
JSON
Version 8.14.0.2

Eli Barzilay
and Dave Herman

July 21, 2024

(require json) package: base

This library provides utilities for parsing and producing data in the JSON data exchange for-
mat to/from Racket values. See the JSON web site and the JSON RFC for more information
about JSON.

1

https://pkgs.racket-lang.org/package/base
http://json.org
http://www.ietf.org/rfc/rfc4627.txt


1 JS-Expressions

(jsexpr? x [#:null jsnull ]) Ñ boolean?
x : any/c
jsnull : any/c = (json-null)

Performs a deep check to determine whether x is a jsexpr.

This library defines a subset of Racket values that can be represented as JSON strings, and
this predicates checks for such values. A JS-Expression, or jsexpr, is one of:

• the value of jsnull , 'null by default, which is recognized using eq?

• boolean?

• string?

• (or/c exact-integer? (and/c inexact-real? rational?))

• (listof jsexpr?)

• (hash/c symbol? jsexpr?)

Examples:

> (jsexpr? 'null)
#t
> (jsexpr? #t)
#t
> (jsexpr? "cheesecake")
#t
> (jsexpr? 3.5)
#t
> (jsexpr? (list 18 'null #f))
#t
> (jsexpr? #hasheq((turnip . 82)))
#t
> (jsexpr? (vector 1 2 3 4))
#f
> (jsexpr? #hasheq(("turnip" . 82)))
#f
> (jsexpr? +inf.0)
#f

(json-null) Ñ any/c
(json-null jsnull) Ñ void?

jsnull : any/c

2



This parameter determines the default Racket value that corresponds to a JSON “null”. By
default, it is the 'null symbol. In some cases a different value may better fit your needs,
therefore all functions in this library accept a #:null keyword argument for the value that
is used to represent a JSON “null”, and this argument defaults to (json-null).

Note that the value of (json-null) (or an explicitly-provided #:null argument) is recog-
nized using eq?.

3



2 Generating JSON Text from JS-Expressions

(write-json x
[out
#:null jsnull
#:encode encode
#:indent indent ]) Ñ void?

x : jsexpr?
out : output-port? = (current-output-port)
jsnull : any/c = (json-null)
encode : (or/c 'control 'all) = 'control
indent : (or/c #f #\tab natural-number/c) = #f

Writes the x jsexpr, encoded as JSON, to the out output port.

By default, only ASCII control characters are encoded as “\uHHHH”. If encode is given as
'all, then in addition to ASCII control characters, non-ASCII characters are encoded as
well. This can be useful if you need to transport the text via channels that might not support
UTF-8. Note that characters in the range of U+10000 and above are encoded as two \uHHHH
escapes, see Section 2.5 of the JSON RFC.

If indent is provided and is not #f, each array element or object key–value pair is written
on a new line, and the value of indent specifies the whitespace to be added for each level
of nesting: either a #\tab character or, if indent is a number, the corresponding number of
#\space characters.

Examples:

> (with-output-to-string
(λ () (write-json #hasheq((waffle . (1 2 3))))))

"{\"waffle\":[1,2,3]}"
> (with-output-to-string

(λ () (write-json #hasheq((와플 . (1 2 3)))
#:encode 'all)))

"{\"\\uc640\\ud50c\":[1,2,3]}"
> (for ([indent (in-list '(#f 0 4 #\tab))])

(newline)
(write-json #hasheq((waffle . (1 2 3)) (와플 . (1 2 3)))

#:indent indent)
(newline))

{"waffle":[1,2,3],"와플":[1,2,3]}

{
"waffle": [
1,

4

http://www.ietf.org/rfc/rfc4627.txt


2,
3
],
"와플": [
1,
2,
3
]
}

{
"waffle": [

1,
2,
3

],
"와플": [

1,
2,
3

]
}

{
"waffle": [
1,
2,
3
],
"와플": [
1,
2,
3
]

}

(jsexpr->string x
[#:null jsnull
#:encode encode
#:indent indent ]) Ñ string?

x : jsexpr?
jsnull : any/c = (json-null)
encode : (or/c 'control 'all) = 'control
indent : (or/c #f #\tab natural-number/c) = #f

Generates a JSON source string for the jsexpr x .

5



Example:

> (jsexpr->string #hasheq((waffle . (1 2 3))))
"{\"waffle\":[1,2,3]}"

(jsexpr->bytes x
[#:null jsnull
#:encode encode
#:indent indent ]) Ñ bytes?

x : jsexpr?
jsnull : any/c = (json-null)
encode : (or/c 'control 'all) = 'control
indent : (or/c #f #\tab natural-number/c) = #f

Generates a JSON source byte string for the jsexpr x . (The byte string is encoded in UTF-8.)

Example:

> (jsexpr->bytes #hasheq((waffle . (1 2 3))))
#"{\"waffle\":[1,2,3]}"

6



3 Parsing JSON Text into JS-Expressions

(read-json [in #:null jsnull ]) Ñ (or/c jsexpr? eof-object?)
in : input-port? = (current-input-port)
jsnull : any/c = (json-null)

Reads a jsexpr from a single JSON-encoded input port in as a Racket (immutable) value,
or produces eof if only whitespace remains. Like read, the function leaves all remaining
characters in the port so that a second call can retrieve the remaining JSON input(s). If the
JSON inputs aren’t delimited per se (true, false, null), they must be separated by whitespace
from the following JSON input. Raises exn:fail:read if in is not at EOF and starts with
malformed JSON (that is, no initial sequence of bytes in in can be parsed as JSON); see
below for examples.

Examples:

> (with-input-from-string
"{\"arr\" : [1, 2, 3, 4]}"
(λ () (read-json)))

'#hasheq((arr . (1 2 3 4)))
> (with-input-from-string

"\"sandwich\""
(λ () (read-json)))

"sandwich"
> (with-input-from-string

"true false"
(λ () (list (read-json) (read-json))))

'(#t #f)
> (with-input-from-string

"true[1,2,3]"
(λ () (list (read-json) (read-json))))

'(#t (1 2 3))
> (with-input-from-string

"true\"hello\""
(λ () (list (read-json) (read-json))))

'(#t "hello")
> (with-input-from-string

"\"world\"41"
(λ () (list (read-json) (read-json))))

'("world" 41)
> (with-input-from-string

"sandwich sandwich" ; invalid JSON
(λ () (read-json)))

string::1: read-json: bad input starting #"sandwich
sandwich"

7



> (with-input-from-string
"false sandwich" ; valid JSON prefix, invalid remainder is not

(immediately) problematic
(λ () (read-json)))

#f
> (with-input-from-string

"false42" ; invalid JSON text sequence
(λ () (read-json)))

string::6: read-json: bad input starting #"false42"
> (with-input-from-string

"false 42" ; valid JSON text sequence (notice the space)
(λ () (list (read-json) (read-json))))

'(#f 42)

Changed in version 8.1.0.2 of package base: Adjusted the whitespace handling to reject whitespace that isn’t either
#\space, #\tab, #\newline, or #\return.

(string->jsexpr str [#:null jsnull ]) Ñ jsexpr?
str : string?
jsnull : any/c = (json-null)

Parses a recognizable prefix of the string str as an immutable jsexpr. If the prefix isn’t
delimited per se (true, false, null), it must be separated by whitespace from the remaining
characters. Raises exn:fail:read if the string is malformed JSON.

Example:

> (string->jsexpr "{\"pancake\" : 5, \"waffle\" : 7}")
'#hasheq((pancake . 5) (waffle . 7))

(bytes->jsexpr str [#:null jsnull ]) Ñ jsexpr?
str : bytes?
jsnull : any/c = (json-null)

Parses a recognizable prefix of the string str as an immutable jsexpr. If the prefix isn’t
delimited per se (true, false, null), it must be separated by whitespace from the remaining
bytes. Raises exn:fail:read if the byte string is malformed JSON.

Example:

> (bytes->jsexpr #"{\"pancake\" : 5, \"waffle\" : 7}")
'#hasheq((pancake . 5) (waffle . 7))

8



4 A Word About Design

4.1 The JS-Expression Data Type

JSON syntactically distinguishes “null”, array literals, and object literals, and therefore
there is a question of what Racket value should represent a JSON “null”. This library uses
the Racket 'null symbol by default. Note that this is unambiguous, since Racket symbols
are used only as object keys, which are required to be strings in JSON.

Several other options have been used by various libraries. For example, Dave Herman’s
PLaneT library (which has been the basis for this library) uses the #\nul character, other
libraries for Racket and other Lisps use (void), NIL (some use it also for JSON “false”),
and more. The approach taken by this library is to use a keyword argument for all functions,
with a parameter that determines its default, making it easy to use any value that fits your
needs.

The JSON RFC only states that object literal expressions “SHOULD” contain unique keys,
but does not proscribe them entirely. Looking at existing practice, it appears that popular
JSON libraries parse object literals with duplicate keys by simply picking one of the key-
value pairs and discarding the others with the same key. This behavior is naturally paralleled
by Racket hash tables, making them a natural analog.

Finally, the JSON RFC is almost completely silent about the order of key-value pairs. While
the RFC only specifies the syntax of JSON, which of course always must represent object
literals as an ordered collection, the introduction states:

An object is an unordered collection of zero or more name/value pairs, where a
name is a string and a value is a string, number, boolean, null, object, or array.

In practice, JSON libraries discard the order of object literals in parsed JSON text and make
no guarantees about the order of generated object literals, usually using a hash table of some
flavor as a natural choice. We therefore do so as well.

4.2 Naming Conventions

Some names in this library use “jsexpr” and some use “json”. The rationale that the first is
used for our representation, and the second is used as information that is received from or
sent to the outside world.

9

http://www.ietf.org/rfc/rfc4627.txt
http://www.ietf.org/rfc/rfc4627.txt

	1 JS-Expressions
	2 Generating JSON Text from JS-Expressions
	3 Parsing JSON Text into JS-Expressions
	4 A Word About Design
	4.1 The JS-Expression Data Type
	4.2 Naming Conventions


