
Pict: Functional Pictures
Version 8.13.0.7

June 12, 2024

(require pict) package: pict-lib

The pict library is one of the standard Racket functional picture libraries (the other being
2htdp/image). This library was originally designed for use with Slideshow, and is re-
provided by the slideshow language.

1

https://pkgs.racket-lang.org/package/pict-lib

1 Pict Datatype

A pict is a pict structure representing an image. Some functions, such as hline, create new
simple picts. Other functions, such as ht-append, build new picts out of existing picts. In
the latter case, the embedded picts retain their identity, so that offset-finding functions, such
as lt-find, can find the offset of an embedded pict in a larger pict.

In addition to its drawing part, a pict has the following bounding box structure:

w

a

d

h

That is, the bounding box has a width w and a height h. For a single text line, d is descent
below the baseline, and a+d=h. For multiple text lines (often created with a function like
vc-append), a is the ascent of the top line, and d is the descent of the bottom line, so a+dăh.
Many picts have d=0 and a=h.

In addition, a pict can have a last sub-pict that corresponds to the last item on the last line of
text, so that extra lines can be added to the last line. In particular, the last element is useful
for adding closing parentheses to a block of Racket code, where the last line of code not the
longest line in the block.

The size information for a pict is computed when the pict is created. This strategy supports
programs that create new picts though arbitrarily complex computations on the size and
shape of existing picts. The functions pict-width, pict-height, pict-descent, and
pict-ascent extract bounding box information from a pict.

A pict is a convertible datatype through the file/convertible protocol. Supported con-
versions include 'png-bytes, 'eps-bytes, 'pdf-bytes, 'svg-bytes, and variants such
as 'png-bytes+bounds and 'png-bytes+bounds8.

A pict is serializable via racket/serialize, but serialization loses sub-pict information
(preserving only the pict’s drawing and bounding box).

All of the pict functions that accept picts also values that are pict convertible, meaning that
picts can be mixed and matched with values from various other libraries.

Changed in version 1.2 of package pict-lib: Added support for 'png-bytes+bounds, 'png-bytes+bounds8
and similar variants.
Changed in version 1.3: Enabled serialization.

2

(struct pict (draw
width
height
ascent
descent
children
panbox
last)

#:extra-constructor-name make-pict)
draw : any/c
width : real?
height : real?
ascent : real?
descent : real?
children : (listof child?)
panbox : (or/c #f any/c)
last : (or/c #f pict-path?)

A pict structure is normally not created directly with make-pict. Instead, functions like
text, hline, and dc are used to construct a pict.

The draw field contains the pict’s drawing information in an internal format. Roughly, the
drawing information is a procedure that takes a dc<%> drawing context and an offset for the
pict’s top-left corner (i.e., it’s bounding box’s top left corner relative to the dc<%> origin).
The state of the dc<%> is intended to affect the pict’s drawing; for example, the pen and
brush will be set for a suitable default drawing mode, and the dc<%> scale will be set to
scale the resulting image. Use draw-pict (as opposed to pict-draw) to draw the picture.

The panbox field is internal and initialized to #f.

The last field indicates a pict within the children list (transitively) that can be treated as
the last element of the last line in the pict. A #f value means that the pict is its own last
sub-pict.

(struct child (pict dx dy sx sy syx sxy)
#:extra-constructor-name make-child)

pict : pict?
dx : real?
dy : real?
sx : real?
sy : real?
syx : real?
sxy : real?

Records, for a pict constructed of other picts, the transformation to arrive at a inverted point
in the composed pict from an inverted point in a constituent pict’s. An inverted point is a

3

point relative to a pict’s lower-left corner with an increasing value moving upward.

A child structure is normally not created directly with make-child. Instead, functions like
hc-append create child structures when combining picts to create a new one.

(explain p
[#:border bord
#:ascent asc
#:baseline base
#:scale s
#:line-width lw]) Ñ pict?

p : pict-convertible?
bord : (or/c #f string? (is-a?/c color%)) = "firered"
asc : (or/c #f string? (is-a?/c color%)) = "seagreen"
base : (or/c #f string? (is-a?/c color%)) = "royalblue"
s : real? = 5
lw : real? = 1

Draw a pict like p , but the pict’s bounding box is framed in the color bord , the baseline is
draw in base , and the line defined by the ascent is drawn in asc . If any are #f then that part
is not drawn. The pict is scaled up by s . The lines drawn are of width lw before scaling is
applied.

Note that for single lines of text the baseline and ascent are the same, so only one line will
be visible.

Examples:

> (define t (text "ij"))
> (define tt (vl-append t t))
> (explain t)

ij
> (explain tt)

4

ij
ij

Added in version 1.10 of package pict-lib.

(explain-child p
path ...

[#:border bord
#:ascent asc
#:baseline base
#:scale s
#:line-width lw]) Ñ pict?

p : pict-convertible?
path : pict-path?
bord : (or/c #f string? (is-a?/c color%)) = "firered"
asc : (or/c #f string? (is-a?/c color%)) = "seagreen"
base : (or/c #f string? (is-a?/c color%)) = "royalblue"
s : real? = 5
lw : real? = 1

Like explain, except the the explanation is drawn for some each inner pict of p , pointed
to by path .

Examples:

> (define t1 (text "ij"))
> (define t2 (text "ij"))
> (define t3 (vl-append t1 t2))
> (explain-child t3 t3)

5

ij
ij
> (explain-child t3 t1)

ij
ij
> (explain-child t3 t2)

ij
ij
> (explain-child t3 t1 t2)

ij
ij

6

Added in version 1.10 of package pict-lib.

7

2 Basic Pict Constructors

(dc draw w h [a d]) Ñ pict?
draw : (-> (is-a?/c dc<%>) real? real? any)
w : real?
h : real?
a : real? = h
d : real? = 0

Creates an arbitrary self-rendering pict. The arguments to the rendering procedure will be a
drawing context and top-left location for drawing.

The w , h , a , and d arguments determine the width, height, ascent, and descent of the of the
resulting pict’s bounding box respectively.

When the rendering procedure is called, the current pen and brush will be 'solid and in the
pict’s color and linewidth, and the scale and offset of the drawing context will be set. The
text mode will be transparent, but the font and text colors are not guaranteed to be anything
in particular.

Example:

> (dc (λ (dc dx dy)
(define old-brush (send dc get-brush))
(define old-pen (send dc get-pen))
(send dc set-brush

(new brush% [style 'fdiagonal-hatch]
[color "darkslategray"]))

(send dc set-pen
(new pen% [width 3] [color "slategray"]))

(define path (new dc-path%))
(send path move-to 0 0)
(send path line-to 50 0)
(send path line-to 25 50)
(send path close)
(send dc draw-path path dx dy)
(send dc set-brush old-brush)
(send dc set-pen old-pen))

50 50)

The draw is called during the dynamic extent of the call to dc as part of the contract check-
ing.

8

Specifically, the pre-condition portion of the contract for dc concocts a dc<%> object with a
random initial state, calls the draw argument with that dc<%> and then checks to make sure
that draw the state of the dc<%> object is the same as it was before draw was called.

Example:

> (dc (λ (dc dx dy)
(send dc set-brush "red" 'solid)
(send dc set-pen "black" 1 'transparent)
(send dc draw-ellipse dx dy 50 50))

50 50)
dc: contract violation;

draw proc does not restore the dc state after being called
draw: #ăprocedureą

in: (-ąi
((draw

(-ą (is-a?/c dcă%ą) real? real? any))
(w real?)
(h real?))

((d (or/c #f real?)) (a (or/c #f real?)))
#:pre/name
(draw)
"draw proc does not restore the dc state after being

called"
(... draw)
(p pict?))

contract from: ăpkgsą/pict-lib/pict/main.rkt
blaming: top-level

(assuming the contract is correct)
at: ăpkgsą/pict-lib/pict/main.rkt:101:3

Changed in version 1.3 of package pict-lib: The draw argument is now called by the #:pre condition of dc.

(unsafe-dc draw w h [a d]) Ñ pict?
draw : (-> (is-a?/c dc<%>) real? real? any)
w : real?
h : real?
a : real? = h
d : real? = 0

Like dc, except that the draw procedure is not called during the precondition contract check-
ing.

(blank [size]) Ñ pict?
size : real? = 0

(blank w h) Ñ pict?

9

w : real?
h : real?

(blank w a d) Ñ pict?
w : real?
a : real?
d : real?

(blank w h a d) Ñ pict?
w : real?
h : real?
a : real?
d : real?

Creates a pict that draws nothing. The one-argument case supplies a value used for both the
width and height of the resulting pict’s bounding box. In the one- and two-argument case,
the ascent and descent are 0 for the resulting pict’s bounding box; in the three-argument
case, the height is computed by adding the given ascent and descent.

Example:

> (blank 50)

(text content [style size angle]) Ñ pict?
content : string?
style : text-style/c = null
size : (integer-in 1 1024) = 12
angle : real? = 0

Creates a pict that draws text. For creating text picts within a slide presentation, see t. The
size of the resulting pict may depend on the value of dc-for-text-size.

The style argument must be one of the following:

• null — the default, same as 'default

• a font% object

• a font family symbol, such a 'roman (see font%)

• a font face string, such as "Helvetica" (see font%)

• (cons str sym) combining a face string and a font family (in case the face is un-
available; see font%)

10

• (cons 'bold style) for a valid style

• (cons (cons 'weight weight) style) where weight is a font weight

Added in version 1.14 of package pict-lib.

• (cons 'italic style)

• (cons 'subscript style)

• (cons 'superscript style)

• (cons 'large-script style) — makes subscripts and superscripts larger, which
is more suitable for small text sizes as might appear in print

Added in version 1.5 of package pict-lib.

• (cons 'caps style)

• (cons 'combine style) — allows kerning and ligatures (the default, unless the
'modern family is specified)

• (cons 'no-combine style) — renders characters individually

• (cons 'aligned style) — enables hinting, which rounds metrics to integers

• (cons 'unaligned style) — disables hinting (which is the default), so that met-
rics are scalable

• (cons color style) — where color is a color% object, colorizes the text

If both 'combine and 'no-combine are specified, the first one in style takes precedence.
Similarly, if both 'aligned and 'unaligned are specified, the first one in style takes
precedence. If 'caps is specified, the angle must be zero.

The given size is in pixels, but it is ignored if a font% object is provided in the text-style.

The angle is in radians, and positive values rotate counter-clockwise. For a non-zero an-
gle , the resulting pict’s bounding box covers the rotated text, and the descent is zero and
the ascent is the height.

Examples:

> (text "tom collins")
tom collins
> (text "g & t" (cons 'bold 'roman))
g & t
> (text "martini" null 13 (/ pi 2))

m
ar
ti
n
i

11

(hline w h [#:segment seg-length]) Ñ pict?
w : real?
h : real?
seg-length : (or/c #f real?) = #f

(vline w h [#:segment seg-length]) Ñ pict?
w : real?
h : real?
seg-length : (or/c #f real?) = #f

Straight lines, centered within their bounding boxes.

Examples:

> (hline 40 5)

> (hline 40 30)

> (vline 5 40 #:segment 5)

Changed in version 1.11 of package pict-lib: Removed implicit truncation of some coordinates to integers.

(frame pict
[#:segment seg-length
#:color color
#:line-width width]) Ñ pict?

pict : pict-convertible?
seg-length : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
width : (or/c #f real?) = #f

Frames a given pict. If the color or line width are provided, they override settings supplied
by the context.

Examples:

> (frame (circle 30))

> (frame (circle 30) #:segment 5)

12

> (frame (circle 30) #:color "chartreuse" #:line-width 3)

(ellipse w
h

[#:border-color border-color
#:border-width border-width]) Ñ pict?

w : real?
h : real?
border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

(circle diameter
[#:border-color border-color
#:border-width border-width]) Ñ pict?

diameter : real?
border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

(filled-ellipse w
h

[#:draw-border? draw-border?
#:color color
#:border-color border-color
#:border-width border-width]) Ñ pict?

w : real?
h : real?
draw-border? : any/c = #t
color : (or/c #f string? (is-a?/c color%)) = #f
border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

(disk diameter
[#:draw-border? draw-border?
#:color color
#:border-color border-color
#:border-width border-width]) Ñ pict?

diameter : (and/c rational? (not/c negative?))
draw-border? : any/c = #t
color : (or/c #f string? (is-a?/c color%)) = #f
border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

Unfilled and filled ellipses.

If draw-border? is #f, then the pen is set to be transparent before drawing the ellipse. The
color , border-color and border-width arguments control the fill color, color of the

13

border, and width of the border, respectively. If these arguments are #f, values set using
linewidth and colorize are used instead. Passing non-#f values as border-color or
border-width when draw-border? is #f results in a contract violation.

Examples:

> (ellipse 40 30)

> (circle 30)

> (filled-ellipse 30 40)

> (disk 30)

> (disk 40 #:color "Chartreuse" #:border-color "Medium Aquama-
rine" #:border-width 5)

Changed in version 1.4 of package pict-lib: Added #:color, #:border-color and #:border-width argu-
ments.

(rectangle w
h

[#:border-color border-color
#:border-width border-width]) Ñ pict?

w : real?
h : real?
border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

(filled-rectangle w
h

[#:draw-border? draw-border?
#:color color
#:border-color border-color
#:border-width border-width]) Ñ pict?

w : real?
h : real?
draw-border? : any/c = #t
color : (or/c #f string? (is-a?/c color%)) = #f

14

border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

Unfilled and filled rectangles.

If draw-border? is #f, then the pen is set to be transparent before drawing the rectangle.
The color , border-color and border-width arguments control the fill color, color of
the border, and width of the border, respectively. If these arguments are #f, values set using
linewidth and colorize are used instead. Passing non-#f values as border-color or
border-width when draw-border? is #f results in a contract violation.

Examples:

> (rectangle 50 50)

> (filled-rectangle 50 80)

> (filled-rectangle 60 70 #:color "Thistle" #:border-
color "Gainsboro" #:border-width 10)

Changed in version 1.4 of package pict-lib: Added #:color, #:border-color and #:border-width argu-
ments.

(rounded-rectangle w
h

[corner-radius
#:angle angle
#:border-color border-color
#:border-width border-width]) Ñ pict?

w : real?
h : real?
corner-radius : real? = -0.25
angle : real? = 0
border-color : (or/c #f string? (is-a?/c color%)) = #f

15

border-width : (or/c #f real?) = #f
(filled-rounded-rectangle w

h
[corner-radius
#:angle angle
#:draw-border? draw-border?
#:color color
#:border-color border-color
#:border-width border-width]) Ñ pict?

w : real?
h : real?
corner-radius : real? = -0.25
angle : real? = 0
draw-border? : any/c = #t
color : (or/c #f string? (is-a?/c color%)) = #f
border-color : (or/c #f string? (is-a?/c color%)) = #f
border-width : (or/c #f real?) = #f

Unfilled and filled rectangles with rounded corners. The corner-radius is used to deter-
mine how much rounding occurs in the corners. If it is a positive number, then it determines
the radius of a circle touching the edges in each corner, and the rounding of the rectangle
follow the edge of those circles. If it is a negative number, then the radius of the circles in
the corners is the absolute value of the corner-radius times the smaller of w and h .

The angle determines how much the rectangle is rotated, in radians.

If draw-border? is #f, then the pen is set to be transparent before drawing the rectangle.
The color , border-color and border-width arguments control the fill color, color of
the border, and width of the border, respectively. If these arguments are #f, values set using
linewidth and colorize are used instead. Passing non-#f values as border-color or
border-width when draw-border? is #f results in a contract violation.

Examples:

> (rounded-rectangle 40 40 -0.3 #:angle (/ pi 4))

> (filled-rounded-rectangle 50 40)

> (filled-rounded-rectangle 70 30 #:color "Burlywood" #:border-
color "Bisque" #:border-width 8)

16

Changed in version 1.4 of package pict-lib: Added #:color, #:border-color and #:border-width argu-
ments.

(bitmap img) Ñ pict
img : (or/c path-string?

(is-a?/c bitmap%)
pict-convertible?
convertible?)

Returns a pict that displays a bitmap. When a path is provided, the image is loaded with
the 'unknown/mask flag, which means that a mask bitmap is generated if the file contains a
mask.

If the bitmap cannot be loaded, if the given bitmap% object is not valid, or if the bitmap-
draft-mode parameter is set to #t, the result pict draws the words “bitmap failed”.

If img is both convertible and pict convertible, then the pict conversion is used. If both apply,
the pict conversion is used. If pict conversion is used, the pict is drawn into a bitmap and the
result of bitmap draws that bitmap. If convertible is used, it is used with the 'png-bytes
conversion mode.

(arrow size radians) Ñ pict?
size : real?
radians : real?

(arrowhead size radians) Ñ pict?
size : real?
radians : real?

Creates an arrow or arrowhead in the specific direction within a size by size pict. Points
on the arrow may extend slightly beyond the bounding box.

Examples:

> (arrow 30 0)

> (arrow 30 (/ pi 2))

> (arrowhead 30 0)

(pip-line dx dy size) Ñ pict?
dx : real?
dy : real?

17

size : real?
(pip-arrow-line dx dy size) Ñ pict?

dx : real?
dy : real?
size : real?

(pip-arrows-line dx dy size) Ñ pict?
dx : real?
dy : real?
size : real?

Creates a line (with some number of arrowheads) as a zero-sized pict suitable for use with
pin-over. The 0-sized picture contains the starting point.

The size is used for the arrowhead size. Even though pip-line creates no arrowheads, it
accepts the size argument for consistency with the other functions.

(pin-line pict
src
find-src
dest
find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color
#:alpha alpha
#:style style
#:under? under?
#:label label
#:x-adjust-label x-adjust-label
#:y-adjust-label y-adjust-label]) Ñ pict?

pict : pict-convertible?
src : pict-path?
find-src : (pict-convertible? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict-convertible? pict-path? . -> . (values real? real?))
start-angle : (or/c real? #f) = #f
end-angle : (or/c real? #f) = #f
start-pull : real? = 1/4
end-pull : real? = 1/4
line-width : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
alpha : (real-in 0.0 1.0) = 1.0

18

style : (or/c 'transparent 'solid 'xor 'hilite
'dot 'long-dash 'short-dash 'dot-dash
'xor-dot 'xor-long-dash 'xor-short-dash
'xor-dot-dash #f)

= #f

under? : any/c = #f
label : pict? = (blank)
x-adjust-label : real? = 0
y-adjust-label : real? = 0

(pin-arrow-line arrow-size
pict
src
find-src
dest
find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color
#:alpha alpha
#:style style
#:under? under?
#:label label
#:x-adjust-label x-adjust-label
#:y-adjust-label y-adjust-label
#:solid? solid?
#:hide-arrowhead? hide-arrowhead?]) Ñ pict?

arrow-size : real?
pict : pict-convertible?
src : pict-path?
find-src : (pict-convertible? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict-convertible? pict-path? . -> . (values real? real?))
start-angle : (or/c real? #f) = #f
end-angle : (or/c real? #f) = #f
start-pull : real? = 1/4
end-pull : real? = 1/4
line-width : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
alpha : (real-in 0.0 1.0) = 1.0
style : (or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash
'xor-dot 'xor-long-dash 'xor-short-dash
'xor-dot-dash #f)

= #f

under? : any/c = #f

19

label : pict? = (blank)
x-adjust-label : real? = 0
y-adjust-label : real? = 0
solid? : any/c = #t
hide-arrowhead? : any/c = #f

(pin-arrows-line arrow-size
pict
src
find-src
dest
find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color
#:alpha alpha
#:style style
#:under? under?
#:label label
#:x-adjust-label x-adjust-label
#:y-adjust-label y-adjust-label
#:solid? solid?
#:hide-arrowhead? hide-arrowhead?]) Ñ pict?

arrow-size : real?
pict : pict-convertible?
src : pict-path?
find-src : (pict-convertible? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict-convertible? pict-path? . -> . (values real? real?))
start-angle : (or/c real? #f) = #f
end-angle : (or/c real? #f) = #f
start-pull : real? = 1/4
end-pull : real? = 1/4
line-width : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
alpha : (real-in 0.0 1.0) = 1.0
style : (or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash
'xor-dot 'xor-long-dash 'xor-short-dash
'xor-dot-dash #f)

= #f

under? : any/c = #f
label : pict-convertible? = (blank)
x-adjust-label : real? = 0
y-adjust-label : real? = 0

20

solid? : any/c = #t
hide-arrowhead? : any/c = #f

Adds a line or line-with-arrows onto pict , using one of the pict-finding functions (e.g.,
lt-find) to extract the source and destination of the line.

If under? is true, then the line and arrows are added under the existing pict drawing,
instead of on top. If solid? is false, then the arrowheads are hollow instead of filled.

The start-angle , end-angle , start-pull , and end-pull arguments control the curve
of the line (and the defaults produce a straight line):

• The start-angle and end-angle arguments specify the direction of curve at its
start and end positions; if either is #f, it defaults to the angle of a straight line from
the start position to end position.

• The start-pull and end-pull arguments specify a kind of momentum for the start-
ing and ending angles; larger values preserve the angle longer.

The line-width , color , alpha , and style arguments apply to the added line.

When the hide-arrowhead? argument is a true value, then space for an arrowhead is kept
around the line, but the arrowhead itself is not drawn.

When the label argument is non-false, the given pict is used as a label for the line, and
moved by (x-adjust-label , y-adjust-label).

Examples:

(define pict-a (rectangle 40 40))
(define pict-b (circle 40))
(define combined (hc-append 200 pict-a pict-b))
> (pin-line combined

pict-a cc-find
pict-b cc-find)

> (pin-arrow-line 30 combined
pict-a rc-find
pict-b lc-find
#:line-width 3
#:style 'long-dash
#:color "medium goldenrod"
#:label (text "From Square to Circle"))

21

From Square to Circle

> (pin-arrows-line 30 combined
pict-a rc-find
pict-b lc-find
#:start-angle (/ pi 11)
#:end-angle (- (/ pi 11))
#:solid? #f)

Changed in version 1.4 of package pict-lib: Added #:label, #:x-adjust-label and #:y-adjust-label
arguments.

text-style/c : contract?

A contract that matches the second argument of text.

(bitmap-draft-mode) Ñ boolean?
(bitmap-draft-mode on?) Ñ void?

on? : any/c

A parameter that determines whether bitmap loads/uses a bitmap.

22

3 Pict Combiners

(vl-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(vc-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(vr-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(ht-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(htl-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(hc-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(hbl-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

(hb-append [d] pict ...) Ñ pict?
d : real? = 0.0
pict : pict-convertible?

Creates a new pict as a column (for v...-append) or row (for h...-append) of other picts.
The optional d argument specifies amount of space to insert between each pair of pictures in
making the column or row.

Different procedures align pictures in the orthogonal direction in different ways. For exam-
ple, vl-append left-aligns all of the pictures.

The descent of the result corresponds to baseline that is lowest in the result among all of
the picts’ descent-specified baselines; similarly, the ascent of the result corresponds to the
highest ascent-specified baseline. If at least one pict is supplied, then the last element (as
reported by pict-last) for the result is (or (pict-last pict) pict) for the using
last supplied pict .

Examples:

(define combiners (list vl-append vc-append vr-append
ht-append htl-append hc-append
hbl-append hb-append))

(define names (list "vl-append" "vc-append" "vr-append"

23

"ht-append" "htl-append" "hc-append"
"hbl-append" "hb-append"))

(define pict-a (colorize (filled-rectangle 60 30) "tomato"))
(define pict-b (colorize (disk 45) "cornflower blue"))
(define picts

(for/list ([combiner combiners] [name names])
(list (text name null 15)

(combiner pict-a pict-b))))
> (take picts 4)

'((vl-append) (vc-append)

(vr-append) (ht-append))
> (drop picts 4)

'((htl-append) (hc-append)

(hbl-append) (hb-append))

Changed in version 1.11 of package pict-lib: Removed implicit truncation of some centered coordinates to
integers.

(lt-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(ltl-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(lc-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(lbl-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(lb-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(ct-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(ctl-superimpose pict ...) Ñ pict?
pict : pict-convertible?

(cc-superimpose pict ...) Ñ pict?

24

pict : pict-convertible?
(cbl-superimpose pict ...) Ñ pict?

pict : pict-convertible?
(cb-superimpose pict ...) Ñ pict?

pict : pict-convertible?
(rt-superimpose pict ...) Ñ pict?

pict : pict-convertible?
(rtl-superimpose pict ...) Ñ pict?

pict : pict-convertible?
(rc-superimpose pict ...) Ñ pict?

pict : pict-convertible?
(rbl-superimpose pict ...) Ñ pict?

pict : pict-convertible?
(rb-superimpose pict ...) Ñ pict?

pict : pict-convertible?

Creates a new picture by superimposing a set of pictures. The name prefixes are alignment
indicators: horizontal alignment then vertical alignment.

The descent of the result corresponds to baseline that is lowest in the result among all of
the picts’ descent-specified baselines; similarly, the ascent of the result corresponds to the
highest ascent-specified baseline. The last element (as reported by pict-last) for the result
is the lowest, right-most among the last-element picts of the pict arguments, as determined
by comparing the last-element bottom-right corners.

Examples:

(define combiners (list lt-superimpose ltl-superimpose lc-
superimpose

lbl-superimpose lb-superimpose ct-
superimpose

ctl-superimpose cc-superimpose cbl-
superimpose

cb-superimpose rt-superimpose rtl-
superimpose

rc-superimpose rbl-superimpose rb-
superimpose))
(define names (list "lt-superimpose" "ltl-superimpose" "lc-
superimpose"

"lbl-superimpose" "lb-superimpose" "ct-
superimpose"

"ctl-superimpose" "cc-superimpose" "cbl-
superimpose"

"cb-superimpose" "rt-superimpose" "rtl-
superimpose"

"rc-superimpose" "rbl-superimpose" "rb-

25

superimpose"))
(define pict-a (colorize (filled-rectangle 60 30) "tomato"))
(define pict-b (colorize (disk 45) "cornflower blue"))
(define picts

(for/list ([combiner combiners] [name names])
(list (text name null 15)

(combiner pict-a pict-b))))
> (take picts 3)

'((lt-superimpose) (ltl-superimpose)

(lc-superimpose))
> (take (drop picts 3) 3)

'((lbl-superimpose) (lb-superimpose)

(ct-superimpose))
> (take (drop picts 6) 3)

'((ctl-superimpose) (cc-superimpose)

(cbl-superimpose))
> (take (drop picts 9) 3)

'((cb-superimpose) (rt-superimpose)

(rtl-superimpose))
> (take (drop picts 12) 3)

'((rc-superimpose) (rbl-superimpose)

(rb-superimpose))

26

Changed in version 1.11 of package pict-lib: Removed implicit truncation of some centered coordinates to
integers.

(pin-over base dx dy pict) Ñ pict?
base : pict-convertible?
dx : real?
dy : real?
pict : pict-convertible?

(pin-over base find-pict find pict) Ñ pict?
base : pict-convertible?
find-pict : pict-path?
find : (pict-convertible? pict-path? . -> . (values real? real?))
pict : pict-convertible?

Creates a pict with the same bounding box, ascent, and descent as base , but with pict
placed on top. The dx and dy arguments specify how far right and down the second pict’s
corner is from the first pict’s corner. Alternately, the find-pict and find arguments find
a point in base for find-pict ; the find procedure should be something like lt-find.

Examples:

> (pin-over (colorize (filled-rectangle 70 40) "chocolate")
10 10
(colorize (filled-rectangle 30 30) "orange"))

> (define top (colorize (filled-rectangle 70 40) "royalblue"))
> (pin-over (vc-append top (colorize (filled-
rectangle 70 40) "firebrick"))

top
cb-find
(colorize (disk 20) "white"))

(pin-under base dx dy pict) Ñ pict?
base : pict-convertible?
dx : real?
dy : real?
pict : pict-convertible?

(pin-under base find-pict find pict) Ñ pict?

27

base : pict-convertible?
find-pict : pict-convertible?
find : (pict-convertible? pict-path? . -> . (values real? real?))
pict : pict-convertible?

Like pin-over, but pict is drawn before base in the resulting combination.

Examples:

> (define txt
(colorize (text "P I C T S" null 25) "chocolate"))

> (define rect
(colorize
(filled-rectangle (pict-width txt) (* 0.3 (pict-height txt)))
"lemonchiffon"))

> (pin-under txt
0
(- (/ (pict-height txt) 2)

(/ (pict-height rect) 2))
rect)

P I C T S

(table ncols
picts
col-aligns
row-aligns
col-seps
row-seps) Ñ pict?

ncols : exact-positive-integer?
picts : (non-empty-listof pict-convertible?)
col-aligns : (or/c (list*of (->* () #:rest (listof pict-convertible?) pict-convertible?))

(listof (->* () #:rest (listof pict-convertible?) pict-convertible?)))
row-aligns : (or/c (list*of (->* () #:rest (listof pict-convertible?) pict-convertible?))

(listof (->* () #:rest (listof pict-convertible?) pict-convertible?)))
col-seps : (or/c (list*of real?) (listof real?))
row-seps : (or/c (list*of real?) (listof real?))

Creates a table given a list of picts. The picts list is a concatenation of the table’s rows
(which means that a Racket list call can be formatted to reflect the shape of the output
table).

The col-aligns , row-aligns , col-seps , and row-seps arguments are “lists” specify-
ing the row and columns alignments separation between rows and columns. For c columns
and r rows, the first two should have c and r superimpose procedures, and the last two should

28

have c-1 and r-1 numbers, respectively. The lists can be “improper” (i.e., ending in a num-
ber instead of an empty list), in which case the non-pair cdr is used as the value for all
remaining list items that were expected. The col-aligns and row-aligns procedures are
used to superimpose all of the cells in a column or row; this superimposition determines the
total width or height of the column or row, and also determines the horizontal or vertical
placement of each cell in the column or row.

Examples:

> (table 4
(map (λ (x) (text (format "~a" x)))

(list 1 2 3 4
5 6 7 8
9000 10 11 12))

cc-superimpose
cc-superimpose
10
10)

1 2 3 4

5 6 7 8

9000 10 11 12
> (table 4

(map (λ (x) (text (format "~a" x)))
(list 1 2 3 4

5 6 7 8
9000 10 11 12))

rc-superimpose
cc-superimpose
10
10)

1 2 3 4

5 6 7 8

9000 10 11 12

29

4 Pict Drawing Adjusters

(scale pict factor) Ñ pict?
pict : pict-convertible?
factor : real?

(scale pict w-factor h-factor) Ñ pict?
pict : pict-convertible?
w-factor : real?
h-factor : real?

Scales a pict drawing, as well as its bounding box, by multiplying it current size by factor
(if two arguments are supplied) or by multiplying the current width by w-factor and current
height by h-factor (if three arguments are supplied).

The drawing is scaled by adjusting the destination dc<%>’s scale while drawing the original
pict .

Examples:

> (filled-rectangle 40 40)

> (scale (filled-rectangle 40 40) 1.5)

> (scale (filled-rectangle 40 40) 2 1.5)

(flip-x pict) Ñ pict?
pict : pict-convertible?

(flip-y pict) Ñ pict?
pict : pict-convertible?

Flips a pict drawing horizontally or vertically.

Examples:

> (standard-fish 100 50)

30

> (flip-x (standard-fish 100 50))

> (flip-x (flip-x (standard-fish 100 50)))

> (flip-y (standard-fish 100 50))

> (flip-y (flip-y (standard-fish 100 50)))

> (flip-y (flip-x (standard-fish 100 50)))

> (flip-x (flip-y (standard-fish 100 50)))

(scale-to-fit pict size-pict [#:mode mode]) Ñ pict?
pict : pict-convertible?
size-pict : pict-convertible?
mode : (or/c 'preserve 'inset

'preserve/max 'inset/max
'distort)

= 'preserve

(scale-to-fit pict width height [#:mode mode]) Ñ pict?
pict : pict-convertible?
width : real?
height : real?
mode : (or/c 'preserve 'inset

'preserve/max 'inset/max
'distort)

= 'preserve

31

Scales pict so that it fits within the bounding box of size-pict (if two arguments are
supplied) or into a box of size width by height (if three arguments are supplied).

If mode is 'preserve or 'preserve/max, the width and height are scaled by the same fac-
tor so pict ’s aspect ratio is preserved. If mode is 'preserve the result’s bounding box will
not be larger than width by height but it may be smaller. When mode is 'preserve/max,
the opposite is true; the bounding box will never be smaller, but might be larger.

If mode is 'inset or 'inset/max, the aspect ratio is preserved as with 'preserve and
'preserve/max, but the resulting pict is centered on a bounding box of exactly width by
height .

If mode is 'distort, the width and height are scaled separately.

Examples:

> (define rect (colorize (filled-rectangle 40 40) "olive"))
> rect

> (scale-to-fit rect (disk 60))

> (scale-to-fit rect 80 30 #:mode 'preserve)

> (frame (scale-to-fit rect 80 30 #:mode 'inset))

> (scale-to-fit rect 80 30 #:mode 'preserve/max)

> (cc-superimpose (blank 100 100)
(frame (scale-to-fit rect 80 30 #:mode 'inset/max)))

32

> (scale-to-fit rect 80 30 #:mode 'distort)

Changed in version 1.4 of package pict-lib: Added #:mode argument.

(rotate pict theta) Ñ pict?
pict : pict-convertible?
theta : real?

Rotates a pict’s drawing by theta radians counter-clockwise.

The bounding box of the resulting pict is the box encloses the rotated corners of pict (which
inflates the area of the bounding box, unless theta is a multiple of half of pi). The ascent
and descent lines of the result’s bounding box are the horizontal lines that bisect the rotated
original lines; if the ascent line drops below the descent line, the two lines are flipped.

Examples:

> (rotate (colorize (filled-rectangle 30 30)
"chartreuse")

(/ pi 3))

> (explain (rotate tt 0))

ij
ij
> (explain (rotate tt (/ pi 2)))

33

ij ij
> (explain (rotate tt pi))

ij
ij

(shear pict x-shear y-shear) Ñ pict?
pict : pict-convertible?
x-shear : number?
y-shear : number?

Shear’s the pict by a factor of x-shear along the x-axis and by a factor of y-shear along
the y-axis. The bounding box is inflated to contain the result. The result’s ascent and descent
are the same as pict ’s.

Examples:

> (define sqr
(colorize (filled-rectangle 40 20 #:draw-

border? #t #:color "purple")
"black"))

> (shear sqr 0 0.3)

> (shear sqr -0.5 0)

> (shear sqr -0.5 0.3)

Added in version 1.8 of package pict-lib.

(translate pict dx dy [#:extend-bb? bb?]) Ñ pict?
pict : pict-convertible?

34

dx : real?
dy : real?
bb? : any/c = #f

Translate the pict by dx and dy . If bb? is not #f then the bounding box is extended to
ensure the image fits.

Examples:

> (explain (translate tt -3 -3))

ij
ij
> (explain (translate tt -3 -3 #:extend-bb? #t))

ij
ij
> (explain (translate tt 3 3))

ij
ij

> (explain (translate tt 3 3 #:extend-bb? #t))

35

ij
ij

Added in version 1.10 of package pict-lib.

(ghost pict) Ñ pict?
pict : pict-convertible?

Creates a container picture that doesn’t draw the child picture, but uses the child’s size.

Example:

> (frame (hc-append (ghost (filled-rectangle 30 30))
(colorize (disk 30) "turquoise")))

(linewidth w pict) Ñ pict?
w : (or/c real? #f)
pict : pict-convertible?

Selects a specific pen width for drawing, which applies to pen drawing for pict that does
not already use a specific pen width. A #f value for w makes the pen transparent (in contrast
to a zero value, which means “as thin as possible for the target device”).

Examples:

> (linewidth 3 (hline 40 1))

> (linewidth 5 (hline 40 1))

(linestyle style pict) Ñ pict?
style : (or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash
'xor-dot 'xor-long-dash 'xor-short-dash
'xor-dot-dash)

pict : pict-convertible?

36

Selects a specific pen style for drawing, which applies to pen drawing for pict that does not
already use a specific pen style.

Examples:

> (define styles
'(transparent solid xor hilite dot long-dash short-dash

dot-dash xor-dot xor-long-dash xor-short-dash xor-dot-dash))
> (apply ht-append

10
(for/list ([style (in-list styles)])

(vc-append 5
(text (symbol->string style))
(linewidth 3 (linestyle style (hline 40 1))))))

transparent solid xor hilite dot long-dash short-dash dot-dash xor-dot xor-long-dash xor-short-dash xor-dot-dash

(colorize pict color) Ñ pict?
pict : pict-convertible?
color : (or/c string? (is-a?/c color%)

(list/c byte? byte? byte?))

Selects a specific color drawing, which applies to drawing in pict that does not already
use a specific color. The black-and-white parameter causes all non-white colors to be
converted to black.

Examples:

> (colorize (disk 40) "lavender")

> (colorize (filled-rectangle 40 40)
(list 255 153 85))

> (colorize (arrow 40 0)
(make-color 170 180 120))

(cellophane pict opacity) Ñ pict?
pict : pict-convertible?
opacity : (real-in 0 1)

37

Makes the given pict semi-transparent, where an opacity of 0 is fully transparent, and an
opacity of 1 is fully opaque. See set-alpha for information about the contexts and cases
when semi-transparent drawing works.

Examples:

> (cc-superimpose (filled-rectangle 70 45 #:color "darkcyan")
(cellophane (disk 40) 0.2))

> (cc-superimpose (filled-rectangle 70 45 #:color "darkcyan")
(cellophane (disk 40) 0.8))

(clip pict) Ñ pict
pict : pict-convertible?

Clips a pict’s drawing to its bounding box.

Examples:

> (define shape
(inset (colorize (filled-rectangle 40 40) "thistle") -10))

> shape

> (clip shape)

(inset/clip pict amt) Ñ pict?
pict : pict-convertible?
amt : real?

(inset/clip pict h-amt v-amt) Ñ pict?
pict : pict-convertible?
h-amt : real?
v-amt : real?

(inset/clip pict l-amt t-amt r-amt b-amt) Ñ pict?
pict : pict-convertible?
l-amt : real?
t-amt : real?
r-amt : real?
b-amt : real?

38

Insets and clips the pict’s drawing to its bounding box. Usually, the inset amounts are nega-
tive.

Examples:

> (filled-rectangle 40 40 #:color "forestgreen")

> (inset/clip (filled-rectangle 40 40 #:color "forestgreen") -10)

> (inset/clip (filled-rectangle 40 40 #:color "forestgreen")
-10 -5)

> (inset/clip (filled-rectangle 40 40 #:color "forestgreen")
-2 -4 -8 -16)

(scale/improve-new-text pict-expr scale-expr)
(scale/improve-new-text pict-expr x-scale-expr y-scale-expr)

Like the scale procedure, but also sets current-expected-text-scale while evaluating
pict-expr .

Examples:

> (text "Hello World" null 25)

Hello World
> (scale/improve-new-text (text "Hello World" null 25) 2)

Hello World
> (scale (text "Hello World" null 25) 2)

Hello World
(black-and-white) Ñ boolean?
(black-and-white on?) Ñ void?

on? : any/c

39

A parameter that determines whether colorize uses color or black-and-white colors.

Examples:

> (colorize (disk 40) "seagreen")

> (parameterize ([black-and-white #t])
(colorize (disk 40) "seagreen"))

(freeze pict
[#:scale scale-amount
#:inset inset-amount]) Ñ pict?

pict : pict-convertible?
scale-amount : real? = 1
inset-amount : (or/c real?

(list/c real?)
(list/c real? real?)
(list/c real? real? real? real?))

= 0

Creates a bitmap with the same size as pict , draws pict into the bitmap, and then returns
a pict that draws with the bitmap.

This has the effect of speeding up subsequent drawing of the pict and also of cropping it to
its bounding box. Any sub-picts of pict remain intact within the new pict.

The scale-amount argument controls the size of the bitmap used to render the pict. For
example, if scale-amount is 2, then a bitmap that’s twice as wide and twice as tall as the
pict is used to draw into. Regardless of the value of scale-amount , the result pict’s size is
that same as pict ’s size.

The inset-amount argument allows freeze to save more of the area that the pict draws
in, which is useful when a pict draws outside of its bounding box. The values are used as the
arguments to inset. As with the scale-amount argument, the size of the resulting pict is
the same as the size of the input pict; this argument controls the size of the bitmap.

Examples:

> (define txt
(colorize (text "Freeze!" null 25) "deepskyblue"))

> (scale txt 2.5)

40

Freeze!
> (scale (freeze txt) 2.5)

Changed in version 1.13 of package pict-lib: Added the scale and inset arguments.

41

5 Bounding Box Adjusters

(inset pict amt) Ñ pict?
pict : pict-convertible?
amt : real?

(inset pict h-amt v-amt) Ñ pict?
pict : pict-convertible?
h-amt : real?
v-amt : real?

(inset pict l-amt t-amt r-amt b-amt) Ñ pict?
pict : pict-convertible?
l-amt : real?
t-amt : real?
r-amt : real?
b-amt : real?

Extends pict ’s bounding box by adding the given amounts to the corresponding sides;
ascent and descent are extended, too.

Examples:

> (pict-width (disk 40))
40
> (pict-width (inset (disk 40) -10))
20

(clip-descent pict) Ñ pict?
pict : pict-convertible?

Truncates pict ’s bounding box by removing the descent part.

Examples:

> (explain (text "gjy" null 12))

gjy
> (explain (clip-descent (text "gjy" null 12)))

gjy
42

(clip-ascent pict) Ñ pict?
pict : pict-convertible?

Truncates pict ’s bounding box by removing the ascent part.

Examples:

> (explain (text "gjy" null 12))

gjy
> (explain (clip-ascent (text "gjy" null 12)))gjy
(lift-bottom-relative-to-baseline p

baseline
[#:extend-bb? bb?]) Ñ pict?

p : pict-convertible?
baseline : real?
bb? : any/c = #f

Lift the image in p such that the bottom of the picture is baseline above its baseline. If
bb? is #f then the bounding box is unchanged, otherwise it is adjusted to fit the resulting
pict.

Examples:

> (define shift 10)
> (explain (lift-bottom-relative-to-baseline t shift))ij

> (explain (lift-bottom-relative-to-baseline t shift #:extend-
bb? #t))

43

ij

> (explain (lift-bottom-relative-to-baseline tt shift))ij
ij

> (explain (lift-bottom-relative-to-baseline tt shift #:extend-
bb? #t))

ij
ij

> (explain (lift-bottom-relative-to-baseline t (- shift)))

ij> (explain (lift-bottom-relative-to-baseline t (- shift) #:extend-

44

bb? #t))

ij
> (explain (lift-bottom-relative-to-baseline tt (- shift)))

ij
ij> (explain (lift-bottom-relative-to-baseline tt (- shift) #:extend-
bb? #t))

ij
ij

Added in version 1.10 of package pict-lib.

(drop-top-relative-to-ascent p
ascent

[#:extend-bb? bb?]) Ñ pict?
p : pict-convertible?
ascent : real?
bb? : any/c = #f

Lift the image in p such that the top of the picture is ascent below its ascent. If bb? is #f

45

then the bounding box is unchanged, otherwise it is adjusted to fit the resulting pict.

Examples:

> (define shift 10)
> (explain (drop-top-relative-to-ascent t shift))

ij
> (explain (drop-top-relative-to-ascent t shift #:extend-bb? #t))

ij
> (explain (drop-top-relative-to-ascent tt shift))

ij
ij
> (explain (drop-top-relative-to-ascent tt shift #:extend-bb? #t))

ij
ij
> (explain (drop-top-relative-to-ascent t (- shift)))

46

> (explain (drop-top-relative-to-ascent t (- shift) #:extend-
bb? #t))

ij

> (explain (drop-top-relative-to-ascent tt (- shift)))ij

> (explain (drop-top-relative-to-ascent tt (- shift) #:extend-
bb? #t))

47

ij
ij

Added in version 1.10 of package pict-lib.

(lift-above-baseline pict amt) Ñ pict?
pict : pict-convertible?
amt : real?

For backwards compatibility. Use lift-bottom-relative-to-baseline instead.

Lifts pict relative to its baseline, extending the bounding box height if necessary.

Examples:

> (explain (hbl-append (text "ijijij" null 12)
(text "abc" null 12)))

ijijijabc
> (inset (explain (lift-above-baseline (text "ijijij" null 12) 20)) 0 100 0 50)

48

ijijij
> (explain (hbl-append (lift-above-baseline (text "ijijij" null 12) 20)

(text "abc" null 12)))

ijijijabc
(drop-below-ascent pict amt) Ñ pict?

pict : pict-convertible?
amt : real?

For backwards compatibility. Use drop-top-relative-to-ascent instead.

Drops pict relative to its ascent line, extending the bounding box height if necessary.

Examples:

> (define txt (text "ijgy" null 12))
> (explain (hbl-append txt (text "abc" null 12)))

ijgyabc
> (explain (drop-below-ascent txt 12))

ijgy
> (explain (hbl-append (drop-below-ascent txt 12)

(text "abc" null 12)))

49

ijgy
abc

(baseless pict) Ñ pict?
pict : pict-convertible?

Makes the descent 0 and the ascent the same as the height.

Examples:

> (explain (hbl-append (text "gjy" null 12)
(text "abc" null 12)))

gjyabc
> (explain (hbl-append (baseless (text "gjy" null 12))

(text "abc" null 12)))

gjyabc
(refocus pict sub-pict) Ñ pict?

pict : pict-convertible?
sub-pict : pict-convertible?

Assuming that sub-pict can be found within pict , shifts the overall bounding box to that
of sub-pict (but preserving all the drawing of pict). The last element, as reported by
pict-last is also set to (or (pict-last sub-pict) sub-pict).

Examples:

> (define p1 (filled-rectangle 50 50 #:color "darkkhaki"))

50

> (define p2 (filled-rectangle 30 30 #:color "sienna"))
> (define combined (cc-superimpose p1 p2))
> combined

> (refocus combined p2)

(panorama pict) Ñ pict?
pict : pict-convertible?

Shifts the given pict’s bounding box to enclose the bounding boxes of all sub-picts (even
laundered picts).

Examples:

> (define p1 (filled-rectangle 50 50 #:color "maroon"))
> (define p2 (disk 30 #:color "tomato"))
> (define combined (cc-superimpose p1 p2))
> (refocus combined p2)

> (panorama (refocus combined p2))

(use-last pict sub-pict) Ñ pict?
pict : pict-convertible?
sub-pict : pict-path?

Returns a pict like pict , but with the last element (as reported by pict-last) set to sub-
pict . The sub-pict must exist as a sub-pict (or path of sub-picts) within pict .

(use-last* pict sub-pict) Ñ pict?
pict : pict-convertible?
sub-pict : pict-convertible?

Propagates the last element of sub-pict to pict .

That is, use-last* is like use-last, but the last element of sub-pict is used as the new
last element for pict , instead of sub-pict itself—unless (pict-last sub-pict) is #f,
in which case sub-pict is used as the last element of pict .

51

6 Pict Finders

(lt-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(ltl-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(lc-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(lbl-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(lb-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(ct-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(ctl-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(cc-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(cbl-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(cb-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(rt-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(rtl-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(rc-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(rbl-find pict find) Ñ real? real?
pict : pict-convertible?
find : pict-path?

(rb-find pict find) Ñ real? real?

52

pict : pict-convertible?
find : pict-path?

Locates a pict designated by find within pict . If find is a pict, then the pict must have
been created as some combination involving find .

If find is a list, then the first element of find must be within pict , the second element
of find must be within the first element, and so on. In general, the n+1-st element must be
within the n-th element, so the list can provide a path to some specific pict, in case there is
more than one occurrence of the pict that’s being searched for within pict .

Examples:

> (define p1 (disk 60))
> (define p2 (rectangle 60 60))
> (define p3 (hc-append p1 p2))
> (define p4 (hc-append p3 (arrow 60 0)))
> (lt-find p4 p1)
0
0
> (cb-find p4 p2)
90
60
> (rb-find p3 p1)
60
60
> (lt-find p4 (list p1))
0
0
> (lt-find p4 (list p2 p1))
find-XX: sub-pict: #ăpictą not found in: #ăpictą
> (lt-find p4 (list p2))
60
0
> (lt-find p4 (list p3 p2))
60
0
> (pin-over p4 p2 lt-find

(colorize (text "lt-find") "darkgreen"))
lt-fnd

> (panorama
(pin-over p4 p2 rb-find

(colorize (text "rb-find") "darkgreen")))

53

rb-fnd

Changed in version 1.11 of package pict-lib: Removed implicit truncation of some centered coordinates to
integers.

(pict-path? v) Ñ boolean?
v : any/c

Returns #t if v is a pict-convertible? or a non-empty list of pict-convertible?s.

Examples:

> (pict-path? null)
#f
> (pict-path? (disk 30))
#t
> (pict-path? (list (disk 30) (rectangle 10 10)))
#t

(launder pict) Ñ pict?
pict : pict-convertible?

Creates a pict that has the same drawing and bounding box of pict , but which hides all of its
sub-picts so that they cannot be found with functions like lt-find. If pict has a last-line
pict, then the laundered pict has a fresh last-line pict with the same shape and location.

Examples:

> (define p1 (disk 60))
> (define p2 (rectangle 60 60))
> (define p3 (hc-append p1 p2))
> (lt-find (launder p4) p3)
find-XX: sub-pict: #ăpictą not found in: #ăpictą

54

7 More Pict Constructors

7.1 Dingbats

(cloud w h [color #:style style]) Ñ pict?
w : real?
h : real?
color : (or/c string? (is-a?/c color%)) = "gray"
style : (listof (or/c 'square

'nw 'ne 'sw 'se
'wide))

= null

Creates a fluffy cloud.

Supplying 'nw (northwest), 'ne (northeast), 'sw (southwest), or 'se (southeast) in style
extends the cloud to better cover the corner within its bounding box in the corresponding
direction. The 'square style is a shorthand for all of those combined. The 'wide style
increases the number of bumps along the cloud’s top and bottom edges.

Examples:

> (cloud 100 75)

> (cloud 100 75 "lavenderblush")

> (cloud 100 75 #:style '(square wide))

Changed in version 1.6 of package pict-lib: Added style .

(file-icon w h color [shaded?]) Ñ pict?
w : real?

55

h : real?
color : (or/c string? (is-a?/c color%) any/c)
shaded? : any/c = #f

Creates a Mac-like file icon, optionally shaded. If color is not a string or color% object, it
is treated as a boolean, in which case true means "gray" and false means "white".

Examples:

> (file-icon 50 60 "bisque")

> (file-icon 50 60 "honeydew" #t)

(standard-fish w
h

[#:direction direction
#:color color
#:eye-color eye-color
#:open-mouth open-mouth]) Ñ pict?

w : real?
h : real?
direction : (or/c 'left 'right) = 'left
color : (or/c string? (is-a?/c color%)) = "blue"
eye-color : (or/c string? (is-a?/c color%) #f) = "black"
open-mouth : (or/c boolean? real?) = #f

Creates a fish swimming either 'left or 'right. If eye-color is #f, no eye is drawn.

The open-mouth argument can be either #f (mouth closed), #t (mouth fully open), or a
number: 0.0 is closed, 1.0 is fully open, and numbers in between are partially open.

Examples:

> (standard-fish 100 50)

56

> (standard-fish 100 50 #:direction 'right #:color "chocolate")

> (standard-fish 100 50 #:eye-color "saddlebrown" #:color "salmon")

> (standard-fish 100 50 #:open-mouth #t #:color "olive")

(jack-o-lantern size
[pumpkin-color
face-color
stem-color]) Ñ pict?

size : real?
pumpkin-color : (or/c string? (is-a?/c color%)) = "orange"
face-color : (or/c string? (is-a?/c color%)) = "black"
stem-color : (or/c string? (is-a?/c color%)) = "brown"

Creates a jack-o-lantern; use the same pumpkin and face color to get a plain pumpkin. The
size determines the width.

Examples:

> (jack-o-lantern 100)

> (jack-o-lantern 100 "cadet blue" "khaki" "salmon")

57

(angel-wing w h left?) Ñ pict?
w : real?
h : real?
left? : any/c

Creates an angel wing, left or right, or any size. The color and pen width for drawing the
wing outline is the current one.

Examples:

> (angel-wing 100 40 #f)

> (angel-wing 100 40 #t)

(desktop-machine scale [style]) Ñ pict?
scale : real?
style : (listof symbol?) = null

Produces a picture of ancient desktop computer. The scale argument scales the size relative
to the base size of 120 by 115.

The style can include any of the following:

• 'plt — include a Racket logo on the machine’s screen

• 'binary — put 1s and 0s on the machine’s screen

• 'devil — like 'binary, and also give the machine horns and a tail

Examples:

> (desktop-machine 1)

58

> (desktop-machine 1 '(devil plt))

101010
010101

> (desktop-machine 1 '(plt binary))

101010
010101

(thermometer [#:height-% height-%
#:color-% color-%
#:ticks ticks
#:start-color start-color
#:end-color end-color
#:top-circle-diameter top-circle-diameter
#:bottom-circle-diameter bottom-circle-diameter
#:stem-height stem-height
#:mercury-inset mercury-inset])

Ñ pict?
height-% : (between/c 0 1) = 1
color-% : (between/c 0 1) = height-%
ticks : exact-nonnegative-integer? = 4
start-color : (or/c string? (is-a?/c color%)) = "lightblue"
end-color : (or/c string? (is-a?/c color%)) = "lightcoral"
top-circle-diameter : (>/c 0) = 40
bottom-circle-diameter : (>/c 0) = 80
stem-height : (>/c 0) = 180
mercury-inset : (>/c 0) = 8

Produces a thermometer that consists of a semi-circle on top of a rectangle on top of a circle.
The sizes of the three components are controlled via the top-circle-diameter , stem-
height , and bottom-circle-diameter arguments.

The mercury is drawn the same way, but by creating the three components inset from the ver-
sions that draw the boundary of the thermometer. This inset is controlled by the mercury-
inset argument.

59

The height of the mercury in the thermometer is controlled by the height-% argument.
Its color is interpolated between the start-color and end-color , as determined by the
color-% argument.

Finally, some number of ticks are drawn, based on the ticks argument.

Example:

> (thermometer #:stem-height 90
#:bottom-circle-diameter 40
#:top-circle-diameter 20
#:mercury-inset 4)

(standard-cat width
height
#:left-ear-extent left-ear-extent
#:left-ear-arc left-ear-arc
#:left-ear-angle left-ear-angle
#:right-ear-extent right-ear-extent
#:right-ear-arc right-ear-arc
#:right-ear-angle right-ear-angle
#:fur-color fur-color
#:fur-border-color fur-border-color
#:lip-color lip-color
#:lip-border-color lip-border-color
#:lip-border-width lip-border-width
#:eye-color eye-color
#:nose-color nose-color
#:nose nose
#:happy? happy?
#:eyes eyes
#:left-eye left-eye
#:right-eye right-eye
#:whisker-length whisker-length
#:whisker-droop whisker-droop
#:whisker-width whisker-width
#:whisker-color whisker-color
#:whisker-inset? whisker-inset?
#:border-width border-width) Ñ pict?

60

width : positive?
height : positive?
left-ear-extent : (>=/c 0)
left-ear-arc : (real-in 0 (* 2 pi))
left-ear-angle : (real-in 0 (* 2 pi))
right-ear-extent : (>=/c 0)
right-ear-arc : (real-in 0 (* 2 pi))
right-ear-angle : (real-in 0 (* 2 pi))
fur-color : (or/c #f string? (is-a?/c color%))
fur-border-color : (or/c #f string? (is-a?/c color%))
lip-color : (or/c #f string? (is-a?/c color%))
lip-border-color : (or/c string? (is-a?/c color%))
lip-border-width : (or/c #f (real-in 0 255))
eye-color : (or/c #f string? (is-a?/c color%))
nose-color : (or/c #f string? (is-a?/c color%))
nose : pict?
happy? : any/c
eyes : (or/c #f pict?)
left-eye : (if eyes (or/c #f pict?) pict?)
right-eye : (if eyes (or/c #f pict?) pict?)
whisker-length : positive?
whisker-droop : real?
whisker-width : (or/c #f (real-in 0 255))
whisker-color : (or/c string? (is-a?/c color%))
whisker-inset? : any/c
border-width : (or/c #f (real-in 0 255))

Creates a cat face with customizable whiskers, eyes, ears, and mouth.

The whisker-width argument can be either #f (no whiskers) or a real between 0 and 255
to specify pen width. Similarly for border-width , there can be no border around the cat
face or a custom-width border.

Each cat ear can have a custom extent (length), an arc length (width), and angle (position on
head). There are constraints on the ear arc lengths and angles to prevent overlap. The default
ear angle is dependent on the ear arc length to make the default positioning sensible. The
default ear extent is 1/4 the height of the cat face.

Examples:

> (standard-cat 100 90)

61

> (standard-cat 100 90 #:happy? #t)

> (standard-cat 100 90 #:left-ear-arc (* pi 1/8) #:right-ear-
extent 30)

Added in version 1.10 of package pict-lib.

7.2 Balloon Annotations

(require pict/balloon) package: pict-lib

The pict/balloon library provides functions for creating and placing cartoon-speech bal-
loons.

(wrap-balloon pict
spike
dx
dy

[color
corner-radius]) Ñ balloon?

pict : pict?
spike : (or/c 'n 's 'e 'w 'ne 'se 'sw 'nw)
dx : real?
dy : real?

62

https://pkgs.racket-lang.org/package/pict-lib

color : (or/c string? (is-a?/c color%))
= (current-balloon-color)

corner-radius : (and/c real? (not/c negative?)) = 32

Superimposes pict on top of a balloon that wraps it.

The spike argument indicates the corner from which a spike protrudes from the balloon
(i.e., the spike that points to whatever the balloon is about). For example, 'n means “north,”,
which is a spike in the top middle of the balloon.

The dx and dy arguments specify how far the spike should protrude. For a 'w spike, dx
should be negative, etc.

The color argument is the background color for the balloon.

The corner-radius argument determines the radius of the circle used to round the bal-
loon’s corners. As usual, if it is less than 1, then it acts as a ratio of the balloon’s width or
height.

The result is a balloon, not a pict. The balloon-pict function extracts a pict whose bound-
ing box does not include the spike, but includes the rest of the image, and the balloon-
point-x and balloon-point-y functions extract the location of the spike point. More
typically, the pin-balloon function is used to add a balloon to a pict.

(pip-wrap-balloon pict
spike
dx
dy

[color
corner-radius]) Ñ pict?

pict : pict?
spike : (or/c 'n 's 'e 'w 'ne 'se 'sw 'nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c color%))

= (current-balloon-color)
corner-radius : (and/c real? (not/c negative?)) = 32

Like wrap-balloon, but produces a zero-sized pict suitable for use with pin-over.

(pin-balloon balloon base x y) Ñ pict?
balloon : balloon?
base : pict?
x : real?
y : real?

(pin-balloon balloon base at-pict find) Ñ pict?

63

balloon : balloon?
base : pict?
at-pict : pict-path?
find : (pict? pict-path? . -> . (values real? real?))

Superimposes the pict in balloon onto base to produce a new pict. The balloon is posi-
tioned so that its spike points to the location specified by either x and y (numbers) or at the
position determined by combining base and at-pict with find . The find function uses
its arguments like lt-find.

The resulting pict has the same bounding box, descent, and ascent as base , even if the
balloon extends beyond the bounding box.

Examples:

> (define a-pict (standard-fish 70 40))
> (pin-balloon (balloon 40 30 5 'se 5 5)

(cc-superimpose (blank 300 150) a-pict)
a-pict
lc-find)

> (pin-balloon (wrap-balloon (text "Hello!") 'sw -5 3)
(cc-superimpose (blank 300 150) a-pict)
a-pict
rt-find)

Hello!

64

(balloon w h corner-radius spike dx dy [color]) Ñ balloon?
w : real?
h : real?
corner-radius : (and/c real? (not/c negative?))
spike : (or/c 'n 's 'e 'w 'ne 'se 'sw 'nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c color%))

= (current-balloon-color)

Creates a balloon, much like wrap-balloon except that the balloon’s width is w and its
height is h .

(balloon? v) Ñ boolean?
v : any/c

(make-balloon pict x y) Ñ balloon?
pict : pict?
x : real?
y : real?

(balloon-pict balloon) Ñ pict?
balloon : balloon?

(balloon-point-x balloon) Ñ real?
balloon : balloon?

(balloon-point-y balloon) Ñ real?
balloon : balloon?

A balloon encapsulates a pict and the position of the balloon’s spike relative to the balloon’s
top-left corner.

balloon-color : (or/c string? (is-a?/c color%))

The default background color for a balloon.

(current-balloon-color) Ñ (or/c string? (is-a?/c color%))
(current-balloon-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

Determines the background color for a balloon as created by functions like wrap-balloon.

Added in version 1.9 of package pict-lib.

(balloon-enable-3d) Ñ boolean?
(balloon-enable-3d on?) Ñ void?

on? : any/c

A parameter that determines whether balloons are drawn with 3-D shading. This parameter
affects balloons at drawing time, not at construction time.

65

7.3 Face

(require pict/face) package: pict-lib

The pict/face library provides functions for a kind of Mr. Potatohead-style face library.

default-face-color : (or/c string (is-a?/c color%))

Orange.

(face mood [color]) Ñ pict?
mood : symbol?
color : (or/c string (is-a?/c color%)) = default-face-color

Returns a pict for a pre-configured face with the given base color. The built-in configurations,
selected by mood-symbol, are as follows:

'unhappy — (face* 'none 'plain #t default-face-color 6)

'sortof-unhappy — (face* 'worried 'grimace #t default-face-color 6)

'sortof-happy — (face* 'worried 'medium #f default-face-color 6)

'happy — (face* 'none 'plain #f default-face-color 6)

'happier — (face* 'none 'large #f default-face-color 3)

66

https://pkgs.racket-lang.org/package/pict-lib

'embarrassed — (face* 'worried 'medium #f default-face-color 3)

'badly-embarrassed — (face* 'worried 'medium #t default-face-color 3)

'unhappier — (face* 'normal 'large #t default-face-color 3)

'happiest — (face* 'normal 'huge #f default-face-color 0 -3)

'unhappiest — (face* 'normal 'huge #t default-face-color 0 -3)

'mad — (face* 'angry 'grimace #t default-face-color 0)

'mean — (face* 'angry 'narrow #f default-face-color 0)

'surprised — (face* 'worried 'oh #t default-face-color -4 -3 2)

67

(face* eyebrow-kind
mouth-kind
frown?
color
eye-inset
eyebrow-dy
pupil-dx
pupil-dy

[#:eyebrow-shading? eyebrow-on?
#:mouth-shading? mouth-on?
#:eye-shading? eye-on?
#:tongue-shading? tongue-on?
#:face-background-shading? face-bg-on?
#:teeth? teeth-on?]) Ñ pict?

eyebrow-kind : (or/c 'none 'normal 'worried 'angry)
mouth-kind : (or/c 'plain 'smaller 'narrow 'medium 'large

'huge 'grimace 'oh 'tongue)
frown? : any/c
color : (or/c string (is-a?/c color%))
eye-inset : real?
eyebrow-dy : real?
pupil-dx : real?
pupil-dy : real?
eyebrow-on? : any/c = #t
mouth-on? : any/c = #t
eye-on? : any/c = #t
tongue-on? : any/c = #t
face-bg-on? : any/c = #t
teeth-on? : any/c = #t

Returns a pict for a face:

• eyebrow-kind determines the eyebrow shape.

• mouth-kind determines the mouth shape, combined with frown?.

• frown? determines whether the mouth is up or down.

• color determines the face color.

• eye-inset adjusts the eye size; recommend values are between 0 and 10.

• eyebrow-dy adjusts the eyebrows; recommend values: between -5 and 5.

• pupil-dx adjusts the pupil; recommend values are between -10 and 10.

• pupil-dy adjusts the pupil; recommend values are between -15 and 15.

68

The #:eyebrow-shading? through #:face-background-shading? arguments control
whether a shading is used for on a particular feature in the face (shading tends to look worse
than just anti-aliasing when the face is small). The #:teeth? argument controls the visibility
of the teeth for some mouth shapes.

7.4 Flash

(require pict/flash) package: pict-lib

(filled-flash width
height

[n-points
spike-fraction
rotation]) Ñ pict?

width : real?
height : real?
n-points : exact-positive-integer? = 10
spike-fraction : (real-in 0 1) = 0.25
rotation : real? = 0

Returns a pict for a “flash”: a spiky oval, like the yellow background that goes behind a
“new!” logo on web pages or a box of cereal.

The height and width arguments determine the size of the oval in which the flash is drawn,
prior to rotation. The actual height and width may be smaller if points is not a multiple of
4, and the actual height and width will be different if the flash is rotated.

The n-points argument determines the number of points on the flash.

The spike-fraction argument determines how big the flash spikes are compared to the
bounding oval.

The rotation argument specifies an angle in radians for counter-clockwise rotation.

The flash is drawn in the default color.

Examples:

> (filled-flash 100 50)

> (filled-flash 100 50 8 0.25 (/ pi 2))

69

https://pkgs.racket-lang.org/package/pict-lib

(outline-flash width
height

[n-points
spike-fraction
rotation]) Ñ pict?

width : real?
height : real?
n-points : exact-positive-integer? = 10
spike-fraction : (real-in 0 1) = 0.25
rotation : real? = 0

Like filled-flash, but drawing only the outline.

Examples:

> (outline-flash 100 50)

> (outline-flash 100 50 8 0.25 (/ pi 2))

7.5 Typesetting Racket Code

(require pict/code) package: pict-lib

This library is re-provided by slideshow/code, but initializes get-current-code-font-
size.

(typeset-code stx) Ñ pict?
stx : syntax?

70

https://pkgs.racket-lang.org/package/pict-lib

Produces a pict for code in the given syntax object. The source-location information of the
syntax object determines the line breaks, line indenting, and space within a row. Empty rows
are ignored.

Beware that if you use read-syntax on a file port, you may have to turn on line counting
via port-count-lines! for the code to typeset properly.

Normally, typeset-code is used through the code syntactic form, which works properly
with compilation, and that escapes to pict-producing code via unsyntax. See also define-
code.

Embedded picts within stx are used directly. Row elements are combined using and op-
erator like htl-append, so use code-align (see below) as necessary to add an ascent to
ascentless picts. More precisely, creation of a line of code uses pict-last to determine
the end point of the element most recently added to a line; the main effect is that closing
parentheses are attached in the right place when a multi-line pict is embedded in stx .

An identifier that starts with _ is italicized in the pict, and the _ is dropped, unless the code-
italic-underscore-enabled parameter is set to #f. Also, unless code-scripts-
enabled is set to #f, _ and ^ in the middle of a word create superscripts and subscripts,
respectively (like TeX); for example foo^4_ok is displayed as the identifier foo with a 4
superscript and an ok subscript.

Further, uses of certain identifiers in stx typeset specially:

• code:blank — produces a space.

• (code:comment s ...) — produces a comment block, with each s on its own line,
where each s must be a string or a pict.

• (code:line datum ...) — typesets the datum sequence, which is mostly useful
for the top-level sequence, since typeset-code accepts only one argument.

• (code:contract datum ...) — like code:line, but every datum is colored as a
comment, and a ; is prefixed to every line.

• (code:template datum ...) — like code:line, but a ; is prefixed to every line.

• $ — typesets as a vertical bar (for no particularly good reason).

(code datum ...)

The macro form of typeset-code. Within a datum , unsyntax can be used to escape to an
expression, and identifiers bound as syntax to code transformers trigger transformations.

For more information, see typeset-code and define-code, since code is defined as

(define-code code typeset-code)

71

Examples:

> (code (+ 1 2))
(+ 1 2)
> (code (+ 1 #,(+ 1 1)))
(+ 1 2)
> (code (+ 1 #,(frame (code 2))))
(+ 1 2)
> (define-syntax two (make-code-transformer #'(code 2)))
> (code (+ 1 two))
(+ 1 2)

(current-code-font) Ñ text-style/c
(current-code-font style) Ñ void?

style : text-style/c

Parameter for a base font used to typeset text. The default is `(bold . modern). For even
more control, see current-code-tt.

(current-code-tt) Ñ (string? . -> . pict?)
(current-code-tt proc) Ñ void?

proc : (string? . -> . pict?)

Parameter for a one-argument procedure to turn a string into a pict, used to typeset text. The
default is

(lambda (s) (text s (current-code-font) ((get-current-code-font-
size))))

This procedure is not used to typeset subscripts or other items that require font changes,
where current-code-font is used directly.

(get-current-code-font-size) Ñ (-> exact-nonnegative-integer?)
(get-current-code-font-size proc) Ñ void?

proc : (-> exact-nonnegative-integer?)

A parameter used to access the default font size. The slideshow/code library initializes
this parameter to current-font-size.

(current-code-line-sep) Ñ real?
(current-code-line-sep amt) Ñ void?

amt : real?

A parameter that determines the spacing between lines of typeset code. The default is 2.

72

(current-comment-color) Ñ (or/c string? (is-a?/c color%))
(current-comment-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of comments.

(current-keyword-color) Ñ (or/c string? (is-a?/c color%))
(current-keyword-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of syntactic-form names. See current-keyword-list.

(current-id-color) Ñ (or/c string? (is-a?/c color%))
(current-id-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of identifiers that are not syntactic form names or constants.

(current-literal-color) Ñ (or/c string? (is-a?/c color%))
(current-literal-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of literal values, such as strings and numbers. See also current-
literal-list

(current-const-color) Ñ (or/c string? (is-a?/c color%))
(current-const-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of constant names. See current-const-list.

(current-base-color) Ñ (or/c string? (is-a?/c color%))
(current-base-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of everything else.

(current-reader-forms) Ñ (listof symbol?)
(current-reader-forms syms) Ñ void?

syms : (listof symbol?)

Parameter for a list of symbols indicating which built-in reader forms should be used. The
default is ''quasiquote. Remove a symbol to suppress the corresponding reader output.

73

(code-align pict) Ñ pict?
pict : pict?

Adjusts the ascent of pict so that its bottom aligns with the baseline for text; use this
function when pict has no ascent.

(current-keyword-list) Ñ (listof string?)
(current-keyword-list names) Ñ void?

names : (listof string?)

A list of strings to color as syntactic-form names. The default includes all of the forms
provided by racket/base and all of the forms provided by mzscheme.

(current-const-list) Ñ (listof string?)
(current-const-list names) Ñ void?

names : (listof string?)

A list of strings to color as constant names. The default is null.

(current-literal-list) Ñ (listof string?)
(current-literal-list names) Ñ void?

names : (listof string?)

A list of strings to color as literals, in addition to literals such as strings. The default is null.

racket/base-const-list : (listof string?)

A list of strings that could be used to initialize the current-const-list parameter.

mzscheme-const-list : (listof string?)

A list of strings that could be used to initialize the current-const-list parameter.

(code-colorize-enabled) Ñ boolean?
(code-colorize-enabled on?) Ñ void?

on? : any/c

A parameter to enable or disable all code coloring. The default is #t.

(code-colorize-quote-enabled) Ñ boolean?
(code-colorize-quote-enabled on?) Ñ void?

on? : any/c

74

A parameter to control whether the datum under a quote is colorized as a literal (as in this
documentation). The default is #t.

(code-italic-underscore-enabled) Ñ boolean?
(code-italic-underscore-enabled on?) Ñ void?

on? : any/c

A parameter to control whether _-prefixed identifiers are italicized (dropping the _). The
default is #t.

(code-scripts-enabled) Ñ boolean?
(code-scripts-enabled on?) Ñ void?

on? : any/c

A parameter to control whether TeX-style subscripts and subscripts are recognized in an
identifier.

(define-code code-id typeset-code-id)
(define-code code-id typeset-code-id escape-id)

Defines code-id as a macro that uses typeset-code-id , which is a function with the
same input as typeset-code. The escape-id form defaults to unsyntax.

The resulting code-id syntactic form takes a sequence of datums:

(code-id datum ...)

It produces a pict that typesets the sequence. Source-location information for the datum
determines the layout of code in the resulting pict. The code-id is expanded in such a
way that source location is preserved during compilation (so typeset-code-id receives a
syntax object with source locations intact).

If a datum contains (escape-id expr)—perhaps as #,expr when escape-id is un-
syntax—then the expr is evaluated and the result datum is spliced in place of the escape-
id form in datum . If the result is not a syntax object, it is given the source location of the
escape-id form. A pict value injected this way as a datum is rendered as itself.

If a datum contains (transform-id datum ...) or transform-id for a transform-
id that is bound as syntax to a code transformer, then the (transform-id datum ...)
or transform-id may be replaced with an escaped expression, depending on the code
transformer’s result.

(make-code-transformer proc-or-stx) Ñ code-transformer?
proc-or-stx : (or/c (syntax? . -> . (or/c syntax? #f))

syntax?)
prop:code-transformer : struct-type-property?
(code-transformer? v) Ñ boolean?

v : any/c

75

Exported for-syntax for creating code transformers.

For code transformer created with (make-code-transformer proc), proc takes a syntax
object representing the use of an identifier bound to the transformer, and it produces an
expression whose value replaces the identifier use within a code form or a form defined via
define-code. Like a macro transformer, a code transformer is triggered either by a use
of the bound identifier in an “application” position, in which case the transformer receives
the entire “application” form, or the identifier by itself can also trigger the transformer.
The code transformer’s proc can return #f, in which case the use of the identifier is left
untransformed; if the identifier was used in an “application” position, the transformer proc
will be called again for the identifier use by itself.

A code transformer produced by (make-code-transformer stx) is equivalent to

(make-code-transformer (lambda (use-stx)
(if (identifier? use-stx)

stx
#f)))

A structure type with the prop:code-transformer property implements a code trans-
former. The property value must be a procedure of one argument, which receives the struc-
ture and returns a procedure that is like a proc passed to make-code-transformer, except
that the property value takes the structure instance as an argument before the syntax object
to transform.

The code-transformer? predicate returns #t for a value produced by make-code-
transformer or for an instance of a structure type with the prop:code-transformer
property, #f otherwise.

Example:

> (let-syntax ([bag (make-code-transformer #'(code hat))]
[copy (make-code-transformer (syntax-rules ()

[(_ c) (code (* 2 c))]))])
(inset (frame (code ((copy cat) in the bag))) 2))

((* 2 cat) in the hat)

(define-exec-code (pict-id runnable-id string-id)
datum ...)

Binds pict-id to the result of (code datum ...), except that if an identifier _ appears
anywhere in a datum , then the identifier and the following expression are not included for
code.

Meanwhile, runnable-id is bound to a syntax object that wraps the datums in a begin.
In this case, _s are removed from the datums, but not the following expression. Thus, an

76

_ identifier is used to comment out an expression from the pict, but have it present in the
syntax object for evaluation.

The string-id is bound to a string representation of the code that is in the pict. This string
is useful for copying to the clipboard with (send the-clipboard set-clipboard-
string string-id 0).

(define-exec-code/scale scale-expr (pict-id runnable-id string-id)
datum ...)

Like define-exec-code, but with a scale to use via scale/improve-new-text when
generating the pict.

comment-color : (or/c string? (is-a?/c color%))
keyword-color : (or/c string? (is-a?/c color%))
id-color : (or/c string? (is-a?/c color%))
literal-color : (or/c string? (is-a?/c color%))

For backward compatibility, the default values for current-comment-color, etc.

(code-pict-bottom-line-pict pict) Ñ (or/c pict? #f)
pict : pict?

The same as pict-last, provided for backward compatibility.

(pict->code-pict pict bl-pict) Ñ pict?
pict : pict?
bl-pict : (or/c pict? #f)

Mainly for backward compatibility: returns (if bl-pict (use-last pict (or
(pict-last bl-pict) bl-pict))).

7.5.1 Codeblocks

(codeblock-pict code-string
[#:keep-lang-line? keep?]) Ñ pict?

code-string : string?
keep? : any/c = #t

Like Scribble’s codeblock but generates picts.

Unlike code, codeblock-pict formats and colors based on the code’s language’s lexer,
which makes it suitable for use with code that doesn’t use Racket syntax.

77

When keep? is #f, the first #lang line is removed from the pict.

Example:

> (codeblock-pict
#:keep-lang-line? #f
(string-join

'("#lang 2d racket"
"(require 2d/cond)"
"(define (same? a b)"
" #2dcond"
" "
" (pair? a) (number? a) "
" "
" (pair? b) (and (same? (car a) #f "
" (car b)) "
" (same? (cdr a) "
" (cdr b))) "
" "
" (number? b) #f (= a b) "
")")

"\n"))
(require 2d/cond)
(define (same? a b)
 #2dcond

 ╔═════════════╦═══════════════════════╦═════════════╗
 ║ ║ (pair? a) ║ (number? a) ║
 ╠═════════════╬═══════════════════════╬═════════════╣
 ║ (pair? b) ║ (and (same? (car a) ║ #f ║
 ║ ║ (car b)) ║ ║
 ║ ║ (same? (cdr a) ║ ║
 ║ ║ (cdr b))) ║ ║
 ╠═════════════╬═══════════════════════╬═════════════╣
 ║ (number? b) ║ #f ║ (= a b) ║
 ╚═════════════╩═══════════════════════╩═════════════╝)

(current-token-class->color)
Ñ (-> symbol? (or/c string? (is-a?/c color%)))

(current-token-class->color to-color) Ñ void?
to-color : (-> symbol? (or/c string? (is-a?/c color%)))

A parameter that provides additional control over the colors used by codeblock-pict. The
to-color procedure is applied to each token class produced by a language’s lexer to map
the class name to a particular color.

78

The default value maps the standard set of token classes (as recognized by DrRacket) to the
corresponding colors used by code. Specifically, it maps

• 'no-color, 'parenthesis, and 'hash-colon-keyword to (current-base-
color),

• 'symbol to (current-id-color),

• 'keyword to (current-keyword-color),

• 'string and 'constant to (current-literal-color),

• 'comment to (current-comment-color),

• 'white-space to "white",

• and everything else to "black".

It is usually sufficient to adjust the individual color parameters also used by code,
but current-token-class->color allows for more fine-grained control over how
codeblock-pict interprets token classes.

Added in version 1.8 of package pict-lib.

79

8 Animation Helpers

These functions are designed to work with the slide constructors in slideshow/play.

8.1 Pict Interpolations

(fade-pict n p1 p2 [#:combine combine]) Ñ pict?
n : (real-in 0.0 1.0)
p1 : pict?
p2 : pict?
combine : (pict? pict? . -> . pict?) = cc-superimpose

Interpolates p1 and p2 , where the result with n as 0.0 is p1 , and the result with n as 1.0 is
p2 . For intermediate points, p1 fades out while p2 fades in as n changes from 0.0 to 1.0.
At the same time, the width and height of the generated pict are intermediate between p1
and p2 , and the relative baselines and last pict correspondingly morph within the bounding
box.

The combine argument determines how p1 and p2 are aligned for morphing. For example,
if p1 and p2 both contain multiple lines of text with the same line height but different number
of lines, then using ctl-superimpose would keep the ascent line in a fixed location relative
to the top of the resulting pict as the rest of the shape morphs around it.

Examples:

> (define (do-fade n)
(fade-pict n (rectangle 30 30) (disk 30)))

> (apply ht-append 10
(for/list ([n (in-range 0 1.2 0.2)])

(vc-append (text (~r n #:precision 2))
(do-fade n))))

0 0.2 0.4 0.6 0.8 1

(fade-around-pict n p1 make-p2) Ñ pict?
n : (real-in 0.0 1.0)
p1 : pict?
make-p2 : (pict? . -> . pict?)

Similar to fade-pict, but the target is not a fixed p2 , but instead a function make-p2 that
takes a laundered ghost of p1 and places it into a larger scene. Also, p1 does not fade out
as n increases; instead, p1 is placed wherever its ghost appears in the result of make-p2 .

80

For example,

> (get-current-code-font-size (λ () 20))
> (define do-fade

(lambda (n)
(fade-around-pict n

(code x)
(lambda (g) (code (+ #,g 1))))))

> (apply ht-append 10
(for/list ([n (in-range 0 1.2 0.2)])

(vc-append (text (~r n #:precision 2))
(do-fade n))))

0

x
0.2

(+ 1)x
0.4

(+ 1)x
0.6

(+ 1)x
0.8

(+ 1)x
1

(+ 1)x

animates the wrapping of x with a (+ 1) form.

(slide-pict base p p-from p-to n) Ñ pict?
base : pict?
p : pict?
p-from : pict?
p-to : pict?
n : (real-in 0.0 1.0)

Pins p onto base , sliding from p-from to p-to (which are picts within base) as n goes
from 0.0 to 1.0. The top-left locations of p-from and p-to determine the placement of
the top-left of p .

The p-from and p-to picts are typically laundered ghosts of p within base , but they
can be any picts within base .

Examples:

> (define (do-slide n)
(define p1 (disk 30 #:color "plum"))
(define p2 (disk 30 #:color "palegreen"))
(define p3 (frame (inset (hc-append 30 p1 p2) 10)))
(slide-pict p3

(disk 10)
p1 p2 n))

> (apply ht-append 10
(for/list ([n (in-range 0 1.2 0.2)])

(vc-append (text (~r n #:precision 2))
(do-slide n))))

81

0 0.2 0.4 0.6 0.8 1

(slide-pict/center base p p-from p-to n) Ñ pict?
base : pict?
p : pict?
p-from : pict?
p-to : pict?
n : (real-in 0.0 1.0)

Like slide-pict, but aligns the center of p with p-from and p-to .

Examples:

> (define (do-slide n)
(define p1 (disk 30 #:color "plum"))
(define p2 (disk 30 #:color "palegreen"))
(define p3 (frame (inset (hc-append 30 p1 p2) 10)))
(slide-pict/center p3

(disk 10)
p1 p2 n))

> (apply ht-append 10
(for/list ([n (in-range 0 1.2 0.2)])

(vc-append (text (~r n #:precision 2))
(do-slide n))))

0 0.2 0.4 0.6 0.8 1

8.2 Merging Animations

(sequence-animations gen ...) Ñ (-> (real-in 0.0 1.0) pict?)
gen : (-> (real-in 0.0 1.0) pict?)

Converts a list of gen functions into a single function that uses each gen in sequence.

(reverse-animations gen ...) Ñ (-> (real-in 0.0 1.0) pict?)
gen : (-> (real-in 0.0 1.0) pict?)

Converts a list of gen functions into a single function that run (sequence-animations
gen ...) in reverse.

82

8.3 Stretching and Squashing Time

(fast-start n) Ñ (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

(fast-end n) Ñ (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

(fast-edges n) Ñ (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

(fast-middle n) Ñ (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

Monotonically but non-uniformly maps n with fixed points at 0.0 and 1.0.

Suppose that we have the following definitions for our examples:

> (define (do-slide n fast-proc)
(define p1 (filled-rectangle 20 20 #:color "yellowgreen"))
(define p2 (filled-rectangle 20 20 #:color "khaki"))
(define p3 (frame (inset (hc-append 25 p1 p2) 10)))
(slide-pict/center
p3
(disk 10)
p1 p2
; note use of fast-proc
(fast-proc n)))

> (define (run-animation fast-proc)
(apply ht-append 10

(for/list ([n (in-range 0 1.09 0.1)])
(vc-append (text (~r n #:precision 2))

(do-slide n fast-proc)))))

A normal use of the animation looks like this:

> (run-animation (λ (n) n))
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The fast-start mapping is convex, so that

(slide-pict base p p1 p2 (fast-start n))

appears to move quickly away from p1 and then slowly as it approaches p2 , assuming that
n increases uniformly.

Applying it to the animation above produces this:

83

> (run-animation fast-start)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The fast-end mapping is concave, so that

(slide-pict base p p1 p2 (fast-end n))

appears to move slowly away from p1 and then quickly as it approaches p2 , assuming that
n increases uniformly.

> (run-animation fast-end)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The fast-edges mapping is convex at first and concave at the end, so that

(slide-pict base p p1 p2 (fast-edges n))

appears to move quickly away from p1 , then more slowly, and then quickly again near p2 ,
assuming that n increases uniformly.

> (run-animation fast-edges)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The fast-middle mapping is concave at first and convex at the end, so that

(slide-pict base p p1 p2 (fast-middle n))

> (run-animation fast-middle)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

appears to move slowly away from p1 , then more quickly, and then slowly again near p2 ,
assuming that n increases uniformly.

84

(split-phase n) Ñ (real-in 0.0 1.0) (real-in 0.0 1.0)
n : (real-in 0.0 1.0)

Splits the progression of n from 0.0 to 1.0 into a progression from (values 0.0 0.0) to
(values 1.0 0.0) and then (values 1.0 0.0) to (values 1.0 1.0).

Here is an example that shows how to apply split-phase to the animation from the exam-
ples for fast-start:

> (apply ht-append 10
(for/list ([n (in-range 0 1.09 0.1)])

(define-values (n1 n2) (split-phase n))
(vc-append (text (~r n #:precision 2))

(do-slide n1 (λ (n) n))
(do-slide n2 (λ (n) n)))))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

85

9 Color Helpers

(require pict/color) package: pict-lib

(red pict) Ñ pict?
pict : pict?

(orange pict) Ñ pict?
pict : pict?

(yellow pict) Ñ pict?
pict : pict?

(green pict) Ñ pict?
pict : pict?

(blue pict) Ñ pict?
pict : pict?

(purple pict) Ñ pict?
pict : pict?

(black pict) Ñ pict?
pict : pict?

(brown pict) Ñ pict?
pict : pict?

(gray pict) Ñ pict?
pict : pict?

(white pict) Ñ pict?
pict : pict?

(cyan pict) Ñ pict?
pict : pict?

(magenta pict) Ñ pict?
pict : pict?

These functions apply appropriate colors to picture p.

Example:

> (red (disk 20))

Added in version 1.4 of package pict-lib.

(light color) Ñ color/c
color : color/c

(dark color) Ñ color/c
color : color/c

These functions produce lighter or darker versions of a color.

86

https://pkgs.racket-lang.org/package/pict-lib

Example:

> (hc-append (colorize (disk 20) "red")
(colorize (disk 20) (dark "red"))
(colorize (disk 20) (light "red")))

Added in version 1.4 of package pict-lib.

color/c : flat-contract?

This contract recognizes color strings, color% instances, and RGB color lists.

Added in version 1.4 of package pict-lib.

87

10 Shadows

(require pict/shadow) package: pict-lib

These pict transformations add shadows or blurring in various shapes and forms.

(blur p h-radius [v-radius]) Ñ pict?
p : pict?
h-radius : (and/c real? (not/c negative?))
v-radius : (and/c real? (not/c negative?)) = h-radius

Blurs p using an iterated box blur that approximates a gaussian blur. The h-radius and
v-radius arguments control the strength of the horizontal and vertical components of the
blur, respectively. They are given in terms of pict units, which may not directly correspond
to screen pixels.

The blur function takes work proportional to

(* (pict-width p) (pict-height p))

but it may be sped up by a factor of up to (processor-count) due to the use of futures.

Examples:

> (blur (text "blur" null 40) 5)

> (blur (text "more blur" null 40) 10)

> (blur (text "much blur" null 40) 20)

> (blur (text "horiz. blur" null 40) 10 0)

The resulting pict has the same bounding box as p , so when picts are automatically clipped
(as in Scribble documents), the pict should be inset by the blur radius.

Example:

88

https://pkgs.racket-lang.org/package/pict-lib

> (inset (blur (text "more blur" null 40) 10) 10)

Added in version 1.4 of package pict-lib.

(shadow p
radius

[dx
dy
#:color color
#:shadow-color shadow-color]) Ñ pict?

p : pict?
radius : (and/c real? (not/c negative?))
dx : real? = 0
dy : real? = dx
color : (or/c #f string? (is-a?/c color%)) = #f
shadow-color : (or/c #f string? (is-a?/c color%)) = #f

Creates a shadow effect by superimposing p over a blurred version of p . The shadow is
offset from p by (dx , dy) units.

If color is not #f, the foreground part is (colorize p color); otherwise it is just p . If
shadow-color is not #f, the shadow part is produced by blurring (colorize p shadow-
color); otherwise it is produced by blurring p .

The resulting pict has the same bounding box as p .

Examples:

> (inset (shadow (text "shadow" null 50) 10) 10)

shadow
> (inset (shadow (text "shadow" null 50) 10 5) 10)

shadow
> (inset (shadow (text "shadow" null 50)

89

5 0 2 #:color "white" #:shadow-color "red")
10)

shadow
Added in version 1.4 of package pict-lib.

(shadow-frame pict
...

[#:sep separation
#:margin margin
#:background-color bg-color
#:frame-color frame-color
#:frame-line-width frame-line-width
#:shadow-side-length shadow-side-length
#:shadow-top-y-offset shadow-top-y-offset
#:shadow-bottom-y-offset shadow-bottom-y-offset
#:shadow-descent shadow-descent
#:shadow-alpha-factor shadow-alpha-factor
#:blur blur-radius])

Ñ pict?
pict : pict?
separation : real? = 5
margin : real? = 20
bg-color : (or/c string? (is-a?/c color%)) = "white"
frame-color : (or/c string? (is-a?/c color%)) = "gray"
frame-line-width : (or/c real? #f 'no-frame) = 0
shadow-side-length : real? = 4
shadow-top-y-offset : real? = 10
shadow-bottom-y-offset : real? = 4
shadow-descent : (and/c real? (not/c negative?)) = 40
shadow-alpha-factor : real? = 3/4
blur-radius : (and/c real? (not/c negative?)) = 20

Surrounds the picts with a rectangular frame that casts a symmetric “curled paper” shadow.

The picts are vertically appended with separation space between them. They are placed
on a rectangular background of solid bg-color with margin space on all sides. A frame
of frame-color and frame-line-width is added around the rectangle, unless frame-
line-width is 'no-frame. The rectangle casts a shadow that extends shadow-side-
length to the left and right, starts shadow-top-y-offset below the top of the rectangle
and extends to shadow-bottom-y-offset below the bottom of the rectangle in the center

90

and an additional shadow-descent below that on the sides. The shadow is painted using
a linear gradient; shadow-alpha-factor determines its density at the center. Finally, the
shadow is blurred by blur-radius ; all previous measurements are pre-blur measurements.

Example:

> (shadow-frame (text "text in a nifty frame" null 60))

text in a nifty frame

Added in version 1.4 of package pict-lib.

91

11 Conditional Combinations

(require pict/conditional) package: pict-lib

These pict control flow operators decide which pict of several to use. All branches are
evaluated; the resulting pict is a combination of the pict chosen by normal conditional flow
with ghost applied to all the other picts. The result is a picture large enough to accommodate
each alternative, but showing only the chosen one. This is useful for staged slides, as the pict
chosen may change with each slide but its size and position will not.

(pict-if maybe-combine test-expr then-expr else-expr)

maybe-combine =
| #:combine combine-expr

Chooses either then-expr or else-expr based on test-expr , similarly to if. Combines
the chosen, visible image with the other, invisible image using combine-expr , defaulting
to lbl-superimpose.

Example:

> (let ([f (lambda (x)
(pict-if x

(disk 20)
(disk 40)))])

(hc-append 10
(frame (f #t))
(frame (f #f))))

Added in version 1.4 of package pict-lib.

(pict-cond maybe-combine [test-expr pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on the first successful test-expr , similarly to cond. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to lbl-superimpose.

Example:

> (let ([f (lambda (x)

92

https://pkgs.racket-lang.org/package/pict-lib

(pict-cond #:combine cc-superimpose
[(eq? x 'circle) (circle 20)]
[(eq? x 'disk) (disk 40)]
[(eq? x 'text) (text "ok" null 20)]))])

(hc-append 10
(frame (f 'circle))
(frame (f 'disk))
(frame (f 'text))))

ok

Added in version 1.4 of package pict-lib.

(pict-case test-expr maybe-combine [literals pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each list of literals , similarly to case.
Combines the chosen, visible image with the other, invisible images using combine-expr ,
defaulting to lbl-superimpose.

Example:

> (let ([f (lambda (x)
(pict-case x

[(circle) (circle 20)]
[(disk) (disk 40)]
[(text) (text "ok" null 20)]))])

(hc-append 10
(frame (f 'circle))
(frame (f 'disk))
(frame (f 'text))))

ok

Added in version 1.4 of package pict-lib.

(show pict [show?]) Ñ pict?
pict : pict?
show? : any/c = #t

(hide pict [hide?]) Ñ pict?
pict : pict?
hide? : any/c = #t

93

These functions conditionally show or hide an image, essentially choosing between pict
and (ghost pict). The only difference between the two is the default behavior and
the opposite meaning of the show? and hide? booleans. Both functions are provided for
mnemonic purposes.

Added in version 1.4 of package pict-lib.

94

12 Tree Layout

These functions specify tree layouts and functions that render them as picts.

(require pict/tree-layout) package: pict-lib

(tree-layout [#:pict node-pict] child ...) Ñ tree-layout?
node-pict : (or/c #f pict?) = #f
child : (or/c tree-layout? tree-edge? #f)

Specifies an interior node of a tree for use with one of the renderers below.

If the children are tree-layout?s, then they have edges created by passing the correspond-
ing tree-layout?s directly to tree-edge. Children that are #f correspond to leaf nodes
that are not drawn.

The default node-pict (used when node-pict is #f) is .

(tree-edge node
[#:edge-color edge-color
#:edge-width edge-width
#:edge-style edge-style]) Ñ tree-edge?

node : (and/c tree-layout? (not/c #f))
edge-color : (or/c string?

(is-a?/c color%)
(list/c byte? byte? byte?))

= "gray"

edge-width : (or/c 'unspecified real? #f) = 'unspecified
edge-style : (or/c 'unspecified 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash
'xor-dot 'xor-long-dash 'xor-short-dash
'xor-dot-dash)

= 'unspecified

This function specifies an edge from some parent to the given node . It it intended to be used
with tree-layout, on a non-#f node.

When edge-width is 'unspecified, the line width will not be set. This is intended to
allow the line width to be set for the whole pict via linewidth. Otherwise, edge-width
is interpreted the same way as the width argument for the linewidth function. edge-
style behaves similarly, its argument interpreted as the style argument for the linestyle
function.

Example:

> (naive-layered (tree-layout
(tree-edge #:edge-width 3 (tree-layout))

95

https://pkgs.racket-lang.org/package/pict-lib

(tree-edge #:edge-color "red"
#:edge-style 'dot
(tree-layout))))

Changed in version 1.3 of package pict-lib: Added the #:edge-width option.
Changed in version 1.9: Added the #:edge-style option.

(tree-layout? v) Ñ boolean?
v : any/c

Recognizes a tree layout. It returns #t when given #f or the result of tree-layout.

(binary-tree-layout? v) Ñ boolean?
v : any/c

Recognizes a tree-layout? that represents a binary tree. That is, each interior node has
either two children or is #f. Note that a node with zero children does not count as a leaf for
the purposes of binary-tree-layout?.

Examples:

> (binary-tree-layout? (tree-layout #f #f))
#t
> (binary-tree-layout? #f)
#t
> (binary-tree-layout? (tree-layout (tree-layout) (tree-layout)))
#f

(tree-edge? v) Ñ boolean?
v : any/c

Recognizes an tree-edge.

(naive-layered tree-layout
[#:x-spacing x-spacing
#:y-spacing y-spacing
#:transform transform]) Ñ pict?

tree-layout : tree-layout?
x-spacing : (or/c (and/c real? positive?) #f) = #f
y-spacing : (or/c (and/c real? positive?) #f) = #f
transform : (-> real? real? (values real? real?)) = values

96

Uses a naive algorithm that ensures that all nodes at a fixed depth are the same vertical dis-
tance from the root (dubbed “layered”). It recursively lays out subtrees and then horizontally
combines them, aligning them at their tops. Then it places the root node centered over the
children nodes.

The transform argument applies a coordinate transformation to each of the nodes after it
has been layed out. The bounding box of the resulting pict encompasses the corners of the
original bounding box after the transformation has been applied to them.

Examples:

> (define (complete d)
(cond

[(zero? d) #f]
[else (define s (complete (- d 1)))

(tree-layout s s)]))
> (naive-layered (complete 4))

> (naive-layered (complete 4) #:transform (lambda (x y) (values y x)))

> (naive-layered (tree-layout
(tree-layout)
(tree-layout)
(tree-layout

97

(tree-layout)
(tree-layout)
(tree-layout
(tree-layout)
(tree-layout)))))

> (define right-subtree-with-left-chain
(tree-layout
(tree-layout
(tree-layout #f #f)
(tree-layout
(tree-layout #f #f)
#f))

(tree-layout
(tree-layout
(tree-layout
(tree-layout
(tree-layout #f #f)
#f)

#f)
#f)

#f)))
> (naive-layered right-subtree-with-left-chain)

Changed in version 1.13 of package pict-lib: Added the #:transform option.

98

(binary-tidier tree-layout
[#:x-spacing x-spacing
#:y-spacing y-spacing
#:transform transform]) Ñ pict?

tree-layout : binary-tree-layout?
x-spacing : (or/c (and/c real? positive?) #f) = #f
y-spacing : (or/c (and/c real? positive?) #f) = #f
transform : (-> real? real? (values real? real?)) = values

Uses the layout algorithm from Tidier Drawing of Trees by Edward M. Reingold and John
S. Tilford (IEEE Transactions on Software Engineering, Volume 7, Number 2, March 1981)
to lay out tree-layout .

The layout algorithm guarantees a number of properties, namely:

• nodes at the same level of tree appear at the same vertical distance from the top of the
pict

• parents are centered over their children, which are placed from left to right,

• isomorphic subtrees are drawn the same way, no matter where they appear in the
complete tree, and

• a tree and its mirror image produce picts that are mirror images of each other (which
also holds for subtrees of the complete tree).

Within those constraints, the algorithm tries to make as narrow a drawing as it can, even to
the point that one subtree of a given node might cross under the other one.

More precisely, it recursively lays out the two subtree and then, without adjusting the layout
of the two subtrees, moves them as close together as it can, putting the root of the new
tree centered on top of its children. (It does this in linear time, using clever techniques as
discussed in the paper.)

The x-spacing and y-spacing are the amount of space that each row and each column
takes up, measured in pixels. If x-spacing is #f, it is the width of the widest node pict?
in the tree. If y-spacing is #f, it is 1.5 times the width of the widest node pict? in the
tree. The transform is the same as in naive-layered.

Examples:

> (binary-tidier (complete 4))

99

> (define (dl t) (tree-layout (tree-layout #f #f) t))
> (define (dr t) (tree-layout t (tree-layout #f #f)))
> (binary-tidier

(tree-layout
(dr (dr (dr (dl (dl (dl (complete 2)))))))
(dl (dl (dl (dr (dr (dr (complete 2)))))))))

> (binary-tidier right-subtree-with-left-chain)

Changed in version 1.13 of package pict-lib: Added the #:transform option.

(hv-alternating tree-layout
[#:x-spacing x-spacing
#:y-spacing y-spacing
#:transform transform]) Ñ pict?

tree-layout : binary-tree-layout?

100

x-spacing : (or/c (and/c real? positive?) #f) = #f
y-spacing : (or/c (and/c real? positive?) #f) = #f
transform : (-> real? real? (values real? real?)) = values

Uses the “CT” binary tree layout algorithm from A note on optimal area algorithms for up-
ward drawing of binary trees by P. Crescenzi, G. Di Battista, and A. Piperno (Computational
Geometry, Theory and Applications, 1992) to lay out tree-layout .

It adds horizontal and vertical space between layers based on x-spacing and y-spacing .
If either is #f, 1.5 times the size of the biggest node is used. The transform is the same
as in naive-layered.

Example:

> (hv-alternating (complete 8))

101

Changed in version 1.13 of package pict-lib: Added the #:transform option.

Added in version 6.0.1.4 of package pict-lib.

102

13 Miscellaneous

(hyperlinkize pict) Ñ pict?
pict : pict-convertible?

Adds an underline and blue color. The pict ’s height and descent are extended.

Example:

> (hyperlinkize (text "Help me I'm trapped in this documentation"
null 15))

Help me I'm trapped in this documentation

(scale-color factor color) Ñ (is-a?/c color%)
factor : real?
color : (or/c string (is-a?/c color%))

Scales a color, making it brighter or darker. If the factor is less than 1, the color is darkened
by multiplying the RGB components by the factor. If the factor is greater than 1, the color is
lightened by dividing the gap between the RGB components and 255 by the factor.

Examples:

> (disk 30 #:color "royalblue")

> (disk 30 #:color (scale-color 0.5 "royalblue"))

> (disk 30 #:color (scale-color 1.5 "royalblue"))

(color-series dc
max-step
step-delta
start
end
proc
set-pen?
set-brush?) Ñ void?

dc : (is-a?/c dc<%>)
max-step : exact-nonnegative-integer?

103

step-delta : (and/c exact? positive?)
start : (or/c string? (is-a?/c color%))
end : (or/c string? (is-a?/c color%))
proc : (exact? . -> . any)
set-pen? : any/c
set-brush? : any/c

Calls a proc multiple times, gradually changing the pen and/or brush color for each call. For
the first call, the current pen and/or brush color matches start ; for the last call, it matches
end ; and for intermediate calls, the color is an intermediate color.

The max-step and step-delta arguments should be exact numbers; the procedure is
called with each number from 0 to max-step inclusive using a step-delta increment.

104

14 Rendering

(dc-for-text-size) Ñ (or/c #f (is-a?/c dc<%>))
(dc-for-text-size dc) Ñ void?

dc : (or/c #f (is-a?/c dc<%>))

A parameter that is used to determine the bounding box of picts created with text.

The drawing context installed in this parameter need not be the same as the ultimate drawing
context, but it should measure text in the same way. Under normal circumstances, font
metrics are the same for all drawing contexts, so the default value of dc-for-text-size is
a bitmap-dc% that draws to a 1-by-1 bitmap.

(convert-bounds-padding)
Ñ (list/c (>=/c 0) (>=/c 0) (>=/c 0) (>=/c 0))

(convert-bounds-padding padding) Ñ void?
padding : (list/c (>=/c 0) (>=/c 0) (>=/c 0) (>=/c 0))

A parameter that determines an amount of padding added to each edge of a pict when con-
verting to a format like 'png@2x-bytes+bounds8 (see file/convertible). The default
value of the parameter is '(3 3 3 3), which adds three pixels to each edge to accommodate
a small amount of drawing outside the pict’s bounding box.

Added in version 1.2 of package pict-lib.

(draw-pict pict dc x y) Ñ void?
pict : pict-convertible?
dc : (is-a?/c dc<%>)
x : real?
y : real?

Draws pict to dc , with its top-left corner at offset (x , y).

(pict->bitmap pict
[smoothing
#:make-bitmap make-a-bitmap]) Ñ (is-a?/c bitmap%)

pict : pict-convertible?
smoothing : (or/c 'unsmoothed 'smoothed 'aligned) = 'aligned
make-a-bitmap : (exact-positive-integer? exact-positive-integer?

. -> . (is-a?/c bitmap%))
= make-bitmap

Returns a bitmap% with pict drawn on it in the top-left corner (0, 0). Drawing the pict into
the bitmap uses the smoothing mode smoothing ; see set-smoothing for more information
on smoothing modes.

105

The make-a-bitmap function is used to create the bitmap, giving it the size of pict
rounded up to integer dimensions. The default function, make-bitmap, creates a bitmap
with an alpha channel. Supply make-screen-bitmap, instead, to create a bitmap that is
consistent with drawing directly to the screen.

Changed in version 1.7 of package pict-lib: Added the #:make-bitmap argument.

(pict->argb-pixels pict [smoothing]) Ñ bytes?
pict : pict-convertible?
smoothing : (or/c 'unsmoothed 'smoothed 'aligned) = 'aligned

Returns the bytes? with the pixels corresponding the bitmap that pict->bitmap returns.
Each pixel has four bytes in the result: the alpha, red, green, and blue components.

Examples:

> (pict->argb-pixels
(filled-rectangle 1 1))

#"\377\0\0\0"
> (pict->argb-pixels

(colorize (filled-rectangle 1 1) "red"))
#"\377\377\0\0"

Added in version 1.1 of package pict-lib.

(argb-pixels->pict bytes width) Ñ pict?
bytes : bytes?
width : exact-nonnegative-integer?

Constructs a pict from bytes with the width width . Each pixel in the resulting pict corre-
sponds to four entries in bytes : the alpha value, and the red, green, and blue values.

Example:

> (let ([b (make-bytes (* 40 40 4) 255)])
(for ([x (in-range (bytes-length b))])

; when in one of two vertical bands (10-20 & 30-40)
(when (or (<= 10 (modulo (quotient x 4) 40) 20)

(<= 30 (modulo (quotient x 4) 40) 40))
; change the red and green fields of the pixel
(when (= 1 (modulo x 4)) (bytes-set! b x 0))
(when (= 2 (modulo x 4)) (bytes-set! b x 150))))

(argb-pixels->pict b 40))

106

Added in version 1.1 of package pict-lib.

(make-pict-drawer pict)
Ñ ((is-a?/c dc<%>) real? real? . -> . void?)
pict : pict-convertible?

Generates a pict-drawer procedure for multiple renderings of pict . Using the generated
procedure can be faster than repeated calls to draw-pict.

(show-pict pict
[w
h]
#:frame-x frame-x
#:frame-y frame-y
#:frame-style frame-style) Ñ void?

pict : pict-convertible?
w : (or/c #f exact-nonnegative-integer?) = #f
h : (or/c #f exact-nonnegative-integer?) = #f
frame-x : (or/c (integer-in -10000 10000) #f)
frame-y : (or/c (integer-in -10000 10000) #f)
frame-style : (listof (or/c 'no-resize-border 'no-caption

'no-system-menu 'hide-menu-bar
'toolbar-button 'float 'metal))

Opens a frame that displays pict . The frame adds one method, set-pict, which takes
a pict to display. The optional w and h arguments specify a minimum size for the frame’s
drawing area, and the frame-x , frame-y , and frame-style keyword arguments behave
in the same manner as x, y, and style arguments for the frame%.

(current-expected-text-scale) Ñ (list/c real? real?)
(current-expected-text-scale scales) Ñ void?

scales : (list/c real? real?)

A parameter used to refine text measurements to better match an expected scaling of the
image. The scale/improve-new-text form sets this parameter while also scaling the
resulting pict.

107

15 Conversion to Picts

(require pict/convert) package: pict-lib

The pict/convert library defines a protocol for values to be pict convertible, meaning they
can convert themselves to picts. The protocol is used by DrRacket’s interactions window,
for example, to render values that it prints. Anything that is pict-convertible? can be
used wherever a pict can be used. These values will be automatically converted to a pict
when needed.

This set includes at least images from 2htdp/image, but is extensible so may include other
values as well.

prop:pict-convertible : struct-type-property?

A property whose value should be a procedure matching the contract (-> any/c pict?).
The procedure is called when a structure with the property is passed to pict-convert; the
argument to the procedure is the structure, and the procedure’s result should be a pict.

prop:pict-convertible? : struct-type-property?

A property whose value should be a predicate procedure (i.e., matching the contract pred-
icate/c).

If this property is not set, then it is assumed to be the function (λ (x) #t).

If this property is set, then this procedure is called by pict-convertible? to determine if
this particular value is convertible (thereby supporting situations where some instances of a
given value are convertible to picts, but others are not).

(pict-convertible? v) Ñ boolean?
v : any/c

Returns #t if v are pict convertible (by having the prop:pict-convertible property) and
#f otherwise. This function returns #t for pict?s.

(pict-convert v) Ñ pict?
v : pict-convertible?

Requests a data conversion from v to a pict.

108

https://pkgs.racket-lang.org/package/pict-lib

	1 Pict Datatype
	2 Basic Pict Constructors
	3 Pict Combiners
	4 Pict Drawing Adjusters
	5 Bounding Box Adjusters
	6 Pict Finders
	7 More Pict Constructors
	7.1 Dingbats
	7.2 Balloon Annotations
	7.3 Face
	7.4 Flash
	7.5 Typesetting Racket Code
	7.5.1 Codeblocks

	8 Animation Helpers
	8.1 Pict Interpolations
	8.2 Merging Animations
	8.3 Stretching and Squashing Time

	9 Color Helpers
	10 Shadows
	11 Conditional Combinations
	12 Tree Layout
	13 Miscellaneous
	14 Rendering
	15 Conversion to Picts

