data-red-black: augmented red black tree structures
data/red-black/positional: meant to support position-based queries
data/red-black/augmented: meant to support flexible node extensions
as well as an application of augmented red-black trees to support an ordered set collection in data/red-black/ordered-set.
1 Positional Red-Black Trees
Danny Yoo <dyoo@hashcollision.org>
(require data/red-black/positional) | |
package: data-red-black |
This is an implementation of an augmented red-black tree with extra information to support position-based queries.
The intended usage case of this structure is to maintain an ordered sequence of items, where each item has an internal length. Given such a sequence, we want to support quick lookup by position and in-place insertions and deletions. We also want to support the catenation and splitting of sequences.
For example:
> (define a-tree (new-tree))
> (for ([w (in-list '("This" " " "is" " " "a" " " "test"))]) (insert-last/data! a-tree w (string-length w))) > (node-data (search a-tree 0)) "This"
> (node-data (search a-tree 10)) "test"
> (define at-test-node (search a-tree 10)) > (insert-before/data! a-tree at-test-node "small" 5) > (tree-items a-tree) '(("This" 4) (" " 1) ("is" 2) (" " 1) ("a" 1) (" " 1) ("small" 5) ("test" 4))
; Split at the node holding "small": > (define at-small-node (search a-tree 10)) > (define-values (left-side right-side) (split! a-tree at-small-node)) > (tree-items left-side) '(("This" 4) (" " 1) ("is" 2) (" " 1) ("a" 1) (" " 1))
> (tree-items right-side) '(("test" 4))
> (define joined-tree (join! left-side right-side)) > (tree-items joined-tree) '(("This" 4) (" " 1) ("is" 2) (" " 1) ("a" 1) (" " 1) ("test" 4))
This implementation follows the basic outline for order-statistic red-black trees described in [clrs2009] and incorporates a few extensions suggsted in [wein2005]. As a red-black tree, the structure ensures that the tree’s height is never greater than 2*lg(#-of-nodes + 1), guaranteeing good worst-case behavior for its operations.
The main types of values used in the library are trees and nodes. A tree has a root node, and each node has holds arbitrary data and a natural self-width, along with a reference to the elements smaller (node-left) and larger (node-right). Each node also remembers the entire width of its subtree, which can be accessed with node-subtree-width. The tree holds first and last pointers into the structure to allow for fast access to the beginning and end of the sequence. A distinguished nil node lies at the leaves of the tree.
1.1 API
1.1.1 Data types
> (define a-tree (new-tree)) > (tree? a-tree) #t
> (tree? "not a tree") #f
> (tree? (new-node '(not a tree either) 0)) #f
> (define a-tree (new-tree)) > (nil-node? (tree-root (new-tree))) #t
> (define a-node (new-node "first node!" 11)) > (insert-first! a-tree a-node) > (eq? a-node (tree-root a-tree)) #t
procedure
(tree-first t) → node?
t : tree?
> (define a-tree (new-tree)) > (nil-node? (tree-first (new-tree))) #t
> (define a-node (new-node "first node!" 11)) > (define another-node (new-node "last node!" 11)) > (insert-first! a-tree a-node) > (insert-last! a-tree another-node) > (eq? a-node (tree-first a-tree)) #t
> (define a-tree (new-tree)) > (nil-node? (tree-first (new-tree))) #t
> (define a-node (new-node "first node!" 11)) > (define another-node (new-node "last node!" 11)) > (insert-first! a-tree a-node) > (insert-last! a-tree another-node) > (eq? another-node (tree-last a-tree)) #t
procedure
(new-node data width) → singleton-node?
data : any/c width : natural-number/c
> (new-node #("a" "node") 7) #<node>
> (node? (new-node #("a" "node") 7)) #t
; Trees are not nodes: they _have_ nodes. > (node? (new-tree)) #f
> (node? (tree-root (new-tree))) #t
procedure
(singleton-node? x) → boolean?
x : any/c
> (singleton-node? (new-node #("a" "node") 7)) #t
> (singleton-node? nil) #f
; Create a fresh node: > (define a-node (new-node "about to attach" 0)) > (singleton-node? a-node) #t
; After attachment, it is no longer singleton: > (define a-tree (new-tree)) > (insert-first! a-tree a-node) > (singleton-node? a-node) #f
; Operations such as delete! or split! will break ; off nodes as singletons again: > (delete! a-tree a-node) > (singleton-node? a-node) #t
procedure
(non-nil-node? x) → boolean?
x : any/c
> (non-nil-node? nil) #f
> (non-nil-node? (new-node "I am not a number" 1)) #t
> (define a-node (new-node "utah" 4)) > (node-data a-node) "utah"
procedure
(set-node-data! n v) → void?
n : node? v : any/c
> (define a-node (new-node "utah" 4)) > (set-node-data! a-node "rhode island") > (node-data a-node) "rhode island"
procedure
(node-self-width n) → any/c
n : node?
> (define a-node (new-node "utah" 4)) > (node-self-width a-node) 4
procedure
(update-node-self-width! n w) → any/c
n : node? w : natural-number/c
> (define a-tree (new-tree)) > (insert-last/data! a-tree "hello" 5) > (insert-last/data! a-tree "world" 1) ; The tree as a whole has width 6: > (node-subtree-width (tree-root a-tree)) 6
; Updates will propagate to the root: > (update-node-self-width! (tree-last a-tree) 5) > (node-self-width (tree-last a-tree)) 5
> (node-subtree-width (tree-root a-tree)) 10
procedure
(node-subtree-width n) → any/c
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "berkeley" 1) > (insert-last/data! a-tree "stanford" 1) > (insert-last/data! a-tree "wpi" 1) > (insert-last/data! a-tree "brown" 1) > (insert-last/data! a-tree "utah" 1) ; The entire tree should sum to five, since each element contributes one. > (node-subtree-width (tree-root a-tree)) 5
> (node-subtree-width (node-left (tree-root a-tree))) 1
> (node-subtree-width (node-right (tree-root a-tree))) 3
procedure
(node-parent n) → node?
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "bill and ted's excellent adventure" 1) > (insert-last/data! a-tree "the matrix" 1) > (insert-last/data! a-tree "speed" 1) > (define p (node-parent (tree-last a-tree))) > (node-data p) "the matrix"
> (define a-tree (new-tree)) > (insert-last/data! a-tree "bill and ted's excellent adventure" 1) > (insert-last/data! a-tree "the matrix" 1) > (insert-last/data! a-tree "speed" 1) > (define p (node-left (tree-root a-tree))) > (node-data p) "bill and ted's excellent adventure"
procedure
(node-right n) → node?
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "bill and ted's excellent adventure" 1) > (insert-last/data! a-tree "the matrix" 1) > (insert-last/data! a-tree "speed" 1) > (define p (node-right (tree-root a-tree))) > (node-data p) "speed"
procedure
(node-color n) → (or/c 'red 'black)
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "the color purple" 1) > (insert-last/data! a-tree "pretty in pink" 1) > (insert-last/data! a-tree "the thin red line" 1) > (insert-last/data! a-tree "clockwork orange" 1) > (insert-last/data! a-tree "fried green tomatoes" 1) > (node-color (tree-root a-tree)) 'black
> (tree-fold-inorder a-tree (lambda (n acc) (cons (list (node-data n) (node-color n)) acc)) '())
'(("fried green tomatoes" red)
("clockwork orange" black)
("the thin red line" red)
("pretty in pink" black)
("the color purple" black))
> (define a-tree (new-tree)) > (insert-last/data! a-tree "the hobbit" 1) > (insert-last/data! a-tree "the fellowship of the ring" 1) > (red? (tree-root a-tree)) #f
> (red? (node-right (tree-root a-tree))) #t
> (define a-tree (new-tree)) > (insert-last/data! a-tree "the fellowship of the ring" 1) > (insert-last/data! a-tree "the two towers" 1) > (insert-last/data! a-tree "return of the king" 1) ; The root is always black. > (black? (tree-root a-tree)) #t
; The tree should have towers as the root, with ; the fellowship and king as left and right respectively.
> (map node-data (list (tree-root a-tree) (node-left (tree-root a-tree)) (node-right (tree-root a-tree)))) '("the two towers" "the fellowship of the ring" "return of the king")
> (black? (tree-root a-tree)) #t
> (black? (node-left (tree-root a-tree))) #f
> (black? (node-right (tree-root a-tree))) #f
1.1.2 Operations
procedure
(insert-first! t n) → void?
t : tree? n : singleton-node?
> (define a-tree (new-tree)) > (define a-node (new-node "pear" 1)) > (insert-first! a-tree a-node) > (eq? (tree-root a-tree) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "persimmon" 1)) > (insert-first! a-tree a-node) > (insert-first! a-tree a-node) insert-first!: contract violation
expected: singleton-node?
given: #<node>
in: the 2nd argument of
(-> tree? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:81:11
procedure
(insert-last! t n) → void?
t : tree? n : singleton-node?
> (define a-tree (new-tree)) > (define a-node (new-node "apple" 1)) > (insert-last! a-tree a-node) > (eq? (tree-root a-tree) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "orange" 1)) > (insert-last! a-tree a-node) > (insert-last! a-tree a-node) insert-last!: contract violation
expected: singleton-node?
given: #<node>
in: the 2nd argument of
(-> tree? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:82:11
procedure
(insert-before! t n1 n2) → void?
t : tree? n1 : node? n2 : node?
> (define a-tree (new-tree)) > (define a-node (new-node "banana" 1)) > (define b-node (new-node "mango" 1)) > (insert-first! a-tree a-node) > (insert-before! a-tree a-node b-node) > (eq? (predecessor a-node) b-node) #t
> (eq? (successor b-node) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "peach" 1)) > (insert-first! a-tree a-node) > (insert-before! a-tree a-node a-node) insert-before!: contract violation
expected: singleton-node?
given: #<node>
in: the 3rd argument of
(-> tree? non-nil-node? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:83:11
procedure
(insert-after! t n1 n2) → void?
t : tree? n1 : node? n2 : node?
> (define a-tree (new-tree)) > (define a-node (new-node "cherry" 1)) > (define b-node (new-node "pawpaw" 1)) > (insert-first! a-tree a-node) > (insert-after! a-tree a-node b-node) > (eq? (successor a-node) b-node) #t
> (eq? (predecessor b-node) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "grapefruit" 1)) > (insert-first! a-tree a-node) > (insert-after! a-tree a-node a-node) insert-after!: contract violation
expected: singleton-node?
given: #<node>
in: the 3rd argument of
(-> tree? non-nil-node? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:84:11
procedure
(insert-first/data! t data width) → void?
t : tree? data : any/c width : natural-number/c
procedure
(insert-last/data! t data width) → void?
t : tree? data : any/c width : natural-number/c
procedure
(insert-before/data! t n data width) → void?
t : tree? n : node? data : any/c width : natural-number/c
procedure
(insert-after/data! t n data width) → void?
t : tree? n : node? data : any/c width : natural-number/c
> (define t (new-tree)) > (insert-first/data! t "message in a bottle" 1) > (insert-last/data! t "don't stand so close to me" 1) > (insert-before/data! t (tree-first t) "everything she does is magic" 1) > (insert-after/data! t (tree-last t) "king of pain" 1) > (tree-items t)
'(("everything she does is magic" 1)
("message in a bottle" 1)
("don't stand so close to me" 1)
("king of pain" 1))
procedure
t : tree? n : non-nil-node?
> (define t (new-tree)) > (define n1 (new-node "George, George, George of the Jungle," 1)) > (define n2 (new-node "strong as he can be..." 1)) > (define n3 (new-node "aaaaaaaaaaah!" 1)) > (define n4 (new-node "watch out for that..." 1)) > (define n5 (new-node "<thump!>" 1)) > (define n6 (new-node "treeeeeeeeee!, " 1))
> (for ([n (in-list (list n1 n2 n3 n4 n5 n6))]) (insert-last! t n)) > (delete! t n5) > (tree-items t)
'(("George, George, George of the Jungle," 1)
("strong as he can be..." 1)
("aaaaaaaaaaah!" 1)
("watch out for that..." 1)
("treeeeeeeeee!, " 1))
> (define t1 (new-tree)) > (insert-first/data! t1 "tricky" 1) > (define n (new-node "tricky" 1)) ; This should raise an error: > (delete! t1 n) delete!: contract violation
expected: attached-in-tree/c
given: #<node>
in: the n argument of
(->i
((t tree?) (n (t) (attached-in-tree/c t)))
(result any/c))
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:90:11
> (define t1 (new-tree))
> (for ([name (in-list '(goku gohan krillin piccolo vegeta))]) (insert-last/data! t1 name 1)) ; Tier two characters: > (define t2 (new-tree))
> (for ([name (in-list '(yamcha tien chiaotzu bulma chi-chi roshi))]) (insert-last/data! t2 name 1)) > (define tree-of-mighty-z-warriors (join! t1 t2)) > (map car (tree-items tree-of-mighty-z-warriors)) '(goku gohan krillin piccolo vegeta yamcha tien chiaotzu bulma chi-chi roshi)
> (define t1 (new-tree)) > (join! t1 t1) join!: contract violation
expected: not-eq?/c
given: #<tree>
in: an and/c case of
the t2 argument of
(->i
((t1 tree?)
(t2 (t1) (and/c tree? (not-eq?/c t1))))
(result tree?))
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:93:11
procedure
t1 : tree? n : singleton-node? t2 : tree?
> (define t1 (new-tree)) > (define t2 (new-tree)) > (insert-last/data! t1 "inigo" 50) > (define x (new-node "vizzini" 1)) > (insert-last/data! t2 "fezzik" 100) > (define poor-lost-circus-performers (concat! t1 x t2)) > (tree-items poor-lost-circus-performers) '(("inigo" 50) ("vizzini" 1) ("fezzik" 100))
> (define t1 (new-tree)) > (define n (new-node "a-node" 1)) > (concat! t1 n t1) concat!: contract violation
expected: not-eq?/c
given: #<tree>
in: an and/c case of
the t2 argument of
(->i
((t1 tree?)
(n singleton-node?)
(t2 (t1) (and/c tree? (not-eq?/c t1))))
(result any/c))
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:95:18
procedure
(split! t n) →
tree? tree? t : tree? n : non-nil-node?
> (define t (new-tree))
> (for ([name '(melchior caspar bob balthazar)]) (insert-last/data! t name 1)) > (define bob-node (search t 2)) > (singleton-node? bob-node) #f
> (define-values (l r) (split! t bob-node)) ; We tree kings of orient are: > (append (tree-items l) (tree-items r)) '((melchior 1) (caspar 1) (balthazar 1))
> (singleton-node? bob-node) #t
> (define t (new-tree))
> (for ([name '(melchior caspar bob balthazar)]) (insert-last/data! t name 1)) ; This should raise an error: > (define t2 (new-tree)) > (insert-last! t2 (new-node "bob" 1)) > (split! t (tree-root t2)) split!: contract violation
expected: attached-in-tree/c
given: #<node>
in: the n argument of
(->i
((t tree?) (n (t) (attached-in-tree/c t)))
(values (t1 tree?) (t2 tree?)))
contract from:
<pkgs>/data-red-black/data/red-black/positional.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/positional.rkt:98:11
> (define t (new-tree)) > (insert-last/data! t "house" 5) > (insert-last/data! t "cleaning" 8) > (tree-items t) '(("house" 5) ("cleaning" 8))
> (reset! t) > (tree-items t) '()
> (define t (new-tree))
> (for ([word '("alpha" "beta" "gamma" "delta" "epsilon" "zeta")]) (insert-last/data! t word (string-length word))) > (node-data (search t 0)) "alpha"
> (node-data (search t 5)) "beta"
> (node-data (search t 6)) "beta"
> (node-data (search t 7)) "beta"
> (node-data (search t 8)) "beta"
> (node-data (search t 9)) "gamma"
> (nil-node? (search t 100)) #t
Note: nodes with a self-width of zero are effectively invisible to search, and will be skipped over.
procedure
(search/residual t p) →
node? natural-number/c t : tree? p : natural-number/c
> (define t (new-tree))
> (for ([word '("alpha" "beta" "gamma" "delta" "epsilon" "zeta")]) (insert-last/data! t word (string-length word))) > (search/residual t 5)
#<node>
0
> (search/residual t 6)
#<node>
1
> (search/residual t 7)
#<node>
2
> (define-values (a-node residual) (search/residual t 100)) > (nil-node? a-node) #t
> residual 70
> (+ residual (node-subtree-width (tree-root t))) 100
> (define t (new-tree))
> (for ([x (in-list '("ftl" "xcom" "civ"))]) (insert-first/data! t x (string-length x))) > (node-data (minimum (tree-root t))) "civ"
> (define t (new-tree))
> (for ([x (in-list '("ftl" "xcom" "civ"))]) (insert-first/data! t x (string-length x))) > (node-data (maximum (tree-root t))) "ftl"
> (define partial-alien-tree (new-tree))
> (for ([name '("sectoid" "floater" "thin man" "chryssalid" "muton" "cyberdisk")]) (insert-last/data! partial-alien-tree name 1)) > (define first-alien (tree-first partial-alien-tree)) > (node-data (successor first-alien)) "floater"
> (node-data (successor (successor first-alien))) "thin man"
procedure
(predecessor n) → node?
n : node?
> (define partial-alien-tree (new-tree))
> (for ([name '("sectoid" "floater" "thin man" "chryssalid" "muton" "cyberdisk")]) (insert-last/data! partial-alien-tree name 1)) > (define last-alien (tree-last partial-alien-tree)) > (node-data (predecessor last-alien)) "muton"
> (node-data (predecessor (predecessor last-alien))) "chryssalid"
> (define story-tree (new-tree))
> (for ([word (string-split "if you give a mouse a cookie")]) (insert-last/data! story-tree word (string-length word))) > (define a-pos (position (tree-last story-tree))) > a-pos 16
> (node-data (search story-tree a-pos)) "cookie"
procedure
(tree-items t) → (listof/c (list/c any/c natural-number/c))
t : tree?
> (define t (new-tree)) > (insert-last/data! t "rock" 4) > (insert-last/data! t "paper" 5) > (insert-last/data! t "scissors" 8) > (tree-items t) '(("rock" 4) ("paper" 5) ("scissors" 8))
procedure
(tree-fold-inorder t f acc) → any
t : tree? f : (node? any/c . -> . any) acc : any/c
procedure
(tree-fold-preorder t f acc) → any
t : tree? f : (node? any/c . -> . any) acc : any/c
procedure
(tree-fold-postorder t f acc) → any
t : tree? f : (node? any/c . -> . any) acc : any/c
> (define t (new-tree)) > (insert-last/data! t "three" 1) > (insert-last/data! t "blind" 1) > (insert-last/data! t "mice" 1) ; "blind" should be the root, with ; "three" and "mice" as left and right. > (define (f n acc) (cons (node-data n) acc)) > (reverse (tree-fold-inorder t f '())) '("three" "blind" "mice")
> (reverse (tree-fold-preorder t f '())) '("blind" "three" "mice")
> (reverse (tree-fold-postorder t f '())) '("three" "mice" "blind")
1.2 Uncontracted library
This library uses contracts extensively to prevent the user from messing up; however, the contract checking may be prohibitively expensive for certain applications.
The uncontracted bindings of this library can be accessed through:
This provides the same bindings as the regular API, but with no contract checks. Use this with extreme care: Improper use of the uncontracted form of this library may lead to breaking the red-black invariants, or (even worse) introducing cycles in the structure. If you don’t know whether you should be using the uncontracted forms or not, you probably should not.
2 Augmented Red-Black Trees
Danny Yoo <dyoo@hashcollision.org>
(require data/red-black/augmented) | package: data-red-black |
This is an implementation of an augmented red-black tree that extends the nodes of a basic red-black tree with attached metadata at every node. The metadata at a node should be a function of the data of the current node and the left and right children.
One intended usage case of this structure is to maintain an ordered sequence of items, where each item has an internal length. Given such a sequence, we want to support quick lookup by position and in-place insertions and deletions. We also want to support the catenation and splitting of sequences.
For example:
; Here, the metadata represents the length of the contents ; of the entire subtree:
> (define (size-of-data data) (string-length data))
> (define (new-catenated-string-tree) (new-tree #:metadata-f (lambda (data left right) (+ (size-of-data data) (or (node-metadata left) 0) (or (node-metadata right) 0))))) > (define a-tree (new-catenated-string-tree))
> (for ([w (in-list '("This" " " "is" " " "a" " " "test"))]) (insert-last/data! a-tree w)) ; Assuming the metadata is correct at every node, we can search ; for a node by its "position" by using the metadata:
> (define (search a-tree offset) (let loop ([offset offset] [a-node (tree-root a-tree)]) (cond [(nil-node? a-node) nil] [else (define left (node-left a-node)) (define left-subtree-width (or (node-metadata left) 0)) (cond [(< offset left-subtree-width) (loop offset left)] [else (define residual-offset (- offset left-subtree-width)) (define len (size-of-data (node-data a-node))) (cond [(< residual-offset len) a-node] [else (loop (- residual-offset len) (node-right a-node))])])]))) ; Now we can search: > (node-data (search a-tree 0)) "This"
> (node-data (search a-tree 10)) "test"
> (define at-test-node (search a-tree 10)) ; We can also insert within the tree, > (insert-before/data! a-tree at-test-node "small") > (tree-items a-tree) '("This" " " "is" " " "a" " " "small" "test")
; and split at the node holding "small". > (define at-small-node (search a-tree 10)) > (define-values (left-side right-side) (split! a-tree at-small-node)) > (tree-items left-side) '("This" " " "is" " " "a" " ")
> (tree-items right-side) '("test")
> (define joined-tree (join! left-side right-side)) > (tree-items joined-tree) '("This" " " "is" " " "a" " " "test")
The interpretation of the metadata is up to clients. Another approprate metadata may hold subtree size rather than string length, in which case the tree acts as an container where items can be found through their index:
; The definitions above depend on the value of ; size-of-data. Let's mutate it to be evil. ; (Note: don't do this in production code.) > (set! size-of-data (lambda (data) 1)) ; And now we get a different kind of search altogether: > (define t (new-catenated-string-tree)) > (insert-last/data! t "rock") > (insert-last/data! t "scissors") > (insert-after/data! t (tree-first t) "paper") > (node-data (search t 0)) "rock"
> (node-data (search t 1)) "paper"
> (node-data (search t 2)) "scissors"
This augmented red-black tree implementation follows the basic outline in [clrs2009] and incorporates a few extensions suggsted in [wein2005]. As a red-black tree, the structure ensures that the tree’s height is never greater than 2*lg(#-of-nodes + 1), guaranteeing good worst-case behavior for its operations.
The main types of values used in the library are trees and nodes. A tree has a root node (tree-root), and each node has holds arbitrary data (node-data) and metadata (node-metadata), along with a reference to the elements smaller (node-left) and larger (node-right). The tree holds first and last pointers into the structure to allow for fast access to the beginning and end of the sequence. A distinguished nil node lies at the leaves of the tree.
2.1 API
2.1.1 Data types
When provided a #:metadata-f, each node in the tree will have an associated node-metadata that is computed through its node-data, node-left and node-right.
The #:metadata-f must not mutate the tree as a side effect; contracts currently do not enforce this requirement, but may in the future.
> (define a-tree (new-tree)) > (tree? a-tree) #t
> (tree? "not a tree") #f
> (tree? (new-node '(not a tree either))) #f
> (nil-node? (tree-root (new-tree))) #t
> (define a-tree (new-tree)) > (define a-node (new-node "first node!")) > (insert-first! a-tree a-node) > (eq? a-node (tree-root a-tree)) #t
procedure
(tree-metadata-f t) → (or/c #f (any/c node? node? . -> . any))
t : tree?
> (define a-tree (new-tree)) > (tree-metadata-f a-tree) #f
> (define (indexed-metadata-f data left right) (+ 1 (or (node-metadata left) 0) (or (node-metadata right) 0))) > (define another-tree (new-tree #:metadata-f indexed-metadata-f)) > (tree-metadata-f another-tree) #<procedure:indexed-metadata-f>
procedure
(tree-first t) → node?
t : tree?
> (define a-tree (new-tree)) > (nil-node? (tree-first (new-tree))) #t
> (define a-node (new-node "first node!")) > (define another-node (new-node "last node!")) > (insert-first! a-tree a-node) > (insert-last! a-tree another-node) > (eq? a-node (tree-first a-tree)) #t
> (define a-tree (new-tree)) > (nil-node? (tree-first (new-tree))) #t
> (define a-node (new-node "first node!")) > (define another-node (new-node "last node!")) > (insert-first! a-tree a-node) > (insert-last! a-tree another-node) > (eq? another-node (tree-last a-tree)) #t
procedure
(new-node data) → singleton-node?
data : any/c
> (new-node #("a" "node")) #<node>
> (node? (new-node #("a" "node"))) #t
; Trees are not nodes: they _have_ nodes. > (node? (new-tree)) #f
> (node? (tree-root (new-tree))) #t
procedure
(singleton-node? x) → boolean?
x : any/c
> (singleton-node? (new-node #("a" "node"))) #t
> (singleton-node? nil) #f
; Create a fresh node: > (define a-node (new-node "about to attach")) > (singleton-node? a-node) #t
; After attachment, it is no longer singleton: > (define a-tree (new-tree)) > (insert-first! a-tree a-node) > (singleton-node? a-node) #f
; Operations such as delete! or split! will break ; off nodes as singletons again: > (delete! a-tree a-node) > (singleton-node? a-node) #t
procedure
(non-nil-node? x) → boolean?
x : any/c
> (non-nil-node? nil) #f
> (non-nil-node? (new-node "I am not a number")) #t
procedure
(update-node-data! t n v) → void?
t : tree? n : node? v : any/c
> (define a-tree (new-tree)) > (define a-node (new-node "utah")) > (insert-first! a-tree a-node) > (update-node-data! a-tree a-node "rhode island") > (node-data a-node) "rhode island"
procedure
(node-metadata n) → any/c
n : node?
> (define (size-metadata str left right) (+ 1 (or (node-metadata left) 0) (or (node-metadata right) 0))) > (define a-tree (new-tree #:metadata-f size-metadata)) > (insert-last/data! a-tree "berkeley") > (insert-last/data! a-tree "stanford") > (insert-last/data! a-tree "wpi") > (insert-last/data! a-tree "brown") > (insert-last/data! a-tree "utah") ; The entire tree should have a metadata of five, the size of the tree. > (node-metadata (tree-root a-tree)) 5
> (node-metadata (node-left (tree-root a-tree))) 1
> (node-metadata (node-right (tree-root a-tree))) 3
procedure
(node-parent n) → node?
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "bill and ted's excellent adventure") > (insert-last/data! a-tree "the matrix") > (insert-last/data! a-tree "speed") > (define p (node-parent (tree-last a-tree))) > (node-data p) "the matrix"
> (define a-tree (new-tree)) > (insert-last/data! a-tree "bill and ted's excellent adventure") > (insert-last/data! a-tree "the matrix") > (insert-last/data! a-tree "speed") > (define p (node-left (tree-root a-tree))) > (node-data p) "bill and ted's excellent adventure"
procedure
(node-right n) → node?
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "bill and ted's excellent adventure") > (insert-last/data! a-tree "the matrix") > (insert-last/data! a-tree "speed") > (define p (node-right (tree-root a-tree))) > (node-data p) "speed"
procedure
(node-color n) → (or/c 'red 'black)
n : node?
> (define a-tree (new-tree)) > (insert-last/data! a-tree "the color purple") > (insert-last/data! a-tree "pretty in pink") > (insert-last/data! a-tree "the thin red line") > (insert-last/data! a-tree "clockwork orange") > (insert-last/data! a-tree "fried green tomatoes") > (node-color (tree-root a-tree)) 'black
> (tree-fold-inorder a-tree (lambda (n acc) (cons (list (node-data n) (node-color n)) acc)) '())
'(("fried green tomatoes" red)
("clockwork orange" black)
("the thin red line" red)
("pretty in pink" black)
("the color purple" black))
> (define a-tree (new-tree)) > (insert-last/data! a-tree "the hobbit") > (insert-last/data! a-tree "the fellowship of the ring") > (red? (tree-root a-tree)) #f
> (red? (node-right (tree-root a-tree))) #t
> (define a-tree (new-tree)) > (insert-last/data! a-tree "the fellowship of the ring") > (insert-last/data! a-tree "the two towers") > (insert-last/data! a-tree "return of the king") ; The root is always black. > (black? (tree-root a-tree)) #t
; The tree should have towers as the root, with ; the fellowship and king as left and right respectively.
> (map node-data (list (tree-root a-tree) (node-left (tree-root a-tree)) (node-right (tree-root a-tree)))) '("the two towers" "the fellowship of the ring" "return of the king")
> (black? (tree-root a-tree)) #t
> (black? (node-left (tree-root a-tree))) #f
> (black? (node-right (tree-root a-tree))) #f
2.1.2 Operations
procedure
(insert-first! t n) → void?
t : tree? n : singleton-node?
> (define a-tree (new-tree)) > (define a-node (new-node "pear")) > (insert-first! a-tree a-node) > (eq? (tree-root a-tree) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "persimmon")) > (insert-first! a-tree a-node) > (insert-first! a-tree a-node) insert-first!: contract violation
expected: singleton-node?
given: #<node>
in: the 2nd argument of
(-> tree? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:71:11
procedure
(insert-last! t n) → void?
t : tree? n : singleton-node?
> (define a-tree (new-tree)) > (define a-node (new-node "apple")) > (insert-last! a-tree a-node) > (eq? (tree-root a-tree) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "orange")) > (insert-last! a-tree a-node) > (insert-last! a-tree a-node) insert-last!: contract violation
expected: singleton-node?
given: #<node>
in: the 2nd argument of
(-> tree? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:72:11
procedure
(insert-before! t n1 n2) → void?
t : tree? n1 : node? n2 : node?
> (define a-tree (new-tree)) > (define a-node (new-node "banana")) > (define b-node (new-node "mango")) > (insert-first! a-tree a-node) > (insert-before! a-tree a-node b-node) > (eq? (predecessor a-node) b-node) #t
> (eq? (successor b-node) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "peach")) > (insert-first! a-tree a-node) > (insert-before! a-tree a-node a-node) insert-before!: contract violation
expected: singleton-node?
given: #<node>
in: the 3rd argument of
(-> tree? non-nil-node? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:73:11
procedure
(insert-after! t n1 n2) → void?
t : tree? n1 : node? n2 : node?
> (define a-tree (new-tree)) > (define a-node (new-node "cherry")) > (define b-node (new-node "pawpaw")) > (insert-first! a-tree a-node) > (insert-after! a-tree a-node b-node) > (eq? (successor a-node) b-node) #t
> (eq? (predecessor b-node) a-node) #t
> (define a-tree (new-tree)) > (define a-node (new-node "grapefruit")) > (insert-first! a-tree a-node) > (insert-after! a-tree a-node a-node) insert-after!: contract violation
expected: singleton-node?
given: #<node>
in: the 3rd argument of
(-> tree? non-nil-node? singleton-node? any)
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:74:11
procedure
(insert-first/data! t data) → void?
t : tree? data : any/c
procedure
(insert-last/data! t data) → void?
t : tree? data : any/c
procedure
(insert-before/data! t n data) → void?
t : tree? n : node? data : any/c
procedure
(insert-after/data! t n data) → void?
t : tree? n : node? data : any/c
> (define t (new-tree)) > (insert-first/data! t "message in a bottle") > (insert-last/data! t "don't stand so close to me") > (insert-before/data! t (tree-first t) "everything she does is magic") > (insert-after/data! t (tree-last t) "king of pain") > (tree-items t)
'("everything she does is magic"
"message in a bottle"
"don't stand so close to me"
"king of pain")
procedure
t : tree? n : non-nil-node?
> (define t (new-tree)) > (define n1 (new-node "George, George, George of the Jungle,")) > (define n2 (new-node "strong as he can be...")) > (define n3 (new-node "aaaaaaaaaaah!")) > (define n4 (new-node "watch out for that...")) > (define n5 (new-node "<thump!>")) > (define n6 (new-node "treeeeeeeeee!, "))
> (for ([n (in-list (list n1 n2 n3 n4 n5 n6))]) (insert-last! t n)) > (delete! t n5) > (tree-items t)
'("George, George, George of the Jungle,"
"strong as he can be..."
"aaaaaaaaaaah!"
"watch out for that..."
"treeeeeeeeee!, ")
> (define t1 (new-tree)) > (insert-first/data! t1 "tricky") > (define n (new-node "tricky")) ; This should raise an error: > (delete! t1 n) delete!: contract violation
expected: attached-in-tree/c
given: #<node>
in: the n argument of
(->i
((t tree?) (n (t) (attached-in-tree/c t)))
(result any/c))
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:80:11
> (define t1 (new-tree))
> (for ([name (in-list '(goku gohan krillin piccolo vegeta))]) (insert-last/data! t1 name)) ; Tier two characters: > (define t2 (new-tree))
> (for ([name (in-list '(yamcha tien chiaotzu bulma chi-chi roshi))]) (insert-last/data! t2 name)) > (define tree-of-mighty-z-warriors (join! t1 t2)) > (tree-items tree-of-mighty-z-warriors) '(goku gohan krillin piccolo vegeta yamcha tien chiaotzu bulma chi-chi roshi)
Note that t1 and t2 should share the same tree-metadata-f and neither tree should be eq? to the other. Violations of either condition will raise a contract error.
> (define t1 (new-tree)) > (join! t1 t1) join!: contract violation
expected: not-eq?/c
given: #<tree>
in: an and/c case of
the t2 argument of
(->i
((t1 tree?)
(t2
(t1)
(and/c
tree?
(not-eq?/c t1)
(share-metadata-f/c t1))))
(result tree?))
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:83:11
procedure
t1 : tree? n : singleton-node? t2 : tree?
> (define t1 (new-tree)) > (define t2 (new-tree)) > (insert-last/data! t1 "inigo") > (define x (new-node "vizzini")) > (insert-last/data! t2 "fezzik") > (define poor-lost-circus-performers (concat! t1 x t2)) > (tree-items poor-lost-circus-performers) '("inigo" "vizzini" "fezzik")
Note that t1 and t2 should share the same tree-metadata-f and neither tree should be eq? to the other. Violations of either condition will raise a contract error.
> (define (f1 data left right) 1) > (define (f2 data left right) 1) ; f1 and f2 are distinct function values: they won't compare the same. > (define t1 (new-tree #:metadata-f f1)) > (define t2 (new-tree #:metadata-f f2)) > (define n (new-node "a-node")) > (concat! t1 n t2) concat!: contract violation
expected: share-metadata-f/c
given: #<tree>
in: an and/c case of
the t2 argument of
(->i
((t1 tree?)
(n singleton-node?)
(t2
(t1)
(and/c
tree?
(not-eq?/c t1)
(share-metadata-f/c t1))))
(result any/c))
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:89:18
procedure
(split! t n) →
tree? tree? t : tree? n : non-nil-node?
> (define t (new-tree))
> (for ([name '(melchior caspar bob balthazar)]) (insert-last/data! t name)) > (define bob-node (predecessor (tree-last t))) > (singleton-node? bob-node) #f
> (define-values (l r) (split! t bob-node)) ; We tree kings of orient are: > (append (tree-items l) (tree-items r)) '(melchior caspar balthazar)
> (singleton-node? bob-node) #t
> (define t (new-tree))
> (for ([name '(melchior caspar bob balthazar)]) (insert-last/data! t name)) ; This should raise an error: > (define t2 (new-tree)) > (insert-last! t2 (new-node "bob")) > (split! t (tree-root t2)) split!: contract violation
expected: attached-in-tree/c
given: #<node>
in: the n argument of
(->i
((t tree?) (n (t) (attached-in-tree/c t)))
(values (t1 tree?) (t2 tree?)))
contract from:
<pkgs>/data-red-black/data/red-black/augmented.rkt
blaming: top-level
(assuming the contract is correct)
at:
<pkgs>/data-red-black/data/red-black/augmented.rkt:97:11
> (define t (new-tree)) > (insert-last/data! t "house") > (insert-last/data! t "cleaning") > (tree-items t) '("house" "cleaning")
> (reset! t) > (tree-items t) '()
> (define t (new-tree))
> (for ([x (in-list '("ftl" "xcom" "civ"))]) (insert-first/data! t x)) > (node-data (minimum (tree-root t))) "civ"
> (define t (new-tree))
> (for ([x (in-list '("ftl" "xcom" "civ"))]) (insert-first/data! t x)) > (node-data (maximum (tree-root t))) "ftl"
> (define partial-alien-tree (new-tree))
> (for ([name '("sectoid" "floater" "thin man" "chryssalid" "muton" "cyberdisk")]) (insert-last/data! partial-alien-tree name)) > (define first-alien (tree-first partial-alien-tree)) > (node-data (successor first-alien)) "floater"
> (node-data (successor (successor first-alien))) "thin man"
procedure
(predecessor n) → node?
n : node?
> (define partial-alien-tree (new-tree))
> (for ([name '("sectoid" "floater" "thin man" "chryssalid" "muton" "cyberdisk")]) (insert-last/data! partial-alien-tree name)) > (define last-alien (tree-last partial-alien-tree)) > (node-data (predecessor last-alien)) "muton"
> (node-data (predecessor (predecessor last-alien))) "chryssalid"
procedure
(tree-items t) → (listof/c (list/c any/c natural-number/c))
t : tree?
> (define t (new-tree)) > (insert-last/data! t "rock") > (insert-last/data! t "paper") > (insert-last/data! t "scissors") > (tree-items t) '("rock" "paper" "scissors")
procedure
(tree-fold-inorder t f acc) → any
t : tree? f : (node? any/c . -> . any) acc : any/c
procedure
(tree-fold-preorder t f acc) → any
t : tree? f : (node? any/c . -> . any) acc : any/c
procedure
(tree-fold-postorder t f acc) → any
t : tree? f : (node? any/c . -> . any) acc : any/c
> (define t (new-tree)) > (insert-last/data! t "three") > (insert-last/data! t "blind") > (insert-last/data! t "mice") ; "blind" should be the root, with ; "three" and "mice" as left and right. > (define (f n acc) (cons (node-data n) acc)) > (reverse (tree-fold-inorder t f '())) '("three" "blind" "mice")
> (reverse (tree-fold-preorder t f '())) '("blind" "three" "mice")
> (reverse (tree-fold-postorder t f '())) '("three" "mice" "blind")
2.2 Uncontracted library
This library uses contracts extensively to prevent the user from messing up; however, the contract checking may be prohibitively expensive for certain applications.
The uncontracted bindings of this library can be accessed through:
This provides the same bindings as the regular API, but with no contract checks. Use this with extreme care: Improper use of the uncontracted form of this library may lead to breaking the red-black invariants, or (even worse) introducing cycles in the structure. If you don’t know whether you should be using the uncontracted forms or not, you probably should not.
3 Ordered sets: mutable sets with a total order
Danny Yoo <dyoo@hashcollision.org>
(require data/red-black/ordered-set) | |
package: data-red-black |
This module provides a mutable, set-like container of totally-ordered elements.
As a quick example:
> (require data/red-black/ordered-set) > (define s1 (ordered-set))
> (for ([w (string-split (string-append "this is a test of the emergency broadcast" " system this is only a test"))]) (ordered-set-add! s1 w)) ; Let's query for membership: > (ordered-set-member? s1 "broadcast") #t
> (ordered-set-member? s1 "radio") #f
; The ordered set acts as a sequence: > (for/list ([w s1]) w) '("a" "broadcast" "emergency" "is" "of" "only" "system" "test" "the" "this")
> (ordered-set-remove! s1 "broadcast") > (ordered-set-member? s1 "broadcast") #f
For convenience, these ordered sets use the notion of the total-order defined by the datum-order function in data/order. The ordered-set constructor can take an optional #:order comparision function to customize how its elements compare.
But be careful about defining your own ordering function. The following example shows where it might go wrong:
; order-strings-by-length: string string -> (or/c '< '= '>)
> (define (order-strings-by-length x y) (define xs (string-length x)) (define ys (string-length y)) (cond [(< xs ys) '<] [(= xs ys) '=] ; (probably buggy. See below...) [(> xs ys) '>])) > (define a-set (ordered-set #:order order-strings-by-length))
> (for ([word (string-split "we few we happy few we band of brothers")]) (ordered-set-add! a-set word)) ; Note that we know that "of" will be missing from the list! ; That's because the comparison function makes "of" and "we" ; look the same: > (ordered-set->list a-set) '("we" "few" "band" "happy" "brothers")
The ordered set trusts the order provided by #:order for all comparisons, including equality. In the example above, "of" and "we" compare the same, and ordered-set-add! ignores operations that insert a value that already exists in the set.
On the implementation side: an ordered set hold onto its elements with a red-black tree, so that most operations work in time logarithmic to the set’s ordered-set-count.
3.1 API
procedure
(ordered-set [#:order order] initial-elt ...) → ordered-set/c
order : (any/c any/c . -> . (or/c '< '= '>)) = datum-order initial-elt : any/c
> (define my-set (ordered-set)) > my-set #<ordered-set>
> (for/list ([x my-set]) x) '()
; Creating an ordered set with initial elements: > (define another-set (ordered-set 3 1 4 1 5 9)) > (for/list ([x another-set]) x) '(1 3 4 5 9)
; Overriding #:order for descending sort:
> (define (cmp x y) (cond [(< x y) '>] [(= x y) '=] [(> x y) '<]))
> (define yet-another-set (ordered-set #:order cmp 3 1 4 1 5 9)) > (for/list ([x yet-another-set]) x) '(9 5 4 3 1)
procedure
(ordered-set? x) → boolean?
x : any/c
> (ordered-set? (ordered-set)) #t
> (ordered-set? (list 1 2 3)) #f
; The built in sets in Racket's racket/set library ; are not ordered sets: > (ordered-set? (set)) #f
value
ordered-set/c : flat-contract?
procedure
(ordered-set-order a-set)
→ (any/c any/c . -> . (or/c '< '= '>)) a-set : ordered-set/c
> (define f (ordered-set-order (ordered-set))) > (f 3 4) '<
> (f 4 4) '=
> (f 4 3) '>
procedure
(ordered-set-empty? a-set) → boolean?
a-set : ordered-set/c
> (ordered-set-empty? (ordered-set)) #t
> (ordered-set-empty? (ordered-set 'nonempty "set!")) #f
procedure
(ordered-set-count a-set) → natural-number/c
a-set : ordered-set/c
> (ordered-set-count (ordered-set "duck" "duck" "goose")) 2
procedure
(ordered-set-member? a-set x) → boolean?
a-set : ordered-set/c x : any/c
> (define keywords (ordered-set "lambda" "case" "cond" "define")) > (ordered-set-member? keywords "guitar") #f
> (ordered-set-member? keywords "lambda") #t
procedure
(ordered-set-add! a-set x) → void?
a-set : ordered-set/c x : any/c
> (define a-set (ordered-set)) > (ordered-set-add! a-set "racket") > (ordered-set-add! a-set "prolog") > (ordered-set-add! a-set "java") > (ordered-set-add! a-set "ocaml") > (for/list ([x a-set]) x) '("java" "ocaml" "prolog" "racket")
> (define (bad-cmp x y) '=) > (define a-weird-set (ordered-set #:order bad-cmp)) > (ordered-set-add! a-weird-set "racket") > (ordered-set-add! a-weird-set "prolog") > (ordered-set-add! a-weird-set "java") > (ordered-set-add! a-weird-set "ocaml") > (for/list ([x a-weird-set]) x) '("racket")
procedure
(ordered-set-remove! a-set x) → void?
a-set : ordered-set/c x : any/c
> (define leagues (ordered-set "gold" "silver" "bronze" "tin" "wood")) > (ordered-set-member? leagues "tin") #t
> (ordered-set-remove! leagues "tin") > (ordered-set-member? leagues "tin") #f
Just as with ordered-set-add!, ordered-set-remove!’s behavior depends on the correctness of the set’s total ordering function.
procedure
(ordered-set->list a-set) → list?
a-set : ordered-set/c
> (define cloud-types (ordered-set "cumulus" "stratus" "cirrus" "nimbus")) > (ordered-set->list cloud-types) '("cirrus" "cumulus" "nimbus" "stratus")
procedure
(in-ordered-set a-set) → sequence?
a-set : ordered-set/c
> (define a-sequence (in-ordered-set (ordered-set "a" "b" "b" "a"))) > a-sequence #<sequence>
> (for ([x a-sequence]) (printf "I see: ~a\n" x))
I see: a
I see: b
> (for ([x (ordered-set "a" "b" "b" "a")]) (printf "I see: ~a\n" x))
I see: a
I see: b
4 Bibliography
Bibliography
[clrs2009] | Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Third Edition. 2009. http://mitpress.mit.edu/books/introduction-algorithms | |
[wein2005] | Ron Wein, “Efficient implementation of red-black trees with split and catenate operations.” 2005. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.4875 |