On this page:
3.1 Overview of Rack  Unit
3.2 Checks
3.2.1 Basic Checks
check-eq?
check-not-eq?
check-eqv?
check-not-eqv?
check-equal?
check-not-equal?
check-pred
check-=
check-within
check-true
check-false
check-not-false
check-exn
check-not-exn
check-regexp-match
check-match
check
fail
3.2.2 Augmenting Information on Check Failure
check-info
string-info
nested-info
dynamic-info
make-check-name
make-check-params
make-check-location
make-check-expression
make-check-message
make-check-actual
make-check-expected
with-check-info*
with-check-info
with-default-check-info*
3.2.3 Custom Checks
define-simple-check
define-binary-check
define-check
fail-check
3.3 Compound Testing Forms
3.3.1 Test Cases
test-begin
test-case
test-case?
3.3.1.1 Shortcuts for Defining Test Cases
test-check
test-pred
test-equal?
test-eq?
test-eqv?
test-=
test-true
test-false
test-not-false
test-exn
test-not-exn
3.3.2 Test Suites
test-suite
make-test-suite
test-suite?
3.3.2.1 Utilities for Defining Test Suites
define-test-suite
define/  provide-test-suite
3.4 Test Control Flow
before
after
around
delay-test
3.5 Miscellaneous Utilities
require/  expose
dynamic-require/  expose
check-transformer?
check-transformer-impl-name
3.6 User Interfaces
3.6.1 Textual User Interface
run-tests
3.6.2 Graphical User Interface
test/  gui
make-gui-runner

3 RackUnit API🔗ℹ

 (require rackunit) package: rackunit-lib

3.1 Overview of RackUnit🔗ℹ

There are three basic concepts in RackUnit:

3.2 Checks🔗ℹ

Checks are the basic building block of RackUnit. A check checks some condition and always evaluates to (void). If the condition doesn’t hold, the check will report the failure using the current check-info stack (see current-check-handler for customizing how failures are handled).

Although checks are implemented as macros, which is necessary to grab source locations (see Custom Checks), they are conceptually functions (with the exception of check-match below). This means, for instance, checks always evaluate their arguments. You can use a check as a first class function, though this will affect the source location that the check grabs.

Also, if the evaluation of the arguments to one of the checks raises an exception (except exn:break?) the exception is caught and the test case is considered to have failed.

3.2.1 Basic Checks🔗ℹ

The following are the basic checks RackUnit provides. You can create your own checks using define-check.

procedure

(check-eq? v1 v2 [message])  void?

  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
(check-not-eq? v1 v2 [message])  void?
  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
(check-eqv? v1 v2 [message])  void?
  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
(check-not-eqv? v1 v2 [message])  void?
  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
(check-equal? v1 v2 [message])  void?
  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
(check-not-equal? v1 v2 [message])  void?
  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
Checks that v1 is equal (or not equal) to v2, using eq?, eqv?, or equal?, respectively. The optional message is included in the output if the check fails.

For example, the following checks all fail:

> (check-eq? (list 1) (list 1) "allocated data not eq?")

--------------------

FAILURE

name:       check-eq?

location:   eval:3:0

message:    "allocated data not eq?"

actual:     '(1)

expected:   '(1)

--------------------

> (check-not-eq? 1 1 "fixnums are eq?")

--------------------

FAILURE

name:       check-not-eq?

location:   eval:4:0

params:     '(1 1)

message:    "fixnums are eq?"

--------------------

> (check-eqv? 1 1.0 "not eqv?")

--------------------

FAILURE

name:       check-eqv?

location:   eval:5:0

message:    "not eqv?"

actual:     1

expected:   1.0

--------------------

> (check-not-eqv? 1 1 "integers are eqv?")

--------------------

FAILURE

name:       check-not-eqv?

location:   eval:6:0

params:     '(1 1)

message:    "integers are eqv?"

--------------------

> (check-equal? 1 1.0 "not equal?")

--------------------

FAILURE

name:       check-equal?

location:   eval:7:0

message:    "not equal?"

actual:     1

expected:   1.0

--------------------

> (check-not-equal? (list 1) (list 1) "equal?")

--------------------

FAILURE

name:       check-not-equal?

location:   eval:8:0

params:     '((1) (1))

message:    "equal?"

--------------------

> (check-equal? (car #f) (car #f))

--------------------

ERROR

name:       check-equal?

location:   eval:9:0

car: contract violation

  expected: pair?

  given: #f

--------------------

procedure

(check-pred pred v [message])  void?

  pred : (-> any/c any/c)
  v : any/c
  message : (or/c string? #f) = #f
Checks that pred returns a value that is not #f when applied to v. The optional message is included in the output if the check fails. The value returned by a successful check is the value returned by pred.

For example, the following check passes:
> (check-pred string? "I work")
The following check fails:
> (check-pred number? "I fail")

--------------------

FAILURE

name:       check-pred

location:   eval:11:0

params:     '(#<procedure:number?> "I fail")

--------------------

procedure

(check-= v1 v2 epsilon [message])  void?

  v1 : number?
  v2 : number?
  epsilon : number?
  message : (or/c string? #f) = #f
Checks that v1 and v2 are numbers within epsilon of one another. Usually the first number is produced by a function, the second number is the expected value, and epsilon is the tolerance. The optional message is included in the output if the check fails.

For example, the following check passes:

> (define (golden-ratio) 1.62) ; computes the golden ratio
> (check-= (golden-ratio) 1.618033988749 0.01 "I work")

The following check fails:
> (check-= (golden-ratio) 1.618033988749 0.001 "I fail")

--------------------

FAILURE

name:       check-=

location:   eval:14:0

message:    "I fail"

actual:     1.62

expected:   1.618033988749

tolerance:  0.001

--------------------

procedure

(check-within v1 v2 epsilon [message])  void?

  v1 : any/c
  v2 : any/c
  epsilon : number?
  message : (or/c string? #f) = #f
Checks that v1 and v2 are equal? to each other, while allowing numbers inside of them to be different by at most epsilon from one another. If (equal? v1 v2) would call equal? on sub-pieces that are numbers, then those numbers are considered "good enough" if they’re within epsilon. In other words, this check is similar to check-= except it works on data structures like lists, flvectors, and hash tables.

For example, the following checks pass:

> (define (avogadro-constant) 6e+23) ; computes the Avogadro constant
> (define (gravitational-acc) 10)    ; computes the gravitational acceleration
> (check-within (list (avogadro-constant) (gravitational-acc))
                (list 6.02214076e+23 9.80665) 5e+21)
> (check-within (hash 'C 20 'F 68) (hash 'C 25 'F 77) 10)
> (check-within (flvector 3.0 4.0 5.0) (flvector 3.01 4.01 5.014) 0.02)

And the following checks fail:
> (check-within (list (avogadro-constant) (gravitational-acc))
                (list 6.02214076e+23 9.80665) 1e+21)

--------------------

FAILURE

name:       check-within

location:   eval:20:0

actual:     '(6e+23 10)

expected:   '(6.02214076e+23 9.80665)

tolerance:  1e+21

--------------------

> (check-within (hash 'C 18 'F 64) (hash 'C 25 'F 77) 10)

--------------------

FAILURE

name:       check-within

location:   eval:21:0

actual:     '#hash((C . 18) (F . 64))

expected:   '#hash((C . 25) (F . 77))

tolerance:  10

--------------------

> (check-within (flvector 3.0 4.0 5.0) (flvector 3.01 4.01 5.014) 1e-5)

--------------------

FAILURE

name:       check-within

location:   eval:22:0

actual:     (flvector 3.0 4.0 5.0)

expected:   (flvector 3.01 4.01 5.014)

tolerance:  1e-5

--------------------

Added in version 1.10 of package rackunit-lib.

procedure

(check-true v [message])  void?

  v : any/c
  message : (or/c string? #f) = #f
(check-false v [message])  void?
  v : any/c
  message : (or/c string? #f) = #f
(check-not-false v [message])  void?
  v : any/c
  message : (or/c string? #f) = #f
Checks that v is #t, is #f, or is not #f, respectively. The optional message is included in the output if the check fails.

For example, the following checks all fail:

> (check-true 1)

--------------------

FAILURE

name:       check-true

location:   eval:23:0

params:     '(1)

--------------------

> (check-false 1)

--------------------

FAILURE

name:       check-false

location:   eval:24:0

params:     '(1)

--------------------

> (check-not-false #f)

--------------------

FAILURE

name:       check-not-false

location:   eval:25:0

params:     '(#f)

--------------------

procedure

(check-exn exn-predicate thunk [message])  void?

  exn-predicate : (or/c (-> any/c any/c) regexp?)
  thunk : (-> any)
  message : (or/c string? #f) = #f
Checks that thunk raises an exception and that either exn-predicate returns a true value if it is a function, or that it matches the message in the exception if exn-predicate is a regexp. In the latter case, the exception raised must be an exn:fail?. The optional message is included in the output if the check fails. A common error is to use an expression instead of a function of no arguments for thunk. Remember that checks are conceptually functions.

For example, the following checks succeed:

> (check-exn
   exn:fail?
   (lambda ()
     (raise (make-exn:fail "Hi there"
                           (current-continuation-marks)))))
> (check-exn
   #rx"[Hh]i there"
   (lambda ()
     (raise (make-exn:fail "Hi there"
                           (current-continuation-marks)))))
> (check-exn
   exn:fail?
   (lambda ()
     (error 'hi "there")))
> (check-exn exn:fail:contract:divide-by-zero?
             (lambda ()
               (/ 1 0)))

The following check fails:

> (check-exn exn:fail:contract:divide-by-zero?
             (lambda ()
               (car #f)))

--------------------

FAILURE

name:         check-exn

location:     eval:30:0

params:       '(#<procedure:exn:fail:contract:divide-by-zero?> #<procedure>)

message:      "Wrong exception raised"

exn-message:  "car: contract violation\n  expected: pair?\n  given: #f"

exn:

  #(struct:exn:fail:contract "car: contract violation\n  expected: pair?\n  given: #f" #<continuation-mark-set>)

--------------------

> (check-exn
   #rx"Hello there"
   (lambda ()
     (raise (make-exn:fail "Hi there"
                           (current-continuation-marks)))))

--------------------

FAILURE

name:         check-exn

location:     eval:31:0

params:       '(#rx"Hello there" #<procedure>)

message:      "Wrong exception raised"

exn-message:  "Hi there"

exn:          #(struct:exn:fail "Hi there" #<continuation-mark-set>)

--------------------

The following example is a common mistake. The call to error is not within a lambda, so it bypasses check-exn entirely.

; Forgot to wrap the expression in a thunk. Don't do this!
> (check-exn exn:fail?
             (error 'hi "there"))

--------------------

ERROR

name:       check-exn

location:   eval:32:0

hi: there

--------------------

procedure

(check-not-exn thunk [message])  void?

  thunk : (-> any)
  message : (or/c string? #f) = #f
Checks that thunk does not raise any exceptions. The optional message is included in the output if the check fails.

> (check-not-exn (λ () 1))
> (check-not-exn (λ () (car '())))

--------------------

FAILURE

name:               check-not-exn

location:           eval:34:0

params:             '(#<procedure>)

message:            "Exception raised"

exception-message:  "car: contract violation\n  expected: pair?\n  given: '()"

exception:

  car: contract violation

    expected: pair?

    given: '()

--------------------

> (check-not-exn (λ () (/ 1 0)) "don't divide by 0")

--------------------

FAILURE

name:               check-not-exn

location:           eval:35:0

params:             '(#<procedure>)

message:            "don't divide by 0"

exception-message:  "/: division by zero"

exception:

  /: division by zero

--------------------

procedure

(check-regexp-match regexp string)  void?

  regexp : regexp?
  string : string?
Checks that regexp matches the string.

For example, the following check succeeds:

> (check-regexp-match "a+bba" "aaaaaabba")

The following check fails:

> (check-regexp-match "a+bba" "aaaabbba")

--------------------

FAILURE

name:       check-regexp-match

location:   eval:37:0

params:     '("a+bba" "aaaabbba")

--------------------

syntax

(check-match v pattern)

(check-match v pattern pred)
A check that pattern matches on the test value. Matches the test value v against pattern as a match clause. If no pred is provided, then if the match succeeds, the entire check succeeds. For example, this use succeeds:

> (check-match (list 1 2 3) (list _ _ 3))

This check fails to match:

> (check-match (list 1 2 3) (list _ _ 4))

--------------------

FAILURE

name:       check-match

location:   eval:39:0

actual:     '(1 2 3)

pattern:    (list _ _ 4)

--------------------

If pred is provided, it is evaluated with the bindings from the match pattern. If it produces #t, the entire check succeeds, otherwise it fails. For example, this use succeeds, binding x in the predicate:

> (check-match (list 1 (list 3)) (list x (list _)) (odd? x))

This check fails because the pred fails:

> (check-match 6 x (odd? x))

--------------------

FAILURE

name:       check-match

location:   eval:41:0

actual:     6

pattern:    x

condition:  (odd? x)

--------------------

This check fails because of a failure to match:

> (check-match (list 1 2) (list x) (odd? x))

--------------------

FAILURE

name:       check-match

location:   eval:42:0

actual:     '(1 2)

pattern:    (list x)

condition:  (odd? x)

--------------------

procedure

(check op v1 v2 [message])  void?

  op : (-> any/c any/c any/c)
  v1 : any/c
  v2 : any/c
  message : (or/c string? #f) = #f
The most generic check. Succeeds if op applied to v1 and v2 is not #f, otherwise raises an exception of type exn:test:check. The optional message is included in the output if the check fails.

For example, the following check succeeds:

> (check < 2 3)

The following check fails:

> (check memq 'pine '(apple orange pear))

--------------------

FAILURE

name:       check

location:   eval:44:0

params:     '(#<procedure:memq> pine (apple orange pear))

--------------------

procedure

(fail [message])  void?

  message : (or/c string? #f) = #f
This check fails unconditionally. Good for creating test stubs that you intend to fill out later. The optional message is included in the output.

3.2.2 Augmenting Information on Check Failure🔗ℹ

When a check fails, it may add information about the failure to RackUnit’s check-info stack. Additional information can be stored by using the with-check-info* function, and the with-check-info macro.

struct

(struct check-info (name value)
    #:extra-constructor-name make-check-info
    #:transparent)
  name : symbol?
  value : any/c
A check-info structure stores information associated with the context of the execution of a check. The value is normally written in a check failure message using write, but the rackunit library provides several special formatting wrappers that can influence how the check info value is printed.

Changed in version 1.6 of package rackunit-lib: Changed from opaque to transparent

struct

(struct string-info (value)
    #:transparent)
  value : string?
A special wrapper around a string for use as a check-info value. When displayed in a check failure message, value is displayed without quotes. Used to print messages instead of writing values.

> (define-check (string-info-check)
    (with-check-info (['value "hello world"]
                      ['message (string-info "hello world")])
      (fail-check)))
> (string-info-check)

--------------------

FAILURE

name:       string-info-check

location:   eval:46:0

params:     '()

value:      "hello world"

message:    hello world

--------------------

Added in version 1.2 of package rackunit-lib.

struct

(struct nested-info (values)
    #:transparent)
  values : (listof check-info?)
A special wrapper around a list of check-infos for use as a check-info value. A check info whose value is a nested info is displayed as an indented subsequence of infos. Nested infos can be placed inside nested infos, yielding greater indentation.

> (define-check (nested-info-check)
    (define infos
      (list (make-check-info 'foo "foo") (make-check-info 'bar "bar")))
    (with-check-info (['nested (nested-info infos)]) (fail-check)))
> (nested-info-check)

--------------------

FAILURE

name:       nested-info-check

location:   eval:48:0

params:     '()

nested:

  foo:        "foo"

  bar:        "bar"

--------------------

Added in version 1.7 of package rackunit-lib.

struct

(struct dynamic-info (proc)
    #:transparent)
  proc : (-> any/c)
A special wrapper around a procedure that produces a value for a check-info. When a dynamic-info is displayed in a check info stack, proc is called to determine what value to display.

> (with-check-info (['current-dir (dynamic-info current-directory)])
    (check-equal? 1 2)
    (parameterize ([current-directory (find-system-path 'temp-dir)])
      (check-equal? 1 2)))

--------------------

FAILURE

current-dir:

  #<path:/Users/robby/git/snapshot/racket/build/user/8.15.0.6/pkgs/rackunit-doc/rackunit/>

name:         check-equal?

location:     eval:49:0

actual:       1

expected:     2

--------------------

--------------------

FAILURE

current-dir:  #<path:/var/folders/fc/_dl4jp915_16jf01zbcrxxl40000gn/T/>

name:         check-equal?

location:     eval:49:0

actual:       1

expected:     2

--------------------

The value returned by proc may itself be a special formatting value such as nested-info (or even another dynamic-info), in which case that value is rendered as it would be if it had not been wrapped in dynamic-info.

> (define current-foo (make-parameter #f))
> (with-check-info (['foo (dynamic-info current-foo)])
    (check-equal? 1 2)
    (parameterize ([current-foo
                    (nested-info (list (make-check-info 'nested 'foo)))])
      (check-equal? 1 2)))

--------------------

FAILURE

foo:        #f

name:       check-equal?

location:   eval:51:0

actual:     1

expected:   2

--------------------

--------------------

FAILURE

foo:

  nested:     foo

name:       check-equal?

location:   eval:51:0

actual:     1

expected:   2

--------------------

Added in version 1.9 of package rackunit-lib.

The are several predefined functions that create check-info structures with predefined names. This avoids misspelling errors:

procedure

(make-check-name name)  check-info?

  name : string?
(make-check-params params)  check-info?
  params : (listof any/c)
(make-check-location loc)  check-info?
  loc : 
(list/c any/c (or/c number? #f) (or/c number? #f)
            (or/c number? #f) (or/c number? #f))
(make-check-expression msg)  check-info?
  msg : any/c
(make-check-message msg)  check-info?
  msg : string?
(make-check-actual param)  check-info?
  param : any/c
(make-check-expected param)  check-info?
  param : any/c

procedure

(with-check-info* info thunk)  any

  info : (listof check-info?)
  thunk : (-> any)
Pushes the given info on the check-info stack for the duration (the dynamic extent) of the execution of thunk

> (with-check-info*
   (list (make-check-info 'time (current-seconds)))
   (lambda () (check = 1 2)))

--------------------

FAILURE

time:       1732521408

name:       check

location:   eval:52:0

params:     '(#<procedure:=> 1 2)

--------------------

When this check fails the message

time: <current-seconds-at-time-of-running-check>

is printed along with the usual information on an check failure.

syntax

(with-check-info ((name val) ...) body ...)

The with-check-info macro pushes the given information onto the check-info stack for the duration of the execution of the body expressions. Each name must be a quoted symbol and each val must be a value.

> (for-each
   (lambda (elt)
     (with-check-info
      (('current-element elt))
      (check-pred odd? elt)))
   (list 1 3 5 7 8))

--------------------

FAILURE

current-element:  8

name:             check-pred

location:         eval:53:0

params:           '(#<procedure:odd?> 8)

--------------------

When this test fails the message

current-element: 8

is displayed along with the usual information on an check failure.

procedure

(with-default-check-info* info thunk)  any

  info : (listof check-info?)
  thunk : (-> any)
Similar to with-check-info*, but ignores elements of info whose name (as determined by check-info-name) matches the name of an element on the current check-info stack.

> (with-default-check-info*
    (list (make-check-name 'first-name))
    (λ ()
      (with-default-check-info*
        (list (make-check-name 'last-name))
        (λ ()
          (check-true #false)))))

--------------------

FAILURE

name:       first-name

location:   eval:54:0

params:     '(#f)

--------------------

The error message above should include 'first-name but not 'last-name.

3.2.3 Custom Checks🔗ℹ

Custom checks can be defined using define-check and its variants. To effectively use these macros it is useful to understand a few details about a check’s evaluation model.

First, a check should be considered a function, even though most uses are actually macros. In particular, checks always evaluate their arguments exactly once before executing any expressions in the body of the checks. Hence if you wish to write checks that evaluate user defined code that code must be wrapped in a thunk (a function of no arguments) by the user. The predefined check-exn is an example of this type of check.

Second, checks add information to the check-info stack: an internal list of check-info structures that RackUnit interprets to build error messages. The basic checks treat the stack as a source of optional arguments; if the stack is missing some information, then the check may supply a default value. For example, check-equal? adds a default source location if the check-info stack does not contain a check-info with the name 'location (see make-check-location).

syntax

(define-simple-check (name param ...) body ...)

The define-simple-check macro constructs a check called name that takes the params and an optional message as arguments and evaluates the bodys. The check fails if the result of the last body is #f. Otherwise the check succeeds.

Simple checks cannot report extra information by using with-check-info inside their body.

For example, the following code defines a check check-odd?

> (define-simple-check (check-odd? number)
    (odd? number))

We can use these checks in the usual way:

> (check-odd? 3)
> (check-odd? 2)

--------------------

FAILURE

name:       check-odd?

location:   eval:57:0

params:     '(2)

--------------------

syntax

(define-binary-check (name pred actual expected))

(define-binary-check (name actual expected) body ...)
The define-binary-check macro constructs a check that tests a binary predicate. It adds the values of actual and expected to the check-info stack. The first form of define-binary-check accepts a binary predicate and tests if the predicate holds for the given values. The second form tests if the last body evaluates to a non-false value.

Here’s the first form, where we use a predefined predicate to construct a binary check:

> (define-binary-check (check-char=? char=? actual expected))

In use:

> (check-char=? (read-char (open-input-string "a")) #\a)

If the expression is more complicated, the second form should be used. For example, below we define a binary check that tests whether a number is within 0.01 of the expected value:

> (define-binary-check (check-in-tolerance actual expected)
    (< (abs (- actual expected)) 0.01))

syntax

(define-check (name param ...) body ...)

The define-check macro is similar to define-simple-check, except the check only fails if fail-check is called in the body of the check. This allows more flexible checks, and in particular more flexible reporting options.

> (define-check (check-even? number)
    (unless (even? number)
      (fail-check)))
> (check-even? 0)
> (check-even? 1)

--------------------

FAILURE

name:       check-even?

location:   eval:63:0

params:     '(1)

--------------------

Checks defined with define-check add the source location and source syntax at their use-site to the check-info stack, unless the stack already contains values for the keys 'location and 'expression.

> (check-equal? 0 1)

--------------------

FAILURE

name:       check-equal?

location:   eval:64:0

actual:     0

expected:   1

--------------------

> (with-check-info*
    (list (make-check-location (list 'custom 6 1 #f #f)))
    (λ () (check-equal? 0 1)))

--------------------

FAILURE

location:   custom:6:1

name:       check-equal?

actual:     0

expected:   1

--------------------

Changed in version 1.9 of package rackunit-lib: Documented the protocol for adding 'location and 'expression information.

procedure

(fail-check message)  void?

  message : string?
Raises an exn:test:check with the contents of the check-info stack. The optional message is used as the exception’s message.

3.3 Compound Testing Forms🔗ℹ

3.3.1 Test Cases🔗ℹ

As programs increase in complexity the unit of testing grows beyond a single check. For example, it may be the case that if one check fails it doesn’t make sense to run another. To solve this problem compound testing forms can be used to group expressions. If any expression in a group fails (by raising an exception) the remaining expressions will not be evaluated.

syntax

(test-begin expr ...)

A test-begin form groups the exprs into a single unit. If any expr fails the following ones are not evaluated.

For example, in the following code the world is not destroyed as the preceding check fails:

(test-begin
  (check-eq? 'a 'b)
  ; This line won't be run
  (destroy-the-world))

syntax

(test-case name body ...+)

Like a test-begin except a name is associated with the bodys. The name will be reported if the test fails.

Here’s the above example rewritten to use test-case so the test can be named.

(test-case
  "Example test"
  (check-eq? 'a 'b)
  ; This line won't be run
  (destroy-the-world))

procedure

(test-case? obj)  boolean?

  obj : any/c
True if obj is a test case, and false otherwise.

3.3.1.1 Shortcuts for Defining Test Cases🔗ℹ

procedure

(test-check name operator v1 v2)  void?

  name : string?
  operator : (-> any/c any/c any/c)
  v1 : any/c
  v2 : any/c
(test-pred name pred v)  void?
  name : string?
  pred : (-> any/c any/c)
  v : any/c
(test-equal? name v1 v2)  void?
  name : string?
  v1 : any/c
  v2 : any/c
(test-eq? name v1 v2)  void?
  name : string?
  v1 : any/c
  v2 : any/c
(test-eqv? name v1 v2)  void?
  name : string?
  v1 : any/c
  v2 : any/c
(test-= name v1 v2 epsilon)  void?
  name : string?
  v1 : real?
  v2 : real?
  epsilon : real?
(test-true name v)  void?
  name : string?
  v : any/c
(test-false name v)  void?
  name : string?
  v : any/c
(test-not-false name v)  void?
  name : string?
  v : any/c
(test-exn name pred thunk)  void?
  name : string?
  pred : (or/c (-> any/c any/c) regexp?)
  thunk : (-> any)
(test-not-exn name thunk)  void?
  name : string?
  thunk : (-> any)
Creates a test case with the given name that performs the corresponding check. For example,

(test-equal? "Fruit test" "apple" "pear")

is equivalent to

(test-case "Fruit test" (check-equal? "apple" "pear"))

3.3.2 Test Suites🔗ℹ

Test cases can themselves be grouped into test suites. A test suite can contain both test cases and test suites. Unlike a check or test case, a test suite is not immediately run. Instead use one of the functions described in User Interfaces or Programmatically Running Tests and Inspecting Results.

syntax

(test-suite name-expr maybe-before maybe-after test ...)

 
maybe-before = 
  | #:before before-thunk
     
maybe-after = 
  | #:after after-thunk
 
  name-expr : string?
Constructs a test suite with the given name and tests. The tests may be checks, test cases, constructed using test-begin or test-case, or other test suites.

The before-thunk and after-thunk are optional thunks (functions with no argument). They are run before and after the tests are run, respectively.

Unlike a check or test case, a test suite is not immediately run. Instead use one of the functions described in User Interfaces or Programmatically Running Tests and Inspecting Results.

For example, here is a test suite that displays Before before any tests are run, and After when the tests have finished.

(test-suite
  "An example suite"
  #:before (lambda () (display "Before"))
  #:after  (lambda () (display "After"))
  (test-case
    "An example test"
    (check-eq? 1 1))
  (test-suite "A nested test suite"
    (test-case "Another test"
      (check < 1 2))))

procedure

(make-test-suite name    
  tests    
  [#:before before-thunk    
  #:after after-thunk])  test-suite?
  name : string?
  tests : (listof (or/c test-case? test-suite?))
  before-thunk : (-> any) = void
  after-thunk : (-> any) = void
Constructs a test suite with the given name containing the given tests. Unlike the test-suite form, the tests are represented as a list of test values.

procedure

(test-suite? obj)  boolean?

  obj : any/c
True if obj is a test suite, and false otherwise

3.3.2.1 Utilities for Defining Test Suites🔗ℹ

There are some macros that simplify the common cases of defining test suites:

syntax

(define-test-suite name test ...)

The define-test-suite form creates a test suite with the given name (converted to a string) and tests, and binds it to the same name.

For example, this code creates a binding for the name example-suite as well as creating a test suite with the name "example-suite":

(define-test-suite example-suite
  (check = 1 1))

syntax

(define/provide-test-suite name test ...)

This form is just like define-test-suite, and in addition it provides the test suite.

3.4 Test Control Flow🔗ℹ

The before, after, and around macros allow you to specify code that is always run before, after, or around expressions in a test case.

syntax

(before before-expr expr-1 expr-2 ...)

Whenever control enters the scope execute the before-expr before executing expr-1, and expr-2 ...

syntax

(after expr-1 expr-2 ... after-expr)

Whenever control exits the scope execute the after-expr after executing expr-1, and expr-2 ... The after-expr is executed even if control exits via an exception or other means.

syntax

(around before-expr expr-1 expr-2 ... after-expr)

Whenever control enters the scope execute the before-expr before executing expr-1 expr-2 ..., and execute after-expr whenever control leaves the scope.

Example:

The test below checks that the file test.dat contains the string "foo". The before action writes to this file. The after action deletes it.

(around
  (with-output-to-file "test.dat"
     (lambda ()
       (write "foo")))
  (with-input-from-file "test.dat"
    (lambda ()
      (check-equal? "foo" (read))))
  (delete-file "test.dat"))

syntax

(delay-test test1 test2 ...)

This somewhat curious macro evaluates the given tests in a context where current-test-case-around is parameterized to test-suite-test-case-around. This has been useful in testing RackUnit. It might be useful for you if you create test cases that create test cases.

3.5 Miscellaneous Utilities🔗ℹ

The require/expose macro allows you to access bindings that a module does not provide. It is useful for testing the private functions of modules.

syntax

(require/expose module (id ...))

Requires id from module into the current module. It doesn’t matter if the source module provides the bindings or not; require/expose can still get at them.

Note that require/expose can be a bit fragile, especially when mixed with compiled code. Use at your own risk!

This example gets make-failure-test, which is defined in a RackUnit test:

(require/expose rackunit/private/check-test (make-failure-test))

procedure

(dynamic-require/expose mod name)  any

  mod : 
(or/c module-path?
      module-path-index?
      resolved-module-path?)
  name : symbol?
Like dynamic-require, but gets internal bindings like require/expose.

Checks defined with define-check provide a compile-time API to access information associated with the check.

procedure

(check-transformer? v)  boolean?

  v : any/c
Determines if v is a syntax transformer defined with define-check. Typically, this is used on the result of syntax-local-value.

Provided by rackunit at phase 1.

Given a transformer ct defined with define-check, produces an identifier which names the procedure implementing the check. This procedure takes the same arguments as the check form, as well as two mandatory keyword arguments: #:location whose argument must be a list representing a source location as in the third argument of datum->syntax, and #:exp, whose argument is an s-expression representing the original syntax of the check for printing.

Provided by rackunit at phase 1.

3.6 User Interfaces🔗ℹ

RackUnit provides a textual and a graphical user interface

3.6.1 Textual User Interface🔗ℹ

 (require rackunit/text-ui) package: rackunit-lib

The textual UI is in the rackunit/text-ui module. It is run via the run-tests function.

procedure

(run-tests test [verbosity])  natural-number/c

  test : (or/c test-case? test-suite?)
  verbosity : (symbols 'quiet 'normal 'verbose) = 'normal
The given test is run and the result of running it output to the current-output-port if all tests pass, and to current-error-port when there are test failures. The output is compatible with the (X)Emacs next-error command (as used, for example, by (X)Emacs’s compile function).

The optional verbosity is one of 'quiet, 'normal, or 'verbose. Quiet output displays only the number of successes, failures, and errors. Normal reporting suppresses some extraneous check information (such as the expression). Verbose reports all information.

run-tests returns the number of unsuccessful tests.

3.6.2 Graphical User Interface🔗ℹ

 (require rackunit/gui) package: rackunit-gui

RackUnit also provides a GUI test runner, available from the rackunit/gui module.

procedure

(test/gui test ... [#:wait? wait?])  void?

  test : (or/c test-case? test-suite?)
  wait? : boolean? = #f
Creates a new RackUnit GUI window and runs each test. The GUI is updated as tests complete.

When wait? is true, test/gui does not return until the test runner window has been closed.

Given the following program, the RackUnit GUI will look as shown below:

#lang racket
(require rackunit rackunit/gui)
(test/gui
 (test-suite
  "all tests"
  (test-suite
   "math tests"
   (test-case "addition" (check-equal? (+ 1 1) 2))
   (test-case "subtraction" (check-equal? (- 0 0) 0))
   (test-case "multiplication" (check-equal? (* 2 2) 5)))
  (test-suite
   "string tests"
   (test-case "append" (check-equal? (string-append "a" "b") "ab"))
   (test-case "ref" (check-equal? (string-ref "abc" 1) #\b)))))

Screenshot of the RackUnit
window. It features a tree representing the nested test suites (with test
cases as leaves) on the left pane, and information about the selected test
failure in the right pane.

procedure

(make-gui-runner)  (-> (or/c test-case? test-suite?) ... any)

Creates a new RackUnit GUI window and returns a procedure that, when applied, runs the given tests and displays the results in the GUI.