2 Deques
Double ended queues (or deque) are queues where elements can be added or removed from either end. The deque data structures provided by this library implement and provide the following operations: deque, empty?, enqueue, enqueue-front, head, tail, last, init and deque->list.
2.1 Bankers Deque
| (require pfds/deque/bankers) | package: pfds |
Bankers deques are amortized double ended deques developed using the Bankers method. They provide an amortized running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue. They use lazy evaluation and memoization to achieve the amortized running time.
syntax
(Deque A)
> (deque 1 2 3 4 5 6)
- : #(struct:Deque
((Rec
g298587
(U (Pairof Positive-Byte g298587) (Promiseof g298587) Null))
Integer
(Rec
g298589
(U (Pairof Positive-Byte g298589) (Promiseof g298589) Null))
Integer))
#<Deque>
In the above example, the deque obtained will have 1 as its head element.
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 5 6 3 4))
- : #(struct:Deque
((Rec
g298680
(U (Pairof Positive-Byte g298680) (Promiseof g298680) Null))
Integer
(Rec
g298682
(U (Pairof Positive-Byte g298682) (Promiseof g298682) Null))
Integer))
#<Deque>
In the above example, (enqueue-front 10 (deque 5 6 3 4)) adds 10 to the front of the (deque 5 6 3 4). 10 will be the head element.
In the above example, (head (empty Integer)) throws an error since the given deque is empty.
In the above example, (last (empty Integer))throws an error since the given deque is empty.
In the above example, (tail (deque 1 2 3 4 5 6)), removes the head of the given deque returns (deque 2 3 4 5 6).
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 and returns (deque 1 2 3 4 5).
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Positive-Byte)
'(10 2 34 4 15 6)
> (deque->list (empty Integer)) - : (Listof Integer)
'()
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Positive-Byte)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
> (head+tail (deque 1 2 3 4 5))
- : (Pairof
Positive-Byte
#(struct:Deque
((Rec
g299491
(U (Pairof Positive-Byte g299491) (Promiseof g299491) Null))
Integer
(Rec
g299493
(U (Pairof Positive-Byte g299493) (Promiseof g299493) Null))
Integer)))
'(1 . #<Deque>)
> (head+tail (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec g299517 (U (Pairof Integer g299517) (Promiseof g299517) Null))
Integer
(Rec g299519 (U (Pairof Integer g299519) (Promiseof g299519) Null))
Integer)))
'(0 . #<Deque>)
> (head+tail (empty Integer)) head+tail: given deque is empty
> (last+init (deque 1 2 3 4 5))
- : (Pairof
Positive-Byte
#(struct:Deque
((Rec
g299560
(U (Pairof Positive-Byte g299560) (Promiseof g299560) Null))
Integer
(Rec
g299562
(U (Pairof Positive-Byte g299562) (Promiseof g299562) Null))
Integer)))
'(5 . #<Deque>)
> (last+init (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec g299586 (U (Pairof Integer g299586) (Promiseof g299586) Null))
Integer
(Rec g299588 (U (Pairof Integer g299588) (Promiseof g299588) Null))
Integer)))
'(16 . #<Deque>)
> (last+init (empty Integer)) last+init: given deque is empty
2.2 Implicit Deque
| (require pfds/deque/implicit) | package: pfds |
Deques obtained by applying Implicit Recursive Slowdown. Provides amortized running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue. Implicit Recursive Slowdown combines laziness and technique called Recursive Slow-Down developed by Kaplan and Tarjan in their paper Persistant Lists with Catenation via Recursive Slow-Down.
syntax
(Deque A)
> (deque 1 2 3 4 5 6) - : (U (Deep Positive-Byte) (Shallow Positive-Byte))
#<Deep>
In the above example, the deque obtained will have 1 as its head element.
In the above example, enqueue adds the element 10 to (deque 1 2 3 4 5 6 10).
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 5 6 3 4)) - : (U (Deep Positive-Byte) (Shallow Positive-Byte))
#<Deep>
In the above example, (enqueue-front 10 (deque 5 6 3 4)) adds 10 to the front of the (deque 5 6 3 4). 10 will be the head element.
In the above example, (tail (deque 1 2 3 4 5 6)), removes 1 and returns (tail (deque 2 3 4 5 6)).
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 and returns (deque 1 2 3 4 5)
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Positive-Byte)
'(10 2 34 4 15 6)
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Positive-Index)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer [more precisely: Nonnegative-Integer]
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer [more precisely: Positive-Integer]
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Positive-Byte)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Positive-Byte)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
2.3 Real-Time Deque
| (require pfds/deque/real-time) | package: pfds |
Real-Time Deques eliminate the amortization by using two techniques Scheduling and a variant of Global Rebuilding called Lazy Rebuilding. The data structure gives a worst case running time of O(1) for the operations head, tail, last, init, enqueue-front and enqueue.
syntax
(Deque A)
> (deque 1 2 3 4 5 6)
- : #(struct:Deque
((Rec
g303237
(U (Boxof (U (-> (Pairof Integer g303237)) (Pairof Integer g303237)))
Null))
Integer
(Rec
g303240
(U (Boxof (U (-> (Pairof Integer g303240)) (Pairof Integer g303240)))
Null))
(Rec
g303243
(U (Boxof (U (-> (Pairof Integer g303243)) (Pairof Integer g303243)))
Null))
Integer
(Rec
g303246
(U (Boxof (U (-> (Pairof Integer g303246)) (Pairof Integer g303246)))
Null))))
#<Deque>
In the above example, the deque obtained will have 1 as its head element.
> (enqueue 10 (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303278
(U (Boxof (U (-> (Pairof Integer g303278)) (Pairof Integer g303278)))
Null))
Integer
(Rec
g303281
(U (Boxof (U (-> (Pairof Integer g303281)) (Pairof Integer g303281)))
Null))
(Rec
g303284
(U (Boxof (U (-> (Pairof Integer g303284)) (Pairof Integer g303284)))
Null))
Integer
(Rec
g303287
(U (Boxof (U (-> (Pairof Integer g303287)) (Pairof Integer g303287)))
Null))))
#<Deque>
In the above example, enqueue adds the element 10 to the end of (deque 1 2 3 4 5 6).
procedure
(enqueue-front a deq) → (Deque A)
a : A deq : (Deque A)
> (enqueue-front 10 (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303299
(U (Boxof (U (-> (Pairof Integer g303299)) (Pairof Integer g303299)))
Null))
Integer
(Rec
g303302
(U (Boxof (U (-> (Pairof Integer g303302)) (Pairof Integer g303302)))
Null))
(Rec
g303305
(U (Boxof (U (-> (Pairof Integer g303305)) (Pairof Integer g303305)))
Null))
Integer
(Rec
g303308
(U (Boxof (U (-> (Pairof Integer g303308)) (Pairof Integer g303308)))
Null))))
#<Deque>
In the above example, enqueue adds the element 10 to the front of (deque 1 2 3 4 5 6) and returns (deque 10 1 2 3 4 5 6).
> (tail (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303358
(U (Boxof (U (-> (Pairof Integer g303358)) (Pairof Integer g303358)))
Null))
Integer
(Rec
g303361
(U (Boxof (U (-> (Pairof Integer g303361)) (Pairof Integer g303361)))
Null))
(Rec
g303364
(U (Boxof (U (-> (Pairof Integer g303364)) (Pairof Integer g303364)))
Null))
Integer
(Rec
g303367
(U (Boxof (U (-> (Pairof Integer g303367)) (Pairof Integer g303367)))
Null))))
#<Deque>
> (tail (empty Integer)) tail: given deque is empty
In the above example, (tail (deque 1 2 3 4 5 6)), removes the head of the given deque returns (deque 2 3 4 5 6).
> (init (deque 1 2 3 4 5 6))
- : #(struct:Deque
((Rec
g303401
(U (Boxof (U (-> (Pairof Integer g303401)) (Pairof Integer g303401)))
Null))
Integer
(Rec
g303404
(U (Boxof (U (-> (Pairof Integer g303404)) (Pairof Integer g303404)))
Null))
(Rec
g303407
(U (Boxof (U (-> (Pairof Integer g303407)) (Pairof Integer g303407)))
Null))
Integer
(Rec
g303410
(U (Boxof (U (-> (Pairof Integer g303410)) (Pairof Integer g303410)))
Null))))
#<Deque>
> (init (empty Integer)) init: given deque is empty
In the above example, (init (deque 1 2 3 4 5 6)), removes the last element 6 of the given deque and returns (deque 1 2 3 4 5).
procedure
(deque->list deq) → (Listof A)
deq : (Deque A)
> (deque->list (deque 10 2 34 4 15 6)) - : (Listof Integer)
'(10 2 34 4 15 6)
> (deque->list (map add1 (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(2 3 4 5 6 7)
> (deque->list (map * (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(1 4 9 16 25 36)
procedure
(foldl func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldl currently does not produce correct results when the given function is non-commutative.
> (foldl + 0 (deque 1 2 3 4 5 6)) - : Integer
21
> (foldl * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer
518400
procedure
(foldr func init deq1 deq2 ...) → C
func : (C A B ... B -> C) init : C deq1 : (Deque A) deq2 : (Deque B)
foldr currently does not produce correct results when the given function is non-commutative.
> (foldr + 0 (deque 1 2 3 4 5 6)) - : Integer
21
> (foldr * 1 (deque 1 2 3 4 5 6) (deque 1 2 3 4 5 6)) - : Integer
518400
> (define que (deque 1 2 3 4 5 6)) > (deque->list (filter (λ: ([x : Integer]) (> x 5)) que)) - : (Listof Integer)
'(6)
> (deque->list (filter (λ: ([x : Integer]) (< x 5)) que)) - : (Listof Integer)
'(1 2 3 4)
> (deque->list (filter (λ: ([x : Integer]) (<= x 5)) que)) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (> x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (remove (λ: ([x : Integer]) (< x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(5 6)
> (deque->list (remove (λ: ([x : Integer]) (<= x 5)) (deque 1 2 3 4 5 6))) - : (Listof Integer)
'(6)
procedure
(andmap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (andmap even? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap odd? (deque 1 2 3 4 5 6)) - : Boolean
#f
> (andmap positive? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (andmap negative? (deque -1 -2)) - : Boolean
#t
procedure
(ormap func deq1 deq2 ...) → Boolean
func : (A B ... B -> Boolean) deq1 : (Deque A) deq2 : (Deque B)
> (ormap even? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap odd? (deque 1 2 3 4 5 6)) - : Boolean
#t
> (ormap positive? (deque -1 -2 3 4 -5 6)) - : Boolean
#t
> (ormap negative? (deque 1 -2)) - : Boolean
#t
procedure
(build-deque size func) → (Deque A)
size : Natural func : (Natural -> A)
> (deque->list (build-deque 5 (λ:([x : Integer]) (add1 x)))) - : (Listof Integer)
'(1 2 3 4 5)
> (deque->list (build-deque 5 (λ:([x : Integer]) (* x x)))) - : (Listof Integer)
'(0 1 4 9 16)
> (head+tail (deque 1 2 3 4 5))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303784
(U (Boxof (U (-> (Pairof Integer g303784)) (Pairof Integer g303784)))
Null))
Integer
(Rec
g303787
(U (Boxof (U (-> (Pairof Integer g303787)) (Pairof Integer g303787)))
Null))
(Rec
g303790
(U (Boxof (U (-> (Pairof Integer g303790)) (Pairof Integer g303790)))
Null))
Integer
(Rec
g303793
(U (Boxof (U (-> (Pairof Integer g303793)) (Pairof Integer g303793)))
Null)))))
'(1 . #<Deque>)
> (head+tail (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303810
(U (Boxof (U (-> (Pairof Integer g303810)) (Pairof Integer g303810)))
Null))
Integer
(Rec
g303813
(U (Boxof (U (-> (Pairof Integer g303813)) (Pairof Integer g303813)))
Null))
(Rec
g303816
(U (Boxof (U (-> (Pairof Integer g303816)) (Pairof Integer g303816)))
Null))
Integer
(Rec
g303819
(U (Boxof (U (-> (Pairof Integer g303819)) (Pairof Integer g303819)))
Null)))))
'(0 . #<Deque>)
> (head+tail (empty Integer)) head+tail: given deque is empty
> (last+init (deque 1 2 3 4 5))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303853
(U (Boxof (U (-> (Pairof Integer g303853)) (Pairof Integer g303853)))
Null))
Integer
(Rec
g303856
(U (Boxof (U (-> (Pairof Integer g303856)) (Pairof Integer g303856)))
Null))
(Rec
g303859
(U (Boxof (U (-> (Pairof Integer g303859)) (Pairof Integer g303859)))
Null))
Integer
(Rec
g303862
(U (Boxof (U (-> (Pairof Integer g303862)) (Pairof Integer g303862)))
Null)))))
'(5 . #<Deque>)
> (last+init (build-deque 5 (λ:([x : Integer]) (* x x))))
- : (Pairof
Integer
#(struct:Deque
((Rec
g303879
(U (Boxof (U (-> (Pairof Integer g303879)) (Pairof Integer g303879)))
Null))
Integer
(Rec
g303882
(U (Boxof (U (-> (Pairof Integer g303882)) (Pairof Integer g303882)))
Null))
(Rec
g303885
(U (Boxof (U (-> (Pairof Integer g303885)) (Pairof Integer g303885)))
Null))
Integer
(Rec
g303888
(U (Boxof (U (-> (Pairof Integer g303888)) (Pairof Integer g303888)))
Null)))))
'(16 . #<Deque>)
> (last+init (empty Integer)) last+init: given deque is empty