On this page:
1.1 Category
1.1.1 Discrete Category
1.1.2 One-Object Category
1.1.3 Thin Category
1.1.4 Cartesian Product
1.1.5 Disjoint Union
1.1.6 Hom Set
1.1.7 Relation
1.1.7.1 Binary Relation
1.1.7.2 Equivalence Relation
1.1.7.3 Congruence Relation
1.1.8 Commutative Diagram
1.1.8.1 Commutative Triangle
1.1.8.2 Commutative Square
1.1.8.3 Commutative Cube
1.2 Mapping Category to Programming
1.2.1 Category Examples
1.2.1.1 Category of Natural Numbers
1.2.1.2 Category of Lists
1.2.1.3 Category of Strings
1.2.1.4 Category of Relations
1.2.1.5 Category of Pairs
1.2.1.6 Category of Matrices
1.2.1.7 Category of Sets
1.2.1.8 Category of Procedures
1.2.2 Constructions on Categories
1.2.2.1 Opposite Category
1.2.2.2 Subcategory
1.2.2.3 Quotient Category
1.2.2.4 Product Category
1.2.2.5 Sum Category
1.2.2.6 Arrow Category
1.2.2.7 (Co)Slice Category
1.3 Categories of Structured Sets
1.3.1 Category of Monoids
1.3.2 Category of Groups
1.3.3 Category of Prosets
1.3.4 Category of Posets
1.3.5 Category of Tosets
1.3.6 Category of Digraphs
1.4 Categorical Definitions
1.4.1 Parallel Morphism
1.4.2 Endomorphism
1.4.2.1 Idempotent
1.4.3 Monomorphism and Epimorphism
1.4.4 Split Morphism
1.4.5 Isomorphism
1.4.5.1 Automorphism
1.4.5.2 Representative Subcategory
1.4.5.3 Replete Subcategory
1.4.6 Groupoid
1.4.7 Initial Object and Terminal Object
1.4.7.1 Global Element and Variable Element
1.4.7.2 Pointed Object
1.4.8 Subobject and Quotient Object
1.4.9 Factorization System
1.4.9.1 Orthogonal Factorization System
1.4.9.2 Weak Factorization System
8.16.0.4

1 Category🔗ℹ

Welcome to the first chapter of our Category Theory in Programming tutorial! Here, we delve into the foundational concepts of category theory, focusing on morphisms as the central entities of study. This chapter sets the stage for understanding how these entities interact within the structured universe of categories, using Racket programming language as our exploration tool.

    1.1 Category

      1.1.1 Discrete Category

      1.1.2 One-Object Category

      1.1.3 Thin Category

      1.1.4 Cartesian Product

      1.1.5 Disjoint Union

      1.1.6 Hom Set

      1.1.7 Relation

        1.1.7.1 Binary Relation

        1.1.7.2 Equivalence Relation

        1.1.7.3 Congruence Relation

      1.1.8 Commutative Diagram

        1.1.8.1 Commutative Triangle

        1.1.8.2 Commutative Square

        1.1.8.3 Commutative Cube

    1.2 Mapping Category to Programming

      1.2.1 Category Examples

        1.2.1.1 Category of Natural Numbers

        1.2.1.2 Category of Lists

        1.2.1.3 Category of Strings

        1.2.1.4 Category of Relations

        1.2.1.5 Category of Pairs

        1.2.1.6 Category of Matrices

        1.2.1.7 Category of Sets

        1.2.1.8 Category of Procedures

      1.2.2 Constructions on Categories

        1.2.2.1 Opposite Category

        1.2.2.2 Subcategory

        1.2.2.3 Quotient Category

        1.2.2.4 Product Category

        1.2.2.5 Sum Category

        1.2.2.6 Arrow Category

        1.2.2.7 (Co)Slice Category

    1.3 Categories of Structured Sets

      1.3.1 Category of Monoids

      1.3.2 Category of Groups

      1.3.3 Category of Prosets

      1.3.4 Category of Posets

      1.3.5 Category of Tosets

      1.3.6 Category of Digraphs

    1.4 Categorical Definitions

      1.4.1 Parallel Morphism

      1.4.2 Endomorphism

        1.4.2.1 Idempotent

      1.4.3 Monomorphism and Epimorphism

      1.4.4 Split Morphism

      1.4.5 Isomorphism

        1.4.5.1 Automorphism

        1.4.5.2 Representative Subcategory

        1.4.5.3 Replete Subcategory

      1.4.6 Groupoid

      1.4.7 Initial Object and Terminal Object

        1.4.7.1 Global Element and Variable Element

        1.4.7.2 Pointed Object

      1.4.8 Subobject and Quotient Object

      1.4.9 Factorization System

        1.4.9.1 Orthogonal Factorization System

        1.4.9.2 Weak Factorization System

1.1 Category🔗ℹ

In the abstract landscape of mathematics, category theory provides a unified framework that allows us to analyze and integrate concepts across diverse fields. At the core of this exploration are morphisms, which we treat not just as connections or processes, but as fundamental entities in their own right.

This tutorial does not distinguish small category and large category. For more information on small and large category, please refer to Small Category and Large Category.

A category 𝒞 is defined by two collections: 𝒞0 of objects and 𝒞1 of morphisms. Think of 𝒞 as a digraph, where objects are nodes, and morphisms are arrows connecting these nodes. For a morphism f from an object a to an object b in a category 𝒞, denoted by f : a b : 𝒞, its domain (source) is a, and its codomain (target) is b: dom𝒞(f) = a and cod𝒞(f) = b.

[picture] f.svg

Our approach to category theory places morphisms at the core, viewing a category not just as a network of objects linked by morphisms, but as a universe where morphisms themselves are the primary focus. In this universe, objects serve more as structural markers than active participants, and morphisms are entities that can represent transformations, operations, or even concrete entities like numbers, lists, strings, and pairs, as long as they adhere to the composition rules:

  1. Existence of composition

    For morphisms f and g in 𝒞, the composite g∘f is defined when cod𝒞(f) = dom𝒞(g), and in such cases, we have dom𝒞(g∘f) = dom𝒞(f) and cod𝒞(g∘f) = cod𝒞(g). This composition can also be written as fg to highlight the flow from f to g.

    [picture] C-1.svg

  2. Associativity of composition

    Note that a composable pair consists of not only a pair of morphisms, but also the domains and codomains of them. See more in nLab.

    For composable pairs (f, g) and (g, h) in 𝒞, composition is associative: (h∘g)∘f = h∘(g∘f), denoted by h∘g∘f.

    [picture] C-2.svg

  3. Existence of identity morphisms

    Every object has an associated identity morphism. For an object a : 𝒞, its identity morphism is denoted by ida or 1a, and a = dom𝒞(ida) = cod𝒞(ida).

    [picture] C-3.svg

  4. Composition and identity morphisms

    For a morphism f : a → b : 𝒞, f = f∘ida = idb∘f.

    [picture] C-4.svg

Let 𝒞2 be the collection of composable pairs in 𝒞. We can describe 𝒞 with the following diagram:

[picture] cat.svg

In traditional category theory, categories are often named after their objects.

In this tutorial, we intentionally use morphisms to label categories. This approach emphasizes the role of morphisms as the central focus.

Nevertheless, classic category names will still be given precedence and used whenever applicable in this tutorial.

In traditional category theory, a distinction is often made between objects and identity morphisms. However, in this tutorial, we adopt a unique perspective by using identity morphisms to directly represent objects. There is no strict demarcation between objects and their associated identity morphisms; they are treated interchangeably (a = ida).

Remember, while it may seem that objects take a secondary role, their presence as identity morphisms is essential for facilitating the dynamic interplay of morphisms, which are the focal point of our study.

We’ve laid the groundwork for understanding the fundamental principles of category theory. If you’re eager to see how these abstract concepts translate into practical programming examples, feel free to jump to Mapping Category to Programming. There, we’ll explore how the ideas of objects, morphisms, and compositions come to life in the Racket programming environment, providing concrete examples.

1.1.1 Discrete Category🔗ℹ

A discrete category is a category where the only morphisms are the identity morphisms. In other words, every object is only connected to itself via its identity morphism. Since a set is defined by a collection of elements, this means that a discrete category can be viewed as the category version of a set: the objects of the discrete category correspond to the elements of the set.

Beyond sets, there are a few related terms that are commonly used:

1.1.2 One-Object Category🔗ℹ

A monoid (S, ∘, s) is a set S equipped with an associative binary operation and an identity element s.

A monoid can be viewed as a one-object category (OOC). In OOC, there is only a single object, usually denoted by , and morphisms are defined within the context of .

[picture] ooc.svg

The monoid structure becomes evident when we consider the collection of all morphisms within the OOC as the set S, the identity morphism id as the monoid identity element s, and the composition operation as the monoid operation . Thus, OOCs provide a categorical perspective on monoids.

1.1.3 Thin Category🔗ℹ

A preordered set (proset) (S, ≤) is a set S equipped with a binary relation over S that is reflexive and transitive. is called a preorder on S.

A proset can be viewed as a thin category in which any parallel morphisms are equal.

[picture] a<=b.svg

The proset structure becomes evident when we consider the objects as the elements of S, and a morphism from a to b exists iff a ≤ b. There is exactly one such morphism for any comparable pair a and b.

A partially ordered set (ordered set, or poset) (S, ≤) is a special preordered set, in which is antisymmetric. is called a partial order on S.

The poset can be viewd as a special thin category, where for any objects a and b, if there are morphisms a ≤ b and b ≤ a, then a = b, and these morphisms are the same identity morphism.

A totally ordered set (toset) (S, ≤) is a special ordered set, in which is total. is called a total order on S.

The toset can be viewd as a special thin category, where for any objects a and b, there must be exactly one morphism between them: a ≤ b or b ≤ a.

1.1.4 Cartesian Product🔗ℹ

Given two sets A0 and A1, the Cartesian product of them, denoted by A0×A1 or i=0, 1Ai, is the set of all ordered lists: i=0, 1Ai = A0×A1{(a0, a1) | a0 ∈ A0, a1 ∈ A1}. This set is called a product set.

1.1.5 Disjoint Union🔗ℹ

Given two sets A0 and A1, the disjoint union (tagged union) of them, denoted by A0+A1 or i=0, 1Ai, is the set of all tagged pairs: i=0, 1Ai = A0+A1 ≔ ∪i=0, 1{(a, i) | a ∈ Ai}. This set is called a sum set.

If A0∩A1 = {}, then A0∪A1 can also be viewed as the disjoint union of A0 and A1. A tagged union is just one way to implement a disjoint union, using natural numbers as tags to distinguish identical elements from different sets.

1.1.6 Hom Set🔗ℹ

If the morphisms from a to x do not constitute a set, we use the term hom class instead of hom set.

For objects a and x in 𝒞, the hom set (external hom) of them, denoted by Hom𝒞(a, x) or 𝒞(a, x), is the set of all morphisms from a to x: Hom𝒞(a, x){f ∈ 𝒞1 | dom𝒞(f) = a ∧ cod𝒞(f) = x}. If 𝒞(a, x) is an object in 𝒞, it is called the internal hom [a, x] or [a → x] (exponential set xa).

For morphisms f : a → x : 𝒞, i : b → a : 𝒞 and j : x → y : 𝒞, we can define a hom function Hom𝒞(i, j) : Hom𝒞(a, x) → Hom𝒞(b, y), where Hom𝒞(i, j)(f) ≔ j∘f∘i.

[picture] hom_1.svg

Additionally, we can define two other hom functions:

  1. Hom𝒞(a, j) ≔ Hom𝒞(ida, j), where Hom𝒞(a, j)(f) = j∘f.

    [picture] hom_2.svg

  2. Hom𝒞(i, x) ≔ Hom𝒞(i, idx), where Hom𝒞(i, x)(f) = f∘i.

    [picture] hom_3.svg

1.1.7 Relation🔗ℹ

A relation over some sets is a subset of the Cartesian product of them.

1.1.7.1 Binary Relation🔗ℹ

A binary relation from a set S to a set T is a relation over S and T.

The diagonal relation (equality relation) over a set S, denoted by ΔS, is the binary relation over S: {(x, x) | x ∈ S}.

Here’re some properties that a binary relation over a set S may have:

A function f : S → T can be viewed as the binary relation: {(x, f(x)) | x ∈ S}. The image of f, denoted by im(f), is the subset of T: {f(x) | x ∈ S}.

f may have additional properties:

1.1.7.2 Equivalence Relation🔗ℹ

An equivalence relation over S is a binary relation that is reflexive, symmetric, and transitive. partitions S into disjoint classes, known as equivalence classes, where all elements within an equivalence class are related to each other. A setoid (extensional set) (S, ∼) is a set S equipped with an equivalence relation .

For example, given a setoid (S, ∼) and an element x ∈ S, the equivalence class of x under is the set of all elements in S that are related to x. This is denoted by [x], where [x]{y ∈ S | x ∼ y}. Every element of S belongs to exactly one equivalence class.

[picture] eq-cls.svg

Exercise: Prove x ∼ y ⇔ [x] = [y].

1.1.7.3 Congruence Relation🔗ℹ

A congruence relation on a category 𝒞 is an equivalence relation on the morphisms of 𝒞 that is compatible with the composition of morphisms. Formally, satisfies the following properties:

  1. ∀a, b ∈ 𝒞0, a ∼ b ⇒ ida ∼ idb.

  2. ∀f, g ∈ 𝒞1, f ∼ g ⇒ dom𝒞(f) ∼ dom𝒞(g) ∧ cod𝒞(f) ∼ cod𝒞(g).

  3. ∀f, g ∈ Hom𝒞(b, c), ∀h ∈ Hom𝒞(a, b), ∀k ∈ Hom𝒞(c, d), f ∼ g ⇒ f∘h ∼ g∘h ∧ k∘f ∼ k∘g.

    [picture] congruence_1.svg

Exercise: Prove ∀a, b ∈ 𝒞0, ida ∼ idb ⇒ a ∼ b.

Exercise: Show that we can replace the second properties with: ∀f1, f2 ∈ Hom𝒞(a, b), ∀g1, g2 ∈ Hom𝒞(b, c), f1 ∼ f2 ∧ g1 ∼ g2 ⇒ g1∘f1 ∼ g2∘f2.

[picture] congruence_2.svg

Exercise: Let and be congruence relations. Prove that ∼ ∩ ∽ is also a congruence relation.

A congruence class is an equivalence class under a congruence relation.

1.1.8 Commutative Diagram🔗ℹ

Informally, a diagram comprises various objects connected by various morphisms. When the morphisms with the same domain and codomain are the same one, the diagram is a commutative diagram.

Commutative diagrams serve as a powerful language for expressing equations.

1.1.8.1 Commutative Triangle🔗ℹ

A commutative triangle is a commutative diagram that has the shape of a triangle.

The equation h = g∘f can be pictured as a commutative triangle like this:

[picture] comm-tri.svg

h is saied to factor through any (and all) of f, g, and b.

1.1.8.2 Commutative Square🔗ℹ

A commutative square is a commutative diagram that has the shape of a square.

The equation k∘f = g∘h can be pictured as a commutative square like this:

[picture] comm-sqr.svg

If there is a morphism l making h = l∘f and k = g∘l, then l is a lift (diagonal fill-in or filler) in the commutative square:

[picture] lift_1.svg [picture] lift_2.svg

If a lift exists in any commutative square involving f and g, then we say that f is weakly orthogonal to g, or that (f, g) has the lifting property, denoted by fg or fg. In this case, f has the left lifting property with respect to g, and g has the right lifting property with respect to f. If the lift is unique, we say that f is orthogonal to g, denoted by fg.

From experience, if two morphisms f and g satisfy f⧄g, then f and g often possess opposite properties. This relationship reflects the complementary nature of their roles in a commutative square, where the lifting property typically holds due to these contrasting characteristics.

For a class 𝒞 of morphisms, the right weak orthogonal class (right Quillen negation) is denoted by 𝒞, where 𝒞{g | f⧄g ∀f ∈ 𝒞}, and the left weak orthogonal class (left Quillen negation) is denoted by 𝒞, where 𝒞 ≔ {f | f⧄g ∀g ∈ 𝒞}. Similarly, the right orthogonal class is denoted by 𝒞 or 𝒞, where 𝒞{g | f⊥g ∀f ∈ 𝒞}, and the left orthogonal class is denoted by 𝒞 or 𝒞, where 𝒞 ≔ {f | f⊥g ∀g ∈ 𝒞}.

Exercise: Prove 𝒞↓↑↓ = 𝒞 and 𝒞↑↓↑ = 𝒞.

1.1.8.3 Commutative Cube🔗ℹ

A commutative cube is a commutative diagram that has the shape of a cube.

1.2 Mapping Category to Programming🔗ℹ

In this section, we’ll explore how category theory concepts can be mapped to practical programming constructs.

Just as car, cdr, cons, pair?, and equal? provide an abstraction for pairs in Racket, we introduce the notions of dom, cod, , ?, and = (representing domain, codomain, compose, predicate, and equal) to abstract over categories.

We stipulate that () returns , ( m) returns m, and (= m) returns #t in Racket.

To verify the properties of categories, we define some check procedures to automate the testing of essential properties within a category:

"code/category/check.rkt"

#lang racket/base
 
(require rackunit)
(provide (all-defined-out))
 
(define (check-cat 𝒞)
  (define-values (dom𝒞 cod𝒞 ∘𝒞 ?𝒞 =𝒞) (𝒞))
  (λ (a b c d f g h)
    (check-pred ?𝒞 a)
    (check-pred ?𝒞 b)
    (check-pred ?𝒞 c)
    (check-pred ?𝒞 d)
    (check-pred ?𝒞 f)
    (check-pred ?𝒞 g)
    (check-pred ?𝒞 h)
 
    ;; Existence of composition
    (check-true (=𝒞 b (cod𝒞 f) (dom𝒞 g)))
    (check-true (=𝒞 a (dom𝒞 (∘𝒞 g f)) (dom𝒞 f)))
    (check-true (=𝒞 c (cod𝒞 (∘𝒞 g f)) (cod𝒞 g)))
 
    ;; Associativity of composition
    (check-true (=𝒞 (∘𝒞 h g f) (∘𝒞 (∘𝒞 h g) f) (∘𝒞 h (∘𝒞 g f))))
 
    ;; Existence of identity morphisms
    (check-true (=𝒞 a (dom𝒞 a) (cod𝒞 a)))
 
    ;; Composition and identity morphisms
    (check-true (=𝒞 f (∘𝒞 f (dom𝒞 f)) (∘𝒞 (cod𝒞 f) f)))))
 
(define (check-ooc 𝒞)
  (define-values (dom𝒞 cod𝒞 ∘𝒞 ?𝒞 =𝒞) (𝒞))
  (define  (∘𝒞))
  (check-pred ?𝒞 )
  (check-true (=𝒞  (dom𝒞 ) (cod𝒞 )))
  (define check-𝒞 (check-cat 𝒞))
  (λ (f g h) (check-𝒞     f g h)))
 
1.2.1 Category Examples🔗ℹ

Let’s see how these abstractions can be applied to create and manipulate categories in the context of programming.

1.2.1.1 Category of Natural Numbers🔗ℹ

The category of natural numbers, denoted as 𝐍𝐚𝐭, is an example of OOC. In 𝐍𝐚𝐭, morphisms are natural numbers, and the identity morphism of the single object is 0:

Remember that objects serve as identity morphisms.

"code/category/Nat.rkt"

#lang racket/base
 
(provide 𝐍𝐚𝐭)
(define (𝐍𝐚𝐭 . _) (values dom cod  ? =))
 
(define (dom _) 0)
(define (cod _) 0)
(define ( . m*) (apply + m*))
(define (? m) (exact-nonnegative-integer? m))
 
(module+ test
  (require "check.rkt")
 
  ;; Morphisms
  (define f 1)
  (define g 2)
  (define h 3)
 
  (define check-𝐍𝐚𝐭 (check-ooc 𝐍𝐚𝐭))
  (check-𝐍𝐚𝐭 f g h))
 
1.2.1.2 Category of Lists🔗ℹ

The category of lists, denoted as 𝐋𝐢𝐬𝐭, is also an OOC. In 𝐋𝐢𝐬𝐭, morphisms are lists, and the identity morphism of the single object is null:

"code/category/List.rkt"

#lang racket/base
 
(provide 𝐋𝐢𝐬𝐭)
(define (𝐋𝐢𝐬𝐭 . _) (values dom cod  ? =))
 
(define (dom _) '())
(define (cod _) '())
(define ( . m*) (apply append m*))
(define (? m) (list? m))
(define =
  (case-λ
    [(_) #t]
    [(m1 m2) (equal? m1 m2)]
    [(m1 m2 . m*) (and (= m1 m2) (apply = m2 m*))]))
 
(module+ test
  (require "check.rkt")
 
  ;; Morphisms
  (define f '(1 2 3))
  (define g '(a b c))
  (define h '(A B C))
 
  (define check-𝐋𝐢𝐬𝐭 (check-ooc 𝐋𝐢𝐬𝐭))
  (check-𝐋𝐢𝐬𝐭 f g h))
 
1.2.1.3 Category of Strings🔗ℹ

The category of strings, denoted as 𝐒𝐭𝐫, is also an OOC.

Exercise: Using the example code provided above as a reference, implement 𝐒𝐭𝐫.

1.2.1.4 Category of Relations🔗ℹ

The category of relations, denoted as 𝐑𝐞𝐥, where morphisms are binary relations, and identity morphisms are diagonal relations:

"code/category/Rel.rkt"

#lang racket/base
 
(require racket/set racket/match racket/promise)
 
(provide (struct-out relation))
(struct relation (dom cod rel*))
 
(provide 𝐑𝐞𝐥)
(define (𝐑𝐞𝐥 . _) (values dom cod  ? =))
 
(define (dom m) (force (relation-dom m)))
(define (cod m) (force (relation-cod m)))
(define 
  (case-λ
    [(m) m]
    [(m1 m2)
     (define r1* (relation-rel* m1))
     (define r2* (relation-rel* m2))
     (define r*
       (set-remove
        (for*/set ([r2 (in-set r2*)]
                   [r1 (in-set r1*)])
          (match* (r2 r1)
            [(`(,a . ,b) `(,b . ,c)) `(,a . ,c)]
            [(_ _) #f]))
        #f))
     (relation (relation-dom m2) (relation-cod m1) r*)]
    [(m1 m2 . m*) (apply  ( m1 m2) m*)]))
(define (? m) (relation? m))
(define =
  (case-λ
    [(_) #t]
    [(m1 m2)
     (and
      (equal? (relation-rel*      m1)
              (relation-rel*      m2))
      (equal? (relation-rel* (dom m1))
              (relation-rel* (dom m2)))
      (equal? (relation-rel* (cod m1))
              (relation-rel* (cod m2))))]
    [(m1 m2 . m*) (and (= m1 m2) (apply = m2 m*))]))
 
(module+ test
  (require "check.rkt")
 
  ;; Objects
  (define a (relation (lazy a) (lazy a) (set '(a0 . a0) '(a1 . a1) '(a2 . a2))))
  (define b (relation (lazy b) (lazy b) (set '(b0 . b0) '(b1 . b1) '(b2 . b2))))
  (define c (relation (lazy c) (lazy c) (set '(c0 . c0) '(c1 . c1) '(c2 . c2))))
  (define d (relation (lazy d) (lazy d) (set '(d0 . d0) '(d1 . d1) '(d2 . d2))))
 
  ;; Morphisms
  (define f (relation (lazy a) (lazy b) (set '(a0 . b0) '(a0 . b1) '(a2 . b0))))
  (define g (relation (lazy b) (lazy c) (set '(b0 . c0) '(b0 . c1) '(b2 . c0))))
  (define h (relation (lazy c) (lazy d) (set '(c0 . d0) '(c0 . d1) '(c2 . d0))))
 
  (define check-𝐑𝐞𝐥 (check-cat 𝐑𝐞𝐥))
  (check-𝐑𝐞𝐥 a b c d f g h))
 
1.2.1.5 Category of Pairs🔗ℹ

The category of pairs, denoted as 𝐏𝐚𝐢𝐫, where morphisms are pairs:

"code/category/Pair.rkt"

#lang racket/base
 
(require racket/match)
 
(provide 𝐏𝐚𝐢𝐫)
(define (𝐏𝐚𝐢𝐫 . _) (values dom cod  ? =))
 
(define (dom m) (define o (car m)) (cons o o))
(define (cod m) (define o (cdr m)) (cons o o))
(define 
  (case-λ
    [(m) m]
    [(m1 m2) (match* (m2 m1) [(`(,a . ,b) `(,b . ,c)) `(,a . ,c)])]
    [(m1 m2 . m*) (apply  ( m1 m2) m*)]))
(define (? m) (pair? m))
(define =
  (case-λ
    [(_) #t]
    [(m1 m2) (equal? m1 m2)]
    [(m1 m2 . m*) (and (= m1 m2) (apply = m2 m*))]))
 
(module+ test
  (require "check.rkt")
 
  ;; Objects
  (define a '(a . a))
  (define b '(b . b))
  (define c '(c . c))
  (define d '(d . d))
 
  ;; Morphisms
  (define f '(a . b))
  (define g '(b . c))
  (define h '(c . d))
 
  (define check-𝐏𝐚𝐢𝐫 (check-cat 𝐏𝐚𝐢𝐫))
  (check-𝐏𝐚𝐢𝐫 a b c d f g h))
 

Exercise: Prove that a thin category is a subcategory of 𝐏𝐚𝐢𝐫.

Exercise: Implement the toset as a thin category, where objects are natural numbers.

[picture] N.svg

1.2.1.6 Category of Matrices🔗ℹ

The category of matrices, denoted as 𝐌𝐚𝐭𝐫, is a fascinating example that combines linear algebra with category theory. In 𝐌𝐚𝐭𝐫, each m×n matrix is considered a morphism, its domain is the n-order identity matrix, and its codomain is the m-order identity matrix:

"code/category/Matr.rkt"

#lang racket/base
 
(require math/matrix)
 
(provide 𝐌𝐚𝐭𝐫)
(define (𝐌𝐚𝐭𝐫 . _) (values dom cod  ? =))
 
(define (dom m) (identity-matrix (matrix-num-cols m)))
(define (cod m) (identity-matrix (matrix-num-rows m)))
(define ( m . m*) (apply matrix* m m*))
(define (? m) (matrix? m))
(define =
  (case-λ
    [(_) #t]
    [(m1 m2) (matrix= m1 m2)]
    [(m1 m2 . m*) (and (= m1 m2) (apply = m2 m*))]))
 
(module+ test
  (require "check.rkt")
  (define (rand m n) (random 1 9))
 
  ;; Objects
  (define a (identity-matrix 1))
  (define b (identity-matrix 2))
  (define c (identity-matrix 3))
  (define d (identity-matrix 4))
 
  ;; Morphisms
  (define f (build-matrix 2 1 rand))
  (define g (build-matrix 3 2 rand))
  (define h (build-matrix 4 3 rand))
 
  (define check-𝐌𝐚𝐭𝐫 (check-cat 𝐌𝐚𝐭𝐫))
  (check-𝐌𝐚𝐭𝐫 a b c d f g h))
 
1.2.1.7 Category of Sets🔗ℹ

The category of sets, denoted as 𝐒𝐞𝐭, where morphisms are functions:

"code/category/Set.rkt"

#lang racket/base
 
(require racket/hash racket/promise)
 
(provide (struct-out function))
(struct function (dom cod map))
 
(provide 𝐒𝐞𝐭)
(define (𝐒𝐞𝐭 . _) (values dom cod  ? =))
 
(define (dom m) (force (function-dom m)))
(define (cod m) (force (function-cod m)))
(define 
  (case-λ
    [(m) m]
    [(m1 m2)
     (define m1.map (function-map m1))
     (define m2.map (function-map m2))
     (define m.map
       (for/hash ([(k2 v2) (in-hash m2.map)])
         (define v1 (hash-ref m1.map v2))
         (values k2 v1)))
     (define m (function (function-dom m2) (function-cod m1) m.map))
     m]
    [(m1 m2 . m*) (apply  ( m1 m2) m*)]))
(define (? m) (function? m))
(define =
  (case-λ
    [(_) #t]
    [(m1 m2)
     (and
      (equal? (function-map      m1)
              (function-map      m2))
      (equal? (function-map (dom m1))
              (function-map (dom m2)))
      (equal? (function-map (cod m1))
              (function-map (cod m2))))]
    [(m1 m2 . m*) (and (= m1 m2) (apply = m2 m*))]))
 
(module+ test
  (require "check.rkt")
 
  ;; Objects
  (define a (function (lazy a) (lazy a) #hash([a . a] [  0  .   0 ] [  1  .   1 ])))
  (define b (function (lazy b) (lazy b) #hash([b . b] [ |0| .  |0|] [ |1| .  |1|])))
  (define c (function (lazy c) (lazy c) #hash([c . c] [ "0" .  "0"] [ "1" .  "1"])))
  (define d (function (lazy d) (lazy d) #hash([d . d] [#"0" . #"0"] [#"1" . #"1"])))
 
  ;; Morphisms
  (define f (function (lazy a) (lazy b) #hash([a . b] [  0  .  |0|] [  1  .  |0|])))
  (define g (function (lazy b) (lazy c) #hash([b . c] [ |0| .  "0"] [ |1| .  "0"])))
  (define h (function (lazy c) (lazy d) #hash([c . d] [ "0" . #"0"] [ "1" . #"0"])))
 
  (define check-𝐒𝐞𝐭 (check-cat 𝐒𝐞𝐭))
  (check-𝐒𝐞𝐭 a b c d f g h))
 
1.2.1.8 Category of Procedures🔗ℹ

The category of procedures, denoted as 𝐏𝐫𝐨𝐜, is perhaps the most important category in programming. As the name suggests, 𝐏𝐫𝐨𝐜 has procedures (also known as functions in functional programming) as its morphisms. It resembles 𝐒𝐞𝐭, where morphisms are mathematical functions.

An important point to consider in 𝐏𝐫𝐨𝐜 is the equality of morphisms. In 𝐒𝐞𝐭, two functions are considered equal if they produce the same output for every input. However, in 𝐏𝐫𝐨𝐜, determining whether two procedures are equal (i.e., produce the same output for every possible input) is undecidable in general. As a result, we must rely on the programmer’s judgment to ascertain whether the behavior of two procedures is the same.

In a certain sense, a category can be regarded as a typed monoid.

From the computing science perspective, category theory is a strongly typed language, stronger than any programming language. This is due to the composition rule: g∘f exists iff cod(f) = dom(g). Racket, being an untyped language, allows any procedure to be composed, such as ( car +), but such a procedure will only raise an exn when applied. Therefore, 𝐏𝐫𝐨𝐜 can be regarded as an OOC, where is values.

1.2.2 Constructions on Categories🔗ℹ

This section involves the creation of new categories using existing ones. These constructions provide a way to extend our understanding of categories and explore various relationships between them.

1.2.2.1 Opposite Category🔗ℹ

The dual of a category 𝒞 is the reverse version of 𝒞, denoted as opposite category 𝒞op.

[picture] op-cat.svg

A category 𝒞 can be viewed as a digraph that adheres to the composition rules. If we reverse all the arrows in the digraph, the resulting new digraph still adheres to the composition rules, so this new digraph is also a category 𝒞op.

Exercise: Prove (𝒞op)op = 𝒞.

We can define in Racket to implement the opposite category 𝒞op:

"code/category/dual.rkt"

#lang racket/base
 
(provide )
(define ( dom𝒞 cod𝒞 ∘𝒞 ?𝒞 =𝒞)
  (define (⨾𝒞 . m*) (apply ∘𝒞 (reverse m*)))
  (values cod𝒞 dom𝒞 ⨾𝒞 ?𝒞 =𝒞))
 
1.2.2.2 Subcategory🔗ℹ

Given categories 𝒞 and 𝒟, 𝒟 is a subcategory of 𝒞, denoted by 𝒟 ⊆ 𝒞, if:

  1. 𝒟0 ⊆ 𝒞0 ∧ 𝒟1 ⊆ 𝒞1.

  2. ∀a ∈ 𝒞0, a ∈ 𝒟0 ⇒ ida ∈ 𝒟1.

  3. ∀f ∈ 𝒞1, f ∈ 𝒟1 ⇒ dom𝒟(f) = dom𝒞(f) ∧ cod𝒟(f) = cod𝒞(f).

  4. (f, g) ∈ 𝒞2, (f, g) ∈ 𝒟2 ⇒ g∘f ∈ 𝒟1.

Exercise: Prove 𝒞 ⊆ 𝒞.

We can define in Racket to implement the subcategory 𝒟 of 𝒞:

"code/category/sub.rkt"

#lang racket/base
 
(provide )
(define (( ?𝒟) dom𝒞 cod𝒞 ∘𝒞 _ =𝒞)
  (values dom𝒞 cod𝒞 ∘𝒞 ?𝒟 =𝒞))
 

A subset can be viewed as a subcategory of a discrete category, and a submonoid can be viewed as a subcategory of an OOC.

A full subcategory arises when we selectively remove certain objects from a category 𝒞 along with the morphisms whose domains or codomains involve these objects. The resulting subcategory 𝒟, retains all the morphisms from 𝒞 that have not been affected by the removal of objects.

A wide subcategory is a subcategory that includes all objects from the original category. Formally, let 𝒟 be a wide subcategory of 𝒞, every object in 𝒞 is also an object in 𝒟.

1.2.2.3 Quotient Category🔗ℹ

The quotient of 𝒞 by , denoted as quotient category 𝒞/∼, reflects the structure of 𝒞 but with the morphisms grouped into congruence classes under :

  1. The objects of 𝒞/∼ are the congruence classes of objects of 𝒞.

  2. The morphisms of 𝒞/∼ are the congruence classes of morphisms of 𝒞.

  3. If f : a → b in 𝒞, then [f] : [a][b] in 𝒞/∼.

  4. If f : a → b and g : b → c in 𝒞, then [g][f] = [g∘f] : [a][c] in 𝒞/∼.

An identity class is a congruence class under =.

Exercise: Prove that = is a congruence relation on 𝒞.

Exercise: Think about the relationships between 𝒞 and 𝒞/=.

In Racket, a relation is often represented by a predicate that determines whether its arguments satisfy the relation.

We can define ÷ in Racket to implement the quotient category 𝒞/∼:

"code/category/%.rkt"

#lang racket/base
 
(provide ÷)
(define ((÷ ∼𝒞) dom𝒞 cod𝒞 ∘𝒞 ?𝒞 _)
  (values dom𝒞 cod𝒞 ∘𝒞 ?𝒞 ∼𝒞))
 

A quotient set can be viewed as a quotient category of a discrete category.

Exercise: Show that an equivalence class is an element of a quotient set.

1.2.2.4 Product Category🔗ℹ

A product category, denoted by 𝒞×𝒟, is constructed by combining the categories 𝒞 and 𝒟 to form a new category. The objects and morphisms of 𝒞×𝒟 are defined as the Cartesian product of the objects and morphisms from 𝒞 and 𝒟, respectively. Each object and morphism in the product category corresponds to an element in the Cartesian product of objects and morphisms from the original categories.

[picture] prod-cat.svg

Exercise: Prove the interchange law: (g0, g1)(f0, f1) = (g0∘f0, g1∘f1).

To see this concept in action, let’s use Racket to implement it. In the following example, we construct the product category 𝐌𝐚𝐭𝐫×𝐏𝐚𝐢𝐫:

"code/category/Matr*Pair.rkt"

#lang racket/base
 
(require math/matrix racket/match)
(require "Matr.rkt" "Pair.rkt")
 
(define-values (domℳ codℳ ∘ℳ ?ℳ =ℳ) (𝐌𝐚𝐭𝐫))
(define-values (dom𝒫 cod𝒫 ∘𝒫 ?𝒫 =𝒫) (𝐏𝐚𝐢𝐫))
 
(provide 𝐌𝐚𝐭𝐫×𝐏𝐚𝐢𝐫)
(define (𝐌𝐚𝐭𝐫×𝐏𝐚𝐢𝐫 . _) (values dom cod  ? =))
 
(define dom (match-λ [`(,m ,p) (list (domℳ m) (dom𝒫 p))]))
(define cod (match-λ [`(,m ,p) (list (codℳ m) (cod𝒫 p))]))
(define ( l . l*)
  (define m* (map car  (cons l l*)))
  (define p* (map cadr (cons l l*)))
  (list (apply ∘ℳ m*) (apply ∘𝒫 p*)))
(define (? l)
  (and (list? l) (eqv? 2 (length l))
       (?ℳ (car  l))
       (?𝒫 (cadr l))))
(define (= . l*)
  (define m* (map car  l*))
  (define p* (map cadr l*))
  (and (apply =ℳ m*) (apply =𝒫 p*)))
 
(module+ test
  (require "check.rkt")
  (define (rand m n) (random 1 9))
 
  ;; Objects in 
  (define a0 (identity-matrix 1))
  (define b0 (identity-matrix 2))
  (define c0 (identity-matrix 3))
  (define d0 (identity-matrix 4))
 
  ;; Morphisms in 
  (define f0 (build-matrix 2 1 rand))
  (define g0 (build-matrix 3 2 rand))
  (define h0 (build-matrix 4 3 rand))
 
  (define check-𝐌𝐚𝐭𝐫 (check-cat 𝐌𝐚𝐭𝐫))
  (check-𝐌𝐚𝐭𝐫 a0 b0 c0 d0 f0 g0 h0)
 
  ;; Objects in 𝒫
  (define a1 '(a . a))
  (define b1 '(b . b))
  (define c1 '(c . c))
  (define d1 '(d . d))
 
  ;; Morphisms in 𝒫
  (define f1 '(a . b))
  (define g1 '(b . c))
  (define h1 '(c . d))
 
  (define check-𝐏𝐚𝐢𝐫 (check-cat 𝐏𝐚𝐢𝐫))
  (check-𝐏𝐚𝐢𝐫 a1 b1 c1 d1 f1 g1 h1)
 
  ;; Objects in  × 𝒫
  (define a (list a0 a1)) ; (a0, a1)
  (define b (list b0 b1)) ; (b0, b1)
  (define c (list c0 c1)) ; (c0, c1)
  (define d (list d0 d1)) ; (d0, d1)
 
  ;; Morphisms in  × 𝒫
  (define f (list f0 f1)) ; (f0, f1)
  (define g (list g0 g1)) ; (g0, g1)
  (define h (list h0 h1)) ; (h0, h1)
 
  (define check-𝐌𝐚𝐭𝐫×𝐏𝐚𝐢𝐫 (check-cat 𝐌𝐚𝐭𝐫×𝐏𝐚𝐢𝐫))
  (check-𝐌𝐚𝐭𝐫×𝐏𝐚𝐢𝐫 a b c d f g h))
 

Exercise: Try to define dom×, cod×, ∘×, and so that we can define the product category ℳ×𝒫 like this:

(define-values (dom cod  ? =)
  (values
   (dom× domℳ dom𝒫)
   (cod× codℳ cod𝒫)
   (∘× ∘ℳ ∘𝒫)
   ( ?ℳ ?𝒫)
   ( =ℳ =𝒫)))
1.2.2.5 Sum Category🔗ℹ

A sum category, denoted by 𝒞+𝒟, is constructed by taking the disjoint union of the objects and morphisms from 𝒞 and 𝒟. It contains all the objects and morphisms of 𝒞 and 𝒟 as its own.

[picture] sum-cat.svg

To see this concept in action, let’s use Racket to implement it. In the following example, we construct the sum category 𝐌𝐚𝐭𝐫+𝐏𝐚𝐢𝐫:

"code/category/Matr+Pair.rkt"

#lang racket/base
 
(require math/matrix racket/case racket/match)
(require "Matr.rkt" "Pair.rkt")
 
(define-values (domℳ codℳ ∘ℳ ?ℳ =ℳ) (𝐌𝐚𝐭𝐫))
(define-values (dom𝒫 cod𝒫 ∘𝒫 ?𝒫 =𝒫) (𝐏𝐚𝐢𝐫))
 
(provide 𝐌𝐚𝐭𝐫+𝐏𝐚𝐢𝐫)
(define (𝐌𝐚𝐭𝐫+𝐏𝐚𝐢𝐫 . _) (values dom cod  ? =))
 
(define dom
  (match-λ
    [`(,m . 0) (cons (domℳ m) 0)]
    [`(,p . 1) (cons (dom𝒫 p) 1)]))
(define cod
  (match-λ
    [`(,m . 0) (cons (codℳ m) 0)]
    [`(,p . 1) (cons (cod𝒫 p) 1)]))
(define ( t . t*)
  (define v* (map car (cons t t*)))
  (match t
    [`(,m . 0) (cons (apply ∘ℳ v*) 0)]
    [`(,p . 1) (cons (apply ∘𝒫 v*) 1)]))
(define (? t)
  (and (pair? t)
       (case/eqv (cdr t)
         [(0) (?ℳ (car t))]
         [(1) (?𝒫 (car t))]
         [else #f])))
(define =
  (case-λ
    [(_) #t]
    [(t1 t2)
     (match* (t1 t2)
       [(`(,m1 . 0) `(,m2 . 0)) (=ℳ m1 m2)]
       [(`(,p1 . 1) `(,p2 . 1)) (=𝒫 p1 p2)]
       [(_ _) #f])]
    [(t1 t2 . t*) (and (= t1 t2) (apply = t2 t*))]))
 
(module+ test
  (require "check.rkt")
  (define (rand m n) (random 1 9))
 
  ;; Objects in 
  (define a0 (identity-matrix 1))
  (define b0 (identity-matrix 2))
  (define c0 (identity-matrix 3))
  (define d0 (identity-matrix 4))
 
  ;; Morphisms in 
  (define f0 (build-matrix 2 1 rand))
  (define g0 (build-matrix 3 2 rand))
  (define h0 (build-matrix 4 3 rand))
 
  (define check-𝐌𝐚𝐭𝐫 (check-cat 𝐌𝐚𝐭𝐫))
  (check-𝐌𝐚𝐭𝐫 a0 b0 c0 d0 f0 g0 h0)
 
  ;; Objects in 𝒫
  (define a1 '(a . a))
  (define b1 '(b . b))
  (define c1 '(c . c))
  (define d1 '(d . d))
 
  ;; Morphisms in 𝒫
  (define f1 '(a . b))
  (define g1 '(b . c))
  (define h1 '(c . d))
 
  (define check-𝐏𝐚𝐢𝐫 (check-cat 𝐏𝐚𝐢𝐫))
  (check-𝐏𝐚𝐢𝐫 a1 b1 c1 d1 f1 g1 h1)
 
  (define check-𝐌𝐚𝐭𝐫+𝐏𝐚𝐢𝐫 (check-cat 𝐌𝐚𝐭𝐫+𝐏𝐚𝐢𝐫))
  (for ([i (in-naturals)]
        [a2 (in-list (list a0 a1))]
        [b2 (in-list (list b0 b1))]
        [c2 (in-list (list c0 c1))]
        [d2 (in-list (list d0 d1))]
        [f2 (in-list (list f0 f1))]
        [g2 (in-list (list g0 g1))]
        [h2 (in-list (list h0 h1))])
    ;; Objects in  + 𝒫
    (define a (cons a2 i))
    (define b (cons b2 i))
    (define c (cons c2 i))
    (define d (cons d2 i))
 
    ;; Morphisms in  + 𝒫
    (define f (cons f2 i))
    (define g (cons g2 i))
    (define h (cons h2 i))
 
    (check-𝐌𝐚𝐭𝐫+𝐏𝐚𝐢𝐫 a b c d f g h)))
 

Exercise: Try to define dom+, cod+, ∘+, ?+ and =+ so that we can define the sum category ℳ+𝒫 like this:

(define-values (dom cod  ? =)
  (values
   (dom+ domℳ dom𝒫)
   (cod+ codℳ cod𝒫)
   (∘+ ∘ℳ ∘𝒫)
   (?+ ?ℳ ?𝒫)
   (=+ =ℳ =𝒫)))
1.2.2.6 Arrow Category🔗ℹ

Given a category 𝒞, the arrow category, denoted by 𝒞, is constructed by taking its morphisms as objects and commutative squares as morphisms.

For example, here are three commutative squares in 𝒞:

[picture] arr-cat_1.svg

The proof is left as an exercise.

Then, we get some new commutative squares by composition:

[picture] arr-cat_2.svg

Finally, using nodes to represent morphisms, and using arrows to represent commutative squares, we get a digraph that obeys the composition rules, which is the arrow category 𝒞:

Although we name arrows using pairs here, note that they are not pairs, but commutative squares.

[picture] arr-cat_3.svg

Exercise: Prove the interchange law: (k, l)(i, j) = (k∘i, l∘j).

In the following code, we create an arrow category to which 𝐏𝐚𝐢𝐫 gives rise:

"code/category/Arr_Pair.rkt"

#lang racket/base
 
(require racket/match)
(require "Pair.rkt")
 
(define-values (dom𝒫 cod𝒫 ∘𝒫 ?𝒫 =𝒫) (𝐏𝐚𝐢𝐫))
 
(provide Arr_𝐏𝐚𝐢𝐫)
(define (Arr_𝐏𝐚𝐢𝐫 . _) (values dom cod  ? =))
 
(define dom
  (match-λ
    [`((,j ,p) (,q ,i))
     (define a (dom𝒫 i))
     (define b (dom𝒫 j))
     `((,b ,p) (,p ,a))]))
(define cod
  (match-λ
    [`((,j ,p) (,q ,i))
     (define c (cod𝒫 i))
     (define d (cod𝒫 j))
     `((,d ,q) (,q ,c))]))
(define 
  (case-λ
    [(s) s]
    [(s1 s2)
     (match* (s1 s2)
       [(`((,l ,q) (,r ,k))
         `((,j ,p) (,q ,i)))
        #:when
        (and (=𝒫 (dom𝒫 l) (cod𝒫 j))
             (=𝒫 (dom𝒫 k) (cod𝒫 i)))
        `((,(∘𝒫 l j) ,p) (,r ,(∘𝒫 k i)))])]
    [(s1 s2 . s*) (apply  ( s1 s2) s*)]))
(define ?
  (match-λ
    [`((,j ,p) (,q ,i))
     #:when
     (and (?𝒫 j) (?𝒫 p) (=𝒫 (dom𝒫 j) (cod𝒫 p))
          (?𝒫 q) (?𝒫 i) (=𝒫 (dom𝒫 q) (cod𝒫 i)))
     (=𝒫 (∘𝒫 j p) (∘𝒫 q i))]
    [_ #f]))
(define =
  (case-λ
    [(_) #t]
    [(s1 s2)
     (match* (s1 s2)
       [(`((,n ,r) (,s ,m))
         `((,j ,p) (,q ,i)))
        (and (=𝒫 n j) (=𝒫 r p)
             (=𝒫 s q) (=𝒫 m i))]
       [(_ _) #f])]
    [(s1 s2 . s*) (and (= s1 s2) (apply = s2 s*))]))
 
(module+ test
  (require "check.rkt")
 
  ;; Objects in 𝒫
  (define a~ '(a . a))
  (define b~ '(b . b))
  (define c~ '(c . c))
  (define d~ '(d . d))
  (define e~ '(e . e))
  (define f~ '(f . f))
  (define g~ '(g . g))
  (define h~ '(h . h))
 
  ;; Morphisms in 𝒫
  (define p~ '(a . b))
  (define q~ '(c . d))
  (define r~ '(e . f))
  (define s~ '(g . h))
 
  (define i~ '(a . c))
  (define j~ '(b . d))
  (define k~ '(c . e))
  (define l~ '(d . f))
  (define m~ '(e . g))
  (define n~ '(f . h))
 
  (define check-𝐏𝐚𝐢𝐫 (check-cat 𝐏𝐚𝐢𝐫))
  (for ([a (in-list (list a~ b~))]
        [b (in-list (list c~ d~))]
        [c (in-list (list e~ f~))]
        [d (in-list (list g~ h~))]
        [f (in-list (list i~ j~))]
        [g (in-list (list k~ l~))]
        [h (in-list (list m~ n~))])
    (check-𝐏𝐚𝐢𝐫 a b c d f g h))
 
  ;; Objects in Arr(𝒫)
  (define a `((,b~ ,p~) (,p~ ,a~))) ; p~
  (define b `((,d~ ,q~) (,q~ ,c~))) ; q~
  (define c `((,f~ ,r~) (,r~ ,e~))) ; r~
  (define d `((,h~ ,s~) (,s~ ,g~))) ; s~
 
  ;; Morphisms in Arr(𝒫)
  (define f `((,j~ ,p~) (,q~ ,i~))) ; (i~, j~)
  (define g `((,l~ ,q~) (,r~ ,k~))) ; (k~, l~)
  (define h `((,n~ ,r~) (,s~ ,m~))) ; (m~, n~)
 
  (define check-Arr_𝐏𝐚𝐢𝐫 (check-cat Arr_𝐏𝐚𝐢𝐫))
  (check-Arr_𝐏𝐚𝐢𝐫 a b c d f g h))
 

Exercise: Try to define Arr so that we can define the arrow category 𝒫 like this:

(define-values (dom cod  ? =)
  (Arr dom𝒫 cod𝒫 ∘𝒫 ?𝒫 =𝒫))
1.2.2.7 (Co)Slice Category🔗ℹ

A slice category (over category), denoted by 𝒞/c, is a construction that allows us to study a category 𝒞 through the lens of a fixed object c in it. Intuitively, 𝒞/c consists of all the objects and morphisms in 𝒞 that are "over" c. 𝒞/c is constructed by taking 𝒞’s morphisms that end to c as objects, and commutative triangles that end to c as morphisms.

For example, here are three commutative triangles that end to c1 in 𝒞:

[picture] over-cat_1.svg

The proof is left as an exercise.

Then, we get some new commutative triangles by composition:

[picture] over-cat_2.svg

Finally, using nodes to represent morphisms that end to c1, and using arrows to represent commutative triangles that end to c1, we get a digraph that obeys the composition rules, which is the slice category 𝒞/c1:

Although we name arrows using morphisms in 𝒞 here, note that they are not morphisms, but commutative triangles that end to c1.

[picture] over-cat_3.svg

Exercise: Referencing the example code of the arrow category 𝒫, implement a slice category ℳ/m to which 𝐌𝐚𝐭𝐫 gives rise.

Exercise: Try to define Sli so that we can define the slice category ℳ/m like this:

(define-values (dom cod  ? =)
  ((Sli m) domℳ codℳ ∘ℳ ?ℳ =ℳ))

The dual notion of a slice category 𝒞/c is a coslice category (under category), denoted by c/𝒞, which consists of all the objects and morphisms in 𝒞 that are "under" c. c/𝒞 is constructed by taking 𝒞’s morphisms that start from c as objects, and commutative triangles that start from c as morphisms.

For example, here are three commutative triangles that start from c0 in 𝒞:

[picture] under-cat_1.svg

The proof is left as an exercise.

Then, we get some new commutative triangles by composition:

[picture] under-cat_2.svg

Finally, using nodes to represent morphisms that start from c0, and using arrows to represent commutative triangles that start from c0, we get a digraph that obeys the composition rules, which is the coslice category c0/𝒞:

Although we name arrows using morphisms in 𝒞 here, note that they are not morphisms, but commutative triangles that start from c0.

[picture] under-cat_3.svg

Exercise: Referencing the example code of the arrow category 𝒫, implement a coslice category m/ℳ to which 𝐌𝐚𝐭𝐫 gives rise.

Exercise: Try to define Sli† so that we can define the coslice category m/ℳ like this:

(define-values (dom cod  ? =)
  ((Sli† m) domℳ codℳ ∘ℳ ?ℳ =ℳ))

Exercise: Prove op/m = (m/ℳ)op.

Exercise: Try to define Sli† by using and Sli.

Exercise: Think about the relationships between (co)slice categories and arrow categories.

1.3 Categories of Structured Sets🔗ℹ

A structured set is a set, known as underlying set, equipped with some additional structure (e.g., monoids), and the homomorphisms between them (e.g., monoid homomorphisms) are functions that preserve that structure.

many categories of structured sets are examples of concrete categories.

Structured sets and their homomorphisms form fundamental categories that encapsulate various algebraic structures. These categories allow us to study and generalize properties and operations across different mathematical systems. In this section, we’ll explore several important categories of structured sets.

1.3.1 Category of Monoids🔗ℹ

A monoid homomorphism f : (S, ∘, s)(T, ∙, t) is a function that preserves the monoid structure: ∀x, y ∈ S, f(x∘y) = f(x)∙f(y), and f(s) = t.

The category of monoids, denoted as 𝐌𝐨𝐧, where objects are monoids and morphisms are monoid homomorphisms. 𝐌𝐨𝐧 is equivalent to the category of OOCs, denoted as 𝐎𝐨𝐜.

1.3.2 Category of Groups🔗ℹ

A group (S, ∘, s) is a monoid in which every element x has a unique inverse x1: x∘x1 = x1∘x = s = s1.

A group homomorphism f : (S, ∘, s)(T, ∙, t) is a monoid homomorphism that preserves the group structure: ∀x ∈ S, f(x1) = f(x)1.

The category of groups, denoted as 𝐆𝐫𝐩, where objects are groups and morphisms are group homomorphisms.

1.3.3 Category of Prosets🔗ℹ

A monotone function (monotonic function, isotone function, isotonic function, or order homomorphism) f : (S, ≤)(T, ⋜) is a function that preserves the proset structure: ∀x, y ∈ S, x ≤ y ⇒ f(x) ⋜ f(y).

The category of prosets, denoted as 𝐏𝐫𝐨𝐬, where objects are prosets and morphisms are monotone functions. 𝐏𝐫𝐨𝐬 is equivalent to the category of thin categories.

1.3.4 Category of Posets🔗ℹ

The category of posets, denoted as 𝐏𝐨𝐬, is a full subcategory of 𝐏𝐫𝐨𝐬 where objects are posets.

1.3.5 Category of Tosets🔗ℹ

The category of tosets, denoted as 𝐓𝐨𝐬, is a full subcategory of 𝐏𝐨𝐬 where objects are tosets.

1.3.6 Category of Digraphs🔗ℹ

A graph 𝒢 is defined by two collections: 𝒢0 of vertices (nodes) and 𝒢1 of edges.

A digraph (directed graph) is a type of graph in which each directed edge (arrow) has a specific direction from one vertex to another. The following diagram represents a digraph 𝒢:

[picture] grf.svg

A digraph can be viewed as a vector of nodes and arrows, where each arrow is represented by a three-element vector containing a name, a source node, and a target node. Additionally, each node can be represented by an arrow from itself to itself, with a specific name.

For convenience, if n is a node in 𝒢, then φ(n) = φ0(n); if a is an arrow in 𝒢, then φ(a) = φ1(a).

A digraph homomorphism φ : 𝒢 → ℋ is a structure-preserving map between two digraphs, consisting of two functions φ0 : 𝒢0 → ℋ0 and φ1 : 𝒢1 → ℋ1. For an arrow a : m → n : 𝒢, there must exist a corresponding arrow φ(a) : φ(m) → φ(n) : ℋ.

The following diagram illustrates a digraph homomorphism:

[picture] grf-hom.svg

The category of digraphs, denoted as 𝐃𝐠𝐫, where objects are digraphs and morphisms are digraph homomorphisms.

1.4 Categorical Definitions🔗ℹ

In this section, we explore the fundamental idea of defining properties a category may have solely through objects and morphisms in it. This approach, known as the categorical definition, allows us to capture and express important concepts using the language of category theory.

Note that many categorical definitions can also be described in terms of hom sets. Readers will be invited to prove the equivalence of these two approaches (i.e., the iff statements).

1.4.1 Parallel Morphism🔗ℹ

For morphisms f and g, they are parallel if dom(f) = dom(g) and cod(f) = cod(g).

[picture] parallel.svg

1.4.2 Endomorphism🔗ℹ

For a morphism f, it is an endomorphism if dom(f) = cod(f).

[picture] endo.svg

1.4.2.1 Idempotent🔗ℹ

For an endomorphism f, it is an idempotent if f = f∘f.

The following diagram is commutative:

[picture] idem.svg

1.4.3 Monomorphism and Epimorphism🔗ℹ

A monomorphism (often abbreviated as mono, or called be monic) m in a category 𝒞 is defined as a left cancellable morphism: (a, m), (b, m) ∈ 𝒞2, m∘a = m∘b ⇒ a = b. Such a condition ensures that no two different morphisms, when composed with m on the right, result in the same morphism, thereby establishing the injective nature of m.

[picture] mono.svg

Exercise: Prove that a morphism j : x ↣ y : 𝒞 is monic iff for any object a : 𝒞, Hom𝒞(a, j) is injective.

Exercise: Prove that every monomorphism in 𝐒𝐞𝐭 is injective.

Exercise: Prove that every injection is monic in 𝐒𝐞𝐭.

Exercise: Prove that for monomorphisms f and g, if (f, g) is a composable pair, then g∘f is also a monomorphism.

Exercise: Prove that if g∘f is a monomorphism, then f is also a monomorphism.

Conversely, an epimorphism (often abbreviated as epi, or called be epic) e in a category 𝒞 is defined as a right cancellable morphism: (e, x), (e, y) ∈ 𝒞2, x∘e = y∘e ⇒ x = y. Such a condition ensures that e reaches all possible endpoints in the target object without duplication, thereby establishing the surjective nature of e.

[picture] epi.svg

Exercise: Prove that a morphism i : b ↠ a : 𝒞 is epic iff for any object x : 𝒞, Hom𝒞(i, x) is injective.

Exercise: Prove that every epimorphism in 𝐒𝐞𝐭 is surjective.

Exercise: Prove that every surjection is epic in 𝐒𝐞𝐭.

Exercise: Prove that a monomorphism in 𝒞 is an epimorphism in 𝒞op.

Exercise: Prove that for epimorphisms f and g, if (f, g) is a composable pair, then g∘f is also an epimorphism.

Exercise: Prove that if g∘f is an epimorphism, then g is also an epimorphism.

For a morphism i : t1 → t2 : 𝒞, the notation changes based on its properties: i : t1 ↣ t2 if i is monic, i : t1 ↠ t2 if i is epic, and i : t1 ⤖ t2 if i is both monic and epic.

[picture] mono&epi.svg

In some cases, we use and to denote morphisms from two distinct classes and , rather than exclusively representing monomorphisms and epimorphisms. Additionally, indicates morphisms from ℰ ∩ ℳ.

1.4.4 Split Morphism🔗ℹ

We can see from the names that:

The proof is left as an exercise.

For morphisms f : a ↣ b : 𝒞 and g : b ↠ a : 𝒞, if g∘f = ida, then f is a split monomorphism (often abbreviated as split mono, or called be split monic), g is a split epimorphism (often abbreviated as split epi, or called be split epic), and f∘g is a split idempotent.

The following diagram is commutative:

[picture] split.svg

In this case, f is a right inverse of g, and g is a left inverse of f. a is called a retract of b, f is called a section of g, g is called a cosection (retraction) of f, or a retraction of b onto a.

Exercise: Prove that a morphism i : b ↣ a : 𝒞 is split monic iff for any object x : 𝒞, Hom𝒞(i, x) is surjective.

Exercise: Prove that a morphism j : x ↠ y : 𝒞 is split epic iff for any object a : 𝒞, Hom𝒞(a, j) is surjective.

Examples in 𝐌𝐚𝐭𝐫:

;; Objects
(define a (identity-matrix 2)) (? a)
(define b (identity-matrix 3)) (? b)
 
;; Morphisms
(define f (matrix [[1 -2] [0 1] [0 0]])) (? f)   ; split monomorphism
(define g (matrix [[1 2 0] [0 1 0]]))    (? g)   ; split epimorphism
(define f∘g ( f g))                     (? f∘g) ; split idempotent
 
;; g∘f is the identity morphism of a
(= a ( g f))
 
;; f∘g is an endomorphism of b
(= b (dom f∘g) (cod f∘g))
 
;; f∘g is an idempotent
(= f∘g ( f∘g f∘g))

Exercise: Prove that every injection in 𝐒𝐞𝐭 whose domain is not {} is split monic.

You might wonder if a similar result holds for surjections: is every surjection in 𝐒𝐞𝐭 split epic? To explore this, consider a surjection g : b ↠ a : 𝐒𝐞𝐭. There is a collection of equivalence classes among the elements of b, where x ∼ y if g(x) = g(y) = z. If there exists a right inverse f : a ↣ b : 𝐒𝐞𝐭 such that f(z) = x or f(z) = y, it would imply the existence of a choice function on the collection, which takes [x] and returns an element of [x].

However, since there is no inherent way to distinguish between elements within [x], choosing one requires the axiom of choice (AC or AoC) in set theory. Therefore, the result is a categorical version of the axiom of choice.

1.4.5 Isomorphism🔗ℹ

In a category 𝒞, isomorphism is a weaker version of identity. For morphisms f : a → b : 𝒞 and g : b → a : 𝒞, if ida = g∘f and f∘g = idb, then f and g are both isomorphisms (often abbreviated as iso, or called be isic or invertible).

The following diagram is commutative:

[picture] iso.svg

In this case, g is the inverse of f, denoted by f1, and f is the inverse of g, denoted by g1. a and b are isomorphic to each other (a b) if there exists an isomorphism between them.

Exercise: Prove that if f and g are identities, then a = b.

An isomorphism class is an equivalence class under .

Exercise: Prove that is an equivalence relation over 𝒞0.

Exercise: Prove that every object is isomorphic to itself.

Exercise: Prove that for an isomorphism f, f = (f1)1.

Exercise: Prove that for isomorphisms f and g, if (f, g) is a composable pair, then (g∘f)1 = f1∘g1.

Isomorphisms are crucial because they imply that the objects they connect can be interchanged in any context within the category. This means that if a ≅ b, then any property, specifically any commutative diagram involving a, also holds for b. In essence, we can substitute b for a in any commutative diagram without affecting the commutativity of the diagram.

Examples in 𝐏𝐚𝐢𝐫:

;; Objects
(define a '(a . a)) (? a)
(define b '(b . b)) (? b)
 
;; Morphisms
(define f '(a . b)) (? f)
(define g '(b . a)) (? g)
 
;; a ≅ b
(= a ( g f))
(= b ( f g))

Exercise: Prove that a morphism f : a → b : 𝒞 is invertible iff for any object c : 𝒞, Hom𝒞(c, f) is bijective, and iff f is both monic and split epic.

Exercise: Prove that a morphism f : a → b : 𝒞 is invertible iff for any object c : 𝒞, Hom𝒞(f, c) is bijective, and iff f is both split monic and epic.

Exercise: Prove that a function is bijective iff it is invertible in 𝐒𝐞𝐭, without using the AC.

Exercise: For objects A and B in 𝐒𝐞𝐭. Prove A×B ≅ B×A and A+B ≅ B+A.

Exercise: For objects A, B, and C in 𝐒𝐞𝐭. Prove the distributive laws: (B+C) ≅ A×B+A×C and (A+B)×C ≅ A×C+B×C.

1.4.5.1 Automorphism🔗ℹ

An automorphism is an invertible endomorphism.

The following diagrams are commutative:

[picture] auto_1.svg [picture] auto_2.svg

1.4.5.2 Representative Subcategory🔗ℹ

A representative subcategory is a subcategory 𝒟 of a category 𝒞 that every object of 𝒞 is isomorphic to some object of 𝒟.

1.4.5.3 Replete Subcategory🔗ℹ

A replete subcategory is a subcategory that includes all objects in the original category that are isomorphic to the objects in the subcategory, as well as the corresponding isomorphisms. Formally, let 𝒟 be a replete subcategory of 𝒞, for any object a : 𝒟, if there is an isomorphism f : a → b : 𝒞, then both b and f are also in 𝒟.

1.4.6 Groupoid🔗ℹ

Categories are sometimes refered to as monoidoids.

A groupoid is a category in which every morphisms is an isomorphism. A one-object groupoid (OOG) can be viewed as a group, and the category of OOGs, denoted as 𝐎𝐨𝐠, is equivalent to 𝐆𝐫𝐩.

1.4.7 Initial Object and Terminal Object🔗ℹ

An initial object 0 in a category 𝒞 is an object from which there exists exactly one morphism to every other object a in 𝒞, usually denoted by !0→a: 0 → a, pronounced bang to a.

Exercise: Prove that if a and b are initial objects in 𝒞, then a ≅ b.

Exercise: Prove that the empty set {} is the unique initial object in 𝐒𝐞𝐭.

Exercise: For an object A in 𝐒𝐞𝐭. Prove A ≅ 0+A ≅ A+0.

Exercise: Prove that if there is a function from A to 0, then A ≅ 0.

Exercise: Prove 00×A ≅ A×0.

Conversely, a terminal object 1 in a category 𝒞 is an object to which there exists exactly one morphism from every other object a in 𝒞, usually denoted by !a→1: a → 1, pronounced bang from a.

Exercise: Prove that if a and b are terminal objects in 𝒞, then a ≅ b.

Exercise: Prove that any singleton set {∗} is a terminal object in 𝐒𝐞𝐭.

Exercise: Prove that 𝐏𝐚𝐢𝐫 is a terminal object in 𝐏𝐫𝐨𝐬.

Exercise: For an object A in 𝐒𝐞𝐭. Prove A ≅ 1×A ≅ A×1.

Exercise: Prove that an initial object in 𝒞 is also a terminal object in 𝒞op.

If an object is both an initial object and a terminal object, it is called a null object (zero object or biterminator). A category with a null object is called a pointed category.

The following diagrams are commutative:

[picture] 0->1_1.svg [picture] 0->1_2.svg

Exercise: For objects A, B, and C in 𝐒𝐞𝐭. Prove the exponential laws:

Exercise: Think about the relationships between 0/𝒞, 𝒞/1, and 𝒞.

1.4.7.1 Global Element and Variable Element🔗ℹ

In category theory, we often seek to capture the notion of elements in a way that remains consistent across different categories. Although categories do not inherently describe the internal structure of their objects, we can still interpret elements of an object through special morphisms.

Consider 𝐒𝐞𝐭 as an example. Any object A is isomorphic to A1, where 1 is a singleton set {∗}. Therefore we can regard the elements of A as the elements of A1. In this view, an element x of A corresponds to a morphism x : 1 → A:

[picture] global-elem_1.svg [picture] global-elem_2.svg [picture] global-elem_3.svg

Exercise: Consider f : {a, b}{} : 𝐒𝐞𝐭, the simplest example of a non-injective morphism. Prove that a morphism g is injective iff f⧄g, and iff g⧄f.

Exercise: Consider f : {}{} : 𝐒𝐞𝐭, the simplest example of a non-surjective morphism. Prove that a morphism g is surjective iff f⧄g.

This approach generalizes the concept of elements beyond sets. In any category 𝒞 with a terminal object 1, we can define the elements of an object A as the elements of Hom𝒞(1, A), i.e., the morphisms from 1 to A. These morphisms are called global elements (global points).

By describing properties of a category in a generalized way, we can extend them to other categories. In this example, by describing the elements of a set A as the elements of A1, we can then discuss the elements of any object in any category that has a terminal object. This abstraction allows us to apply familiar concepts beyond 𝐒𝐞𝐭, providing a consistent way to explore structures in various categories.

While in 𝐒𝐞𝐭, the morphisms from 1 to A are enough to fully capture the structure of A, this is not always true in other categories. In more general cases, the properties of an object A in 𝒞 are determined by all morphisms involving A, not just those from a terminal object. This broader perspective allows us to describe an object through its interactions with other objects in the category.

Now, consider a function f : A → B : 𝐒𝐞𝐭. Traditionally, we apply f to an element x in A, written as f(x). In category theory, we can express this application using morphisms. Let x be a global element of A, applying f to x corresponds to composing x with f, written as f∘x. Therefore, the notation f(x) is sometimes used to denote the composite f∘x, where x is interpreted as a morphism rather than an element.

In this context, any morphism x : T → A can be viewed as a variable element of A, parametrized by T. This reinforces the idea that morphisms can be treated as generalized elements, and that function application is simply a special case of morphism composition.

1.4.7.2 Pointed Object🔗ℹ

A pointed set (S, s) is a set S equipped with a distinguished element s, often called the base point. A homomorphism between two pointed sets, f : (S, s)(T, t), is a function f : S → T that preserves the base point, meaning f(s) = t.

The category of pointed sets, denoted as 𝐒𝐞𝐭, can be viewed as the coslice category 1/𝐒𝐞𝐭, where the base point s of S corresponds to the global element s : 1 → S : 𝐒𝐞𝐭.

Similarly, if a terminal object 1 exists within a category 𝒞, a pointed object in 𝒞 is an object S : 𝒞 equipped with a global element s : 1 → S. The category of pointed objects in 𝒞 can be viewed as the coslice category 1/𝒞, generalizing the notion of pointed sets to arbitrary categories.

1.4.8 Subobject and Quotient Object🔗ℹ

In general, when we say that d is a substructure of c, this often means that there exists an inclusion function i : d → c. However, from the perspective of category theory, we focus only on morphisms and their composition, without considering the internal structure of objects.

To establish the concept of a subobject of an object, we consider [i], the equivalence class of morphisms end to c that contains an inclusion function i. Since morphisms are not always functions, we cannot directly say that i is an inclusion function, so we generalize [i] by using monomorphism instead of inclusion function.

Let be an equivalence relation between monomorphisms i : a ↣ c : 𝒞 and j : b ↣ c : 𝒞 if each can factor through the other. A subobject of c is an equivalence class of monomorphisms under . If the subobject does not contain idc, then it’s a proper subobject of c.

Exercise: Prove that a proper subobject does not contain any isomorphism.

Exercise: Prove i ∼ j ⇒ a ≅ b.

Exercise: Let 𝒞c be the full subcategory of 𝒞/c on monomorphisms. Show that 𝒞c is a proset, and a subobject of c is an isomorphism class of 𝒞c.

The following diagram shows how to view a subset a ≔ {1, 2, 3} of c ≔ {1, 2, 3, 4, 5, 6} as the subobject [i] in 𝐒𝐞𝐭:

[picture] subobj.svg

Similar to how a subobject is defined via an equivalence class of monomorphisms, a quotient object is defined through an equivalence class of epimorphisms.

In the same way that a subobject [i] is concerned with inclusion function i via monomorphisms, a quotient object [p] captures the idea of projection function p via epimorphisms. A quotient object corresponds to a quotient structure (cosubstructure), associated with an equivalence relations.

Let be an equivalence relation between epimorphisms p : c ↠ b : 𝒞 and q : c ↠ a : 𝒞 if each can factor through the other. A quotient object (cosubobject) of c is an equivalence class of epimorphisms under . If the quotient object does not contain idc, then it’s a proper quotient object (proper cosubobject) of c.

Exercise: Prove that a quotient object in 𝒞 is also a subobject in 𝒞op.

Exercise: Prove that a proper quotient object does not contain any isomorphism.

Exercise: Prove p ∼ q ⇒ a ≅ b.

Exercise: Let 𝒞c be the full subcategory of c/𝒞 on epimorphisms. Show that 𝒞c is a proset, and a quotient object of c is an isomorphism class of 𝒞c.

The following diagram shows how to view a quotient set b ≔ {{1, 4}, {2, 5}, {3, 6}} of c ≔ {1, 2, 3, 4, 5, 6} as the quotient object [p] in 𝐒𝐞𝐭:

[picture] cosubobj.svg

1.4.9 Factorization System🔗ℹ

A factorization system naturally arises when we want to decompose morphisms in a category into two distinct types. The goal is to ensure that any morphism in the category can factor as a composition of two morphisms from two different classes, with a structured relationship between the different possible factorizations.

1.4.9.1 Orthogonal Factorization System🔗ℹ

An orthogonal factorization system (OFS) (ℰ, ℳ) in a category 𝒞 consists of two classes and of morphisms in 𝒞, such that:

Exercise: Prove that the unique morphism l in the factorization is an isomorphism.

[picture] l.svg

For example, in 𝐒𝐞𝐭, we can think of as the class of surjections and as the class of injections. then (ℰ, ℳ) is an OFS.

Exercise: Show that every category 𝒞 has an OFS in which consists of all morphisms and consists of all isomorphisms.

Exercise: Show that every category 𝒞 has an OFS in which consists of all isomorphisms and consists of all morphisms.

This definition of OFS explains how different factorizations of a morphism relate to each other, ensuring that there exists a unique morphism between any two ways of factoring the same morphism. However, there is an equally important alternative definition that focuses on the interaction between the two classes of morphisms through the lifting property.

This second perspective shifts the focus to commutative squares: for every morphism in and every morphism in , any commutative square involving them admits a unique lift. This property provides another way to describe the system by expressing the deep relationship between the two classes:

(ℰ, ℳ) such that ℰ⊥ℳ is sometimes called a prefactorization system.

The following diagram is commutative:

[picture] E_orth_M.svg

Exercise: Prove that these two definitions are equivalent.

1.4.9.2 Weak Factorization System🔗ℹ

In a weak factorization system (WFS) (ℰ, ℳ) in 𝒞, the uniqueness condition found in OFS is relaxed, meaning that while every morphism can still factor as a composition of morphisms from and , there is no guarantee that the factorization is unique up to isomorphism:

Exercise: Prove that a WFS (ℰ, ℳ) in 𝒞 is also a WFS (ℳ, ℰ) in 𝒞op.

e⧄ℳ ≔ ∀m ∈ ℳ, e⧄m.

Exercise: Prove ∀e ∈ 𝒞1, e⧄ℳ ⇒ e ∈ ℰ.

ℰ⧄m ≔ ∀e ∈ ℰ, e⧄m.

Exercise: Prove ∀m ∈ 𝒞1, ℰ⧄m ⇒ m ∈ ℳ.

Exercise: Prove that if every morphism in is epic, then the WFS (ℰ, ℳ) is an OFS.

Exercise: Prove that if every morphism in is monic, then the WFS (ℰ, ℳ) is an OFS.