝗽D

3.2. Given (3.1) and (2) we may use our induction hypothesis on 𝗽o and 𝗘p[(trap ○)]. As usual we may re-

assemble the result of the induction by shifting one frame of the 𝗘p back over and using the same reductions.

Case 8:𝗽p=(suspend 𝗽po 𝗦)

This case is analogous to the previous case but reducing by [𝘀𝘂𝘀𝗽𝗲𝗻𝗱] rather than [𝘁𝗿𝗮𝗽].

Case 9:𝗽p=(signal 𝗦 𝗽po)

In this case we may reduce by [𝘀𝗶𝗴𝗻𝗮𝗹].

Case 10:𝗽p=(ϱ ⟨𝛉r
o, 𝗔o⟩. 𝗽

p
o)

In this case we may reduce by [𝗺𝗲𝗿𝗴𝗲], as by closed⦗𝗾⦘ we know that 𝗔 = GO, which must be ≥ 𝗔o.

Case 11:𝗽p=(if 𝗦 𝗽po 𝗾po)

By closed⦗𝗾p⦘ and 𝗘 not containing any binders we know that 𝗦 ∈ 𝘥𝘰𝘮⦗𝛉r⦘ .

Cases of 𝛉r(𝗦):
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Case 11.i:𝛉r(𝗦)=0

Signals bound in a ϱ must not be 0, therefore this case is not possible.

Case 11.ii:𝛉r(𝗦)=1

In this case we may reduce by [𝗶𝘀-𝗽𝗿𝗲𝘀𝗲𝗻𝘁].

Case 11.iii:𝛉r(𝗦)=⊥

In this case, by 𝛉r; 𝗔; 𝗘 ⊬B 𝗽
p
o, It must be the case that 𝗦 ∉ 𝘊𝘢𝘯ϱ

S⦗ (ϱ ⟨𝛉, 𝗔⟩. 𝗘[(if 𝗦 𝗽po 𝗾po)]), {}⦘ . Therefore we

may reduce by [𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁].

�

B.5. Can Properties

This section contains lemmas and proofs about 𝘊𝘢𝘯 and its relation to the circuit translation. The core theorem here

is lemma 71 (Can S is sound).

Lemma 71 (Can S is sound).

For any term and environment 𝗽p and 𝛉 and any signal 𝗦, if ⟦𝗽p⟧ \ 𝛉, 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽p, 𝛉⦘ , and ⟦𝗽p⟧(SEL) ≃ 0, then

⟦𝗽p⟧(𝗦o) ≃ 0

Interpretation.This theorem states that 𝘊𝘢𝘯 accurately predicts when signal output wires will be set to 0.

Proof.

Induction on 𝗽p:

Case 1:𝗽p=nothing

There is no 𝗦o wire, thus is it by definition 0.
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Case 2:𝗽p=pause

Same as previous case.

Case 3:𝗽p=(exit 𝗻)

Same as previous case.

Case 4:𝗽p=(emit 𝗦2)

Cases of 𝗦 = 𝗦2:

Case 4.i:𝗦 = 𝗦2

In this case 𝗦 ∈ 𝘊𝘢𝘯S⦗𝗽p, 𝛉⦘ , which violates our hypothesis.

Case 4.ii:𝗦 ≠ 𝗦2

In this case ⟦(emit 𝗦2)⟧ does define an 𝗦2 wire, therefore 𝗦 ∉ outputs⦗⟦(emit 𝗦2)⟧⦘ , Therefore, by definition,

⟦(emit 𝗦2)⟧(𝗦) is 0.

Case 5:𝗽p=(signal 𝗦2 𝗽
p
i)

Cases of 𝗦 = 𝗦2:

Case 5.i:𝗦 = 𝗦2

In this case the compilation of signal removes 𝗦 from the set of output signals, which means

𝗦o ∉ outputs⦗⟦𝗽p⟧⦘ , and therefore once again it must be 0.

Case 5.ii:𝗦 ≠ 𝗦2

In this case we can see that there are two cases for 𝘊𝘢𝘯 :

Cases of 𝗦2 ∈ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ ⊥ }⦘ :

Case 5.ii.a:𝗦2 ∈ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ ⊥ }⦘
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1. By the definition of 𝘊𝘢𝘯 , 𝘊𝘢𝘯S⦗ (signal 𝗦2 𝗽
p
i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ ⊥ }⦘  \ { 𝗦 }.

2. By 𝗦 ≠ 𝗦2, (1), and the premise that 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽p, 𝛉⦘ , we may conclude that 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ ⊥ }⦘ .

3. By the definition of ⟦·⟧, the compilation of signal will link 𝗦o
2 to 𝗦i

2. Therefore we can conclude that

⟦𝗽pi⟧ \ 𝛉 ← { 𝗦2 ↦ ⊥ }, as the binding of the other signals does not change, and 𝗽p \ { 𝗦2 ↦ ⊥ } will always

hold.

4. As the compilation of signal does not change SEL, we may use (2) and (3) to invoke our induction hypothesis

to conclude that ⟦𝗽pi⟧(𝗦
o) = 0

5. By 𝗦 ≠ 𝗦2 and definition of the compilation of signal, we know that the 𝗦o wire will remain unchanged. There-

fore we can conclude that ⟦𝗽pi⟧(𝗦o) = ⟦(signal 𝗦2 𝗽
p
i)⟧(𝗦o) = 0.

Case 5.ii.b:𝗦2 ∉ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ ⊥ }⦘

In this case 𝘊𝘢𝘯S⦗ (signal 𝗦2 𝗽i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ 0 }⦘  \ { 𝗦 }. The argument for this case follows ex-

actly along the same lines as the previous case, but we must instead show that ⟦𝗽pi⟧ \ 𝛉 ← { 𝗦2 ↦ 0 } rather than

⟦𝗽pi⟧ \ 𝛉 ← { 𝗦2 ↦ ⊥ }. To show this we first argue that ⟦𝗽pi⟧ \ 𝛉 ← { 𝗦2 ↦ ⊥ } still holds, as it replaces no re-

strictions on the value of 𝗦2. From this we can apply induction using 𝗦2 ∉ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉 ← { 𝗦2 ↦ ⊥ }⦘ to argue that

⟦𝗽pi⟧(𝗦2) = 0. Since this is the interpretation of { 𝗦2 ↦ 0 }, we can safely conclude that ⟦𝗽pi⟧ \ 𝛉 ← { 𝗦2 ↦ 0 }.

Thus we can apply the reasoning from the previous case to conclude that ⟦(signal 𝗦2 𝗽
p
i)⟧(𝗦o) = 0.

Case 6:𝗽p=(par 𝗽pi 𝗾
p
i)

In this case 𝘊𝘢𝘯S⦗ (par 𝗽pi 𝗾
p
i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾pi, 𝛉⦘ . This we can conclude that 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘

and 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗾pi, 𝛉⦘ . We also know that ⟦(par 𝗽pi 𝗾
p
i)⟧(SEL) = ⟦𝗽pi⟧(SEL) ∨ ⟦𝗾pi⟧(SEL), which implies that

⟦𝗽pi⟧(SEL) ≃ 0 and ⟦𝗾pi⟧(SEL) ≃ 0.

Therefore, by induction, we can conclude that ⟦𝗽pi⟧(𝗦o) ≃ 0 and ⟦𝗾pi⟧(𝗦o) ≃ 0.

As both the overall output of𝗦o of both subcircuits is 0, and by definition ⟦(par 𝗽pi 𝗾
p
o)⟧(𝗦o) = ⟦𝗽i⟧(𝗦o) ∨ ⟦𝗾i⟧(𝗦o),

it must be that ⟦(par 𝗽pi 𝗾
p
o)⟧(𝗦o) ≃ 0.
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Case 7:𝗽p=(if 𝗦2 𝗽
p
i 𝗾

p
i)

We know that ⟦(if 𝗦2 𝗽
p
i 𝗾

p
i)⟧(SEL) = ⟦𝗽pi⟧(SEL) ∨ ⟦𝗾pi⟧(SEL) = 0. Therefore

⟦𝗽pi⟧(SEL) ≃ 0 and ⟦𝗾pi⟧(SEL) ≃ 0. We also know that ⟦(if 𝗦2 𝗽
p
i 𝗾

p
i)⟧(𝗦o) = ⟦𝗽pi⟧(𝗦o) ∨ ⟦𝗾pi⟧(𝗦o).

Cases of 𝛉(𝗦2):

Case 7.i:𝛉(𝗦2)=1

In this case we know that 𝘊𝘢𝘯S⦗ (if 𝗦2 𝗽
p
i 𝗾

p
i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘ . In addition not that 𝛉(𝗦2) = 1 means that

⟦(if 𝗦2 𝗽
p
i 𝗾

p
i)⟧(𝗦

i
2) ≃ 1, therefore

⟦𝗾pi⟧(GO) ≃ ⟦(if 𝗦2 𝗽
p
i 𝗾

p
i)⟧(GO) ∧ ¬⟦(if 𝗦2 𝗽

p
i 𝗾

p
i)⟧(𝗦

i
2) , which must be 0. Therefore by lemma 76 (Activation

Condition) we know that ⟦𝗾pi⟧(𝗦
o) ≃ 0.

Then we may invoke our induction hypothesis to show that ⟦𝗽pi⟧(𝗦
o) ≃ 0. Thus we can use a similar chain of

reasoning to the previous case to argue that ⟦(if 𝗦2 𝗽
p
i 𝗾

p
i)⟧(𝗦

o) ≃ 0.

Case 7.ii:𝛉(𝗦2)=0

This case is analogous to the previous one, except that the branches switch roles.

Case 7.iii:𝛉(𝗦2)=⊥

In this case we know that 𝘊𝘢𝘯S⦗ (if 𝗦2 𝗽
p
i 𝗾

p
i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾pi, 𝛉⦘ . Thus we can conclude that

𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘ and 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗾pi, 𝛉⦘ . As previously we know that 𝗦o must be in the outputs of ⟦𝗽pi⟧ or ⟦𝗾pi⟧.

Thus, by induction, ⟦𝗽i⟧(𝗦
o) ≃ 0 and ⟦𝗾i⟧(𝗦

o) ≃ 0.

From this we may conclude that ⟦(if 𝗦2 𝗽
p
i 𝗾

p
i)⟧(𝗦

o) ≃ 0.

Case 8:𝗽p=(suspend 𝗽pi 𝗦2)

In this case we know that 𝘊𝘢𝘯S⦗ (suspend 𝗽pi 𝗦2), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘ . We also know that

⟦(suspend 𝗽pi 𝗦2)⟧(SEL) = ⟦𝗽pi⟧(SEL). Therefor by induction ⟦𝗽i⟧(𝗦
o) ≃ 0. Finally the compilation of suspend

does not change output signals so we can conclude that ⟦(suspend 𝗽i 𝗦2)⟧(𝗦
o) ≃ 0.



B.5. CAN PROPERTIES 181

Case 9:𝗽p=(trap 𝗽pi)

This case follows identically to the previous one, as the compilation of trap neither modifies SEL nor signals form its

inner term.

Case 10:𝗽p=(seq 𝗽pi 𝗾
p
i)

Note that ⟦(seq 𝗽pi 𝗾
p
i)⟧(SEL) = ⟦𝗽pi⟧(SEL) ∨ ⟦𝗾pi⟧(SEL). Therefore ⟦𝗽pi⟧(SEL) = ⟦𝗾pi⟧(SEL) = 0. From the

definition of 𝘊𝘢𝘯 we have two cases: Cases of 0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ :

Case 10.i:0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘=0 ∉ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘

In this case we have 𝘊𝘢𝘯S⦗ (seq 𝗽pi 𝗾
p
i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘ . By induction we can conclude ⟦𝗽pi⟧(𝗦

o) ≃ 0. In

addition by lemma 72 (Can K is sound) we can conclude that ⟦𝗽pi⟧(K0) ≃ 0. This tells us that ⟦𝗾pi⟧(GO) ≃ 0. Thus,

by lemma 76 (Activation Condition), we can conclude that ⟦𝗾pi⟧(𝗦
o) ≃ 0. As 𝗦o is either no in the outputs or 0 in either

subcircuit, we can conclude that ⟦(seq 𝗽pi 𝗾
p
i)⟧(𝗦

o) ≃ 0.

Case 10.ii:0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘=0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘

In this case we have 𝘊𝘢𝘯S⦗ (seq 𝗽pi 𝗾
p
i), 𝛉⦘  = 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘  ∪ 𝘊𝘢𝘯S⦗𝗾pi, 𝛉⦘ . From this we know that

𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽pi, 𝛉⦘ and 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗾pi, 𝛉⦘ . Thus, by induction we have that ⟦𝗽pi⟧(𝗦
o) ≃ 0 and that ⟦𝗾pi⟧(𝗦o) ≃ 0. As

𝗦o is 0 in both subcircuits, we can conclude that ⟦(seq 𝗽pi 𝗾
p
i)⟧(𝗦

o) ≃ 0.

Case 11:𝗽p=(ϱ ⟨𝛉r, 𝗔⟩. 𝗽i)

This case is shown by lemma 73 (Can rho S is sound).

�

Lemma 72 (Can K is sound).

For any term and environment 𝗽p and 𝛉 and any return code 𝞳, if ⟦𝗽p⟧ \ 𝛉, 𝞳 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ , and

⟦𝗽p⟧(SEL) ≃ 0, then ⟦𝗽p⟧(K𝞳) ≃ 0

Interpretation.This theorem states that 𝘊𝘢𝘯 accurately predicts when control wires will be set to 0.
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Proof.

Induction on 𝗽p:

Case 1:𝗽p=nothing

Note that in this case 𝘊𝘢𝘯K⦗nothing, 𝛉⦘  = { 0 }. Cases of (es 𝞳 = 0):

Case 1.i:𝞳 = 0

In this case 𝞳 ∈ 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘ which violates our hypothesis.

Case 1.ii:𝞳 ≠ 0

There is no Kκ wire in this case, thus it is by definition 0.

Case 2:𝗽p=(emit 𝗦)

This is the same as the previous case.

Case 3:𝗽p=(exit 𝗻)

This is the same as the previous two cases, but with 𝗻 substituted for 0.

Case 4:𝗽p=pause

Note that 𝘊𝘢𝘯K⦗pause, 𝛉⦘  = { 1 }. In the only K other wire in ⟦pause⟧ is K0, so we need only concern ourselves

with that. ⟦pause⟧(K0) = ⟦pause⟧(SEL) ∧ ⟦pause⟧(RES), so as ⟦𝗽⟧(SEL) ≃ 0, ⟦pause⟧(K0) ≃ 0.

Case 5:𝗽p=(signal 𝗦 𝗽pi)

1. By the definition of 𝘊𝘢𝘯 , 𝘊𝘢𝘯K⦗ (signal 𝗦 𝗽pi), 𝛉⦘  = 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ .

2. By the definition of ⟦·⟧, ⟦(signal 𝗦 𝗽pi)⟧(SEL) = ⟦𝗽pi⟧(SEL).

3. By (1) and (2), this case follows by induction.
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Case 6:𝗽p=(seq 𝗽pi 𝗾
p
i)

1. By the definition of ⟦·⟧ and the premise that ⟦𝗽p⟧(SEL) ≃ 0, we can conclude that ⟦𝗽pi⟧(SEL) ≃ 0 and ⟦𝗾pi⟧(SEL) ≃ 0.

2. By the definition of ⟦·⟧, ⟦𝗽p⟧(K0) ≃ ⟦𝗾pi⟧(K0)

3. By the definition of ⟦·⟧, for all 𝞳 > 0 ⟦𝗽p⟧(Kκ) ≃ ⟦𝗽pi⟧(Kκ) ∨ ⟦𝗾pi⟧(Kκ)

4. Cases of 0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ :

Case 6.i:0 ∉ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘

4.1. By the definition of 𝘊𝘢𝘯 , we know that 𝘊𝘢𝘯⦗𝗽p, 𝛉⦘  = 𝘊𝘢𝘯⦗𝗽pi, 𝛉⦘

4.2. By (4.1) we know that (L∉ 𝗻 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ )

4.3. By (4.2), (1), and induction, we know that ⟦𝗽pi⟧(K0) ≃ 0

4.4. By (4.3) and the definition of compile we know that ⟦𝗾pi⟧(GO) ≃ 0

4.5. by (4.4) and (1), and lemma 76 (Activation Condition), we know that all outputs of 𝗾pi are 0.

4.6. By (4.1) and (1), and induction, we know that ⟦𝗽pi⟧(Kn) ≃ 0

4.7. By (4.5), (4.6), and both (2) or (3), may conclude that ⟦𝗽p⟧(Kn) ≃ 0.

Case 6.ii:0 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘

4.1. By the definition of 𝘊𝘢𝘯 , we know that 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘  = 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘  ∪ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘

4.2. By (4.1) and our premise, we know that (L∉ 𝗻 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ ) and (L∉ 𝗻 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘ )
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4.3. By (4.2) and (1), we may induct on 𝗽pi and 𝗾pi to conclude that ⟦𝗽pi⟧(Kn) ≃ 0 and ⟦𝗾pi⟧(Kn) ≃ 0

4.4. By (4.3) and (3), we may conclude that ⟦𝗽p⟧(Kn) ≃ 0.

Case 7:𝗽p=(if 𝗦 𝗽pi 𝗾
p
i)

1. By the definition of ⟦·⟧ and the premise that ⟦𝗽p⟧(SEL) ≃ 0, we can conclude that ⟦𝗽pi⟧(SEL) ≃ 0 and ⟦𝗾pi⟧(SEL) ≃ 0.

2. By the definition of ⟦·⟧, for all 𝞳 ⟦𝗽p⟧(Kκ) ≃ ⟦𝗽pi⟧(Kκ) ∨ ⟦𝗾pi⟧(Kκ)

3. Cases of 𝛉(𝗦):

Case 7.i:𝛉(𝗦)=1

3.1. By the definition of 𝘊𝘢𝘯 , we know that (L∉ 𝗻 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ ).

3.2. By (3.1), (1), and induction we can conclude that ⟦𝗾pi⟧(Kn) ≃ 0.

3.3. by ⟦𝗽p⟧ \ 𝛉, and the definition of ⟦·⟧, we can conclude that ⟦𝗾pi⟧(GO) ≃ 0.

3.4. By (3.2), (3.3), and (2) we can conclude that ⟦𝗽p⟧(Kn) ≃ 0.

Case 7.ii:𝛉(𝗦)=0

This case is analogous to the previous case.

Case 7.iii:𝛉(𝗦)=⊥

This follows directly by induction on both branches.

Case 8:𝗽p=(par 𝗽pi 𝗾
p
i)
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1. By the definition of𝘊𝘢𝘯 , 𝘊𝘢𝘯K⦗ (par 𝗽pi 𝗾
p
i), 𝛉⦘  = { 𝘮𝘢𝘹⦗𝞳1 , 𝞳2⦘  | κ1 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘  , κ2 ∈ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘  }

2. By (1) and the premise that 𝞳 ∉ 𝘊𝘢𝘯K⦗𝗽p, 𝛉⦘ , we have three cases:

‚𝞳 ∉ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ and 𝞳 ∉ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘

‚𝞳 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ but for all 𝞳2 ∈ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘ , k2 > 𝞳

‚𝞳 ∈ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘ but for all 𝞳2 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ , k2 > 𝞳

3. Cases of (2):

Case 8.i:⟨𝞳 ∉ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘ , 𝞳 ∉ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘⟩

3.1. It is clear from the definition of the synchronizer that an output wire Kn can only be 1 if at least one of the

subcircuits has its Kn equal to 1

3.2. By induction we may conclude that ⟦𝗽pi⟧(Kκ) ≃ 0 and ⟦𝗾pi⟧(Kκ) ≃ 0.

3.3. By (3.1) and (3.2), we can conclude that ⟦(par 𝗽pi 𝗾
p
i)⟧(Kκ) ≃ 0

Case 8.ii:𝞳 ∈ 𝘊𝘢𝘯K⦗𝗽pi, 𝛉⦘

3.1. As ⟦𝗽p⟧(SEL) ≃ 0, and by the definition of ⟦·⟧, we know that both the LEM and REM wires are 0.

3.2. By the definition of the parallel synchronizer, (3.1) means that a Kn wire can be 1 only if there is a Ln1 and

a Rn2 wire which are 1, where 𝗻1 ≤ 𝗻 and 𝗻2 ≤ 𝗻

3.3. By induction on each Kκ3 wire less 𝞳 in 𝗾pi, which in this clause must not be in the result of 𝘊𝘢𝘯 , all Rn2

wires less than Kκ must be 0.

3.4. By (3.3) and (3.2), ⟦(par 𝗽pi 𝗾
p
i)⟧(Kκ) ≃ 0.
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Case 8.iii:𝞳 ∈ 𝘊𝘢𝘯K⦗𝗾pi, 𝛉⦘

This case is analogous to the previous one.

Case 9:𝗽p=(suspend 𝗽pi 𝗦)

This case follows fairly directly by induction.

Case 10:𝗽p=(trap 𝗽pi)

This case follows fairly directly by induction.

Case 11:𝗽p=(ϱ ⟨𝛉r, 𝗔⟩. 𝗽i)

This case is given by lemma 74 (Can rho K is sound).

�

Lemma 73 (Can rho S is sound).

For all 𝗽p, 𝛉, 𝗔, 𝗦, if 𝗦 ∉ 𝘊𝘢𝘯ϱ
S⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p), {}⦘ and ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(SEL) ≃ 0 then ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(𝗦o) ≃ 0

Interpretation.This theorem states that 𝘊𝘢𝘯ϱ accurately predicts when signal output wires will be set to 0.

Proof.

𝘊𝘢𝘯ϱ is essentially repeated applications of the signal case in 𝘊𝘢𝘯 . This holds by the same line of argument there

used in that case of lemma 71 (Can S is sound). �

Lemma 74 (Can rho K is sound).

For any term and environment 𝗽p and 𝛉 and 𝗔, and return code 𝞳 if 𝞳 ∉ 𝘊𝘢𝘯ϱ
K⦗ (ϱ ⟨𝛉r, 𝗔⟩. 𝗽p), {}⦘ ,

and ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(SEL) ≃ 0, then ⟦(ϱ ⟨𝛉r, 𝗔⟩. 𝗽p)⟧(K𝞳) ≃ 0

Interpretation.This theorem states that 𝘊𝘢𝘯ϱ accurately predicts when control wires will be set to 0.
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Proof.

𝘊𝘢𝘯ϱ is essentially repeated applications of the signal case in 𝘊𝘢𝘯 . This holds by the same line of argument there

used in that case of lemma 72 (Can K is sound). �

Lemma 75 (Can K on paused is 1).

For all 𝗽̂, 𝛉, 𝘊𝘢𝘯K⦗𝗽̂, 𝛉⦘  = { 1 }

Proof.

Induction on 𝗽̂o:

Case 1:𝗽̂o=pause

Follows by the definition of 𝘊𝘢𝘯 .

Case 2:𝗽̂o=(suspend 𝗽̂ 𝗦)

By the definition of 𝘊𝘢𝘯 , 𝘊𝘢𝘯K⦗ (suspend 𝗽 𝗦), 𝛉⦘  = 𝘊𝘢𝘯K⦗𝗽, 𝛉⦘ , thus this follows by induction.

Case 3:𝗽̂o=(seq 𝗽̂ 𝗾)

By induction we know that𝘊𝘢𝘯K⦗𝗽̂, 𝛉⦘  = { 1 }. By the definition of𝘊𝘢𝘯 , this means𝘊𝘢𝘯K⦗ (seq 𝗽̂ 𝗾), 𝛉⦘  = 𝘊𝘢𝘯K⦗𝗽̂, 𝛉⦘ .

Therefore, 𝘊𝘢𝘯K⦗ (seq 𝗽̂ 𝗾), 𝛉⦘  = { 1 }.

Case 4:𝗽̂o=(par 𝗽1̂ 𝗽̂2)

By induction 𝘊𝘢𝘯K⦗𝗽̂1, 𝛉⦘  = 𝘊𝘢𝘯K⦗𝗽̂2, 𝛉⦘  = { 1 }. Thus, by the definition of 𝘊𝘢𝘯 , 𝘊𝘢𝘯K⦗ (par 𝗽̂1 𝗽̂2), 𝛉⦘  = { 1 }.

Case 5:𝗽̂o=(trap 𝗽)̂

By induction 𝘊𝘢𝘯K⦗𝗽̂, 𝛉⦘  = { 1 }. By the definition of ↓κ and 𝘊𝘢𝘯 ,

𝘊𝘢𝘯K⦗ (trap 𝗽̂), 𝛉⦘  = {↓κ x | x ∈ 𝘊𝘢𝘯K⦗𝗽̂, 𝛉⦘ } = {↓κ x | x ∈ { 1 } } = { 1 }.

�
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B.6. Circuit Compilation Properties

This section contains proofs and properties about the circuit compilation and how it relates to concepts in the term

writing system like term decomposition and free variables.

Lemma 76 (Activation Condition).

for any term 𝗽p, if ⟦𝗽p⟧(GO) ∨ (⟦𝗽p⟧(SEL) ∧ ⟦𝗽p⟧(RES)) = 0 then all output Kn and all signals in the output envi-

ronment are 0.

Proof.

Induction on 𝗽p:

Case 1:𝗽p=nothing

The only output is ⟦nothing⟧(K0) = ⟦nothing⟧(GO), which is 0 by our premises

Case 2:𝗽p=(exit 𝗻)

Analogous to the last case.

Case 3:𝗽p=(emit 𝗦)

Analogous to the last case.

Case 4:𝗽p=pause

Example:

> (assert-same

#:constraints '(not (or GO (and --SEL RES)))

(compile-esterel (term pause))

(compile-esterel (term nothing)))
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Thus this follows by the same argument as the nothing case.

Case 5:𝗽p=(signal 𝗦 𝗽pi)

The compilation here only removes one signal from the interface, therefor this holds by induction.

Case 6:𝗽p=(par 𝗽pi 𝗾
p
i)

GO and RES are pass in unchanged, and ⟦(par 𝗽pi 𝗾
p
i)⟧(SEL) = ⟦𝗽pi⟧(SEL) ∨ ⟦𝗾pi⟧(SEL). Therefore our premises

must hold on 𝗽pi and 𝗾pi. Thus, induction, the outputs of ⟦𝗽p⟧ and ⟦𝗾p⟧ are 0.

The output signals of ⟦(par 𝗽pi 𝗾
p
i)⟧ are the ∨ of the inner branches, thus they must be 0.

The control outputs of the synchronizer requires at least some of its inputs be 1 to give an output. However by our

premises and induction they are all 0, thus all Kns are 0.

Case 7:𝗽p=(seq 𝗽pi 𝗾
p
i)

All inputs are passed to ⟦𝗽pi⟧ unchanged, thus by induction all of its outputs are 0.

The GO of ⟦𝗾pi⟧ is given by ⟦𝗽pi⟧(K0), and the rest of the inputs are broadcast, thus by induction all outputs of ⟦𝗾pi⟧

are 0. Therefore all outputs of the overall circuit are 0.

Case 8:𝗽p=(trap 𝗽pi)

GO and RES are passed to ⟦𝗽pi⟧ unchanged, thus by induction the outputs of ⟦𝗽pi⟧ are 0. Therefore the outputs of

the overall circuit are 0.

Case 9:𝗽p=(suspend 𝗽pi 𝗦)

GO is passed to ⟦𝗽pi⟧ unchanged. The RES of ⟦𝗽pi⟧ is ∧ed with RES, thus it too must be 0. Thus by induction the

outputs of ⟦𝗽pi⟧ are 0. Therefore the outputs of the overall circuit are 0.

Case 10:𝗽p=(ϱ ⟨𝛉r, WAIT⟩. 𝗽pi)

In this case GO and RES are passed unchanged, therefore this follows directly by induction.
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Case 11:𝗽p=(if 𝗦 𝗽pi 𝗾
p
i)

The GO wire of ⟦𝗽pi⟧ and ⟦𝗾pi⟧ are ∧ed with the overall GO wire, thus their GO wires must be 0. The RES wire is

broadcast, thus it too is 0. Thus by induction the outputs of both branches are 0. The outputs are ∨ed, therefore the

overall outputs are all 0.

�

Lemma 77 (Selection Start).

for any term 𝗽p, during the first instant ⟦𝗽⟧(SEL) = 0.

Proof.

This is easy to see as all registers are initialized to 0, and SEL is the ∨ of all registers. �

Lemma 78 (Constructive unless Activated).

for any term 𝗽p, if ⟦𝗽p⟧(GO) ∨ (⟦𝗽p⟧(SEL) ∧ ⟦𝗽p⟧(RES)) = 0 then ⟦𝗽⟧ is constructive for any assignments to its

inputs.

Interpretation.The point of this proof is to show that a circuit from the compilation of a term can only exhibit non-

constructive behavior when they are activated, justifying that dead code can be erased without effecting the construc-

tivity of the overall circuit.

Proof.

The inductive arguments of this proof are the same as for lemma 76 (Activation Condition), thus some details have been

elided. Induction on 𝗽p:

Case 1:𝗽p=nothing
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Example:

> (assert-totally-constructive

#:constraints '(not GO)

(compile-esterel (term nothing)))

Case 2:𝗽p=(emit 𝗦)

Example:

> (assert-totally-constructive

#:constraints '(not GO)

(compile-esterel (term (emit S))))

Case 3:𝗽p=(exit 𝗻)

Example:

> (assert-totally-constructive

#:constraints '(not GO)

(compile-esterel (term (exit 0))))

Note that the actual number on the exit just a label on the wire, therefore this holds for all 𝗻.

Case 4:𝗽p=pause

Example:
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> (assert-totally-constructive

#:constraints '(not (or GO (and --SEL RES)))

(compile-esterel (term pause)))

Case 5:𝗽p=(trap 𝗽pi)

This case follows by simple induction.

Case 6:𝗽p=(suspend 𝗽pi 𝗦)

This case follows by simple induction.

Case 7:𝗽p=(signal 𝗦 𝗽pi)

By lemma 76 (Activation Condition), the signal outputs of ⟦𝗽pi⟧ must be 0. Thus the 𝗦 wire is 0. By induction By

induction ⟦𝗽pi⟧ must be constructive. Thus all wires are not ⊥.

Case 8:𝗽p=(par 𝗽pi 𝗾
p
i)

By lemma 76 (Activation Condition), the control outputs of ⟦𝗽pi⟧ and ⟦𝗽pi⟧ must be 0.

By induction ⟦𝗽pi⟧ and ⟦𝗾pi⟧ must be constructive.

As all inputs to the synchronizer are 0, one can trace the execution forward to show that it too must be constructive.

Thus all wires are not ⊥.

Case 9:𝗽p=(seq 𝗽pi 𝗾
p
i)

By induction ⟦𝗽pi⟧ must be constructive. By lemma 76 (Activation Condition), all the control outputs ⟦𝗽pi⟧ are 0. Thus

we can perform induction to show that ⟦𝗾pi⟧ is constructive. Thus all wires must be constructive.

Case 10:𝗽p=(if 𝗦 𝗽pi 𝗾
p
i)

This case follows by induction akin to the same clause in lemma 76 (Activation Condition).

Case 11:𝗽p=(ϱ ⟨𝛉r, WAIT⟩. 𝗽pi)

This case follows by induction akin to the same clause in lemma 76 (Activation Condition).
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�

Lemma 79 (S is maintained across E).

For all 𝗽pi = 𝗘p[𝗾pi], and 𝗦, if 𝗦i ∈ inputs⦗⟦𝗽pi⟧⦘ then ⟦𝗾pi⟧(𝗦
i) ≃ ⟦𝗽pi⟧(𝗦

i)

Proof.

Induction on 𝗘p:

Case 1:𝗘p=○

Trivial as 𝗽pi = 𝗾pi

Case 2:𝗘p=(trap 𝗘p)

As trap does not change touch the signal wires, this follows by induction.

Case 3:𝗘p=(suspend 𝗘p 𝗦)

As suspend does not change touch the signal wires, this follows by induction.

Case 4:𝗘p=(par 𝗘p 𝗾pi)

As par does not change touch the signal wires, this follows by induction.

Case 5:𝗘p=(par 𝗽pi 𝗘
p)

As par does not change touch the signal wires, this follows by induction.

Case 6:𝗘p=(seq 𝗘p 𝗾pi)

As par does not change touch the signal wires, this follows by induction.

�

Lemma 80 (GO is maintained across E).

For all 𝗽p = 𝗘p[𝗾p], ⟦𝗾p⟧(GO) ≃ ⟦𝗽p⟧(GO)
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Proof.

This proof follows the exact same argument as lemma 79 (S is maintained across E). �

Lemma 81 (Selection Definition).

For any term 𝗽p = 𝗘[𝗾p], There exist some wires such that ⟦𝗽p⟧(SEL) = ⟦𝗾p⟧(SEL) ∨ 𝘄others ...

Proof.

This follows trivially from the definition of ⟦·⟧, as SEL is always the ∨ of the SEL wires of the inner terms. �

Lemma 82 (S output irrelevant).

For any term 𝗽p = 𝗘[𝗾p], for any output wire 𝗦o in ⟦𝗾p⟧ there exists no wire 𝘄 that is not itself an instance of 𝗦o in

⟦𝗽p⟧ which depends on 𝗦o

Interpretation.The point of this theorem is to show that an (emit 𝗦) cannot be ”read” by its context until that emit is

closed by a signal or ϱ form.

Proof.

This follows from the same argument as lemma 81 (Selection Definition). �

Lemma 83 (Free Variables are Input/Outputs).

For any 𝗽p and 𝗦, 𝗦 ∈ 𝘍𝘝⦗𝗽p⦘ if any only if 𝗦i ∈ inputs⦗⟦𝗽p⟧⦘ or 𝗦o ∈ outputs⦗⟦𝗽p⟧⦘

Interpretation.This states that the free variables of a term capture exactly the input and output signal wires. That is

then notion “free variable” exactly corresponds to the non-control part of the circuit interface
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Proof.

Note that a signal is free only if it occurs in a (if 𝗦 𝗽p 𝗾p) or (emit 𝗦) that does not have an outer binder. ⟦(if 𝗦 𝗽p 𝗾p)⟧

will generate an 𝗦i wires and (emit 𝗦) will generate an 𝗦o wire. The compilation of all non-binding terms does not

change the set of input or output signals. The compilation of (signal 𝗦 𝗽p) and (ϱ ⟨𝛉, 𝗔⟩. 𝗽p) remove the 𝗦i and 𝗦o

wires from the input/output sets for the signals they bind. Thus the input/output sets for signals exactly match the

notion of free variables. �
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APPENDIX C

The circuit sovler, Circuitous

This appendix is meant to serve as an explanation of the core of the circuit solving library Circuitous. Specifically

it describes the interpreter implementation at commit a3ba4cc of https://github.com/florence/circuitous/, which is

the version used while building this document. Note that the explanation of this section assumes familiarity with

Malik (1994), Shiple et al. (1996), and Racket (Flatt and PLT 2010), Rosette (Torlak and Bodik 2013). I would

strongly recommend that any reader familiarize themselves with the the above papers, the Rosette guide1. the (current

incomplete) documentation for Circuitious2, and the Circuitious test cases3, as these are not covered in enough detail

in this dissertation for this section to make sense.

The purpose of this appendix is help make this work more reproducible and to help increase the readers confidence

that the circuit solver is actually correct. As such it focus on the small (approximately 600 lines) Rosette kernel which

directly interprets and solves circuits and its tests. The library has contains more: a Racket front-end which compiles

to the Rosette model, and helper procedure for manipulating circuits. However those are not described here.

C.1. Internal representation of circuits

Internally, a circuit is represented as an association list, mapping variable names to Boolean expressions, also repre-

sented as a list. However this definition is a little misleading, as there are actually two possible ways the circuit library

does this. First, there is a representation that directly implements the representation in Malik (1994), where variable

names are either pairs of either the symbol '+ or '-, and an arbitrary symbol. Every wire in the circuit has a + and

a - form, corresponding to Malik’s .1 and .0 forms, respectively. I will refer to these as the positive and negative

variants of the wire. Correspondingly, values for each of these variables take on the form of #t or #f, matching 1 and

1https://docs.racket-lang.org/rosette-guide/index.html?q=rosette
2https://github.com/florence/circuitous/tree/master/circuitous-doc
3https://github.com/florence/circuitous/tree/master/circuitous-test/circuitous/tests
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0 in Malik’s formulation. I will refer to this as the pos-neg representation. Circuits are also represented by using the

values #t, #f, and ⊥ directly. In this case variables are just symbols, and the interpretations of ∧ and ∨ are lifted to

operate on ⊥. I will refer to this as the three-valued representation.

To handle this the implementation of the interpreter is parameterized by the two different representations. This is

accomplished using Racket’s unit system (Flatt and Felleisen 1998), which is a first-class module system that supports

recursive linking. It is akin to ML’s Functors, in that modules are parameterized by other modules. As such, a unit

which implements one of these representations follows the following signature in figure 47. In the comments which

describe the contracts on what the modules provide, symbolic-boolean refers to a Rosette symbolic value which

evaluates to a boolean, state refers to the library’s representation of 𝛉ɕ, value refers to whichever set of values that

representation chooses, and circuit refers to whichever for of association lists the representation uses.

The functions behave as follows: symbolic-variable creates a rosette symbolic variable for a variable in the circuit;

initial-value gives the value that all variables in the initial state should be (#f for pos-neg, and K for three-

valued); f-or, f-and f-not, and f-implies are used by the interpreter to lift expression in the circuit into racket

functions that operate over the current state, so that each variable is associated with a single function that computes it’s

current value; constraints generates global constraints for the representation (such as the + and - variables being

mutually exclusive in the pos-neg representation); contructive? gives a symbolic expression which will be true

if and only if the circuit’s state is constructive (that is does not contain the representation of ⊥); initialize-to-

false and initialize-to-true create a state for a (sub)circuit where all values are the representations of the 0 or

1, respectively; get-maximal-statespace computes the totally number of instants that may be needed to explore all

possible register states given the number of registers in the circuit, a la Shiple et al. (1996); interp-bound computes

the maximum number of iterations that may be needed to evaluate a circuit in a single instant; outputs=? is an

equality predicate over states; constructive-constraints computes an expression which will evaluate to true if

and only if the circuit is constructive on the given inputs.
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#lang racket/signature

#;(-> variable symbolic-value)
symbolic-boolean

#;Value

initial-value

#;(-> (-> state value) (-> state value) (-> state value))
f-or

#;(-> (-> state value) (-> state value) (-> state value))
f-and

#;(-> (-> state value) (-> state value))
f-not

#;(-> (-> state value) (-> state value) (-> state value))
f-implies

#;(-> state symbolic-boolean)
constraints

#;(-> circuit (-> state boolean))
constructive?

#;(-> circuit state)
initialize-to-false

#;(-> circuit state)
initialize-to-true

#;(-> natural natural)
get-maximal-statespace

#;(-> circuit natural)
interp-bound

#;(-> state state boolean)
outputs=?

#;(-> circuit expression)
constructive-constraints

Figure 47: sem-sig.rkt
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C.2. The circuit solver

The actual implementations of the representations are recursively linked with the interpreter, therefore I will describe

the interpreter interface and implementation before describing the representations’ implementations. The signature for

the interpreter unit is given in figure 48.

The primary function of interest is verify-same, which is the core implementation of the solver. It takes in two

circuits, a list of which wires in them correspond to the inputs and outputs of registers, and constraints the caller

wishes to impose, and a list of outputs to observe. If the list of outputs is #f, all wires are considered outputs. If the

registers are set to #f, no registers are taken and a slightly different code path is taken that bypasses the multi-instant

solver and jumps straight to the single instant solver. This is only used for testing and debugging, therefore I will not

describe that code path. This function assumes the circuits have been consistently renamed such that any two wires

in the two circuits that have the same name are part of that circuits interface, and therefore may be compared when

comparing the circuit’s for equality. This renaming is handled at a higher level in the library which is not discussed

here. The full implementation of verify-same is given in figure 49. The implementation logs debug information

then decides if it should take the debug code path or not. As we are ignoring the debug path, the next function of

interest is verify-same/multi.

The function verify-same/multi, shown in figure 50, constructs all the inputs the solver needs, then gives those to

the solver via the do-verify macro. The inputs to do-verify are as follows: #:=? is the equality procedure used to

compare the outputs for equality. In this case it is result=?/multi which loops over the result from each input and

uses the outputs=? and constructive? from the representation unit to make sure each instant behaved the same

(see figure 54 and figure 55). The #:expr1 and #:expr2 arguments are the two symbolic expressions to execute. The

#:given-constraints arguments are any constraints given to the solver by the caller (i.e. that GO implies ¬SEL).

The #:gened-constraints are constraints necessitated by the representation (as specified by constraints). And

finally #:outputs specifies which output wires to observe.

The two expressions are generated by the function eval/multi*, which builds the racket representation of a circuit

and evaluates it. The first argument is a list of the inputs for each instant, which in this case is a list who’s length is long
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#lang racket/signature

#;(-> circuit circuit
#:register-pairs1 [(or #f (listof variable variable))]

#:register-pairs2 [(or #f (listof variable variable))]

#:constraints [expression]

#:outputs [(or #f (listof symbol))]

(or unsat? (list model? state)))

verify-same

#;(-> circuit #:exclude [(listof variable)] (listof (list variable symbolic-variable)))
symbolic-inputs

#;(-> circuit (listof (list variable symbolic-variable)) state)
build-state

#;(-> circuit (listof (list variable (-> state booolean))))
build-formula

#;(-> expression (-> state booolean))
build-expression

#;(-> state circuit-as-functions state)
eval

#;(-> (listof state) circuit-as-functions (listof (list variable variable)) (listof state))
eval/multi

#;(-> (listof state) circuit (listof (list variable variable)) (listof state))
eval/multi*

#;(-> state state #:outputs [(listof variable)] boolean?)
result=?

#;(-> (listof state) (listof state) #:outputs [(listof variable)] boolean?)
result=?/multi

totally-constructive?

Figure 48: interp-sig.rkt

enough to explore all register states (computed by get-maximal-statespace), and who’s values are all symbolic

(generated by symbolic-inputs). The two sets of constraints are build for every instant by either translating the

given constraints into racket function via build-expression and evaluating it on all symbolic instants, or by calling
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(define (verify-same P1 P2

#:register-pairs1 [register-pairs1 #f]

#:register-pairs2 [register-pairs2 #f]

#:constraints [extra-constraints 'true]
#:outputs [outputs #f])

(log-circuit-solver-debug

"P1: „a" (pretty-format P1))

(log-circuit-solver-debug

"P2: „a" (pretty-format P2))

(cond

[(and register-pairs1 register-pairs2)

(verify-same/multi P1 P2

#:register-pairs1 register-pairs1

#:register-pairs2 register-pairs2

#:constraints extra-constraints

#:outputs outputs)]

[(not (or register-pairs1 register-pairs2))

(verify-same/single P1 P2

#:constraints extra-constraints

#:outputs outputs)]

[else (error "missing register pair set")]))

Figure 49: verify-same

the representations constraints function on the output of each instant of execution (which will exclude any result

states that violate the constraints).

Before describing the symbolic interpreter, I will first discuss describe the solver. The solver macro do-verify, found

in figure 51, just surrounds the entire computation in a with-asserts*, which captures any rosette asserts and resets

the assertion store after the solver completes. The real implementation is in verify/f, found in figure 52.

The function verify/f begins with a large chunk of debug logging statements. It then constructs the symbolic

expression eq, which is true if and only if the equality predicate =? returns #t.4 This symbolic expression is then

verifyed by Rosette under the assumptions that all of our constraints return true. If a satisfying result is returned it

means the verification failed.5 In this case more debugging information is logged, and a result is returned containing

4The equality check for #t is needed because racket treats any non-#f value as #t. If any of these procedures returns a non-Boolean value, such as
'K in the case of the three-valued representation, we want to treat that as not true.
5SMT solvers, and therefore Rosette, represent verification problems by making sure that the it’s negation, when expressed as an existential, does
not have a satisfying solution. That is the verification of @ x, P(x) is proven by showing that D x,  P(x) is unsatisfiable.
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(define (verify-same/multi P1 P2

#:register-pairs1 [register-pairs1 (list)]

#:register-pairs2 [register-pairs2 (list)]

#:constraints [extra-constraints 'true]
#:outputs [outputs #f])

(do-verify

#:=? result=?/multi

#:expr1 e1 #:expr2 e2

#:given-constraints extra

#:gened-constraints const

#:outputs outputs

(log-circuit-solver-debug "starting multi run for\n„a\nand\n„a"

(pretty-format P1)

(pretty-format P2))

(define register-ins1 (map first register-pairs1))

(define register-outs1 (map second register-pairs1))

(define register-ins2 (map first register-pairs2))

(define register-outs2 (map second register-pairs2))

(define maximal-statespace

(max (get-maximal-statespace (length register-pairs1))

(get-maximal-statespace (length register-pairs2))))

(log-circuit-solver-debug "maximal-statespace: „a" maximal-statespace)

(define inputs

(let loop ([x maximal-statespace])

(cond [(zero? x) (list)]

[else

(cons

(symbolic-inputs (append P1 P2)

#:exclude (append register-outs1 register-outs2))

(loop (sub1 x)))])))

(log-circuit-solver-debug "inputs: „a" (pretty-format inputs))

(define e1 (eval/multi* inputs P1 register-pairs1))

(define e2 (eval/multi* inputs P2 register-pairs2))

(define (make-extra e)

(andmap (lambda (v) (equal? #t ((build-expression extra-constraints) v))) e))

(define (make-c e)

(andmap (lambda (v) (equal? #t (constraints v))) e))

(define (build-extra ea eb)

(map (lambda (x)

(append x

(initialize-to-false

(map first (first eb)))))

ea))

(define extra

(and (make-extra (build-extra e1 e2))

(make-extra (build-extra e2 e1))))

(define const (and (make-c e1) (make-c e2)))))

Figure 50: verify-same/multi
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(define-syntax do-verify

(syntax-parser

[(_ #:=? =?:id

#:expr1 e1:id

#:expr2 e2:id

#:given-constraints given-constraints:id

#:gened-constraints gened-constraints:id

#:outputs outputs:id

body:expr ...)

#'(with-asserts*
body ...

(verify/f =? e1 e2 given-constraints gened-constraints outputs))]))

Figure 51: do-verify

the satisfying core, and the result of evaluating the two symbolic expressions under that core. Otherwise the unsat

core is returned, representing the success of the verification.

Before moving on to the interpreter, the last three solver functions to explain is symbolic-inputs, result=?/multi,

and result=?. The first, in figure 53, generates a symbolic variable for every input the in the circuit, giving an

association list from the variables to their symbolic representations. This will form the core of the construction of the

initial state. The implementation is in figure 53 which does not bare much further discussion.

The two result functions use the outputs=? and constructive? functions from the representation to check if two

states, or list of states in the case of result=?/multi, are the same. The result=?/multi function (figure 54)

demands that the two lists be the same length, and that every state is result=?. The result=? (figure 55) demands

that two states have the same outputs (as determined by outputs=? and outputs) and have the same constructivity,

as determined by constructive?.

The last part of the solver totally-constructive? (figure 56). This function is a little bit of a hack, as it just checks

if the given circuit is equal to the empty circuit while checking no inputs, which devolves to checking that both circuits

have the same constructivity when their inputs are constructive. Therefore the constraints for the call to verify-

same/multi contain the constraints which force all free variables in the circuit (the inputs) to be constructive.
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(define (verify/f =? e1 e2 given-constraints gened-constraints outputs)

(log-circuit-solver-debug "e1: „a" (pretty-format e1))

(log-circuit-solver-debug "e1 vars: „a" (pretty-format (symbolics e1)))

(log-circuit-solver-debug "e2: „a" (pretty-format e2))

(log-circuit-solver-debug "e2 vars: „a" (pretty-format (symbolics e2)))

(log-circuit-solver-debug "constraints: „a"

(pretty-format (equal? #t given-constraints)))

(log-circuit-solver-debug "generated constraints: „a"

(pretty-format (equal? #t gened-constraints)))

(log-circuit-solver-debug "asserts: „a" (pretty-format (asserts)))

(log-circuit-solver-debug "outputs: „a" (pretty-format outputs))

(define eq (equal? #t (=? e1 e2 #:outputs outputs)))

(log-circuit-solver-debug "eq: „a" (pretty-format eq))

(log-circuit-solver-debug "eq symbolics: „a" (pretty-format (symbolics eq)))

(define r

(verify

#:assume (assert (and (equal? #t given-constraints)

(equal? #t gened-constraints)))

#:guarantee (assert eq)))

(when (sat? r)

(log-circuit-solver-debug

"symbolics in result: „a"

(pretty-format

(map

(lambda (x) (list x (r x)))

(symbolics eq)))))

(if (unsat? r)

r

(let ([r (complete-solution r (symbolics eq))])

(list r (evaluate e1 r) (evaluate e2 r)))))

Figure 52: verify/f

(define (symbolic-inputs P #:exclude [exclude (list)])

(filter-map

(lambda (x)

(and (not (member x exclude))

(list x (symbolic-boolean x))))

(FV P)))

Figure 53: symbolic-inputs
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(define (result=?/multi a b #:outputs [outputs #f])

(and

(equal? (length a) (length b))

(let andmap ([a a]

[b b])

(if (empty? a)

#t

(and (result=? (first a) (first b) #:outputs outputs)

(andmap (rest a) (rest b)))))))

Figure 54: result=?/multi

(define (result=? a b #:outputs [outputs #f])

(and

(outputs=? a b #:outputs outputs)

(equal? (constructive? a)

(constructive? b))))

Figure 55: result=?

(define (totally-constructive? p

#:register-pairs [rp (list)]

#:constraints [c 'true])
(define r

(verify-same/multi p (list)

#:register-pairs1 rp

#:register-pairs2 (list)

#:outputs (list)

#:constraints

`(and ,(constructive-constraints
(initialize-to-false (FV p)))

,c)))

(if (unsat? r)

r

(take r 2)))

Figure 56: totally-constructive?

C.3. The circuit interpreter

The top level function of the circuit interpreter is eval/multi* (figure 57), which is responsible for constructing the

interpreters representation of the circuit. It’s first argument is the list of inputs for each instant, it’s second is the circuit
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(define (eval/multi* IVS eqs register-pairs)

(define mid (build-state eqs (list)))

(eval/multi (map (lambda (x) (append x mid)) IVS)

(build-formula eqs)

(map first register-pairs)

(initialize-to-false

(map second register-pairs))))

Figure 57: eval/multi*

equations, and the last are the input/output pairs of wire names for the registers.6 The eval/multi* function delegates

to the eval/multi function, which operates on the internal circuit representation. It’s arguments are the starting state

for each instant, which is the inputs appended to an initial wire state computed by build-state; the internal circuit

representation list which maps each wire name to a function of the current state to a value) is constructed by build-

formula; the list of wires which are inputs to registers, and a substate that corresponds to the initial state of the outputs

of the registers, which must be in the same order as the inputs. This initial state has all registers set to false.

The eval/multi function (figure 58) uses the single instant evaluator eval to evaluate each instant, threading the

inputs of each register to the outputs in subsequent instants. It will short-circuit if any instant is not constructive, as the

future behavior of such a circuit is unspecified (that is, non-constructive is an error state). This function is a recursive

loop which keeps track of the current register states out-registers, a backwards list of the outputs of each instant

seen, and the remaining list of input states to execute states. If the states are empty is return the seen states, which

will be reversed. Otherwise it adds the current register state to the next input state and evaluates that instant. If the

result is not constructive the result is added to the seen list and the loop is aborted. Otherwise the input values of the

registers are copied to the outputs, and the loop restarts.

The eval (figure 59) fully evaluates a single instant. Following the procedure laid out by Malik (1994), it uses the

step function to evaluate all the gates it can. This process must settle in interp-bound steps, as the values of each

gate are monotonic. Note that this loop does not exit early if a fixed pointed is reached. While this is an optimization

in the concrete case, it is actually a pessimization when solving. This is because, as the state is symbolic, the check

that a fixed point is reached adds extra, recursive, formula to the solver.

6Note that the circuit interpreter works on both concrete and symbolic inputs. This is the joy of using Rosette.
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(define (eval/multi states formulas in-registers out-registers)

(log-circuit-eval-debug "starting eval/multi")

(reverse

(let loop ([registers out-registers]

[seen (list)]

[states states])

(log-circuit-eval-debug "states: „a" (pretty-format states))

(log-circuit-eval-debug "seen: „a" (pretty-format seen))

(log-circuit-eval-debug "registers: „a" out-registers)

(cond

[(empty? states) seen]

[else

(define next (eval (append (first states) registers)

formulas))

(log-circuit-eval-debug "next: „a" (pretty-format next))

(if (not (constructive? next))

(cons next seen)

(loop (map (lambda (in outpair)

(list (first outpair)

(deref next in)))

in-registers

out-registers)

(cons next seen)

(rest states)))]))))

Figure 58: eval/multi

(define (eval state formulas)

(define (eval* state formulas bound)

(if (zero? bound)

state

(let ([x (step state formulas)])

(eval* x formulas (sub1 bound)))))

(eval* state formulas (interp-bound formulas)))

Figure 59: eval

Next, the step function (figure 60) takes in the current state and list of formula and evaluates each formula exactly

once on the current state to generate a new state. It does this by iterating over the current state and, for each value, if it

is defined by a wire (rather that being an input), the function for that wire is evaluated on the current state. Note that,
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(define (step state formulas)

(map

(lambda (w)

(define name (first w))

(define f

(and (contains? formulas name)

(deref formulas name)))

(if f

(list name (f state))

w))

state))

Figure 60: step

(define (build-state P inputs)

(append

(map

(lambda (w) (list (first w) initial-value))

P)

inputs))

Figure 61: build-state

again, wires which are don’t represent 'K don’t need to be evaluated, but this would be a pessimization when solving

as it added more formula.7

The next interesting function in the interpreter is build-state (figure 61). It builds a state from the circuit and it’s

inputs, which in the symbolic case will have been generated by symbolic-inputs. It simply sets all wires to their

initial value, and adds in the inputs.8

The final interesting functions in the interpreter are build-formula (figure 62) and build-expression (figure 63),

which convert a the circuit AST into Racket functions. The recursively walk the AST and invoke the f-and, f-or,

and f-not functions into “compile” the expressions. Constants and variables are handled manually, rather than by the

representations.

7Note that evaluating the wire again also will add more formula, but these formula will be added in either case as rosette must explore both branches
of the conditional.
8The inputs argument is unused in the multi-instant case, as eval/multi handles that itself.
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(define (build-formula P)

(map

(lambda (x)

(match-define (list n '= e) x)
(list n (build-expression e)))

P))

Figure 62: build-formula

(define (build-expression e)

(match e

[`(and ,e1 ,e2)
(f-and (build-expression e1)

(build-expression e2))]

[`(or ,e1 ,e2)
(f-or (build-expression e1)

(build-expression e2))]

[`(not ,e1)
(f-not (build-expression e1))]

[`(implies ,e1 ,e2)
(f-implies (build-expression e1)

(build-expression e2))]

[(or #t `true) (lambda (_) #t)]
[(or #f `false) (lambda (_) #f)]
[`K (lambda (_) 'K)]
[x

(lambda (w) (deref w x))]))

Figure 63: build-expression

C.4. Implementing the representations

Finally on too the representation. First up is the easier of the two to understand, the three-valued representa-

tion.

C.4.1. The three-value representation

As the interface to the representations have already been explained, this explanation will be brief. The interp-bound

(figure 64) is the number of wires in the circuit, as in each cycle either a fixed point has been reached or one gate’s
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(define (interp-bound formula)

(length formula))

Figure 64: interp-bound in the three-valued representation

(define initial-value 'K)

Figure 65: initial-value in the three-valued representation

(define (get-maximal-statespace x)

(expt 2 x))

Figure 66: get-maximal-statespace in the three-valued representation

(define (f-and x y)

(lambda (w)

(define a (x w))

(define b (y w))

(case a

[(#f) #f]

[(#t) b]

[(K)

(case b

[(#f) #f]

[(#t K) 'K]
[else (error 'and "second argument is not an extended boolean: „a" b)])]

[else

(error 'and "first argument is not an extended boolean: „a" a)])))

Figure 67: f-and in the three-valued representation

value will change. The initial-value (figure 65) is 'K. The number of instants needed for x registers (figure 66)

is 2x, as each register can only take on the values #t or #f.9

The “compiling” functions f-and (figure 67), f-or (figure 68), and f-not (figure 69) directly implement the truth-

tables found in section 2.3.1. They contain extra error cases, which should never be triggerable.

The representation gets more interesting with symbolic-boolean (figure 70). Rosette implements a union of three

values like #t, #f, and 'K as a symbolic computation that returns one of these values. Therefore two symbolic

9The value 'K is forbidden, because that would mean the previous instant was non-constructive.
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(define (f-or x y)

(lambda (w)

(define a (x w))

(define b (y w))

(case a

[(#t) #t]

[(#f) b]

[(K)

(case b

[(#t) #t]

[(#f K) 'K]
[else (error 'or "second argument is not an extended boolean: „a" b)])]

[else

(error 'or "first argument is not an extended boolean: „a" a)])))

Figure 68: f-or in the three-valued representation

(define (f-not a)

(lambda (w)

(case (a w)

[(#t) #f]

[(#f) #t]

[(K) 'K]
[else (error 'not "argument is not an extended boolean: „a" (a w))])))

Figure 69: f-not in the three-valued representation

Booleans—pos and neg—are created10. If pos is #t, then the overall symbolic Boolean is #t. Otherwise if neg is #t,

the overall symbolic Boolean is #f. If both are #f, the overall symbolic Boolean is 'K. The case where both are #t

is excluded by assertion. Not that this means that, at the lowest level, the three-valued and pos-neg representation

actually use the same representation of values. The only difference is in the representation of wires: In the three-

valued case the two Booleans are bundled into one equation, whereas in the pos-neg representation they will have

separate equations.

This representation has no external constraints (figure 71), and is constructive? (figure 72 and figure 73) if all

wires are #t or #f.

10In order to create them dynamically I use Rosette’s reflective API, and ensure the variables are unique using a small amount of state in
next-unique!.
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(define (symbolic-boolean name)

(define pos

(constant („a "pos-" name "$" (next-unique! name)) boolean?))
(define neg

(constant („a "neg-" name "$" (next-unique! name)) boolean?))
(assert (not (and pos neg)))

(if pos #t (if neg #f 'K)))

Figure 70: symbolic-boolean in the three-valued representation

(define (constraints _)

#t)

Figure 71: constraints in the three-valued representation

(define (constructive? a)

(equal?

((build-expression (constructive-constraints a)) a)

#t))

Figure 72: constructive? in the three-valued representation

(define (constructive-constraints inputs)

(if (empty? inputs)

'true
`(and (or ,(first (first inputs)) (not ,(first (first inputs))))

,(constructive-constraints (rest inputs)))))

Figure 73: constructive-constraints in the three-valued representation

Two outputs are outputs=? (figure 74) when either all of the specified output wires are the same, or—if no output

wire set is given—every wire which is in both circuits has the same value. Note when an output set is given, if a circuit

does not have that wire we treat it’s value as #f.

C.4.2. The pos-neg representation

The pos-neg representation is a little more subtle. There are two formula for each wire, but the two formula are

mutually exclusive, therefore the interp-bound (figure 75) is half of the size of overall number of formula. The
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(define (outputs=? a b #:outputs [outputs #f])

(if outputs

(andmap

(lambda (w)

(equal?

(and (contains? a w) (deref a w))

(and (contains? b w) (deref b w))))

outputs)

(andmap

(lambda (w)

(implies

(contains? b (first w))

(equal? (second w) (deref b (first w)))))

a)))

Figure 74: outputs=? in the three-valued representation

(define (interp-bound formula)

(/ (length formula) 2))

Figure 75: interp-bound in the pos-neg representation

(define (get-maximal-statespace x)

(expt 2 (inexact->exact (ceiling (/ x 2)))))

Figure 76: get-maximal-statespace in the pos-neg representation

(define (constructive? P)

((build-expression (constructive-constraints P)) P))

Figure 77: constructive? in the pos-neg representation

get-maximal-statespace (figure 76) function also halves it’s inputs to account for the exclusivity of the positive

an negative representations, giving 2x/2.

Constructivity checking(figure 77 and figure 78) also changes. When the positive variant of each wire is found , an

expression is added to the constraints insisting that either the positive or negative variant be true. To avoid adding

redundant expressions, the negative variant is skipped.
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(define (constructive-constraints inputs)

(let fold ([current inputs])

(if

(empty? current)

'true
(let ([n (first (first current))])

(cond

[(eq? '+ (first n))
`(and
(or ,n (- ,(second n)))

,(fold (rest current)))]

[else (fold (rest current))])))))

Figure 78: constructive-constraints in the pos-neg representation

(define initial-value #f)

Figure 79: initial-value in the pos-neg representation

(define (symbolic-boolean name)

(constant (string-replace

(„a name "$" (next-unique! name))
" "

"_")

boolean?))

Figure 80: symbolic-boolean in the pos-neg representation

The initial-value is #f (figure 79) as setting both parts of the representation of the wire to #f sets the overall

representation to #f. Symbolic Booleans just represented by a single symbolic variable (figure 80).

However this leads to a non-trival implementation of the global constraints (figure 81). It ensures that for every

wire with a positive and negative part, only one of them may be true in the given state. Therefore for each positive

variant we ensure that at most one of the positive and negative variants are true.

The equality predicate outputs=? (figure 82) has a more subtle accounting of the positive and negative variants. Like

in the three-valued case we treat a missing wire as false. However this means that we treat the positive and negative

variants asymmetrically: if we expect the overall wire to be false we must treat the negative variant as true. Therefore
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(define (constraints I)

(andmap

(λ (x)
(implies

(and (list? x)

(list? (first x))

(eq? (first (first x)) '+)
(contains? I `(- ,(second (first x)))))

(not (and (second x)

(deref I `(- ,(second (first x))))))))
I))

Figure 81: constraints in the pos-neg representation

(define (outputs=? a b #:outputs [outputs #f])

(if outputs

(andmap

(lambda (w)

(cond

[(and (list? w) (equal? (first w) '-))
(equal?

(or (not (contains? a w)) (deref a w))

(or (not (contains? b w)) (deref b w)))]

[else

(equal?

(and (contains? a w) (deref a w))

(and (contains? b w) (deref b w)))]))

outputs)

(andmap

(lambda (w)

(implies

(contains? b (first w))

(equal? (second w) (deref b (first w)))))

a)))

Figure 82: outputs=? in the pos-neg representation

outputs=? checks which variant it is currently handling and adjusts accordingly. This is only needed in the case

where outputs are given, as in the other case we only check wires that we know are in both circuits.
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C.5. Trusting the solver

Of course explaining the code should not be enough to convince anyone that the code is enough. Thus I offer the

following evidence: test cases and code coverage. The test cases consist of approximate 116 manual test cases targeting

specific behavior. In addition there are 1000 random tests which run against compare behavior of the implementation

to a redex model of the circuit semantics presented in section 2.3.4.

In addition code coverage of the implementation shows 96% code coverage, where the 4% correspond to error

cases that should be unreachable, or are in areas of the codebase used for circuit manipulation and not used in my

proofs.



D. PROVING EQUALITIES THROUGH THE CALCULUS 217

APPENDIX D

Proving equalities through the calculus

The proofs in this section are written in a DSL which checks them against the equations of the calculus, then generates

the prose in that section.

Theorem 84 (Can swap adjacent signals).

For all 𝗽, 𝗦1, 𝗦2, (signal 𝗦1 (signal 𝗦2 𝗽)) ≃
E (signal 𝗦2 (signal 𝗦1 𝗽))

Proof.

1. By [𝘀𝗶𝗴𝗻𝗮𝗹],

(signal 𝗦1
(signal 𝗦2
𝗽))

≡E
(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.

(signal 𝗦2
𝗽))

2.

2.1. By [𝘀𝗶𝗴𝗻𝗮𝗹],
(signal 𝗦2
𝗽)

≡E (ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.
𝗽)

2.2. By [𝗰𝘁𝘅] and (2.1),

(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.
(signal 𝗦2
𝗽))

≡E
(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.

(signal 𝗦2
𝗽))

3. By [𝗺𝗲𝗿𝗴𝗲],

(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.
(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.

𝗽))
≡E (ϱ ⟨{ 𝗦1 ↦ ⊥ } ← { 𝗦2 ↦ ⊥ }, WAIT⟩.

𝗽)
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4.

4.1. By [𝗺𝗲𝗿𝗴𝗲],

(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.
(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.

𝗽))
≡E (ϱ ⟨{ 𝗦1 ↦ ⊥ } ← { 𝗦2 ↦ ⊥ }, WAIT⟩.

𝗽)

4.2. By [𝘀𝘆𝗺] and (4.1),

(ϱ ⟨{ 𝗦1 ↦ ⊥ } ← { 𝗦2 ↦ ⊥ }, WAIT⟩.
𝗽)

≡E
(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.

(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.
𝗽))

5.

5.1.

5.1.1. By [𝘀𝗶𝗴𝗻𝗮𝗹],

(signal 𝗦2
(signal 𝗦1
𝗽))

≡E
(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.

(signal 𝗦1
𝗽))

5.1.2.

5.1.2.1. By [𝘀𝗶𝗴𝗻𝗮𝗹],
(signal 𝗦1
𝗽)

≡E (ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.
𝗽)

5.1.2.2. By [𝗰𝘁𝘅] and (5.1.2.1),

(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.
(signal 𝗦1
𝗽))

≡E
(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.

(signal 𝗦1
𝗽))

5.1.3. By [𝘁𝗿𝗮𝗻𝘀], and (5.1.1) through (5.1.2),

(signal 𝗦2
(signal 𝗦1
𝗽))

≡E
(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.

(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.
𝗽))

5.2. By [𝘀𝘆𝗺] and (5.1),

(ϱ ⟨{ 𝗦2 ↦ ⊥ }, WAIT⟩.
(ϱ ⟨{ 𝗦1 ↦ ⊥ }, WAIT⟩.

𝗽))
≡E

(signal 𝗦2
(signal 𝗦1
𝗽))
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6. By [𝘁𝗿𝗮𝗻𝘀], and (1) through (5), (signal 𝗦1 (signal 𝗦2 𝗽)) ≡
E (signal 𝗦2 (signal 𝗦1 𝗽))

By the above and theorem 29 (Soundness), we may conclude that (signal 𝗦1 (signal 𝗦2 𝗽)) ≃
E (signal 𝗦2 (signal 𝗦1 𝗽)).

�

Theorem 85 (Can take the else branch for adjacent signals).

For all 𝗦, 𝗽, 𝗾, If 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗽, { 𝗦 ↦ ⊥ }⦘ and, 𝗦 ∉ 𝘊𝘢𝘯S⦗𝗾, { 𝗦 ↦ ⊥ }⦘ , then

(signal 𝗦 (if 𝗦 𝗽 𝗾)) ≃E (signal 𝗦 𝗾)

Proof.

1. By [𝘀𝗶𝗴𝗻𝗮𝗹],
(signal 𝗦
(if 𝗦 𝗽 𝗾)) ≡

E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.
(if 𝗦 𝗽 𝗾))

2. By [𝗶𝘀-𝗮𝗯𝘀𝗲𝗻𝘁],
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

(if 𝗦 𝗽 𝗾)) ≡E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.
𝗾)

3.

3.1. By [𝘀𝗶𝗴𝗻𝗮𝗹],
(signal 𝗦
𝗾) ≡E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗾)

3.2. By [𝘀𝘆𝗺] and (3.1),
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗾) ≡E (signal 𝗦
𝗾)

4. By [𝘁𝗿𝗮𝗻𝘀], and (1) through (3), (signal 𝗦 (if 𝗦 𝗽 𝗾)) ≡E (signal 𝗦 𝗾)

By the above and theorem 29 (Soundness), we may conclude that (signal 𝗦 (if 𝗦 𝗽 𝗾)) ≃E (signal 𝗦 𝗾). �

Theorem 86 (Lifting signals).

For all 𝗦, 𝗽, 𝗘, 𝗔, (ϱ ⟨{}, 𝗔⟩. 𝗘[(signal 𝗦 𝗽)]) ≃E (ϱ ⟨{}, 𝗔⟩. (signal 𝗦 𝗘[𝗽]))
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Proof.

1.

1.1. By [𝘀𝗶𝗴𝗻𝗮𝗹], (signal 𝗦 𝗽) ≡E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽)

1.2. By [𝗰𝘁𝘅] and (1.1),
(ϱ ⟨{}, 𝗔⟩.

𝗘[(signal 𝗦 𝗽)]) ≡
E (ϱ ⟨{}, 𝗔⟩.

𝗘[(signal 𝗦 𝗽)])

2. By [𝗺𝗲𝗿𝗴𝗲],
(ϱ ⟨{}, 𝗔⟩.

𝗘[(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩. 𝗽)]) ≡
E (ϱ ⟨{ 𝗦 ↦ ⊥ }, 𝗔⟩.

𝗘[𝗽])

3.

3.1. By [𝗺𝗲𝗿𝗴𝗲],

(ϱ ⟨{}, 𝗔⟩.
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗘[𝗽]))
≡E (ϱ ⟨{ 𝗦 ↦ ⊥ }, 𝗔⟩.

𝗘[𝗽])

3.2. By [𝘀𝘆𝗺] and (3.1),

(ϱ ⟨{ 𝗦 ↦ ⊥ }, 𝗔⟩.
𝗘[𝗽]) ≡E

(ϱ ⟨{}, 𝗔⟩.
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗘[𝗽]))

4.

4.1.

4.1.1. By [𝘀𝗶𝗴𝗻𝗮𝗹],
(signal 𝗦
𝗘[𝗽]) ≡E (ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗘[𝗽])

4.1.2. By [𝘀𝘆𝗺] and (4.1.1),
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗘[𝗽]) ≡E (signal 𝗦
𝗘[𝗽])
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4.2. By [𝗰𝘁𝘅] and (4.1),

(ϱ ⟨{}, 𝗔⟩.
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗘[𝗽]))
≡E

(ϱ ⟨{}, 𝗔⟩.
(ϱ ⟨{ 𝗦 ↦ ⊥ }, WAIT⟩.

𝗘[𝗽]))

5. By [𝘁𝗿𝗮𝗻𝘀], and (1) through (4), (ϱ ⟨{}, 𝗔⟩. 𝗘[(signal 𝗦 𝗽)]) ≡E (ϱ ⟨{}, 𝗔⟩. (signal 𝗦 𝗘[𝗽]))

By the above and theorem 29 (Soundness), we may conclude that (ϱ ⟨{}, 𝗔⟩. 𝗘[(signal 𝗦 𝗽)]) ≃E (ϱ ⟨{}, 𝗔⟩. (signal 𝗦 𝗘[𝗽])).

�
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build-expression, 209
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build-state, 208

Calculi, 100

Calculus, 115
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Can K is sound, proof, 182
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Can Lift Environments, proof, 145

Can Properties, 177

Can rho K is sound, proof, 187
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Can rho S is sound, discussion, 76
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Can take the else branch for adjacent signals, proof, 219
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Circuits, 32

Circuits, 108
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Circuits, more formally, 37

compatible closure, 27

Computational Adequacy, proof, 130

Computational Adequacy, discussion, 78

Consistency of Eval, proof, 131

Consistency of Eval, discussion, 84

constraints, three-valued representation, 212

constraints, pos-neg representation, 215

Constructive Behavioral and State Behavioral Semantics, 96

Constructive Operational Semantics, 97

Constructive programs, 16

Constructive unless Activated, proof, 190

constructive-constraints, three-valued representation, 212
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constructive?, three-valued representation, 212

constructive?, pos-neg representation, 213

Contextual Equivalence, 39
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Core Theorems, 129
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Correct binding in preserve by context insertion, proof, 150

Correct binding is preserved, proof, 145

Correct binding is preserved, discussion, 56
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Definitions, 108

do-verify, 203

Done is Constructive, proof, 156

⇀
E, 116

Emit is sound, proof, 141
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Environments, 44

Equality relation, 26

Esterel, 12

Esterel Value is Circuit Value, proof, 156

Esterel Value is Circuit Value, discussion, 80

eval, 207

eval/multi, 207

eval/multi*, 206

Evaluation Contexts, 48

Evaluators, 28
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Extending proofs to multiple instants, and guarding compilation, 101
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Host language and Blocked, 91

Host language and Can, 90

Host language and Correct Binding, 92

Host language rules, 89
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initial configurations are nc, proof, 159
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initial-value, pos-neg representation, 214

Internal representation of circuits, 196

interp-bound, three-valued representation, 210

interp-bound, pos-neg representation, 213

Interpreting a circuit, 34

is-absent is sound, proof, 142

is-absent is sound, discussion, 74

is-present is sound, proof, 142

Justifying Adequacy, 77
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Leaving loops out of the proofs, 87
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Lifting signals, proof, 220

Lifting signals, discussion, 57

Loop-free, pure Esterel, 41

Loops, 85

Loops and Blocked, 86

Loops and Can, 86

Loops and Correct Binding, 86

Loops and the evaluator, 87

Merge Adjacent Environments, proof, 143

merge is sound, proof, 143

Must/Cannot and Present/Absent, 20

Negative, 171

non-constructive, constructive, 36

Non-stepping terms are values, proof, 171

Non-stepping terms are values, discussion, 79

Not values must step, proof, 171

Not values must step, discussion, 79

Notation, 71

Notions of Reduction, 25

notions of reduction, 25



INDEX 228

On Instants, 71

Open programs, 55

Other definitions, 39
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par1-exit is sound, proof, 140

par2-exit is sound, proof, 139
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Proofs, 129
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Proving the calculus correct, 59
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Quartz, 99
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Reduction Relation Properties, 137

Reduction Strategy, 126
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Registers, 39

Reincarnation, 14
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Schizophrenia, 14

Selection Definition, proof, 194

Selection Start, proof, 190

seq-done is sound, proof, 139

seq-exit is sound, proof, 140

Setup for the proofs, 59

signal is sound, proof, 141

Signal rules, 44

Soundness, proof, 129

Soundness, discussion, 71

Soundness, 132

Soundness of context closure, proof, 133

Soundness of guarded terms, proof, 132

Soundness of Step, proof, 133

State, 29

step, 208

Strongly Canonicalizing, proof, 152

Strongly Canonicalizing, discussion, 79
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suspend is sound, proof, 138
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totally-constructive?, 205

Transitivity of circuit contextual equality, proof, 136
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