2 Deques
Double ended queues (or deque) are queues where elements can be added or removed from either end. The deque data structures provided by this library implement and provide the following operations: deque, empty?, enqueue, enqueue-front, head, tail, last, init and deque->list.
2.1 Bankers Deque
| (require pfds/deque/bankers) | package: pfds |
Bankers deques are amortized double ended deques developed using the Bankers method. They provide an amortized running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue. They use lazy evaluation and memoization to achieve the amortized running time.
syntax
(Deque A)
> (deque 1 2 3 4 5 6)
- : #(struct:Deque
((Rec
g298603
(U (Pairof Positive-Byte g298603) (Promiseof g298603) Null))
Integer
(Rec
g298605
(U (Pairof Positive-Byte g298605) (Promiseof g298605) Null))
Integer))
#<Deque>
In the above example, the deque obtained will have 1 as its head element.
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 5 6 3 4))
- : #(struct:Deque
((Rec
g298696
(U (Pairof Positive-Byte g298696) (Promiseof g298696) Null))
Integer
(Rec
g298698
(U (Pairof Positive-Byte g298698) (Promiseof g298698) Null))
Integer))
#<Deque>
In the above example, (enqueue-front 10 (deque 5 6 3 4)) adds 10 to the front of the (deque 5 6 3 4). 10 will be the head element.
In the above example, (head (empty Integer)) throws an error since the given deque is empty.
In the above example, (last (empty Integer))throws an error since the given deque is empty.
In the above example, (tail (deque 1 2 3 4 5 6)), removes the head of the given deque returns (deque 2 3 4 5 6).
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 and returns (deque 1 2 3 4 5).
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Positive-Byte)
'(10 2 34 4 15 6)
> (deque->list (empty Integer)) - : (Listof Integer)
'()
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Positive-Byte)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
> (head+tail (deque 1 2 3 4 5))
- : (Pairof
Positive-Byte
#(struct:Deque
((Rec
g299507
(U (Pairof Positive-Byte g299507) (Promiseof g299507) Null))
Integer
(Rec
g299509
(U (Pairof Positive-Byte g299509) (Promiseof g299509) Null))
Integer)))
'(1 . #<Deque>)
> (head+tail (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec g299533 (U (Pairof Integer g299533) (Promiseof g299533) Null))
Integer
(Rec g299535 (U (Pairof Integer g299535) (Promiseof g299535) Null))
Integer)))
'(0 . #<Deque>)
> (head+tail (empty Integer)) head+tail: given deque is empty
> (last+init (deque 1 2 3 4 5))
- : (Pairof
Positive-Byte
#(struct:Deque
((Rec
g299576
(U (Pairof Positive-Byte g299576) (Promiseof g299576) Null))
Integer
(Rec
g299578
(U (Pairof Positive-Byte g299578) (Promiseof g299578) Null))
Integer)))
'(5 . #<Deque>)
> (last+init (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec g299602 (U (Pairof Integer g299602) (Promiseof g299602) Null))
Integer
(Rec g299604 (U (Pairof Integer g299604) (Promiseof g299604) Null))
Integer)))
'(16 . #<Deque>)
> (last+init (empty Integer)) last+init: given deque is empty
2.2 Implicit Deque
| (require pfds/deque/implicit) | package: pfds |
Deques obtained by applying Implicit Recursive Slowdown. Provides amortized running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue. Implicit Recursive Slowdown combines laziness and technique called Recursive Slow-Down developed by Kaplan and Tarjan in their paper Persistant Lists with Catenation via Recursive Slow-Down.
syntax
(Deque A)
> (deque 1 2 3 4 5 6) - : (U (Deep Positive-Byte) (Shallow Positive-Byte))
#<Deep>
In the above example, the deque obtained will have 1 as its head element.
In the above example, enqueue adds the element 10 to (deque 1 2 3 4 5 6 10).
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 5 6 3 4)) - : (U (Deep Positive-Byte) (Shallow Positive-Byte))
#<Deep>
In the above example, (enqueue-front 10 (deque 5 6 3 4)) adds 10 to the front of the (deque 5 6 3 4). 10 will be the head element.
In the above example, (tail (deque 1 2 3 4 5 6)), removes 1 and returns (tail (deque 2 3 4 5 6)).
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 and returns (deque 1 2 3 4 5)
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Positive-Byte)
'(10 2 34 4 15 6)
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Positive-Byte)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
2.3 Real-Time Deque
| (require pfds/deque/real-time) | package: pfds |
Real-Time Deques eliminate the amortization by using two techniques Scheduling and a variant of Global Rebuilding called Lazy Rebuilding. The data structure gives a worst case running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue.
syntax
(Deque A)
> (deque 1 2 3 4 5 6)
- : #(struct:Deque
((Rec
g303253
(U (Boxof (U (-> (Pairof Integer g303253)) (Pairof Integer g303253)))
Null))
Integer
(Rec
g303256
(U (Boxof (U (-> (Pairof Integer g303256)) (Pairof Integer g303256)))
Null))
(Rec
g303259
(U (Boxof (U (-> (Pairof Integer g303259)) (Pairof Integer g303259)))
Null))
Integer
(Rec
g303262
(U (Boxof (U (-> (Pairof Integer g303262)) (Pairof Integer g303262)))
Null))))
#<Deque>
In the above example, the deque obtained will have 1 as its head element.
> (enqueue 10 (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303294
(U (Boxof (U (-> (Pairof Integer g303294)) (Pairof Integer g303294)))
Null))
Integer
(Rec
g303297
(U (Boxof (U (-> (Pairof Integer g303297)) (Pairof Integer g303297)))
Null))
(Rec
g303300
(U (Boxof (U (-> (Pairof Integer g303300)) (Pairof Integer g303300)))
Null))
Integer
(Rec
g303303
(U (Boxof (U (-> (Pairof Integer g303303)) (Pairof Integer g303303)))
Null))))
#<Deque>
In the above example, enqueue adds the element 10 to the end of (deque 1 2 3 4 5 6).
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303315
(U (Boxof (U (-> (Pairof Integer g303315)) (Pairof Integer g303315)))
Null))
Integer
(Rec
g303318
(U (Boxof (U (-> (Pairof Integer g303318)) (Pairof Integer g303318)))
Null))
(Rec
g303321
(U (Boxof (U (-> (Pairof Integer g303321)) (Pairof Integer g303321)))
Null))
Integer
(Rec
g303324
(U (Boxof (U (-> (Pairof Integer g303324)) (Pairof Integer g303324)))
Null))))
#<Deque>
In the above example, enqueue adds the element 10 to the front of (deque 1 2 3 4 5 6) and returns (deque 10 1 2 3 4 5 6).
> (tail (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303374
(U (Boxof (U (-> (Pairof Integer g303374)) (Pairof Integer g303374)))
Null))
Integer
(Rec
g303377
(U (Boxof (U (-> (Pairof Integer g303377)) (Pairof Integer g303377)))
Null))
(Rec
g303380
(U (Boxof (U (-> (Pairof Integer g303380)) (Pairof Integer g303380)))
Null))
Integer
(Rec
g303383
(U (Boxof (U (-> (Pairof Integer g303383)) (Pairof Integer g303383)))
Null))))
#<Deque>
> (tail (empty Integer)) tail: given deque is empty
In the above example, (tail (deque 1 2 3 4 5 6)), removes the head of the given deque returns (deque 2 3 4 5 6).
> (init (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303417
(U (Boxof (U (-> (Pairof Integer g303417)) (Pairof Integer g303417)))
Null))
Integer
(Rec
g303420
(U (Boxof (U (-> (Pairof Integer g303420)) (Pairof Integer g303420)))
Null))
(Rec
g303423
(U (Boxof (U (-> (Pairof Integer g303423)) (Pairof Integer g303423)))
Null))
Integer
(Rec
g303426
(U (Boxof (U (-> (Pairof Integer g303426)) (Pairof Integer g303426)))
Null))))
#<Deque>
> (init (empty Integer)) init: given deque is empty
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 of the given deque and returns (deque 1 2 3 4 5).
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Integer)
'(10 2 34 4 15 6)
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Integer)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Integer)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
> (head+tail (deque 1 2 3 4 5))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303800
(U (Boxof (U (-> (Pairof Integer g303800)) (Pairof Integer g303800)))
Null))
Integer
(Rec
g303803
(U (Boxof (U (-> (Pairof Integer g303803)) (Pairof Integer g303803)))
Null))
(Rec
g303806
(U (Boxof (U (-> (Pairof Integer g303806)) (Pairof Integer g303806)))
Null))
Integer
(Rec
g303809
(U (Boxof (U (-> (Pairof Integer g303809)) (Pairof Integer g303809)))
Null)))))
'(1 . #<Deque>)
> (head+tail (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303826
(U (Boxof (U (-> (Pairof Integer g303826)) (Pairof Integer g303826)))
Null))
Integer
(Rec
g303829
(U (Boxof (U (-> (Pairof Integer g303829)) (Pairof Integer g303829)))
Null))
(Rec
g303832
(U (Boxof (U (-> (Pairof Integer g303832)) (Pairof Integer g303832)))
Null))
Integer
(Rec
g303835
(U (Boxof (U (-> (Pairof Integer g303835)) (Pairof Integer g303835)))
Null)))))
'(0 . #<Deque>)
> (head+tail (empty Integer)) head+tail: given deque is empty
> (last+init (deque 1 2 3 4 5))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303869
(U (Boxof (U (-> (Pairof Integer g303869)) (Pairof Integer g303869)))
Null))
Integer
(Rec
g303872
(U (Boxof (U (-> (Pairof Integer g303872)) (Pairof Integer g303872)))
Null))
(Rec
g303875
(U (Boxof (U (-> (Pairof Integer g303875)) (Pairof Integer g303875)))
Null))
Integer
(Rec
g303878
(U (Boxof (U (-> (Pairof Integer g303878)) (Pairof Integer g303878)))
Null)))))
'(5 . #<Deque>)
> (last+init (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303895
(U (Boxof (U (-> (Pairof Integer g303895)) (Pairof Integer g303895)))
Null))
Integer
(Rec
g303898
(U (Boxof (U (-> (Pairof Integer g303898)) (Pairof Integer g303898)))
Null))
(Rec
g303901
(U (Boxof (U (-> (Pairof Integer g303901)) (Pairof Integer g303901)))
Null))
Integer
(Rec
g303904
(U (Boxof (U (-> (Pairof Integer g303904)) (Pairof Integer g303904)))
Null)))))
'(16 . #<Deque>)
> (last+init (empty Integer)) last+init: given deque is empty