
Syntax: Meta-Programming Helpers
Version 8.16.0.2

February 17, 2025

1

Contents

1 Parsing and Specifying Syntax 6

1.1 Introduction . 6

1.2 Examples . 16

1.2.1 Phases and Reusable Syntax Classes 16

1.2.2 Optional Keyword Arguments . 18

1.2.3 Variants with Uniform Meanings 20

1.2.4 Variants with Varied Meanings . 23

1.2.5 More Keyword Arguments . 25

1.2.6 Contracts on Macro Sub-expressions 27

1.3 Parsing Syntax . 29

1.4 Specifying Syntax with Syntax Classes . 34

1.4.1 Pattern Directives . 39

1.4.2 Pattern Variables and Attributes 44

1.5 Syntax Patterns . 49

1.5.1 Single-term Patterns . 52

1.5.2 Head Patterns . 63

1.5.3 Ellipsis-head Patterns . 67

1.5.4 Action Patterns . 69

1.5.5 Pattern Expanders . 73

1.6 Defining Simple Macros . 74

1.7 Literal Sets and Conventions . 76

1.8 Library Syntax Classes and Literal Sets 79

1.8.1 Syntax Classes . 79

1.8.2 Literal Sets . 83

2

1.8.3 Function Headers . 83

1.9 Unwindable State . 85

1.10 Configuring Error Reporting . 87

1.11 Debugging and Inspection Tools . 88

1.12 Experimental . 89

1.12.1 Contracts for Macro Sub-expressions 89

1.12.2 Contracts for Syntax Classes . 89

1.12.3 Reflection . 90

1.12.4 Procedural Splicing Syntax Classes 92

1.12.5 Ellipsis-head Alternative Sets . 93

1.12.6 Syntax Class Specialization . 94

1.12.7 Syntax Templates . 95

1.13 Minimal Library . 96

2 Syntax Object Helpers 97

2.1 Deconstructing Syntax Objects . 97

2.2 Matching Fully-Expanded Expressions . 99

2.3 Dictionaries with Identifier Keys . 100

2.3.1 Dictionaries for free-identifier=? 101

2.3.2 Dictionaries for bound-identifier=? 106

2.4 Sets with Identifier Keys . 108

2.4.1 Sets for free-identifier=? . 109

2.4.2 Sets for bound-identifier=? 114

2.5 Hashing on bound-identifier=? and free-identifier=? 116

2.6 Rendering Syntax Objects with Formatting 118

2.7 Computing the Free Variables of an Expression 118

3

2.8 Replacing Lexical Context . 119

2.9 Helpers for Processing Keyword Syntax 120

3 Datum Pattern Matching 126

4 Module-Processing Helpers 129

4.1 Reading Module Source Code . 129

4.2 Getting Module Compiled Code . 129

4.3 Resolving Module Paths to File Paths . 133

4.4 Simplifying Module Paths . 134

4.5 Inspecting Modules and Module Dependencies 136

4.6 Wrapping Module-Body Expressions . 136

5 Macro Transformer Helpers 138

5.1 Extracting Inferred Names . 138

5.2 Support for local-expand . 138

5.3 Parsing define-like Forms . 139

5.4 Flattening begin Forms . 140

5.5 Expanding define-struct-like Forms 140

5.6 Resolving include-like Paths . 144

5.7 Controlling Syntax Templates . 145

5.8 Creating Macro Transformers . 147

5.9 Applying Macro Transformers . 148

6 Reader Helpers 149

6.1 Raising exn:fail:read . 149

6.2 Module Reader . 150

4

7 Parsing for Bodies 159

8 Unsafe for Clause Transforms 160

9 Source Locations 162

9.1 Representations . 162

9.2 Source Location Utilities . 167

9.2.1 Quoting . 168

10 Preserving Source Locations 173

11 Non-Module Compilation And Expansion 174

12 Trusting Standard Recertifying Transformers 175

13 Attaching Documentation to Exports 176

14 Contracts for Macro Subexpressions 178

15 Macro Testing 181

16 Internal-Definition Context Helpers 183

Index 184

Index 184

5

1 Parsing and Specifying Syntax

The syntax/parse library provides a framework for writing macros and processing syntax.
The library provides a powerful language of syntax patterns, used by the pattern-matching
form syntax-parse and the specification form define-syntax-class. Macros that use
syntax-parse automatically generate error messages based on descriptions and messages
embedded in the macro’s syntax patterns.

(require syntax/parse) package: base

1.1 Introduction

This section provides an introduction to writing robust macros with syntax-parse and
syntax classes.

As a running example we use the following task: write a macro named mylet that has the
same syntax and behavior as Racket’s let form. The macro should produce good error
messages when used incorrectly.

Here is the specification of mylet’s syntax:

(mylet ([var-id rhs-expr] ...) body ...+)
(mylet loop-id ([var-id rhs-expr] ...) body ...+)

For simplicity, we handle only the first case for now. We return to the second case later in
the introduction.

The macro can be implemented very simply using define-syntax-rule:

> (define-syntax-rule (mylet ([var rhs] ...) body ...)
((lambda (var ...) body ...) rhs ...))

When used correctly, the macro works, but it behaves very badly in the presence of errors. In
some cases, the macro merely fails with an uninformative error message; in others, it blithely
accepts illegal syntax and passes it along to lambda, with strange consequences:

> (mylet ([a 1] [b 2]) (+ a b))
3
> (mylet (b 2) (sub1 b))
mylet: use does not match pattern: (mylet ((var rhs) ...)
body ...)

in: (mylet (b 2) (sub1 b))
> (mylet ([1 a]) (add1 a))

6

https://pkgs.racket-lang.org/package/base

lambda: not an identifier, identifier with default, or
keyword

at: 1
in: (lambda (1) (add1 a))

> (mylet ([#:x 1] [y 2]) (* x y))
eval:1:0: arity mismatch;

the expected number of arguments does not match the given
number

expected: 0 plus an argument with keyword #:x
given: 2
arguments...:

1
2

These examples of illegal syntax are not to suggest that a typical programmer would make
such mistakes attempting to use mylet. At least, not often, not after an initial learning curve.
But macros are also used by inexpert programmers and as targets of other macros (or code
generators), and many macros are far more complex than mylet. Macros must validate
their syntax and report appropriate errors. Furthermore, the macro writer benefits from the
machine-checked specification of syntax in the form of more readable, maintainable code.

We can improve the error behavior of the macro by using syntax-parse. First, we import
syntax-parse into the transformer environment, since we will use it to implement a macro
transformer.

> (require (for-syntax syntax/parse))

The following is the syntax specification above transliterated into a syntax-parse macro
definition. It behaves no better than the version using define-syntax-rule above.

> (define-syntax (mylet stx)
(syntax-parse stx

[(_ ([var-id rhs-expr] ...) body ...+)
#'((lambda (var-id ...) body ...) rhs-expr ...)]))

One minor difference is the use of ...+ in the pattern; ... means match zero or more
repetitions of the preceding pattern; ...+ means match one or more. Only ... may be used
in the template, however.

The first step toward validation and high-quality error reporting is annotating each of the
macro’s pattern variables with the syntax class that describes its acceptable syntax. In mylet,
each variable must be an identifier (id for short) and each right-hand side must be an
expr (expression). An annotated pattern variable is written by concatenating the pattern
variable name, a colon character, and the syntax class name. For an alternative to

the “colon” syntax,
see the ~var pattern
form.

7

> (define-syntax (mylet stx)
(syntax-parse stx

[(_ ((var:id rhs:expr) ...) body ...+)
#'((lambda (var ...) body ...) rhs ...)]))

Note that the syntax class annotations do not appear in the template (i.e., var, not var:id).

The syntax class annotations are checked when we use the macro.

> (mylet ([a 1] [b 2]) (+ a b))
3
> (mylet (["a" 1]) (add1 a))
mylet: expected identifier

at: "a"
in: (mylet (("a" 1)) (add1 a))

The expr syntax class does not actually check that the term it matches is a valid expression—
that would require calling that macro expander. Instead, expr just means not a keyword.

> (mylet ([a #:whoops]) 1)
mylet: expected expression

at: #:whoops
in: (mylet ((a #:whoops)) 1)

Also, syntax-parse knows how to report a few kinds of errors without any help:

> (mylet ([a 1 2]) (* a a))
mylet: unexpected term

at: 2
in: (mylet ((a 1 2)) (* a a))

There are other kinds of errors, however, that this macro does not handle gracefully:

> (mylet (a 1) (+ a 2))
mylet: bad syntax

in: (mylet (a 1) (+ a 2))

It’s too much to ask for the macro to respond, “This expression is missing a pair of paren-
theses around (a 1).” The pattern matcher is not that smart. But it can pinpoint the source
of the error: when it encountered a it was expecting what we might call a “binding pair,” but
that term is not in its vocabulary yet.

To allow syntax-parse to synthesize better errors, we must attach descriptions to the pat-
terns we recognize as discrete syntactic categories. One way of doing that is by defining new
syntax classes: Another way is the

~describe pattern
form.

8

> (define-syntax (mylet stx)

(define-syntax-class binding
#:description "binding pair"
(pattern (var:id rhs:expr)))

(syntax-parse stx
[(_ (b:binding ...) body ...+)
#'((lambda (b.var ...) body ...) b.rhs ...)]))

Note that we write b.var and b.rhs now. They are the nested attributes formed from the
annotated pattern variable b and the attributes var and rhs of the syntax class binding.

Now the error messages can talk about “binding pairs.”

> (mylet (a 1) (+ a 2))
mylet: expected binding pair

at: a
in: (mylet (a 1) (+ a 2))

Errors are still reported in more specific terms when possible:

> (mylet (["a" 1]) (+ a 2))
mylet: expected identifier

at: "a"
in: (mylet (("a" 1)) (+ a 2))
parsing context:

while parsing binding pair
term: ("a" 1)
location: eval:16:0

There is one other constraint on the legal syntax of mylet. The variables bound by the
different binding pairs must be distinct. Otherwise the macro creates an illegal lambda
form:

> (mylet ([a 1] [a 2]) (+ a a))
lambda: duplicate argument name

at: a
in: (lambda (a a) (+ a a))

Constraints such as the distinctness requirement are expressed as side conditions, thus:

> (define-syntax (mylet stx)

9

(define-syntax-class binding
#:description "binding pair"
(pattern (var:id rhs:expr)))

(syntax-parse stx
[(_ (b:binding ...) body ...+)
#:fail-when (check-duplicate-identifier

(syntax->list #'(b.var ...)))
"duplicate variable name"

#'((lambda (b.var ...) body ...) b.rhs ...)]))

> (mylet ([a 1] [a 2]) (+ a a))
mylet: duplicate variable name

at: a
in: (mylet ((a 1) (a 2)) (+ a a))

The #:fail-when keyword is followed by two expressions: the condition and the error
message. When the condition evaluates to anything but #f, the pattern fails. Additionally, if
the condition evaluates to a syntax object, that syntax object is used to pinpoint the cause of
the failure.

Syntax classes can have side conditions, too. Here is the macro rewritten to include another
syntax class representing a “sequence of distinct binding pairs.”

> (define-syntax (mylet stx)

(define-syntax-class binding
#:description "binding pair"
(pattern (var:id rhs:expr)))

(define-syntax-class distinct-bindings
#:description "sequence of distinct binding pairs"
(pattern (b:binding ...)

#:fail-when (check-duplicate-identifier
(syntax->list #'(b.var ...)))

"duplicate variable name"
#:with (var ...) #'(b.var ...)
#:with (rhs ...) #'(b.rhs ...)))

(syntax-parse stx
[(_ bs:distinct-bindings body ...+)
#'((lambda (bs.var ...) body ...) bs.rhs ...)]))

Here we’ve introduced the #:with clause. A #:with clause matches a pattern with a com-
puted term. Here we use it to bind var and rhs as attributes of distinct-bindings.

10

By default, a syntax class only exports its patterns’ pattern variables as attributes, not their
nested attributes. The alternative

would be to
explicitly declare
the attributes of
distinct-bindings
to include the
nested attributes
b.var and b.rhs,
using the
#:attribute
option. Then the
macro would refer
to bs.b.var and
bs.b.rhs.

Alas, so far the macro only implements half of the functionality offered by Racket’s let.
We must add the “named-let” form. That turns out to be as simple as adding a new clause:

> (define-syntax (mylet stx)

(define-syntax-class binding
#:description "binding pair"
(pattern (var:id rhs:expr)))

(define-syntax-class distinct-bindings
#:description "sequence of distinct binding pairs"
(pattern (b:binding ...)

#:fail-when (check-duplicate-identifier
(syntax->list #'(b.var ...)))

"duplicate variable name"
#:with (var ...) #'(b.var ...)
#:with (rhs ...) #'(b.rhs ...)))

(syntax-parse stx
[(_ bs:distinct-bindings body ...+)
#'((lambda (bs.var ...) body ...) bs.rhs ...)]

[(_ loop:id bs:distinct-bindings body ...+)
#'(letrec ([loop (lambda (bs.var ...) body ...)])

(loop bs.rhs ...))]))

We are able to reuse the distinct-bindings syntax class, so the addition of the “named-
let” syntax requires only three lines.

But does adding this new case affect syntax-parse’s ability to pinpoint and report errors?

> (mylet ([a 1] [b 2]) (+ a b))
3
> (mylet (["a" 1]) (add1 a))
mylet: expected identifier

at: "a"
in: (mylet (("a" 1)) (add1 a))
parsing context:

while parsing binding pair
term: ("a" 1)
location: eval:23:0

while parsing sequence of distinct binding pairs
term: (("a" 1))
location: eval:23:0

11

> (mylet ([a #:whoops]) 1)
mylet: expected expression

at: #:whoops
in: (mylet ((a #:whoops)) 1)
parsing context:

while parsing binding pair
term: (a #:whoops)
location: eval:24:0

while parsing sequence of distinct binding pairs
term: ((a #:whoops))
location: eval:24:0

> (mylet ([a 1 2]) (* a a))
mylet: unexpected term

at: 2
in: (mylet ((a 1 2)) (* a a))
parsing context:

while parsing binding pair
term: (a 1 2)
location: eval:25:0

while parsing sequence of distinct binding pairs
term: ((a 1 2))
location: eval:25:0

> (mylet (a 1) (+ a 2))
mylet: expected binding pair

at: a
in: (mylet (a 1) (+ a 2))
parsing context:

while parsing sequence of distinct binding pairs
term: (a 1)
location: eval:26:0

> (mylet ([a 1] [a 2]) (+ a a))
mylet: duplicate variable name

at: a
in: (mylet ((a 1) (a 2)) (+ a a))
parsing context:

while parsing sequence of distinct binding pairs
term: ((a 1) (a 2))
location: eval:27:0

The error reporting for the original syntax seems intact. We should verify that the named-let
syntax is working, that syntax-parse is not simply ignoring that clause.

> (mylet loop ([a 1] [b 2]) (+ a b))
3
> (mylet loop (["a" 1]) (add1 a))
mylet: expected identifier

12

at: "a"
in: (mylet loop (("a" 1)) (add1 a))
parsing context:

while parsing binding pair
term: ("a" 1)
location: eval:29:0

while parsing sequence of distinct binding pairs
term: (("a" 1))
location: eval:29:0

> (mylet loop ([a #:whoops]) 1)
mylet: expected expression

at: #:whoops
in: (mylet loop ((a #:whoops)) 1)
parsing context:

while parsing binding pair
term: (a #:whoops)
location: eval:30:0

while parsing sequence of distinct binding pairs
term: ((a #:whoops))
location: eval:30:0

> (mylet loop ([a 1 2]) (* a a))
mylet: unexpected term

at: 2
in: (mylet loop ((a 1 2)) (* a a))
parsing context:

while parsing binding pair
term: (a 1 2)
location: eval:31:0

while parsing sequence of distinct binding pairs
term: ((a 1 2))
location: eval:31:0

> (mylet loop (a 1) (+ a 2))
mylet: expected binding pair

at: a
in: (mylet loop (a 1) (+ a 2))
parsing context:

while parsing sequence of distinct binding pairs
term: (a 1)
location: eval:32:0

> (mylet loop ([a 1] [a 2]) (+ a a))
mylet: duplicate variable name

at: a
in: (mylet loop ((a 1) (a 2)) (+ a a))
parsing context:

while parsing sequence of distinct binding pairs
term: ((a 1) (a 2))

13

location: eval:33:0

How does syntax-parse decide which clause the programmer was attempting, so it can
use it as a basis for error reporting? After all, each of the bad uses of the named-let syntax
are also bad uses of the normal syntax, and vice versa. And yet the macro does not produce
errors like “mylet: expected sequence of distinct binding pairs at: loop.”

The answer is that syntax-parse records a list of all the potential errors (including ones
like loop not matching distinct-binding) along with the progress made before each
error. Only the error with the most progress is reported.

For example, in this bad use of the macro,

> (mylet loop (["a" 1]) (add1 a))
mylet: expected identifier

at: "a"
in: (mylet loop (("a" 1)) (add1 a))
parsing context:

while parsing binding pair
term: ("a" 1)
location: eval:34:0

while parsing sequence of distinct binding pairs
term: (("a" 1))
location: eval:34:0

there are two potential errors: expected distinct-bindings at loop and expected iden-
tifier at "a". The second error occurs further in the term than the first, so it is reported.

For another example, consider this term:

> (mylet (["a" 1]) (add1 a))
mylet: expected identifier

at: "a"
in: (mylet (("a" 1)) (add1 a))
parsing context:

while parsing binding pair
term: ("a" 1)
location: eval:35:0

while parsing sequence of distinct binding pairs
term: (("a" 1))
location: eval:35:0

Again, there are two potential errors: expected identifier at (["a" 1]) and expected
identifier at "a". They both occur at the second term (or first argument, if you prefer),
but the second error occurs deeper in the term. Progress is based on a left-to-right traversal
of the syntax.

14

A final example: consider the following:

> (mylet ([a 1] [a 2]) (+ a a))
mylet: duplicate variable name

at: a
in: (mylet ((a 1) (a 2)) (+ a a))
parsing context:

while parsing sequence of distinct binding pairs
term: ((a 1) (a 2))
location: eval:36:0

There are two errors again: duplicate variable name at ([a 1] [a 2]) and expected iden-
tifier at ([a 1] [a 2]). Note that as far as syntax-parse is concerned, the progress
associated with the duplicate error message is the second term (first argument), not the sec-
ond occurrence of a. That’s because the check is associated with the entire distinct-
bindings pattern. It would seem that both errors have the same progress, and yet only
the first one is reported. The difference between the two is that the first error is from a
post-traversal check, whereas the second is from a normal (i.e., pre-traversal) check. A
post-traversal check is considered to have made more progress than a pre-traversal check of
the same term; indeed, it also has greater progress than any failure within the term.

It is, however, possible for multiple potential errors to occur with the same progress. Here’s
one example:

> (mylet "not-even-close")
mylet: expected identifier or expected sequence of distinct
binding pairs

at: "not-even-close"
in: (mylet "not-even-close")

In this case syntax-parse reports both errors.

Even with all of the annotations we have added to our macro, there are still some misuses
that defy syntax-parse’s error reporting capabilities, such as this example:

> (mylet)
mylet: expected more terms starting with sequence of
distinct binding pairs or identifier

at: ()
within: (mylet)
in: (mylet)

The philosophy behind syntax-parse is that in these situations, a generic error such as
“bad syntax” is justified. The use of mylet here is so far off that the only informative error
message would include a complete recapitulation of the syntax of mylet. That is not the
role of error messages, however; it is the role of documentation.

15

This section has provided an introduction to syntax classes, side conditions, and progress-
ordered error reporting. But syntax-parse has many more features. Continue to the §1.2
“Examples” section for samples of other features in working code, or skip to the subsequent
sections for the complete reference documentation.

1.2 Examples

This section provides an extended introduction to syntax/parse as a series of worked
examples.

1.2.1 Phases and Reusable Syntax Classes

As demonstrated in the §1.1 “Introduction”, the simplest place to define a syntax class is
within the macro definition that uses it. But that limits the scope of the syntax class to the
one client macro, and it makes for very large macro definitions. Creating reusable syntax
classes requires some awareness of the Racket phase level separation. A syntax class defined
immediately within a module cannot be used by macros in the same module; it is defined at
the wrong phase.

> (module phase-mismatch-mod racket
(require syntax/parse (for-syntax syntax/parse))
(define-syntax-class foo

(pattern (a b c)))
(define-syntax (macro stx)

(syntax-parse stx
[(_ f:foo) #'(+ f.a f.b f.c)])))

syntax-parse: not defined as syntax class
at: foo
in: (syntax-parse stx ((_ f:foo) (syntax (+ f.a f.b

f.c))))

In the module above, the syntax class foo is defined at phase level 0. The reference to
foo within macro, however, is at phase level 1, being the implementation of a macro trans-
former. (Needing to require syntax/parse twice, once normally and once for-syntax is
a common warning sign of phase level incompatibility.)

The phase level mismatch is easily remedied by putting the syntax class definition within a
begin-for-syntax block:

> (module phase-ok-mod racket
(require (for-syntax syntax/parse))
(begin-for-syntax
(define-syntax-class foo

16

(pattern (a b c))))
(define-syntax (macro stx)

(syntax-parse stx
[(_ f:foo) #'(+ f.a f.b f.c)])))

In the revised module above, foo is defined at phase 1, so it can be used in the implementa-
tion of the macro.

An alternative to begin-for-syntax is to define the syntax class in a separate module and
require that module for-syntax.

> (module stxclass-mod racket
(require syntax/parse)
(define-syntax-class foo

(pattern (a b c)))
(provide foo))

> (module macro-mod racket
(require (for-syntax syntax/parse

'stxclass-mod))
(define-syntax (macro stx)

(syntax-parse stx
[(_ f:foo) #'(+ f.a f.b f.c)]))

(provide macro))
> (require 'macro-mod)
> (macro (1 2 3))
6

If a syntax class refers to literal identifiers, or if it computes expressions via syntax tem-
plates, then the module containing the syntax class must generally require for-template
the bindings referred to in the patterns and templates.

> (module arith-keywords-mod racket
(define-syntax plus (syntax-rules ()))
(define-syntax times (syntax-rules ()))
(provide plus times))

> (module arith-stxclass-mod racket
(require syntax/parse

(for-template 'arith-keywords-mod
racket))

(define-syntax-class arith
#:literals (plus times)
(pattern n:nat

#:with expr #'n)
(pattern (plus a:arith b:arith)

#:with expr #'(+ a.expr b.expr))

17

(pattern (times a:arith b:arith)
#:with expr #'(* a.expr b.expr)))

(provide arith))
> (module arith-macro-mod racket

(require (for-syntax syntax/parse
'arith-stxclass-mod)

'arith-keywords-mod)
(define-syntax (arith-macro stx)

(syntax-parse stx
[(_ a:arith)
#'(values 'a.expr a.expr)]))

(provide arith-macro
(all-from-out 'arith-keywords-mod)))

> (require 'arith-macro-mod)
> (arith-macro (plus 1 (times 2 3)))
'(+ 1 (* 2 3))
7

In 'arith-stxclass-mod, the module 'arith-keywords-mod must be required for-
template because the keywords are used in phase-0 expressions. Likewise, the module
racket must be required for-template because the syntax class contains syntax templates
involving + and * (and, in fact, the implicit #%app syntax). All of these identifiers (the
keywords plus and times; the procedures + and *; and the implicit syntax #%app) must
be bound at “absolute” phase level 0. Since the module 'arith-stxclass-mod is required
with a phase level offset of 1 (that is, for-syntax), it must compensate with a phase level
offset of -1, or for-template.

1.2.2 Optional Keyword Arguments

This section explains how to write a macro that accepts (simple) optional keyword argu-
ments. We use the example mycond, which is like Racket’s cond except that it takes an
optional keyword argument that controls what happens if none of the clauses match.

Optional keyword arguments are supported via head patterns. Unlike normal patterns, which
match one term, head patterns can match a variable number of subterms in a list. Some
important head-pattern forms are ~seq, ~or*, and ~optional.

Here’s one way to do it:

> (define-syntax (mycond stx)
(syntax-parse stx

[(mycond (~or* (~seq #:error-on-fallthrough who:expr)
(~seq))

clause ...)

18

(with-syntax ([error? (if (attribute who) #'#t #'#f)]
[who (or (attribute who) #'#f)])

#'(mycond* error? who clause ...))]))
> (define-syntax mycond*

(syntax-rules ()
[(mycond* error? who [question answer] . clauses)
(if question answer (mycond* error? who . clauses))]

[(mycond* #t who)
(error who "no clauses matched")]

[(mycond* #f _)
(void)]))

We cannot simply write #'who in the macro’s right-hand side, because the who attribute
does not receive a value if the keyword argument is omitted. Instead we must first check the
attribute using (attribute who), which produces #f if matching did not assign a value to
the attribute.

> (mycond [(even? 13) 'blue]
[(odd? 4) 'red])

> (mycond #:error-on-fallthrough 'myfun
[(even? 13) 'blue]
[(odd? 4) 'red])

myfun: no clauses matched

There’s a simpler way of writing the ~or* pattern above:

(~optional (~seq #:error-on-fallthrough who:expr))

Optional Arguments with ~?

The ~? template form provides a compact alternative to explicitly testing attribute values.
Here’s one way to do it:

> (define-syntax (mycond stx)
(syntax-parse stx

[(mycond (~optional (~seq #:error-on-fallthrough who:expr))
clause ...)

#'(mycond* (~? (~@ #t who) (~@ #f #f)) clause ...)]))

If who matched, then the ~? subtemplate splices in the two terms #t who into the enclosing
template (~@ is the template splicing form). Otherwise, it splices in #f #f.

Here’s an alternative definition that re-uses Racket’s cond macro:

> (define-syntax (mycond stx)

19

(syntax-parse stx
[(mycond (~optional (~seq #:error-on-fallthrough who:expr))

clause ...)
#'(cond clause ... (~? [else (error who "no clause

matched")] (~@)))]))

In this version, we optionally insert an else clause at the end to signal the error; otherwise
we use cond’s fall-through behavior (that is, returning (void)).

If the second subtemplate of a ~? template is (~@)—that is, it produces no terms at all—the
second subtemplate can be omitted.

Optional Arguments with define-splicing-syntax-class

Yet another way is to introduce a splicing syntax class, which is like an ordinary syntax class
but for head patterns.

> (define-syntax (mycond stx)

(define-splicing-syntax-class maybe-fallthrough-option
(pattern (~seq #:error-on-fallthrough who:expr)

#:with error? #'#t)
(pattern (~seq)

#:with error? #'#f
#:with who #'#f))

(syntax-parse stx
[(mycond fo:maybe-fallthrough-option clause ...)
#'(mycond* fo.error? fo.who clause ...)]))

Defining a splicing syntax class also makes it easy to eliminate the case analysis we did
before using attribute by defining error? and who as attributes within both of the syntax
class’s variants. This is possible to do in the inline pattern version too, using ~and and
~parse, but it is less convenient. Splicing syntax classes also closely parallel the style of
grammars in macro documentation.

1.2.3 Variants with Uniform Meanings

Syntax classes not only validate syntax, they also extract some measure of meaning from it.
From the perspective of meaning, there are essentially two kinds of syntax class. In the first,
all of the syntax class’s variants have the same kind of meaning. In the second, variants may
have different kinds of meaning. This section discusses the first kind, syntax classes with In other words,

some syntax
classes’ meanings
are products and
others’ meanings
are sums.

uniform meanings. The next section discusses §1.2.4 “Variants with Varied Meanings”.

20

If all of a syntax class’s variants express the same kind of information, that information can
be cleanly represented via attributes, and it can be concisely processed using ellipses.

One example of a syntax class with uniform meaning: the init-decl syntax of the class
macro. Here is the specification of init-decl:

init-decl = id
| (maybe-renamed)
| (maybe-renamed default-expr)

maybe-renamed = id
| (internal-id external-id)

The init-decl syntax class has three variants, plus an auxiliary syntax class that has two
variants of its own. But all forms of init-decl ultimately carry just three pieces of infor-
mation: an internal name, an external name, and a default configuration of some sort. The
simpler syntactic variants are just abbreviations for the full information.

The three pieces of information determine the syntax class’s attributes. It is useful to declare
the attributes explicitly using the #:attributes keyword; the declaration acts both as in-
code documentation and as a check on the variants.

(define-syntax-class init-decl
#:attributes (internal external default)
__)

Next we fill in the syntactic variants, deferring the computation of the attributes:

(define-syntax-class init-decl
#:attributes (internal external default)
(pattern ???:id

__)
(pattern (???:maybe-renamed)

__)
(pattern (???:maybe-renamed ???:expr)

__))

We perform a similar analysis of maybe-renamed:

(define-syntax-class maybe-renamed
#:attributes (internal external)
(pattern ???:id

__)
(pattern (???:id ???:id)

__))

21

Here’s one straightforward way of matching syntactic structure with attributes for maybe-
renamed:

(define-syntax-class maybe-renamed
#:attributes (internal external)
(pattern internal:id

#:with external #'internal)
(pattern (internal:id external:id)))

Given that definition of maybe-renamed, we can fill in most of the definition of init-decl:

(define-syntax-class init-decl
#:attributes (internal external default)
(pattern internal:id

#:with external #'internal
#:with default ???)

(pattern (mr:maybe-renamed)
#:with internal #'mr.internal
#:with external #'mr.external
#:with default ???)

(pattern (mr:maybe-renamed default0:expr)
#:with internal #'mr.internal
#:with external #'mr.external
#:with default ???))

At this point we realize we have not decided on a representation for the default configura-
tion. In fact, it is an example of syntax with varied meanings (aka sum or disjoint union).
The following section discusses representation options in greater detail; for the sake of com-
pleteness, we present one of them here.

There are two kinds of default configuration. One indicates that the initialization argument
is optional, with a default value computed from the given expression. The other indicates
that the initialization argument is mandatory. We represent the variants as a (syntax) list
containing the default expression and as the empty (syntax) list, respectively. More precisely:

(define-syntax-class init-decl
#:attributes (internal external default)
(pattern internal:id

#:with external #'internal
#:with default #'())

(pattern (mr:maybe-renamed)
#:with internal #'mr.internal
#:with external #'mr.external
#:with default #'())

(pattern (mr:maybe-renamed default0:expr)
#:with internal #'mr.internal

22

#:with external #'mr.external
#:with default #'(default0)))

Another way to look at this aspect of syntax class design is as the algebraic factoring of
sums-of-products (concrete syntax variants) into products-of-sums (attributes and abstract
syntax variants). The advantages of the latter form are the “dot” notation for data extrac-
tion, avoiding or reducing additional case analysis, and the ability to concisely manipulate
sequences using ellipses.

1.2.4 Variants with Varied Meanings

As explained in the previous section, the meaning of a syntax class can be uniform, or it
can be varied; that is, different instances of the syntax class can carry different kinds of
information. This section discusses the latter kind of syntax class.

A good example of a syntax class with varied meanings is the for-clause of the for family
of special forms.

for-clause = [id seq-expr]
| [(id ...) seq-expr]
| #:when guard-expr

The first two variants carry the same kind of information; both consist of identifiers to bind
and a sequence expression. The third variant, however, means something totally different:
a condition that determines whether to continue the current iteration of the loop, plus a
change in scoping for subsequent seq-exprs. The information of a for-clause must be
represented in a way that a client macro can do further case analysis to distinguish the “bind
variables from a sequence” case from the “skip or continue this iteration and enter a new
scope” case.

This section discusses two ways of representing varied kinds of information.

Syntactic Normalization

One approach is based on the observation that the syntactic variants already constitute a
representation of the information they carry. So why not adapt that representation, removing
redundancies and eliminating simplifying the syntax to make subsequent re-parsing trivial.

(define-splicing-syntax-class for-clause
#:attributes (norm)
(pattern [var:id seq:expr]

#:with norm #'[(var) seq])
(pattern [(var:id ...) seq:expr]

#:with norm #'[(var ...) seq])
(pattern (~seq #:when guard:expr)

23

#:with norm #'[#:when guard]))

First, note that since the #:when variant consists of two separate terms, we define for-
clause as a splicing syntax class. Second, that kind of irregularity is just the sort of thing
we’d like to remove so we don’t have to deal with it again later. Thus we represent the
normalized syntax as a single term beginning with either a sequence of identifiers (the first
two cases) or the keyword #:when (the third case). The two normalized cases are easy to
process and easy to tell apart. We have also taken the opportunity to desugar the first case
into the second.

A normalized syntactic representation is most useful when the subsequent case analysis is
performed by syntax-parse or a similar form.

Non-syntax-valued Attributes

When the information carried by the syntax is destined for complicated processing by Racket
code, it is often better to parse it into an intermediate representation using idiomatic Racket
data structures, such as lists, hashes, structs, and even objects.

Thus far we have only used syntax pattern variables and the #:with keyword to bind at-
tributes, and the values of the attributes have always been syntax. To bind attributes to
values other than syntax, use the #:attr keyword.

; A ForClause is either
; - (bind-clause (listof identifier) syntax)
; - (when-clause syntax)
(struct bind-clause (vars seq-expr))
(struct when-clause (guard))

(define-splicing-syntax-class for-clause
#:attributes (ast)
(pattern [var:id seq:expr]

#:attr ast (bind-clause (list #'var) #'seq))
(pattern [(var:id ...) seq:expr]

#:attr ast (bind-clause (syntax->list #'(var ...))
#'seq))

(pattern (~seq #:when guard:expr)
#:attr ast (when-clause #'guard)))

Be careful! If we had used #:with instead of #:attr, a value produced by the right-hand
side would be coerced to a syntax object before being matched against the pattern ast.

Attributes with non-syntax values cannot be used in syntax templates. Use the attribute
form to get the value of an attribute.

24

1.2.5 More Keyword Arguments

This section shows how to express the syntax of struct’s optional keyword arguments using
syntax-parse patterns.

The part of struct’s syntax that is difficult to specify is the sequence of struct options. Let’s
get the easy part out of the way first.

> (define-splicing-syntax-class maybe-super
(pattern (~seq super:id))
(pattern (~seq)))

> (define-syntax-class field-option
(pattern #:mutable)
(pattern #:auto))

> (define-syntax-class field
(pattern field:id

#:with (option ...) '())
(pattern [field:id option:field-option ...]))

Given those auxiliary syntax classes, here is a first approximation of the main pattern, in-
cluding the struct options:

(struct name:id super:maybe-super (field:field ...)
(~alt (~seq #:mutable)

(~seq #:super super-expr:expr)
(~seq #:inspector inspector:expr)
(~seq #:auto-value auto:expr)
(~seq #:guard guard:expr)
(~seq #:property prop:expr prop-val:expr)
(~seq #:transparent)
(~seq #:prefab)
(~seq #:constructor-name constructor-name:id)
(~seq #:extra-constructor-name extra-constructor-name:id)
(~seq #:omit-define-syntaxes)
(~seq #:omit-define-values))

...)

The fact that expr does not match keywords helps in the case where the programmer omits
a keyword’s argument; instead of accepting the next keyword as the argument expression,
syntax-parse reports that an expression was expected.

There are two main problems with the pattern above:

• There’s no way to tell whether a zero-argument keyword like #:mutable was seen.

25

• Some options, like #:mutable, should appear at most once.

The first problem can be remedied using ~and patterns to bind a pattern variable to the
keyword itself, as in this sub-pattern:

(~seq (~and #:mutable mutable-kw))

The second problem can be solved using repetition constraints:

(struct name:id super:maybe-super (field:field ...)
(~alt (~optional (~seq (~and #:mutable mutable-kw)))

(~optional (~seq #:super super-expr:expr))
(~optional (~seq #:inspector inspector:expr))
(~optional (~seq #:auto-value auto:expr))
(~optional (~seq #:guard guard:expr))
(~seq #:property prop:expr prop-val:expr)
(~optional (~seq (~and #:transparent transparent-kw)))
(~optional (~seq (~and #:prefab prefab-kw)))
(~optional (~seq #:constructor-name constructor-name:id))
(~optional
(~seq #:extra-constructor-name extra-constructor-

name:id))
(~optional
(~seq (~and #:omit-define-syntaxes omit-def-stxs-kw)))

(~optional (~seq (~and #:omit-define-values omit-def-vals-
kw))))

...)

The ~optional repetition constraint indicates that an alternative can appear at most once.
(There is a ~once form that means it must appear exactly once.) In struct’s keyword
options, only #:property may occur any number of times.

There are still some problems, though. Without additional help, ~optional does not report
particularly good errors. We must give it the language to use, just as we had to give descrip-
tions to sub-patterns via syntax classes. Also, some related options are mutually exclusive,
such as #:inspector, #:transparent, and #:prefab.

(struct name:id super:maybe-super (field:field ...)
(~alt (~optional

(~or* (~seq #:inspector inspector:expr)
(~seq (~and #:transparent transparent-kw))
(~seq (~and #:prefab prefab-kw)))

#:name "#:inspector, #:transparent, or #:prefab option")
(~optional (~seq (~and #:mutable mutable-kw))

#:name "#:mutable option")

26

(~optional (~seq #:super super-expr:expr)
#:name "#:super option")

(~optional (~seq #:auto-value auto:expr)
#:name "#:auto-value option")

(~optional (~seq #:guard guard:expr)
#:name "#:guard option")

(~seq #:property prop:expr prop-val:expr)
(~optional (~seq #:constructor-name constructor-name:id)

#:name "#:constructor-name option")
(~optional

(~seq #:extra-constructor-name extra-constructor-
name:id)

#:name "#:extra-constructor-name option")
(~optional (~seq (~and #:omit-define-syntaxes omit-def-

stxs-kw))
#:name "#:omit-define-syntaxes option")

(~optional (~seq (~and #:omit-define-values omit-def-vals-
kw))

#:name "#:omit-define-values option"))
...)

Here we have grouped the three incompatible options together under a single ~optional
constraint. That means that at most one of any of those options is allowed. We have given
names to the optional clauses. See ~optional for other customization options.

Note that there are other constraints that we have not represented in the pattern. For example,
#:prefab is also incompatible with both #:guard and #:property. Repetition constraints
cannot express arbitrary incompatibility relations. The best way to handle such constraints
is with a side condition using #:fail-when.

1.2.6 Contracts on Macro Sub-expressions

Just as procedures often expect certain kinds of values as arguments, macros often have
expectations about the expressions they are given. And just as procedures express those
expectations via contracts, so can macros, using the expr/c syntax class.

For example, here is a macro myparameterize that behaves like parameterize but en-
forces the parameter? contract on the parameter expressions.

> (define-syntax (myparameterize stx)
(syntax-parse stx

[(_ ((p v:expr) ...) body:expr)
#:declare p (expr/c #'parameter?

#:name "parameter argument")
#'(parameterize ([p.c v] ...) body)]))

27

> (myparameterize ([current-input-port
(open-input-string "(1 2 3)")])

(read))
'(1 2 3)
> (myparameterize (['whoops 'something])

'whatever)
myparameterize: contract violation

expected: parameter?
given: 'whoops
in: parameter?

macro argument contract on parameter argument
contract from: 'program
blaming: (quote program)

(assuming the contract is correct)
at: eval:3:0

Important: Make sure when using expr/c to use the c attribute. If the macro above had
used p in the template, the expansion would have used the raw, unchecked expressions. The
expr/c syntax class does not change how pattern variables are bound; it only computes an
attribute that represents the checked expression.

The previous example shows a macro applying a contract on an argument, but a macro can
also apply a contract to an expression that it produces. In that case, it should use #:arg? #f
to indicate that the macro, not the calling context, is responsible for expression produced.

; BUG: rationals not closed under inversion
> (define-syntax (invert stx)

(syntax-parse stx
[(_ e)
#:declare e (expr/c #'rational?)
#:with result #'(/ 1 e.c)
#:declare result (expr/c #'rational? #:arg? #f)
#'result.c]))

> (invert 4)
1/4
> (invert 'abc)
invert: contract violation

expected: rational?
given: 'abc
in: rational?

macro argument contract
contract from: 'program
blaming: (quote program)

(assuming the contract is correct)
at: eval:6:0

> (invert 0.0)

28

invert: contract violation
expected: rational?
given: +inf.0
in: rational?

macro result contract
contract from: 'program
blaming: (quote program)

(assuming the contract is correct)
at: eval:4:0

The following example shows a macro that uses a contracted expression at a different phase
level. The macro’s ref argument is used as a “compile-time expression”—more precisely,
it is used as an expression at a phase level one higher than the use of the macro itself. That is
because the macro places the expression in the right-hand side of a define-syntax form.
The macro uses expr/c with a #:phase argument to ensure that ref produces an identifier
when used as a compile-time expression.

> (define-syntax (define-alias stx)
(syntax-parse stx

[(_ name:id ref)
#:declare ref (expr/c #'identifier?

#:phase (add1 (syntax-local-phase-
level)))

#'(define-syntax name (make-rename-transformer ref.c))]))
> (define-alias plus #'+)
> (define-alias zero 0)
define-alias: contract violation

expected: identifier?
given: 0
in: identifier?

macro argument contract
contract from: 'program
blaming: (quote program)

(assuming the contract is correct)
at: eval:10:0

1.3 Parsing Syntax

This section describes syntax-parse, the syntax/parse library’s facility for parsing syn-
tax. Both syntax-parse and the specification facility, syntax classes, use a common lan-
guage of syntax patterns, which is described in detail in §1.5 “Syntax Patterns”.

Two parsing forms are provided: syntax-parse and syntax-parser.

29

(syntax-parse stx-expr parse-option ... clause ...+)

parse-option = #:context context-expr
| #:literals (literal ...)
| #:datum-literals (datum-literal ...)
| #:literal-sets (literal-set ...)
| #:track-literals
| #:conventions (convention-id ...)
| #:local-conventions (convention-rule ...)
| #:disable-colon-notation

literal = literal-id
| (pattern-id literal-id)
| (pattern-id literal-id #:phase phase-expr)

datum-literal = literal-id
| (pattern-id literal-id)

literal-set = literal-set-id
| (literal-set-id literal-set-option ...)

literal-set-option = #:at context-id
| #:phase phase-expr

clause = (syntax-pattern pattern-directive ... body ...+)

stx-expr : syntax?

context-expr :
(or/c syntax? symbol? #f

(list/c symbol? syntax?))

phase-expr : (or/c exact-integer? #f)

Evaluates stx-expr , which should produce a syntax object, and matches it against the
clauses in order. If some clause’s pattern matches, its attributes are bound to the corre-
sponding subterms of the syntax object and that clause’s side conditions and expr is evalu-
ated. The result is the result of expr.

Each clause consists of a syntax pattern, an optional sequence of pattern directives, and a
non-empty sequence of body forms.

If the syntax object fails to match any of the patterns (or all matches fail the corresponding
clauses’ side conditions), a syntax error is raised.

The following options are supported:

30

#:context context-expr

context-expr :
(or/c syntax? symbol? #f

(list/c symbol? syntax?))

When present, context-expr is used in reporting parse failures; otherwise
stx-expr is used. If context-expr evaluates to (list who context-
stx), then who appears in the error message as the form raising the error, and
context-stx is used as the term. If context-expr evaluates to a symbol, it is
used as who and stx-expr (the syntax to be destructured) is used as context-
stx . If context-expr evaluates to a syntax object, it is used as context-stx
and who is inferred as with raise-syntax-error.

The current-syntax-context parameter is also set to the syntax object
context-stx .

Examples:

> (syntax-parse #'(a b 3)
[(x:id ...) 'ok])

a: expected identifier
at: 3
in: (a b 3)

> (syntax-parse #'(a b 3)
#:context #'(lambda (a b 3) (+ a b))
[(x:id ...) 'ok])

lambda: expected identifier
at: 3
in: (lambda (a b 3) (+ a b))

> (syntax-parse #'(a b 3)
#:context 'check-id-list
[(x:id ...) 'ok])

check-id-list: expected identifier
at: 3
in: (a b 3)

#:literals (literal ...)

literal = literal-id
| (pattern-id literal-id)
| (pattern-id literal-id #:phase phase-expr)

phase-expr : (or/c exact-integer? #f)
Unlike
syntax-case,
syntax-parse
requires all literals
to have a binding.
To match identifiers
by their symbolic
names, use
#:datum-literals
or the ~datum
pattern form
instead.

The #:literals option specifies identifiers that should be treated as liter-
als rather than pattern variables. An entry in the literals list has two com-
ponents: the identifier used within the pattern to signify the positions to be

31

matched (pattern-id), and the identifier expected to occur in those positions
(literal-id). If the entry is a single identifier, that identifier is used for both
purposes.

If the #:phase option is given, then the literal is compared at phase phase-
expr . Specifically, the binding of the literal-id at phase phase-expr must
match the input’s binding at phase phase-expr .

In other words, the syntax-patterns are interpreted as if each occurrence of
pattern-id were replaced with the following pattern:

(~literal literal-id #:phase phase-expr)

#:datum-literals (datum-literal ...)

datum-literal = literal-id
| (pattern-id literal-id)

Like #:literals, but the literals are matched as symbols instead of as identi-
fiers.

In other words, the syntax-patterns are interpreted as if each occurrence of
pattern-id were replaced with the following pattern:

(~datum literal-id)

#:literal-sets (literal-set ...)

literal-set = literal-set-id
| (literal-set-id literal-set-option ...)

literal-set-option = #:at lctx
| #:phase phase-expr

phase-expr : (or/c exact-integer? #f)

Many literals can be declared at once via one or more literal sets, imported with
the #:literal-sets option. See literal sets for more information.

If the #:at keyword is given, the lexical context of the lctx term is used to
determine which identifiers in the patterns are treated as literals; this option is
useful primarily for macros that generate syntax-parse expressions.

#:track-literals

32

If specified, each final body expression is further constrained to produce a sin-
gle value, which must be a syntax object, and its 'disappeared-use syn-
tax property is automatically extended to include literals matched as part of
pattern-matching. Literals are automatically tracked from uses of #:literals,
#:literal-sets, or ~literal, but they can also be manually tracked using
syntax-parse-state-cons!. The property is added or extended in the same
way as a property added by syntax-parse-track-literals.

Due to the way the body forms are wrapped, specifying this option means the
final body form will no longer be in tail position with respect to the enclosing
syntax-parse form.

Added in version 6.90.0.29 of package base.

#:conventions (conventions-id ...)

Imports conventions that give default syntax classes to pattern variables that do
not explicitly specify a syntax class.

#:local-conventions (convention-rule ...)

Uses the conventions specified. The advantage of #:local-conventions over
#:conventions is that local conventions can be in the scope of syntax-class
parameter bindings. See the section on conventions for examples.

#:disable-colon-notation

Suppresses the “colon notation” for annotated pattern variables.

Examples:

> (syntax-parse #'(a b c)
[(x:y ...) 'ok])

syntax-parse: not defined as syntax class
at: y
in: (syntax-parse (syntax (a b c)) ((x:y ...) (quote ok)))

> (syntax-parse #'(a b c) #:disable-colon-notation
[(x:y ...) 'ok])

'ok

(syntax-parser parse-option ... clause ...+)

Like syntax-parse, but produces a matching procedure. The procedure accepts a single
argument, which should be a syntax object.

33

(define/syntax-parse syntax-pattern pattern-directive ... stx-expr)

stx-expr : syntax?

Definition form of syntax-parse. That is, it matches the syntax object result of stx-
expr against syntax-pattern and creates pattern variable definitions for the attributes of
syntax-pattern .

Examples:

> (define/syntax-parse ((~seq kw:keyword arg:expr) ...)
#'(#:a 1 #:b 2 #:c 3))

> #'(kw ...)
#<syntax:eval:7:0 (#:a #:b #:c)>

Compare with define/with-syntax, a similar definition form that uses the simpler
syntax-case patterns.

1.4 Specifying Syntax with Syntax Classes

Syntax classes provide an abstraction mechanism for syntax patterns. Built-in syntax classes
are supplied that recognize basic classes such as identifier and keyword. Programmers
can compose basic syntax classes to build specifications of more complex syntax, such as
lists of distinct identifiers and formal arguments with keywords. Macros that manipulate the
same syntactic structures can share syntax class definitions.

(define-syntax-class name-id stxclass-option ...
stxclass-variant ...+)

(define-syntax-class (name-id . kw-formals) stxclass-option ...
stxclass-variant ...+)

34

stxclass-option = #:attributes (attr-arity-decl ...)
| #:auto-nested-attributes
| #:description description-expr
| #:opaque
| #:commit
| #:no-delimit-cut
| #:literals (literal-entry ...)
| #:datum-literals (datum-literal-entry ...)
| #:literal-sets (literal-set ...)
| #:conventions (convention-id ...)
| #:local-conventions (convention-rule ...)
| #:disable-colon-notation

attr-arity-decl = attr-name-id
| (attr-name-id depth)

stxclass-variant = (pattern syntax-pattern pattern-directive ...)

description-expr : (or/c string? #f)

Defines name-id as a syntax class, which encapsulates one or more single-term patterns.

A syntax class may have formal parameters, in which case they are bound as variables in
the body. Syntax classes support optional arguments and keyword arguments using the same
syntax as lambda. The body of the syntax-class definition contains a non-empty sequence
of pattern variants.

The following options are supported:

#:attributes (attr-arity-decl ...)

attr-arity-decl = attr-id
| (attr-id depth)

Declares the attributes of the syntax class. An attribute arity declaration con-
sists of the attribute name and optionally its ellipsis depth (zero if not explicitly
specified).

If the attributes are not explicitly listed, they are inferred as the set of all pattern
variables occurring in every variant of the syntax class. Pattern variables that
occur at different ellipsis depths are not included, nor are nested attributes from
annotated pattern variables.

#:auto-nested-attributes

35

Deprecated. This option cannot be combined with #:attributes.

Declares the attributes of the syntax class as the set of all pattern variables and
nested attributes from annotated pattern variables occurring in every variant of
the syntax class. Only syntax classes defined strictly before the enclosing syn-
tax class are used to compute the nested attributes; pattern variables annotated
with not-yet-defined syntax classes contribute no nested attributes for export.
Note that with this option, reordering syntax-class definitions may change the
attributes they export.

#:description description-expr

description-expr : (or/c string? #f)

The description argument is evaluated in a scope containing the syntax
class’s parameters. If the result is a string, it is used in error messages involving
the syntax class. For example, if a term is rejected by the syntax class, an error
of the form "expected description" may be synthesized. If the result is #f,
the syntax class is skipped in the search for a description to report.

If the option is not given, the name of the syntax class is used instead.

#:opaque

Indicates that errors should not be reported with respect to the internal structure
of the syntax class.

#:commit

Directs the syntax class to “commit” to the first successful match. When a
variant succeeds, all choice points within the syntax class are discarded. See
also ~commit.

#:no-delimit-cut

By default, a cut (~!) within a syntax class only discards choice points within
the syntax class. That is, the body of the syntax class acts as though it is wrapped
in a ~delimit-cut form. If #:no-delimit-cut is specified, a cut may affect
choice points of the syntax class’s calling context (another syntax class’s pat-
terns or a syntax-parse form).

It is an error to use both #:commit and #:no-delimit-cut.

36

#:literals (literal-entry ...)

#:datum-literals (datum-literal-entry ...)

#:literal-sets (literal-set ...)

#:conventions (convention-id ...)

Declares the literals and conventions that apply to the syntax class’s variant pat-
terns and their immediate #:with clauses. Patterns occurring within subexpres-
sions of the syntax class (for example, on the right-hand side of a #:fail-when
clause) are not affected.

#:local-conventions (convention-rule ...)

#:disable-colon-notation

These options have the same meaning as in syntax-parse.

Each variant of a syntax class is specified as a separate pattern-form whose syntax pattern
is a single-term pattern.

(define-splicing-syntax-class name-id stxclass-option ...
stxclass-variant ...+)

(define-splicing-syntax-class (name-id . kw-formals) stxclass-option ...
stxclass-variant ...+)

Defines name-id as a splicing syntax class, analogous to a syntax class but encapsulating
head patterns rather than single-term patterns.

The options are the same as for define-syntax-class.

Each variant of a splicing syntax class is specified as a separate pattern-form whose syntax
pattern is a head pattern.

(pattern syntax-pattern pattern-directive ...)

37

Used to indicate a variant of a syntax class or splicing syntax class. The variant accepts
syntax matching the given syntax pattern with the accompanying pattern directives.

When used within define-syntax-class, syntax-pattern should be a single-term pat-
tern; within define-splicing-syntax-class, it should be a head pattern.

The attributes of the variant are the attributes of the pattern together with all attributes bound
by #:with clauses, including nested attributes produced by syntax classes associated with
the pattern variables.

this-syntax

When used as an expression within a syntax-class definition or syntax-parse expression,
evaluates to the syntax object or syntax pair being matched.

Examples:

> (define-syntax-class one (pattern _ #:attr s this-syntax))
> (syntax-parse #'(1 2 3) [(1 o:one _) (attribute o.s)])
#<syntax:eval:3:0 2>
> (syntax-parse #'(1 2 3) [(1 . o:one) (attribute o.s)])
'(#<syntax:eval:4:0 2> #<syntax:eval:4:0 3>)
> (define-splicing-syntax-class two (pattern (~seq _ _) #:attr s this-
syntax))
> (syntax-parse #'(1 2 3) [(t:two 3) (attribute t.s)])
#<syntax:eval:6:0 (1 2 3)>
> (syntax-parse #'(1 2 3) [(1 t:two) (attribute t.s)])
'(#<syntax:eval:7:0 2> #<syntax:eval:7:0 3>)

Raises an error when used as an expression outside of a syntax-class definition or syntax-
parse expression.

prop:syntax-class
: (struct-type-property/c (or/c identifier?

(-> any/c identifier?)))

A structure type property to identify structure types that act as an alias for a syntax class
or splicing syntax class. The property value must be an identifier or a procedure of one
argument.

When a transformer is bound to an instance of a struct with this property, then it may be used
as a syntax class or splicing syntax class in the same way as the bindings created by define-
syntax-class or define-splicing-syntax-class. If the value of the property is an
identifier, then it should be bound to a syntax class or splicing syntax class, and the binding
will be treated as an alias for the referenced syntax class. If the value of the property is a

38

procedure, then it will be applied to the value with the prop:syntax-class property to
obtain an identifier, which will then be used as in the former case.

Examples:

> (begin-for-syntax
(struct expr-and-stxclass (expr-id stxclass-id)

#:property prop:procedure
(lambda (this stx) ((set!-transformer-procedure

(make-variable-like-transformer
(expr-and-stxclass-expr-id this)))

stx))
#:property prop:syntax-class
(lambda (this) (expr-and-stxclass-stxclass-id this))))

> (define-syntax is-id? (expr-and-stxclass #'identifier? #'id))
> (is-id? #'x)
#t
> (syntax-parse #'x

[x:is-id? #t]
[_ #f])

#t

Added in version 7.2.0.4 of package base.

1.4.1 Pattern Directives

Both the parsing forms and syntax class definition forms support pattern directives for an-
notating syntax patterns and specifying side conditions. The grammar for pattern directives
follows:

pattern-directive = #:declare pvar-id stxclass maybe-role
| #:post action-pattern
| #:and action-pattern
| #:with syntax-pattern stx-expr
| #:attr attr-arity-decl expr
| #:fail-when condition-expr message-expr
| #:fail-unless condition-expr message-expr
| #:when condition-expr
| #:do [def-or-expr ...]
| #:undo [def-or-expr ...]
| #:cut

#:declare pvar-id stxclass maybe-role

39

stxclass = syntax-class-id
| (syntax-class-id arg ...)

maybe-role =
| #:role role-expr

Associates pvar-id with a syntax class and possibly a role, equivalent to re-
placing each occurrence of pvar-id in the pattern with (~var pvar-id stx-
class maybe-role). The second form of stxclass allows the use of param-
eterized syntax classes, which cannot be expressed using the “colon” notation.
The args are evaluated in the scope where the pvar-id occurs in the pattern.
Keyword arguments are supported, using the same syntax as in #%app.

If a #:with directive appears between the main pattern (e.g., in a syntax-
parse or define-syntax-class clause) and a #:declare, then only pattern
variables from the #:with pattern may be declared.

Examples:

> (syntax-parse #'P
[x
#:declare x id
#'x])

#<syntax:eval:12:0 P>
> (syntax-parse #'L

[x
#:with y #'x
#:declare x id
#'x])

syntax-parse: identifier in #:declare clause does not appear
in pattern;

this #:declare clause affects only the preceding #:with
pattern

at: x
in: (syntax-parse (syntax L) (x #:with y (syntax x)

#:declare x id (syntax x)))
> (syntax-parse #'T

[x
#:with y #'x
#:declare y id
#'x])

#<syntax:eval:14:0 T>

#:post action-pattern

Executes the given action pattern as a “post-traversal check” after matching the
main pattern. That is, the following are equivalent:

40

main-pattern #:post action-pattern
main-pattern #:and (~post action-pattern)
(~and main-pattern (~post action-pattern))

#:and action-pattern

Like #:post except that no ~post wrapper is added. That is, the following are
equivalent:

main-pattern #:and action-pattern
(~and main-pattern action-pattern)

#:with syntax-pattern stx-expr

Evaluates the stx-expr in the context of all previous attribute bindings and
matches it against the pattern. If the match succeeds, the pattern’s attributes
are added to environment for the evaluation of subsequent side conditions. If
the #:with match fails, the matching process backtracks. Since a syntax object
may match a pattern in several ways, backtracking may cause the same clause
to be tried multiple times before the next clause is reached.

If the value of stx-expr is not a syntax object, it is implicitly converted to a
syntax object. If the the conversion would produce 3D syntax—that is, syntax
that contains unwritable values such as procedures, non-prefab structures, etc—
then an exception is raised instead.

Equivalent to #:post (~parse syntax-pattern stx-expr).

Examples:

> (syntax-parse #'(1 2 3)
[(a b c)
#:with rev #'(c b a)
#'rev])

#<syntax:eval:15:0 (3 2 1)>
> (syntax-parse #'(['x "Ex."] ['y "Why?"] ['z "Zee!"])

[([stuff ...] ...)
#:with h #'(hash stuff)
#'h])

#<syntax:eval:16:0 (hash (quote x) "Ex." (quote y)
"Why?" (quote z) "Zee!")>

#:attr attr-arity-decl expr

41

Evaluates the expr in the context of all previous attribute bindings and binds it
to the given attribute. The value of expr need not be, or even contain, syntax—
see attribute for details.

Equivalent to #:and (~bind attr-arity-decl expr).

Examples:

> (syntax-parse #'("do" "mi")
[(a b)
#:attr rev #'(b a)
#'rev])

#<syntax:eval:17:0 ("mi" "do")>
> (syntax-parse #'(1 2)

[(a:number b:number)
#:attr sum (+ (syntax-e #'a) (syntax-e #'b))
(attribute sum)])

3

The #:attr directive is often used in syntax classes:

Examples:

> (define-syntax-class ab-sum
(pattern (a:number b:number)

#:attr sum (+ (syntax-e #'a) (syntax-e #'b))))
> (syntax-parse #'(1 2)

[x:ab-sum
(attribute x.sum)])

3

#:fail-when condition-expr message-expr

message-expr : (or/c string? #f)

Evaluates the condition-expr in the context of all previous attribute bindings.
If the value is any true value (not #f), the matching process backtracks (with the
given message); otherwise, it continues. If the value of the condition expression
is a syntax object, it is indicated as the cause of the error.

If the message-expr produces a string it is used as the failure message; other-
wise the failure is reported in terms of the enclosing descriptions.

Equivalent to #:post (~fail #:when condition-expr message-expr).

Examples:

> (syntax-parse #'(m 4)
[(m x:number)

42

#:fail-when (even? (syntax-e #'x))
"expected an odd number"
#'x])

m: expected an odd number
at: (m 4)
in: (m 4)

> (syntax-parse #'(m 4)
[(m x:number)
#:fail-when (and (even? (syntax-e #'x)) #'x)
"expected an odd number"
#'x])

m: expected an odd number
at: 4
in: (m 4)

#:fail-unless condition-expr message-expr

message-expr : (or/c string? #f)

Like #:fail-when with the condition negated.

Equivalent to #:post (~fail #:unless condition-expr message-
expr).

Example:

> (syntax-parse #'(m 5)
[(m x:number)
#:fail-unless (even? (syntax-e #'x))
"expected an even number"
#'x])

m: expected an even number
at: (m 5)
in: (m 5)

#:when condition-expr

Evaluates the condition-expr in the context of all previous attribute bindings.
If the value is #f, the matching process backtracks. In other words, #:when is
like #:fail-unless without the message argument.

Equivalent to #:post (~fail #:unless condition-expr #f).

Example:

> (syntax-parse #'(m 5)

43

[(m x:number)
#:when (even? (syntax-e #'x))
#'x])

m: bad syntax
in: (m 5)

#:do [defn-or-expr ...]

Takes a sequence of definitions and expressions, which may be intermixed, and
evaluates them in the scope of all previous attribute bindings. The names bound
by the definitions are in scope in the expressions of subsequent patterns and
clauses.

There is currently no way to bind attributes using a #:do block. It is an error to
shadow an attribute binding with a definition in a #:do block.

Equivalent to #:and (~do defn-or-expr ...).

#:undo [defn-or-expr ...]

Has no effect when initially matched, but if backtracking returns to a point be-
fore the #:undo directive, the defn-or-exprs are executed. See ~undo for an
example.

Equivalent to #:and (~undo defn-or-expr ...).

#:cut

Eliminates backtracking choice points and commits parsing to the current
branch at the current point.

Equivalent to #:and ~!.

1.4.2 Pattern Variables and Attributes

An attribute is a name bound by a syntax pattern. An attribute can be a pattern variable
itself, or it can be a nested attribute bound by an annotated pattern variable. The name of
a nested attribute is computed by concatenating the pattern variable name with the syntax
class’s exported attribute’s name, separated by a dot (see the example below).

Attributes can be used in three ways: with the attribute form; inside syntax templates via
syntax, quasisyntax, etc; and inside datum templates. Attribute names cannot be used
directly as expressions; that is, attributes are not variables.

44

A syntax-valued attribute is an attribute whose value is a syntax object or list of the ap-
propriate ellipsis depth. That is, an attribute with ellipsis depth 0 is syntax-valued if its
value is syntax?; an attribute with ellipis depth 1 is syntax-valued if its value is (listof
syntax?); an attribute with ellipsis depth 2 is syntax-valued if its value is (listof
(listof syntax?)); and so on. The value is considered syntax-valued if it contains
promises that when completely forced produces a suitable syntax object or list. Syntax-
valued attributes can be used within syntax, quasisyntax, etc as part of a syntax template.
If an attribute is used inside a syntax template but it is not syntax-valued, an error is signaled.

There are uses for non-syntax-valued attributes. A non-syntax-valued attribute can be used
to return a parsed representation of a subterm or the results of an analysis on the subterm. A
non-syntax-valued attribute must be bound using the #:attr directive or a ~bind pattern;
#:with and ~parse will convert the right-hand side to a (possibly 3D) syntax object.

Example:

> (define-syntax-class table
(pattern ((key value) ...)

#:attr hashtable
(for/hash ([k (syntax->datum #'(key ...))]

[v (syntax->datum #'(value ...))])
(values k v))

#:attr [sorted-kv 1]
(delay
(printf "sorting!\n")
(sort (syntax->list #'((key value) ...))

<
#:key (lambda (kv) (cadr (syntax-

>datum kv)))))))

The table syntax class provides four attributes: key, value, hashtable, and sorted-kv.
The hashtable attribute has ellipsis depth 0 and the rest have depth 1; key, value, and
sorted-kv are syntax-valued, but hashtable is not. The sorted-kv attribute’s value is a
promise; it will be automatically forced if used in a template.

Syntax-valued attributes can be used in syntax templates:

> (syntax-parse #'((a 3) (b 2) (c 1))
[t:table
#'(t.key ...)])

#<syntax:eval:26:0 (a b c)>
> (syntax-parse #'((a 3) (b 2) (c 1))

[t:table
#'(t.sorted-kv ...)])

sorting!
#<syntax:eval:27:0 ((c 1) (b 2) (a 3))>

45

But non-syntax-valued attributes cannot:

> (syntax-parse #'((a 3) (b 2) (c 1))
[t:table
#'t.hashtable])

t.hashtable: attribute contains non-syntax value
value: '#hash((a . 3) (b . 2) (c . 1))
in: t.hashtable

The attribute form gets the value of an attribute, whether it is syntax-valued or not.

> (syntax-parse #'((a 1) (b 2) (c 3))
[t:table
(attribute t.hashtable)])

'#hash((a . 1) (b . 2) (c . 3))
> (syntax-parse #'((a 3) (b 2) (c 1))

[t:table
(attribute t.sorted-kv)])

#<promise:sorted-kv326>

Every attribute has an associated ellipsis depth that determines how it can be used in a syntax
template (see the discussion of ellipses in syntax). For a pattern variable, the ellipsis depth
is the number of ellipses the pattern variable “occurs under” in the pattern. An attribute
bound by #:attr has depth 0 unless declared otherwise. For a nested attribute the depth is
the sum of the annotated pattern variable’s depth and the depth of the attribute exported by
the syntax class.

Consider the following code:

(define-syntax-class quark
(pattern (a b ...)))

(syntax-parse some-term
[(x (y:quark ...) ... z:quark)
some-code])

The syntax class quark exports two attributes: a at depth 0 and b at depth 1. The syntax-
parse pattern has three pattern variables: x at depth 0, y at depth 2, and z at depth 0. Since y
and z are annotated with the quark syntax class, the pattern also binds the following nested
attributes: y.a at depth 2, y.b at depth 3, z.a at depth 0, and z.b at depth 1.

An attribute’s ellipsis nesting depth is not a guarantee that it is syntax-valued or has any list
structure. In particular, ~or* and ~optional patterns may result in attributes with fewer
than expected levels of list nesting, and #:attr and ~bind can be used to bind attributes to
arbitrary values.

Example:

46

> (syntax-parse #'(a b 3)
[(~or* (x:id ...) _)
(attribute x)])

#f

(attribute attr-id)

Returns the value associated with the attribute named attr-id . If attr-id is not bound as
an attribute, a syntax error is raised.

Attributes and datum

The datum form is another way, in addition to syntax and attribute, of using syntax
pattern variables and attributes. Unlike syntax, datum does not require attributes to be
syntax-valued. Wherever the syntax form would create syntax objects based on its template
(as opposed to reusing syntax objects bound by pattern variables), the datum form creates
plain S-expressions.

Continuing the table example from above, we can use datum with the key attribute as
follows:

> (syntax-parse #'((a 1) (b 2) (c 3))
[t:table (datum (t.key ...))])

'(#<syntax:eval:32:0 a> #<syntax:eval:32:0 b> #<syntax:eval:32:0
c>)

A datum template may contain multiple pattern variables combined within some S-
expression structure:

> (syntax-parse #'((a 1) (b 2) (c 3))
[t:table (datum ([t.key t.value] ...))])

'((#<syntax:eval:33:0 a> #<syntax:eval:33:0 1>)
(#<syntax:eval:33:0 b> #<syntax:eval:33:0 2>)
(#<syntax:eval:33:0 c> #<syntax:eval:33:0 3>))

A datum template can use the ~@ and ~? template forms:

> (syntax-parse #'((a 1) (b 2) (c 3))
[t:table (datum ((~@ t.key t.value) ...))])

'(#<syntax:eval:34:0 a>
#<syntax:eval:34:0 1>
#<syntax:eval:34:0 b>
#<syntax:eval:34:0 2>
#<syntax:eval:34:0 c>
#<syntax:eval:34:0 3>)

47

> (syntax-parse #'((a 56) (b 71) (c 13))
[t:table (datum ((~@ . t.sorted-kv) ...))])

sorting!
'(#<syntax:eval:35:0 c>

#<syntax:eval:35:0 13>
#<syntax:eval:35:0 a>
#<syntax:eval:35:0 56>
#<syntax:eval:35:0 b>
#<syntax:eval:35:0 71>)

> (syntax-parse #'(((a 1) (b 2) (c 3)) ((d 4) (e 5)))
[(t1:table (~or* t2:table #:nothing))
(datum (t1.key ... (~? (~@ t2.key ...))))])

'(#<syntax:eval:36:0 a>
#<syntax:eval:36:0 b>
#<syntax:eval:36:0 c>
#<syntax:eval:36:0 d>
#<syntax:eval:36:0 e>)

> (syntax-parse #'(((a 1) (b 2) (c 3)) #:nothing)
[(t1:table (~or* t2:table #:nothing))
(datum (t1.key ... (~? (~@ t2.key ...))))])

'(#<syntax:eval:37:0 a> #<syntax:eval:37:0 b> #<syntax:eval:37:0
c>)

However, unlike for syntax, a value of #f only signals a template failure to ~? if a list is
needed for ellipsis iteration, as in the previous example; it does not cause a failure when it
occurs as a leaf. Contrast the following:

> (syntax-parse #'(((a 1) (b 2) (c 3)) #:nothing)
[(t1:table (~or* t2:table #:nothing))
#'(~? t2 skipped)])

#<syntax:eval:38:0 skipped>
> (syntax-parse #'(((a 1) (b 2) (c 3)) #:nothing)

[(t1:table (~or* t2:table #:nothing))
(datum (~? t2 skipped))])

#f

The datum form is also useful for accessing non-syntax-valued attributes. Compared to
attribute, datum has the following advantage: The use of ellipses in datum templates
provides a visual reminder of the list structure of their results. For example, if the pattern
is (t:table ...), then both (attribute t.hashtable) and (datum (t.hashtable
...)) produce a (listof hash?), but the ellipses make it more apparent.

Changed in version 7.8.0.9 of package base: Added support for syntax pattern variables and attributes to datum.

48

1.5 Syntax Patterns

The grammar of syntax patterns used by syntax/parse facilities is given in the following
table. There are four main kinds of syntax pattern:

• single-term patterns, abbreviated S-pattern

• head patterns, abbreviated H-pattern

• ellipsis-head patterns, abbreviated EH-pattern

• action patterns, abbreviated A-pattern

A fifth kind, list patterns (abbreviated L-pattern), is just a syntactically restricted subset
of single-term patterns.

When a special form in this manual refers to syntax-pattern (eg, the description of the
syntax-parse special form), it means specifically single-term pattern.

S-pattern = pvar-id
| pvar-id:syntax-class-id
| pvar-id:literal-id
| literal-id
| (~vars- id)
| (~vars+ id syntax-class-id maybe-role)
| (~vars+ id (syntax-class-id arg ...) maybe-role)
| (~literal literal-id maybe-phase)
| atomic-datum
| (~datum datum)
| (H-pattern . S-pattern)
| (A-pattern . S-pattern)
| (EH-pattern S-pattern)
| (H-pattern ...+ . S-pattern)
| (~ands proper-S/A-pattern ...+)
| (~or*s S-pattern ...+)
| (~not S-pattern)
| #(pattern-part ...)
| #s(prefab-struct-key pattern-part ...)
| #&S-pattern
| (~rest S-pattern)
| (~describes maybe-opaque maybe-role expr S-pattern)
| (~commits S-pattern)
| (~delimit-cuts S-pattern)
| (~posts S-pattern)
| A-pattern

49

L-pattern = ()
| (A-pattern . L-pattern)
| (H-pattern . L-pattern)
| (EH-pattern L-pattern)
| (H-pattern ...+ . L-pattern)
| (~rest L-pattern)

H-pattern = pvar-id:splicing-syntax-class-id
| (~varh id splicing-syntax-class-id maybe-role)
| (~varh id (splicing-syntax-class-id arg ...)

maybe-role)
| (~seq . L-pattern)
| (~andh proper-H/A-pattern ...+)
| (~or*h H-pattern ...+)
| (~optionalh H-pattern maybe-optional-option)
| (~describeh maybe-opaque maybe-role expr H-pattern)
| (~commith H-pattern)
| (~delimit-cuth H-pattern)
| (~posth H-patter)
| (~peek H-pattern)
| (~peek-not H-pattern)
| proper-S-pattern

EH-pattern = (~alt EH-pattern ...)
| (~once H-pattern once-option ...)
| (~optionaleh H-pattern optional-option ...)
| (~between H min-number max-number between-option)
| H-pattern

A-pattern = ~!
| (~bind [attr-arity-decl expr] ...)
| (~fail maybe-fail-condition maybe-message-expr)
| (~parse S-pattern stx-expr)
| (~anda A-pattern ...+)
| (~posta A-pattern)
| (~do defn-or-expr ...)
| (~undo defn-or-expr ...)

proper-S-pattern = a S-pattern that is not a A-pattern

proper-H-pattern = a H-pattern that is not a S-pattern

The following pattern keywords can be used in multiple pattern variants:

~var

50

One of ~vars-, ~vars+, or ~varh.

~and

One of ~ands, ~andh, or ~anda:

• ~anda if all of the conjuncts are action patterns

• ~andh if any of the conjuncts is a proper head pattern

• ~ands otherwise

~or*

One of ~or*s or ~or*h:

• ~or*h if any of the disjuncts is a proper head pattern

• ~or*s otherwise

~or

Behaves like ~or*s, ~or*h, or ~alt:

• like ~alt if the pattern occurs directly before ellipses (...) or immediately within
another ~alt pattern

• like ~or*h if any of the disjuncts is a proper head pattern

• like ~or*s otherwise

The context-sensitive interpretation of ~or is a design mistake and a common source of
confusion. Use ~alt and ~or* instead.

~describe

One of ~describes or ~describeh:

• ~describeh if the subpattern is a proper head pattern

• ~describes otherwise

~commit

51

One of ~commits or ~commith:

• ~commith if the subpattern is a proper head pattern

• ~commits otherwise

~delimit-cut

One of ~delimit-cuts or ~delimit-cuth:

• ~delimit-cuth if the subpattern is a proper head pattern

• ~delimit-cuts otherwise

~post

One of ~posts, ~posth, or ~posta:

• ~posta if the subpattern is an action pattern

• ~posth if the subpattern is a proper head pattern

• ~posts otherwise

~optional

One of ~optionalh or ~optionaleh:

• ~optionaleh if it is an immediate disjunct of an ~alt pattern

• ~optionalh otherwise

1.5.1 Single-term Patterns

A single-term pattern (abbreviated S-pattern) is a pattern that describes a single term.
These are like the traditional patterns used in syntax-rules and syntax-case, but with
additional variants that make them more expressive.

“Single-term” does not mean “atomic”; a single-term pattern can have complex structure,
and it can match terms that have many parts. For example, (17 ...) is a single-term pattern
that matches any term that is a proper list of repeated 17 numerals.

52

A proper single-term pattern is one that is not an action pattern.

The list patterns (for “list pattern”) are single-term patterns having a restricted structure that
guarantees that they match only terms that are proper lists.

Here are the variants of single-term pattern:

id

An identifier can be either a pattern variable, an annotated pattern variable, or a
literal:

• If id is the “pattern” name of an entry in the literals list, it is a literal
pattern that behaves like (~literal id).
Examples:

> (syntax-parse #'(define x 12)
#:literals (define)
[(define var:id body:expr) 'ok])

'ok
> (syntax-parse #'(lambda x 12)

#:literals (define)
[(define var:id body:expr) 'ok])

lambda: expected the identifier `define'
at: lambda
in: (lambda x 12)

> (syntax-parse #'(define x 12)
#:literals ([def define])
[(def var:id body:expr) 'ok])

'ok
> (syntax-parse #'(lambda x 12)

#:literals ([def define])
[(def var:id body:expr) 'ok])

lambda: expected the identifier `define'
at: lambda
in: (lambda x 12)

• If id is of the form pvar-id:syntax-class-id (that is, two names
joined by a colon character), it is an annotated pattern variable, and the
pattern is equivalent to (~var pvar-id syntax-class-id).
Examples:

> (syntax-parse #'a
[var:id (syntax-e #'var)])

'a

53

> (syntax-parse #'12
[var:id (syntax-e #'var)])

?: expected identifier
at: 12
in: 12

> (define-syntax-class two
#:attributes (x y)
(pattern (x y)))

> (syntax-parse #'(a b)
[t:two (syntax->datum #'(t t.x t.y))])

'((a b) a b)
> (syntax-parse #'(a b)

[t
#:declare t two
(syntax->datum #'(t t.x t.y))])

'((a b) a b)

Note that an id of the form :syntax-class-id is legal; see the discus-
sion of a ~vars+ form with a zero-length pvar-id .

• If id is of the form pvar-id:literal-id , where literal-id is in the
literals list, then it is equivalent to (~and (~var pvar-id) literal-
id).
Examples:

> (require (only-in racket/base [define def]))
> (syntax-parse #'(def x 7)

#:literals (define)
[(d:define var:id body:expr) #'d])

#<syntax:eval:11:0 def>

• Otherwise, id is a pattern variable, and the pattern is equivalent to (~var
id).

(~var pvar-id)

A pattern variable. If pvar-id has no syntax class (by #:convention), the
pattern variable matches anything. The pattern variable is bound to the matched
subterm, unless the pattern variable is the wildcard (_), in which case no binding
occurs.

If pvar-id does have an associated syntax class, it behaves like an annotated
pattern variable with the implicit syntax class inserted.

(~var pvar-id syntax-class-use maybe-role)

54

syntax-class-use = syntax-class-id
| (syntax-class-id arg ...)

maybe-role =
| #:role role-expr

role-expr : (or/c string? #f)

An annotated pattern variable. The pattern matches only terms accepted by
syntax-class-id (parameterized by the args, if present).

In addition to binding pvar-id , an annotated pattern variable also binds nested
attributes from the syntax class. The names of the nested attributes are formed
by prefixing pvar-id. (that is, pvar-id followed by a “dot” character) to the
name of the syntax class’s attribute.

If pvar-id is _, no attributes are bound. If pvar-id is the zero-length identifier
(||), then pvar-id is not bound, but the nested attributes of syntax-class-
use are bound without prefixes.

If role-expr is given and evaluates to a string, it is combined with the syntax
class’s description in error messages.

Examples:

> (syntax-parse #'a
[(~var var id) (syntax-e #'var)])

'a
> (syntax-parse #'12

[(~var var id) (syntax-e #'var)])
?: expected identifier

at: 12
in: 12

> (define-syntax-class two
#:attributes (x y)
(pattern (x y)))

> (syntax-parse #'(a b)
[(~var t two) (syntax->datum #'(t t.x t.y))])

'((a b) a b)
> (define-syntax-class (nat-less-than n)

(pattern x:nat #:when (< (syntax-e #'x) n)))
> (syntax-parse #'(1 2 3 4 5)

[((~var small (nat-less-than 4)) ... large:nat ...)
(list #'(small ...) #'(large ...))])

'(#<syntax:eval:17:0 (1 2 3)> #<syntax:eval:17:0 (4 5)>)
> (syntax-parse #'(m a b 3)

[(_ (~var x id #:role "variable") ...) 'ok])

55

m: expected identifier for variable
at: 3
in: (m a b 3)

(~literal literal-id maybe-phase)

maybe-phase =
| #:phase phase-expr

A literal identifier pattern. Matches any identifier free-identifier=? to
literal-id .

Examples:

> (syntax-parse #'(define x 12)
[((~literal define) var:id body:expr) 'ok])

'ok
> (syntax-parse #'(lambda x 12)

[((~literal define) var:id body:expr) 'ok])
lambda: expected the identifier `define'

at: lambda
in: (lambda x 12)

The identifiers are compared at the phase given by phase-expr , if it is given,
or (syntax-local-phase-level) otherwise.

atomic-datum

Numbers, strings, booleans, keywords, and the empty list match as literals.

Examples:

> (syntax-parse #'(a #:foo bar)
[(x #:foo y) (syntax->datum #'y)])

'bar
> (syntax-parse #'(a foo bar)

[(x #:foo y) (syntax->datum #'y)])
a: expected the literal #:foo

at: foo
in: (a foo bar)

(~datum datum)

Matches syntax whose S-expression contents (obtained by syntax->datum) is
equal? to the given datum .

Examples:

56

> (syntax-parse #'(a #:foo bar)
[(x (~datum #:foo) y) (syntax->datum #'y)])

'bar
> (syntax-parse #'(a foo bar)

[(x (~datum #:foo) y) (syntax->datum #'y)])
a: expected the literal #:foo

at: foo
in: (a foo bar)

The ~datum form is useful for recognizing identifiers symbolically, in contrast
to the ~literal form, which recognizes them by binding.

Examples:

> (define-syntax (is-define? stx)
(syntax-parse stx

[(is-define? id)
(syntax-parse #'id

[(~literal define) #''yes]
[(~datum define) #''not-really]
[_ #''not-even-close])]))

> (is-define? define)
'yes
> (let ([define 42])

(is-define? define))
'not-really
> (is-define? something-else)
'not-even-close

(H-pattern . S-pattern)

Matches any term that can be decomposed into a list prefix matching H-
pattern and a suffix matching S-pattern .

Note that the pattern may match terms that are not even improper lists; if the
head pattern can match a zero-length head, then the whole pattern matches what-
ever the tail pattern accepts.

The first pattern can be a single-term pattern, in which case the whole pattern
matches any pair whose first element matches the first pattern and whose rest
matches the second.

See head patterns for more information.

(A-pattern . S-pattern)

Performs the actions specified by A-pattern , then matches any term that
matches S-pattern .

57

Pragmatically, one can throw an action pattern into any list pattern. Thus, (x
y z) is a pattern matching a list of three terms, and (x y ~! z) is a pattern
matching a list of three terms, with a cut performed after the second one. In
other words, action patterns “don’t take up space.”

See action patterns for more information.

(EH-pattern S-pattern)

Matches any term that can be decomposed into a list head matching some num-
ber of repetitions of the EH-pattern alternatives (subject to its repetition con-
straints) followed by a list tail matching S-pattern .

In other words, the whole pattern matches either the second pattern (which need
not be a list) or a term whose head matches one of the alternatives of the first
pattern and whose tail recursively matches the whole sequence pattern.

See ellipsis-head patterns for more information.

(H-pattern ...+ . S-pattern)

Like an ellipses (...) pattern, but requires at least one occurrence of the head
pattern to be present.

That is, the following patterns are equivalent:

• (H ...+ . S)

• ((~between H 1 +inf.0) S)

Examples:

> (syntax-parse #'(1 2 3)
[(n:nat ...+) 'ok])

'ok
> (syntax-parse #'()

[(n:nat ...+) 'ok]
[_ 'none])

'none

(~and S/A-pattern ...)

Matches any term that matches all of the subpatterns.

The subpatterns can contain a mixture of single-term patterns and action pat-
terns, but must contain at least one single-term pattern.

58

Attributes bound in subpatterns are available to subsequent subpatterns. The
whole pattern binds all of the subpatterns’ attributes.

One use for ~and-patterns is preserving a whole term (including its lexical con-
text, source location, etc) while also examining its structure. Syntax classes are
useful for the same purpose, but ~and can be lighter weight.

Examples:

> (define-syntax (import stx)
(raise-syntax-error #f "illegal use of import" stx))

> (define (check-imports stx))
> (syntax-parse #'(m (import one two))

#:literals (import)
[(_ (~and import-clause (import i ...)))
(let ([bad (check-imports

(syntax->list #'(i ...)))])
(when bad

(raise-syntax-error
#f "bad import" #'import-clause bad))

'ok)])
'ok

(~or* S-pattern ...)

Matches any term that matches one of the included patterns. The alternatives
are tried in order.

The whole pattern binds all of the subpatterns’ attributes. An attribute that is
not bound by the “chosen” subpattern has a value of #f. The same attribute may
be bound by multiple subpatterns, and if it is bound by all of the subpatterns, it
is sure to have a value if the whole pattern matches.

Examples:

> (syntax-parse #'a
[(~or* x:id y:nat) (values (attribute x) (attribute y))])

#<syntax:eval:34:0 a>
#f
> (syntax-parse #'(a 1)

[(~or* (x:id y:nat) (x:id)) (values #'x (attribute y))])
#<syntax:eval:35:0 a>
#<syntax:eval:35:0 1>
> (syntax-parse #'(b)

[(~or* (x:id y:nat) (x:id)) (values #'x (attribute y))])
#<syntax:eval:36:0 b>
#f

59

(~not S-pattern)

Matches any term that does not match the subpattern. None of the subpattern’s
attributes are bound outside of the ~not-pattern.

Example:

> (syntax-parse #'(x y z => u v)
#:literals (=>)
[((~and before (~not =>)) ... => after ...)
(list #'(before ...) #'(after ...))])

'(#<syntax:eval:37:0 (x y z)> #<syntax:eval:37:0 (u v)>)

#(pattern-part ...)

Matches a term that is a vector whose elements, when considered as a list, match
the single-term pattern corresponding to (pattern-part ...).

Examples:

> (syntax-parse #'#(1 2 3)
[#(x y z) (syntax->datum #'z)])

3
> (syntax-parse #'#(1 2 3)

[#(x y ...) (syntax->datum #'(y ...))])
'(2 3)
> (syntax-parse #'#(1 2 3)

[#(x ~rest y) (syntax->datum #'y)])
'(2 3)

#s(prefab-struct-key pattern-part ...)

Matches a term that is a prefab struct whose key is exactly the given key and
whose sequence of fields, when considered as a list, match the single-term pat-
tern corresponding to (pattern-part ...).

Examples:

> (syntax-parse #'#s(point 1 2 3)
[#s(point x y z) 'ok])

'ok
> (syntax-parse #'#s(point 1 2 3)

[#s(point x y ...) (syntax->datum #'(y ...))])
'(2 3)
> (syntax-parse #'#s(point 1 2 3)

[#s(point x ~rest y) (syntax->datum #'y)])

60

'(2 3)

#&S-pattern

Matches a term that is a box whose contents matches the inner single-term pat-
tern.

Example:

> (syntax-parse #'#&5
[#&n:nat 'ok])

'ok

(~rest S-pattern)

Matches just like S-pattern . The ~rest pattern form is useful in positions
where improper (“dotted”) lists are not allowed by the reader, such as vector
and structure patterns (see above).

Examples:

> (syntax-parse #'(1 2 3)
[(x ~rest y) (syntax->datum #'y)])

'(2 3)
> (syntax-parse #'#(1 2 3)

[#(x ~rest y) (syntax->datum #'y)])
'(2 3)

(~describe maybe-role maybe-opaque expr S-pattern)

maybe-opaque =
| #:opaque

maybe-role =
| #:role role-expr

expr : (or/c string? #f)

role-expr : (or/c string? #f)

The ~describe pattern form annotates a pattern with a description, a string
expression that is evaluated in the scope of all prior attribute bindings. If pars-
ing the inner pattern fails, then the description is used to synthesize the error
message. A ~describe pattern does not influence backtracking.

61

If #:opaque is given, failure information from within S-pattern is discarded
and the error is reported solely in terms of the description given.

If role-expr is given and produces a string, its value is combined with the
description in error messages.

Examples:

> (syntax-parse #'(m 1)
[(_ (~describe "id pair" (x:id y:id))) 'ok])

m: expected id pair
at: 1
in: (m 1)

> (syntax-parse #'(m (a 2))
[(_ (~describe "id pair" (x:id y:id))) 'ok])

m: expected identifier
at: 2
in: (m (a 2))
parsing context:

while parsing id pair
term: (a 2)
location: eval:48:0

> (syntax-parse #'(m (a 2))
[(_ (~describe #:opaque "id pair" (x:id y:id))) 'ok])

m: expected id pair
at: (a 2)
in: (m (a 2))

> (syntax-parse #'(m 1)
[(_ (~describe #:role "formals" "id

pair" (x y))) 'ok])
m: expected id pair for formals

at: 1
in: (m 1)

(~commit S-pattern)

The ~commit pattern form affects backtracking in two ways:

• If the pattern succeeds, then all choice points created within the subpattern
are discarded, and a failure after the ~commit pattern backtracks only to
choice points before the ~commit pattern, never one within it.

• A cut (~!) within a ~commit pattern only eliminates choice-points created
within the ~commit pattern. In this sense, it acts just like ~delimit-cut.

(~delimit-cut S-pattern)

The ~delimit-cut pattern form affects backtracking in the following way:

62

• A cut (~!) within a ~delimit-cut pattern only eliminates choice-points
created within the ~delimit-cut pattern.

(~post S-pattern)

Marks failures within the subpattern as occurring in a “post-order check”; that
is, they are considered to have made greater progress than a normal failure.

A-pattern

An action pattern is considered a single-term pattern when there is no ambiguity;
it matches any term.

1.5.2 Head Patterns

A head pattern (abbreviated H-pattern) is a pattern that describes some number of terms
that occur at the head of some list (possibly an improper list). A head pattern’s usefulness
comes from being able to match heads of different lengths, such as optional forms like
keyword arguments.

A proper head pattern is a head pattern that is not a single-term pattern.

Here are the variants of head pattern:

pvar-id:splicing-syntax-class-id

Equivalent to (~var pvar-id splicing-syntax-class-id).

(~var pvar-id splicing-syntax-class-use maybe-role)

splicing-syntax-class-use = splicing-syntax-class-id
| (splicing-syntax-class-id arg ...)

maybe-role =
| #:role role-expr

role-expr : (or/c string? #f)

Pattern variable annotated with a splicing syntax class. Similar to a normal
annotated pattern variable, except matches a head pattern.

63

(~seq . L-pattern)

Matches a sequence of terms whose elements, if put in a list, would match L-
pattern .

Example:

> (syntax-parse #'(1 2 3 4)
[((~seq 1 2 3) 4) 'ok])

'ok

See also the section on ellipsis-head patterns for more interesting examples of
~seq.

(~and H-pattern ...)

Like the single-term pattern version, ~ands, but matches a sequence of terms
instead.

Example:

> (syntax-parse #'(#:a 1 #:b 2 3 4 5)
[((~and (~seq (~seq k:keyword e:expr) ...)

(~seq keyword-stuff ...))
positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-
stuff ...)))])
'((#:a #:b) (1 2) (#:a 1 #:b 2))

The head pattern variant of ~and requires that all of the subpatterns be proper
head patterns (not single-term patterns). This is to prevent typos like the follow-
ing, a variant of the previous example with the second ~seq omitted:

Examples:

> (syntax-parse #'(#:a 1 #:b 2 3 4 5)
[((~and (~seq (~seq k:keyword e:expr) ...)

(keyword-stuff ...))
positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-
stuff ...)))])
syntax-parse: single-term pattern not allowed after head
pattern

at: (keyword-stuff ...)
in: (syntax-parse (syntax (#:a 1 #:b 2 3 4 5)) (((~and

(~seq (~seq k:keyword e:expr) ...) (keyword-stuff ...))

64

positional-stuff ...) (syntax-ądatum (syntax ((k ...) (e
...) (keyword-stuff ...))))))
; If the example above were allowed, it would be equiva-
lent to this:
> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((~and (~seq (~seq k:keyword e:expr) ...)
(~seq (keyword-stuff ...)))

positional-stuff ...)
(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])
?: bad syntax

in: (#:a 1 #:b 2 3 4 5)

(~or* H-pattern ...)

Like the single-term pattern version, ~or*s, but matches a sequence of terms
instead.

Examples:

> (syntax-parse #'(m #:foo 2 a b c)
[(_ (~or* (~seq #:foo x) (~seq)) y:id ...)
(attribute x)])

#<syntax:eval:55:0 2>
> (syntax-parse #'(m a b c)

[(_ (~or* (~seq #:foo x) (~seq)) y:id ...)
(attribute x)])

#f

(~optional H-pattern maybe-optional-option)

maybe-optional-option =
| #:defaults ([attr-arity-decl expr] ...)

attr-arity-decl = attr-id
| (attr-id depth)

Matches either the given head subpattern or an empty sequence of terms. If
the #:defaults option is given, the subsequent attribute bindings are used if
the subpattern does not match. The default attributes must be a subset of the
subpattern’s attributes.

Examples:

> (syntax-parse #'(m #:foo 2 a b c)

65

[(_ (~optional (~seq #:foo x) #:defaults ([x #'#f])) y:id ...)
(attribute x)])

#<syntax:eval:57:0 2>
> (syntax-parse #'(m a b c)

[(_ (~optional (~seq #:foo x) #:defaults ([x #'#f])) y:id ...)
(attribute x)])

#<syntax:eval:58:0 #f>
> (syntax-parse #'(m a b c)

[(_ (~optional (~seq #:foo x)) y:id ...)
(attribute x)])

#f
> (syntax-parse #'(m #:syms a b c)

[(_ (~optional (~seq #:nums n:nat ...) #:defaults ([(n 1) null]))
(~optional (~seq #:syms s:id ...) #:defaults ([(s 1) null])))

#'((n ...) (s ...))])
#<syntax:eval:60:0 (() (a b c))>

(~describe expr H-pattern)

Like the single-term pattern version, ~describes, but matches a head pattern
instead.

(~commit H-pattern)

Like the single-term pattern version, ~commits, but matches a head pattern in-
stead.

(~delimit-cut H-pattern)

Like the single-term pattern version, ~delimit-cuts, but matches a head pat-
tern instead.

(~post H-pattern)

Like the single-term pattern version, ~posts, but matches a head pattern instead.

(~peek H-pattern)

Matches the H-pattern but then resets the matching position, so the ~peek
pattern consumes no input. Used to look ahead in a sequence.

Examples:

66

> (define-splicing-syntax-class nf-id ; non-final id
(pattern (~seq x:id (~peek another:id))))

> (syntax-parse #'(a b c 1 2 3)
[(n:nf-id ... rest ...)
(printf "nf-ids are ~s\n" (syntax-

>datum #'(n.x ...)))
(printf "rest is ~s\n" (syntax-

>datum #'(rest ...)))])
nf-ids are (a b)
rest is (c 1 2 3)

(~peek-not H-pattern)

Like ~peek, but succeeds if the subpattern fails and fails if the subpattern suc-
ceeds. On success, the ~peek-not resets the matching position, so the pattern
consumes no input. Used to look ahead in a sequence. None of the subpattern’s
attributes are bound outside of the ~peek-not-pattern.

Examples:

> (define-splicing-syntax-class final ; final term
(pattern (~seq x (~peek-not _))))

> (syntax-parse #'(a b c)
[((~alt f:final other) ...)
(printf "finals are ~s\n" (syntax-

>datum #'(f.x ...)))
(printf "others are ~s\n" (syntax-

>datum #'(other ...)))])
finals are (c)
others are (a b)

S-pattern

Matches a sequence of one element, which must be a term matching S-
pattern .

1.5.3 Ellipsis-head Patterns

An ellipsis-head pattern (abbreviated EH-pattern) is pattern that describes some number
of terms, like a head pattern, but also places constraints on the number of times it occurs
in a repetition. They are useful for matching, for example, keyword arguments where the
keywords may come in any order. Multiple alternatives are grouped together via ~alt.

Examples:

67

> (define parser1
(syntax-parser
[((~alt (~once (~seq #:a x) #:name "#:a keyword")

(~optional (~seq #:b y) #:name "#:b keyword")
(~seq #:c z)) ...)

'ok]))
> (parser1 #'(#:a 1))
'ok
> (parser1 #'(#:b 2 #:c 3 #:c 25 #:a 'hi))
'ok
> (parser1 #'(#:a 1 #:a 2))
?: too many occurrences of #:a keyword

at: ()
within: (#:a 1 #:a 2)
in: (#:a 1 #:a 2)

The pattern requires exactly one occurrence of the #:a keyword and argument, at most
one occurrence of the #:b keyword and argument, and any number of #:c keywords and
arguments. The “pieces” can occur in any order.

Here are the variants of ellipsis-head pattern:

(~alt EH-pattern ...)

Matches if any of the inner EH-pattern alternatives match.

(~once H-pattern once-option ...)

once-option = #:name name-expr
| #:too-few too-few-message-expr
| #:too-many too-many-message-expr

name-expr : (or/c string? #f)

too-few-message-expr : (or/c string? #f)

too-many-message-expr : (or/c string? #f)

Matches if the inner H-pattern matches. This pattern must be matched exactly
once in the match of the entire repetition sequence.

If the pattern is not matched in the repetition sequence, then the ellipsis pat-
tern fails with the message either too-few-message-expr or "missing re-
quired occurrence of name-expr".

If the pattern is chosen more than once in the repetition sequence, then the el-
lipsis pattern fails with the message either too-many-message-expr or "too
many occurrences of name-expr".

68

(~optional H-pattern optional-option ...)

optional-option = #:name name-expr
| #:too-many too-many-message-expr
| #:defaults ([attr-id expr] ...)

name-expr : (or/c string? #f)

too-many-message-expr : (or/c string? #f)

Matches if the inner H-pattern matches. This pattern may be used at most
once in the match of the entire repetition.

If the pattern is matched more than once in the repetition sequence, then the el-
lipsis pattern fails with the message either too-many-message-expr or "too
many occurrences of name-expr".

If the #:defaults option is given, the following attribute bindings are used if
the subpattern does not match at all in the sequence. The default attributes must
be a subset of the subpattern’s attributes.

(~between H-pattern min-number max-number between-option ...)

between-option = #:name name-expr
| #:too-few too-few-message-expr
| #:too-many too-many-message-expr

name-expr : (or/c string? #f)

too-few-message-expr : (or/c string? #f)

too-many-message-expr : (or/c string? #f)

Matches if the inner H-pattern matches. This pattern must be matched at least
min-number and at most max-number times in the entire repetition.

If the pattern is matched too few times, then the ellipsis pattern fails with
the message either too-few-message-expr or "too few occurrences of
name-expr", when name-expr is provided.

If the pattern is chosen too many times, then the ellipsis pattern fails with the
message either too-many-message-expr or "too many occurrences of
name-expr", when name-expr is provided.

1.5.4 Action Patterns

An action pattern (abbreviated A-pattern) does not describe any syntax; rather, it has an
effect such as the binding of attributes or the modification of the matching process.

69

~!

The cut operator, written ~!, eliminates backtracking choice points and commits
parsing to the current branch of the pattern it is exploring.

Common opportunities for cut-patterns come from recognizing special forms
based on keywords. Consider the following expression:

> (syntax-parse #'(define-values a 123)
#:literals (define-values define-syntaxes)
[(define-values (x:id ...) e) 'define-values]
[(define-syntaxes (x:id ...) e) 'define-syntaxes]
[e 'expression])

'expression

Given the ill-formed term (define-values a 123), syntax-parse tries the
first clause, fails to match a against the pattern (x:id ...), and then back-
tracks to the second clause and ultimately the third clause, producing the value
'expression. But the term is not an expression; it is an ill-formed use of
define-values. The proper way to write the syntax-parse expression fol-
lows:

> (syntax-parse #'(define-values a 123)
#:literals (define-values define-syntaxes)
[(define-values ~! (x:id ...) e) 'define-values]
[(define-syntaxes ~! (x:id ...) e) 'define-syntaxes]
[e 'expression])

define-values: bad syntax
in: (define-values a 123)

Now, given the same term, syntax-parse tries the first clause, and since the
keyword define-values matches, the cut-pattern commits to the current pat-
tern, eliminating the choice points for the second and third clauses. So when the
clause fails to match, the syntax-parse expression raises an error.

The effect of a ~! pattern is delimited by the nearest enclosing ~delimit-
cut or ~commit pattern. If there is no enclosing ~describe pattern but the
cut occurs within a syntax class definition, then only choice points within the
syntax class definition are discarded. A ~! pattern is not allowed within a ~not
pattern unless there is an intervening ~delimit-cut or ~commit pattern.

(~bind [attr-arity-decl expr] ...)

attr-arity-decl = attr-name-id
| (attr-name-id depth)

Evaluates the exprs and binds them to the given attr-ids as attributes.

70

(~fail maybe-fail-condition maybe-message-expr)

maybe-fail-condition =
| #:when condition-expr
| #:unless condition-expr

maybe-message-expr =
| message-expr

message-expr : (or/c string? #f)

If the condition is absent, or if the #:when condition evaluates to a true value, or
if the #:unless condition evaluates to #f, then the pattern fails with the given
message. If the message is omitted, the default value #f is used, representing
“no message.”

Fail patterns can be used together with cut patterns to recognize specific ill-
formed terms and address them with custom failure messages.

(~parse S-pattern stx-expr)

Evaluates stx-expr and matches it against S-pattern . If stx-expr does
not produce a syntax object, the value is implicitly converted to a syntax object,
unless the conversion would produce 3D syntax, in which case an exception is
raised instead.

(~and A-pattern ...+)

Performs the actions of each A-pattern .

(~do defn-or-expr ...)

Takes a sequence of definitions and expressions, which may be intermixed, and
evaluates them in the scope of all previous attribute bindings. The names bound
by the definitions are in scope in the expressions of subsequent patterns and
clauses.

There is currently no way to bind attributes using a ~do pattern. It is an error to
shadow an attribute binding with a definition in a ~do block.

Example:

71

> (syntax-parse #'(1 2 3)
[(a b (~do (printf "a was ~s\n" #'a)) c:id) 'ok])

a was #<syntax:eval:71:0 1>
?: expected identifier

at: 3
in: (1 2 3)

(~undo defn-or-expr ...)

Has no effect when initially matched, but if backtracking returns to a point be-
fore the ~undo pattern, the defn-or-exprs are executed. They are evaluated
in the scope of all previous attribute bindings.

Use ~do paired with ~undo to perform side effects and then unwind them if the
enclosing pattern is later discarded.

Examples:

> (define total 0)
> (define-syntax-class nat/add

(pattern (~and n:nat
(~do (printf "adding ~s\n" (syntax-

e #'n))
(set! total (+ total (syntax-

e #'n))))
(~undo (printf "subtracting

~s\n" (syntax-e #'n))
(set! total (- total (syntax-

e #'n)))))))
> (syntax-parse #'(1 2 3)

[(x:nat/add ...) 'ok])
adding 1
adding 2
adding 3
'ok
> total
6
> (set! total 0)
> (syntax-parse #'(1 2 3 bad)

[(x:nat/add ...) 'ok]
[_ 'something-else])

adding 1
adding 2
adding 3
subtracting 3
subtracting 2
subtracting 1

72

'something-else
> total
0

(~post A-pattern)

Like the single-term pattern version, ~posts, but contains only action patterns.

1.5.5 Pattern Expanders

The grammar of syntax patterns is extensible through the use of pattern expanders, which
allow the definition of new pattern forms by rewriting them into existing pattern forms. As a convention to

avoid ambiguity,
pattern expander
names normally
begin with a ~
character.

(pattern-expander proc) Ñ pattern-expander?
proc : (-> syntax? syntax?)

Returns a pattern expander that uses proc to transform the pattern.

Example:

> (define-syntax ~maybe
(pattern-expander
(lambda (stx)

(syntax-case stx ()
[(~maybe pat ...)
#'(~optional (~seq pat ...))]))))

prop:pattern-expander
: (struct-type-property/c (-> pattern-expander? (-> syntax? syntax?)))

A structure type property to identify structure types that act as pattern expanders like the
ones created by pattern-expander.

(begin-for-syntax
(struct thing (proc pattern-expander)

#:property prop:procedure (struct-field-index proc)
#:property prop:pattern-expander (λ (this) (thing-pattern-

expander this))))
(define-syntax ~maybe

(thing
(lambda (stx) macro behavior)
(lambda (stx) pattern-expander behavior)))

73

(pattern-expander? v) Ñ boolean?
v : any/c

Returns #t if v is a pattern expander, #f otherwise.

(syntax-local-syntax-parse-pattern-introduce stx) Ñ syntax?
stx : syntax?

For backward compatibility only; equivalent to syntax-local-introduce.

Changed in version 6.90.0.29 of package base: Made equivalent to syntax-local-introduce.

1.6 Defining Simple Macros

(require syntax/parse/define) package: base

The syntax/parse/define library provides for-syntax all of syntax/parse, as well
as providing some new forms.

(define-syntax-parse-rule (macro-id . pattern) pattern-directive ...
template)

Defines a macro named macro-id ; equivalent to the following:

(define-syntax (macro-id stx)
(syntax-parse stx

#:track-literals
[((~var macro-id id) . pattern) pattern-

directive ... #'template]))

Examples:

> (define-syntax-parse-rule (fn x:id rhs:expr) (lambda (x) rhs))
> ((fn x x) 17)
17
> (fn 1 2)
fn: expected identifier

at: 1
in: (fn 1 2)

> (define-syntax-parse-rule (fn2 x y rhs)
#:declare x id
#:declare y id
#:declare rhs expr
(lambda (x y) rhs))

74

https://pkgs.racket-lang.org/package/base

> ((fn2 a b (+ a b)) 3 4)
7
> (fn2 a #:b 'c)
fn2: expected identifier

at: #:b
in: (fn2 a #:b (quote c))

Added in version 7.9.0.22 of package base.

(define-syntax-parser macro-id parse-option ... clause ...+)

Defines a macro named macro-id ; equivalent to:

(define-syntax macro-id
(syntax-parser parse-option ... clause ...))

Examples:

> (define-syntax-parser fn3
[(fn3 x:id rhs:expr)
#'(lambda (x) rhs)]

[(fn3 x:id y:id rhs:expr)
#'(lambda (x y) rhs)])

> ((fn3 x x) 17)
17
> ((fn3 a b (+ a b)) 3 4)
7
> (fn3 1 2)
fn3: expected identifier

at: 1
in: (fn3 1 2)

> (fn3 a #:b 'c)
fn3: expected expression or expected identifier

at: #:b
in: (fn3 a #:b (quote c))

(define-simple-macro (macro-id . pattern) pattern-directive ...
template)

NOTE: This macro is deprecated; use define-syntax-parse-rule, instead.

Re-exports define-syntax-parse-rule for backward-compatibility.

75

Changed in version 6.12.0.3 of package base: Changed pattern head to (~var macro-id id) from macro-id ,
allowing tilde-prefixed identifiers or identifiers containing colons to be used as macro-id without producing a
syntax error.
Changed in version 6.90.0.29: Changed to always use the #:track-literals syntax-parse option.

1.7 Literal Sets and Conventions

Sometimes the same literals are recognized in a number of different places. The most com-
mon example is the literals for fully expanded programs, which are used in many analysis
and transformation tools. Specifying literals individually is burdensome and error-prone. As
a remedy, syntax/parse offers literal sets. A literal set is defined via define-literal-
set and used via the #:literal-set option of syntax-parse.

(define-literal-set id maybe-phase maybe-imports maybe-datum-literals
(literal ...))

literal = literal-id
| (pattern-id literal-id)

maybe-phase =
| #:for-template
| #:for-syntax
| #:for-label
| #:phase phase-level

maybe-datum-literals =
| #:datum-literals (datum-literal ...)

maybe-imports =
| #:literal-sets (imported-litset-id ...)

Defines id as a literal set. Each literal can have a separate pattern-id and literal-
id . The pattern-id determines what identifiers in the pattern are treated as literals. The
literal-id determines what identifiers the literal matches. If the #:literal-sets option
is present, the contents of the given imported-litset-ids are included.

Examples:

> (define-literal-set def-litset
(define-values define-syntaxes))

> (syntax-parse #'(define-syntaxes (x) 12)
#:literal-sets (def-litset)
[(define-values (x:id ...) e:expr) 'v]
[(define-syntaxes (x:id ...) e:expr) 's])

76

's

The literals in a literal set always refer to the bindings at phase phase-level relative to the
enclosing module. If the #:for-template option is given, phase-level is -1; #:for-
syntax means 1, and #:for-label means #f. If no phase keyword option is given, then
phase-level is 0.

For example:

> (module common racket/base
(define x 'something)
(provide x))

> (module lits racket/base
(require syntax/parse 'common)
(define-literal-set common-lits (x))
(provide common-lits))

In the literal set common-lits, the literal x always recognizes identifiers bound to the vari-
able x defined in module 'common.

The following module defines an equivalent literal set, but imports the 'common module
for-template instead:

> (module lits racket/base
(require syntax/parse (for-template 'common))
(define-literal-set common-lits #:for-template (x))
(provide common-lits))

When a literal set is used with the #:phase phase-expr option, the literals’ fixed bindings
are compared against the binding of the input literal at the specified phase. Continuing the
example:

> (require syntax/parse 'lits (for-syntax 'common))
> (syntax-parse #'x #:literal-sets ([common-lits #:phase 1])

[x 'yes]
[_ 'no])

'yes

The occurrence of x in the pattern matches any identifier whose binding at phase 1 is the x
from module 'common.

(literal-set->predicate litset-id)

Given the name of a literal set, produces a predicate that recognizes identifiers in the literal
set. The predicate takes one required argument, an identifier id , and one optional argument,

77

the phase phase at which to examine the binding of id ; the phase argument defaults to
(syntax-local-phase-level).

Examples:

> (define kernel? (literal-set->predicate kernel-literals))
> (kernel? #'lambda)
#f
> (kernel? #'#%plain-lambda)
#t
> (kernel? #'define-values)
#t
> (kernel? #'define-values 4)
#f

(define-conventions name-id convention-rule ...)

convention-rule = (name-pattern syntax-class)

name-pattern = exact-id
| name-rx

syntax-class = syntax-class-id
| (syntax-class-id expr ...)

Defines conventions that supply default syntax classes for pattern variables. A pattern vari-
able that has no explicit syntax class is checked against each name-pattern , and the first
one that matches determines the syntax class for the pattern. If no name-pattern matches,
then the pattern variable has no syntax class.

Examples:

> (define-conventions xyz-as-ids
[x id] [y id] [z id])

> (syntax-parse #'(a b c 1 2 3)
#:conventions (xyz-as-ids)
[(x ... n ...) (syntax->datum #'(x ...))])

'(a b c)
> (define-conventions xn-prefixes

[#rx"^x" id]
[#rx"^n" nat])

> (syntax-parse #'(a b c 1 2 3)
#:conventions (xn-prefixes)
[(x0 x ... n0 n ...)
(syntax->datum #'(x0 (x ...) n0 (n ...)))])

'(a (b c) 1 (2 3))

78

Local conventions, introduced with the #:local-conventions keyword argument of
syntax-parse and syntax class definitions, may refer to local bindings:

Examples:

> (define-syntax-class (nat> bound)
(pattern n:nat

#:fail-unless (> (syntax-e #'n) bound)
(format "expected number > ~s" bound)))

> (define-syntax-class (natlist> bound)
#:local-conventions ([N (nat> bound)])
(pattern (N ...)))

> (define (parse-natlist> bound x)
(syntax-parse x

#:local-conventions ([NS (natlist> bound)])
[NS 'ok]))

> (parse-natlist> 0 #'(1 2 3))
'ok
> (parse-natlist> 5 #'(8 6 4 2))
?: expected number ą 5

at: 4
in: (8 6 4 2)
parsing context:

while parsing natą
term: 4
location: eval:21:0

while parsing natlistą
term: (8 6 4 2)
location: eval:21:0

1.8 Library Syntax Classes and Literal Sets

1.8.1 Syntax Classes

expr

Matches anything except a keyword literal (to distinguish expressions from the start of a
keyword argument sequence). The term is not otherwise inspected, since it is not feasible to
check if it is actually a valid expression.

identifier
boolean
char
keyword

79

number
integer
exact-integer
exact-nonnegative-integer
exact-positive-integer
regexp
byte-regexp

Match syntax satisfying the corresponding predicates.

string
bytes

As special cases, Racket’s string and bytes bindings are also interpreted as syntax classes
that recognize literal strings and bytes, respectively.

Added in version 6.9.0.4 of package base.

id

Alias for identifier.

nat

Alias for exact-nonnegative-integer.

str

Alias for string.

character

Alias for char.

(static predicate description) Ñ syntax class
predicate : (-> any/c any/c)
description : (or/c string? #f)

The static syntax class matches an identifier that is bound in the syntactic environment to
static information (see syntax-local-value) satisfying the given predicate . If the term
does not match, the description argument is used to describe the expected syntax.

80

When used outside of the dynamic extent of a macro transformer (see syntax-
transforming?), matching fails.

The attribute value contains the value the name is bound to.

If matching succeeds, static additionally adds the matched identifier to the current
syntax-parse state under the key 'literals using syntax-parse-state-cons!, in
the same way as identifiers matched using #:literals or ~literal.

Changed in version 6.90.0.29 of package base: Changed to add matched identifiers to the syntax-parse state
under the key 'literals.

(expr/c contract-expr
[#:arg? arg?
#:positive pos-blame
#:negative neg-blame
#:name expr-name
#:macro macro-name
#:context context
#:phase phase]) Ñ syntax class

contract-expr : syntax?
arg? : any/c = #t
pos-blame : (or/c syntax? string? module-path-index? 'from-macro 'use-site 'unknown)

= 'from-macro
neg-blame : (or/c syntax? string? module-path-index? 'from-macro 'use-site 'unknown)

= 'use-site
expr-name : (or/c identifier? string? symbol?) = #f
macro-name : (or/c identifier? string? symbol?) = #f
context : (or/c syntax? #f) = determined automatically
phase : exact-integer? = (syntax-local-phase-level)

Accepts an expression (expr) and computes an attribute c that represents the expression
wrapped with the contract represented by contract-expr . Note that contract-expr is
potentially evaluated each time the code generated by the macro is run; for the best perfor-
mance, contract-expr should be a variable reference.

The positive blame represents the obligations of the macro imposing the contract—the ul-
timate user of expr/c. The contract’s negative blame represents the obligations of the ex-
pression being wrapped. By default, the positive blame is inferred from the definition site
of the macro (itself inferred from the context argument), and the negative blame is taken
as the module currently being expanded, but both blame locations can be overridden. When
arg? is #t, the term being matched is interpreted as an argument (that is, coming from the
negative party); when arg? is #f, the term being matched is interpreted as a result of the
macro (that is, coming from the positive party).

The pos-blame and neg-blame arguments are turned into blame locations as follows:

81

• If the argument is a string, it is used directly as the blame label.

• If the argument is syntax, its source location is used to produce the blame label.

• If the argument is a module path index, its resolved module path is used.

• If the argument is 'from-macro, the macro is inferred from either the macro-name
argument (if macro-name is an identifier) or the context argument, and the module
where it is defined is used as the blame location. If neither an identifier macro-name
nor a context argument is given, the location is "unknown".

• If the argument is 'use-site, the module being expanded is used.

• If the argument is 'unknown, the blame label is "unknown".

The macro-name argument is used to determine the macro’s binding, if it is an identifier. If
expr-name is given, macro-name is also included in the contract error message. If macro-
name is omitted or #f, but context is a syntax object, then macro-name is determined
from context .

If expr-name is not #f, it is used in the contract’s error message to describe the expression
the contract is applied to.

The context argument is used, when necessary, to infer the macro name for the negative
blame party and the contract error message. The context should be either an identifier or
a syntax pair with an identifier in operator position; in either case, that identifier is taken as
the macro ultimately requesting the contract wrapping.

The phase argument must indicate the phase level at which the contracted expression will
be evaluated. Using the contracted expression at a different phase level will cause a syntax
error because it will contain introduced references bound in the wrong phase. In particular:

• Use the default value, (syntax-local-phase-level), when the contracted expres-
sion will be evaluated at the same phase as the form currently being expanded. This is
usually the case.

• Use (add1 (syntax-local-phase-level)) in cases such as the following: the
contracted expression will be placed inside a begin-for-syntax form, used in the
right-hand side of a define-syntax or let-syntax form, or passed to syntax-
local-bind-syntaxes or syntax-local-eval.

Any phase level other than #f (the label phase level) is allowed, but phases other
than (syntax-local-phase-level) and (add1 (syntax-local-phase-level)) may
only be used when in the dynamic extent of a syntax transformer or while a module is being
visited (see syntax-transforming?), otherwise exn:fail:contract? is raised.

See §1.2.6 “Contracts on Macro Sub-expressions” for examples.

82

Important: Make sure when using expr/c to use the c attribute. The expr/c syntax class
does not change how pattern variables are bound; it only computes an attribute that represents
the checked expression.

Changed in version 7.2.0.3 of package base: Added the #:arg? keyword argument and changed the default values
and interpretation of the #:positive and #:negative arguments.
Changed in version 7.3.0.3: Added the #:phase keyword argument.

1.8.2 Literal Sets

kernel-literals

Literal set containing the identifiers for fully-expanded code (§1.2.3.1 “Fully Expanded Pro-
grams”). The set contains all of the forms listed by kernel-form-identifier-list, plus
module, #%plain-module-begin, #%require, and #%provide.

Note that the literal-set uses the names #%plain-lambda and #%plain-app, not lambda
and #%app.

1.8.3 Function Headers

(require syntax/parse/lib/function-header) package: base

function-header

Matches a name and formals found in function header. It also supports the curried function
shorthand.

name : syntax?

The name part in the function header.

params : syntax?

The list of parameters in the function header.

formal

Matches a single formal that can be used in a function header.

83

https://pkgs.racket-lang.org/package/base

name : syntax?

The name part in the formal.

kw : (or/c syntax? #f)

The keyword part in the formal, if it exists.

default : (or/c syntax? #f)

The default expression part in the formal, if it exists.

formals

Matches a list of formals that would be used in a function header.

params : syntax?

The list of parameters in the formals.

> (syntax-parse #'(define ((foo x) y) 1)
[(_ header:function-header body ...+) #'(header header.name header.params)])

#<syntax:eval:2:0 (((foo x) y) foo (x y))>
> (syntax-parse #'(lambda xs xs)

[(_ fmls:formals body ...+) #'(fmls fmls.params)])
#<syntax:eval:3:0 (xs (xs))>
> (syntax-parse #'(lambda (x y #:kw [kw 42] . xs) xs)

[(_ fmls:formals body ...+) #'(fmls fmls.params)])
#<syntax:eval:4:0 ((x y #:kw (kw 42) . xs) (x y kw xs))>
> (syntax-parse #'(lambda (x) x)

[(_ (fml:formal) body ...+) #'(fml
fml.name
(~? fml.kw #f)
(~? fml.default #f))])

#<syntax:eval:5:0 ((x) x #f #f)>
> (syntax-parse #'(lambda (#:kw [kw 42]) kw)

[(_ (fml:formal) body ...+) #'(fml fml.name fml.kw fml.default)])
#<syntax:eval:6:0 ((#:kw (kw 42)) kw #:kw 42)>

84

formals-no-rest

Like formals but without dotted-tail identifier.

params : syntax?

The list of parameters.

1.9 Unwindable State

(syntax-parse-state-ref key [default]) Ñ any/c
key : any/c
default : default/c = (lambda () (error))

(syntax-parse-state-set! key value) Ñ void?
key : any/c
value : any/c

(syntax-parse-state-update! key
update

[default]) Ñ void?
key : any/c
update : (-> any/c any/c)
default : default/c = (lambda () (error))

(syntax-parse-state-cons! key value [default]) Ñ void?
key : any/c
value : any/c
default : default/c = null

Get or update the current syntax-parse state. Updates to the state are unwound when
syntax-parse backtracks. Keys are compared using eq?.

The state can be updated only within ~do patterns (or #:do blocks). In addition, syntax-
parse automatically adds identifiers that match literals (from ~literal patterns and literals
declared with #:literals, but not from ~datum or #:datum-literals) under the key
'literals.

Examples:

> (define-syntax-class cond-clause
#:literals (=> else)
(pattern [test:expr => ~! answer:expr ...])
(pattern [else answer:expr ...])
(pattern [test:expr answer:expr ...]))

85

> (syntax-parse #'(cond [A => B] [else C])
[(_ c:cond-clause ...) (syntax-parse-state-

ref 'literals null)])
'(#<syntax:eval:2:0 else> #<syntax:eval:2:0 =>>)

Added in version 6.11.0.4 of package base.

(syntax-parse-track-literals stx
[#:introduce? introduce?]) Ñ syntax?

stx : syntax?
introduce? : any/c = #t

Add a 'disappeared-use syntax property to stx containing the information stored
in the current syntax-parse state under the key 'literals. If stx already has a
'disappeared-use property, the added information is consed onto the property’s current
value.

Due to the way syntax-parse automatically adds identifiers that match literals to the state
under the key 'literals, as described in the documentation for syntax-parse-state-
ref, syntax-parse-track-literals can be used to automatically add any identifiers
used as literals to the 'disappeared-use property.

If syntax-parse-track-literals is called within the dynamic extent of a syntax trans-
former (see syntax-transforming?), introduce? is not #f, and the value in the current
syntax-parse state under the key 'literals is a list, then syntax-local-introduce
is applied to any identifiers in the list before they are added to stx ’s 'disappeared-use
property.

Most of the time, it is unnecessary to call this function directly. Instead, the #:track-
literals option should be provided to syntax-parse, which will automatically call
syntax-parse-track-literals on syntax-valued results.

Examples:

> (define-syntax-class cond-clause
#:literals (=> else)
(pattern [test:expr => ~! answer:expr ...])
(pattern [else answer:expr ...])
(pattern [test:expr answer:expr ...]))

> (syntax-property
(syntax-parse #'(cond [A => B] [else C])

[(_ c:cond-clause ...) (syntax-parse-track-literals #'#f)])
'disappeared-use)

'(#<syntax:eval:4:0 else> #<syntax:eval:4:0 =>>)

Added in version 6.90.0.29 of package base.

86

1.10 Configuring Error Reporting

(require syntax/parse/report-config) package: base

Added in version 8.9.0.5 of package base.

(current-report-configuration) Ñ report-configuration?
(current-report-configuration config) Ñ void?

config : report-configuration?

A parameter that determines parts error messages that are generated by syntax-parse for
failed matches. When syntax-parse needs to report that a particular datum or literal iden-
tifier was expected, it consults the configuration in this parameter. This parameter is cross-
phase persistent, which means that the parameter and its value are shared across phases.

A configuration is a hash table with the following keys:

• 'datum-to-what — a procedure of one argument used to get a noun describing an
expected datum, which appears in a pattern either with ~datum, as “self-quoting,” or
so on. The procedure’s argument is the datum value. The result must be either a string
or a list containing two strings; if two strings are provided, the first is used when a
singular noun is needed, and the second is used as a plural noun.

The default configuration returns '("literal symbol" "literal symbols") for
a symbol and '("literal" "literals") for any other datum value.

• 'datum-to-string — a procedure of one argument, used to convert the datum value
to a string that is included in the error message. The procedure’s argument is the datum
value, and the result must be a string.

The default configuration formats a symbol value using (format "`~s'" v) any
other datum value using (format "~s" v).

• 'literal-to-what — a procedure of one argument used to get a noun describing an
expected literal identifier, which appears in a pattern with ~literal, as declared with
#:literals, or so on. The procedure’s argument is an identifier when available, or
a symbol when only simplified information has been preserved. The result must be
either a string or a list containing two strings, like the result for a 'datum-to-what
procedure.

The default configuration returns '("identifier" "identifiers").

• 'literal-to-string — a procedure of one argument, used to convert a literal iden-
tifier or symbol to a string that is included in the error message.

The default configuration formats a symbol value using (format "`~s'" v), and it
formats an identifier the same after extracting its symbol with syntax-e.

Changed in version 8.15.0.4 of package base: Changed parameter to cross-phase persistent.

87

https://pkgs.racket-lang.org/package/base

(report-configuration? v) Ñ boolean?
v : any/c

Checks whether v is an immutable hash table that maps each of the keys 'datum-to-what,
'datum-to-string 'identifier-to-what and 'identifier-to-string to a proce-
dure that accepts one argument.

1.11 Debugging and Inspection Tools

(require syntax/parse/debug) package: base

The following special forms are for debugging syntax classes.

(syntax-class-attributes syntax-class-id)

Returns a list of the syntax class’s attributes. Each attribute entry consists of the attribute’s
name and ellipsis depth.

(syntax-class-arity syntax-class-id)
(syntax-class-keywords syntax-class-id)

Returns the syntax class’s arity and keywords, respectively. Compare with procedure-
arity and procedure-keywords.

(syntax-class-parse syntax-class-id stx-expr arg ...)

stx-expr : syntax?

Runs the parser for the syntax class (parameterized by the arg-exprs) on the syntax object
produced by stx-expr . On success, the result is a list of vectors representing the attribute
bindings of the syntax class. Each vector contains the attribute name, depth, and associated
value. On failure, the result is some internal representation of the failure.

(debug-parse stx-expr S-pattern ...+)

stx-expr : syntax?

Tries to match stx-expr against the S-patterns. If matching succeeds, the symbol 'suc-
cess is returned. Otherwise, an S-expression describing the failure is returned.

The failure S-expression shows both the raw set of failures (unsorted) and the failures with
maximal progress. The maximal failures are divided into equivalence classes based on their

88

https://pkgs.racket-lang.org/package/base

progress (progress is a partial order); that is, failures within an equivalence class have the
same progress and, in principle, pinpoint the same term as the problematic term. Multiple
equivalence classes only arise from ~parse patterns (or equivalently, #:with clauses) that
match computed terms or ~fail (#:fail-when, etc) clauses that allow a computed term to
be pinpointed.

(debug-syntax-parse!) Ñ void?

Installs a syntax-parse reporting handler that prints debugging information to the current
error port when a syntax-parse error occurs.

Added in version 6.5.0.3 of package base.

1.12 Experimental

The following facilities are experimental.

1.12.1 Contracts for Macro Sub-expressions

(require syntax/parse/experimental/contract) package: base

This module is deprecated; it reprovides expr/c for backward compatibility.

1.12.2 Contracts for Syntax Classes

(require syntax/parse/experimental/provide) package: base

(provide-syntax-class/contract
[syntax-class-id syntax-class-contract] ...)

syntax-class-contract = (syntax-class/c (mandatory-arg ...))
| (syntax-class/c (mandatory-arg ...)

(optional-arg ...))

arg = contract-expr
| keyword contract-expr

contract-expr : contract?

Provides the syntax class (or splicing syntax class) syntax-class-id with the given con-
tracts imposed on its formal parameters.

89

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

syntax-class/c

Keyword recognized by provide-syntax-class/contract.

1.12.3 Reflection

(require syntax/parse/experimental/reflect) package: base

A syntax class can be reified into a run-time value, and a reified syntax class can be used in
a pattern via the ~reflect and ~splicing-reflect pattern forms.

(reify-syntax-class syntax-class-id)

Reifies the syntax class named syntax-class-id as a run-time value. The same form also
handles splicing syntax classes. Syntax classes with the #:no-delimit-cut option cannot
be reified.

(reified-syntax-class? x) Ñ boolean?
x : any/c

(reified-splicing-syntax-class? x) Ñ boolean?
x : any/c

Returns #t if x is a reified (normal) syntax class or a reified splicing syntax class, respec-
tively.

(reified-syntax-class-attributes r)
Ñ (listof (list/c symbol? exact-nonnegative-integer?))
r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

Returns the reified syntax class’s attributes.

(reified-syntax-class-arity r) Ñ procedure-arity?
r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

(reified-syntax-class-keywords r)
Ñ (listof keyword?) (listof keyword?)
r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

Returns the reified syntax class’s arity and keywords, respectively. Compare with
procedure-arity and procedure-keywords.

(reified-syntax-class-curry r
arg ...
#:<kw> kw-arg ...)

90

https://pkgs.racket-lang.org/package/base

Ñ (or/c reified-syntax-class? reified-splicing-syntax-class?)
r : (or/c reified-syntax-class? reified-splicing-syntax-class?)
arg : any/c
kw-arg : any/c

Partially applies the reified syntax class to the given arguments. If more arguments are given
than the reified syntax class accepts, an error is raised.

S-pattern =
| (~reflect var-id (reified-expr arg-expr ...) maybe-attrs)

H-pattern =
| (~splicing-reflect var-id (reified-expr arg-expr ...)

maybe-attrs)

(~reflect var-id (reified-expr arg-expr ...) maybe-attrs)

maybe-attrs =
| #:attributes (attr-arity-decl ...)

Like ~var, except that the syntax class position is an expression evaluating to
a reified syntax object, not a syntax class name, and the attributes bound by the
reified syntax class (if any) must be specified explicitly.

(~splicing-reflect var-id (reified-expr arg-expr ...) maybe-attrs)

Like ~reflect but for reified splicing syntax classes.

Examples:

> (define-syntax-class (nat> x)
#:description (format "natural number greater than ~s" x)
#:attributes (diff)
(pattern n:nat

#:when (> (syntax-e #'n) x)
#:with diff (- (syntax-e #'n) x)))

> (define-syntax-class (nat/mult x)
#:description (format "natural number multiple of ~s" x)
#:attributes (quot)
(pattern n:nat

#:when (zero? (remainder (syntax-e #'n) x))
#:with quot (quotient (syntax-e #'n) x)))

91

> (define r-nat> (reify-syntax-class nat>))
> (define r-nat/mult (reify-syntax-class nat/mult))
> (define (partition/r stx r n)

(syntax-parse stx
[((~alt (~reflect yes (r n)) no) ...)
#'((yes ...) (no ...))]))

> (partition/r #'(1 2 3 4 5) r-nat> 3)
#<syntax:eval:5:0 ((4 5) (1 2 3))>
> (partition/r #'(1 2 3 4 5) r-nat/mult 2)
#<syntax:eval:5:0 ((2 4) (1 3 5))>
> (define (bad-attrs r)

(syntax-parse #'6
[(~reflect x (r 3) #:attributes (diff))
#'x.diff]))

> (bad-attrs r-nat>)
#<syntax 3>
> (bad-attrs r-nat/mult)
reflect-syntax-class: reified syntax-class is missing
declared attribute `diff'

1.12.4 Procedural Splicing Syntax Classes

(require syntax/parse/experimental/splicing) package: base

(define-primitive-splicing-syntax-class (name-id param-id ...)
#:description description-expr
#:attributes (attr-arity-decl ...)
parser-expr)

parser-expr :
(-> syntax?

(->* () ((or/c string? #f)) any)
(cons/c exact-positive-integer? list?))

Defines a splicing syntax via a procedural parser.

The parser procedure is given two arguments, the syntax to parse and a failure procedure.
To signal a successful parse, the parser procedure returns a list of N+1 elements, where N is
the number of attributes declared by the splicing syntax class. The first element is the size
of the prefix consumed. The rest of the list contains the values of the attributes.

To indicate failure, the parser calls the failure procedure with an optional message argument.

92

https://pkgs.racket-lang.org/package/base

1.12.5 Ellipsis-head Alternative Sets

(require syntax/parse/experimental/eh) package: base

Unlike single-term patterns and head patterns, ellipsis-head patterns cannot be encapsulated
by syntax classes, since they describe not only sets of terms but also repetition constraints.

This module provides ellipsis-head alternative sets, reusable encapsulations of ellipsis-head
patterns.

(define-eh-alternative-set name eh-alternative ...)

alternative = (pattern EH-pattern)

Defines name as an ellipsis-head alternative set. Using name (via ~eh-var) in an ellipsis-
head pattern is equivalent to including each of the alternatives in the pattern via ~alt, except
that the attributes bound by the alternatives are prefixed with the name given to ~eh-var.

Unlike syntax classes, ellipsis-head alternative sets must be defined before they are refer-
enced, and they do not delimit cuts (use ~delimit-cut instead).

EH-pattern =
| (~eh-var name eh-alternative-set-id)

(~eh-var name eh-alternative-set-id)

Includes the alternatives of eh-alternative-set-id , prefixing their at-
tributes with name .

Examples:

> (define-eh-alternative-set options
(pattern (~once (~seq #:a a:expr) #:name "#:a option"))
(pattern (~seq #:b b:expr)))

> (define (parse/options stx)
(syntax-parse stx

[(_ (~eh-var s options) ...)
#'(s.a (s.b ...))]))

> (parse/options #'(m #:a 1 #:b 2 #:b 3))
#<syntax:eval:12:0 (1 (2 3))>
> (parse/options #'(m #:a 1 #:a 2))
m: too many occurrences of #:a option

at: ()
within: (m #:a 1 #:a 2)
in: (m #:a 1 #:a 2)

93

https://pkgs.racket-lang.org/package/base

> (define (parse/more-options stx)
(syntax-parse stx

[(_ (~alt (~eh-var s options)
(~seq #:c c1:expr c2:expr))

...)
#'(s.a (s.b ...) ((c1 c2) ...))]))

> (parse/more-options #'(m #:a 1 #:b 2 #:c 3 4 #:c 5 6))
#<syntax:eval:15:0 (1 (2) ((3 4) (5 6)))>
> (define-eh-alternative-set ext-options

(pattern (~eh-var s options))
(pattern (~seq #:c c1 c2)))

> (syntax-parse #'(m #:a 1 #:b 2 #:c 3 4 #:c 5 6)
[(_ (~eh-var x ext-options) ...)
#'(x.s.a (x.s.b ...) ((x.c1 x.c2) ...))])

#<syntax:eval:18:0 (1 (2) ((3 4) (5 6)))>

1.12.6 Syntax Class Specialization

(require syntax/parse/experimental/specialize)
package: base

(define-syntax-class/specialize header syntax-class-use)

header = id
| (id . kw-formals)

syntax-class-use = target-stxclass-id
| (target-stxclass-id arg ...)

Defines id as a syntax class with the same attributes, options (eg, #:commit, #:no-
delimit-cut), and patterns as target-stxclass-id but with the given args supplied.

Examples:

> (define-syntax-class/specialize nat>10 (nat> 10))
> (syntax-parse #'(11 12) [(n:nat>10 ...) 'ok])
'ok
> (syntax-parse #'(8 9) [(n:nat>10 ...) 'ok])
?: expected natural number greater than 10

at: 8
in: (8 9)

94

https://pkgs.racket-lang.org/package/base

1.12.7 Syntax Templates

(require syntax/parse/experimental/template) package: base

(template tmpl)
(template/loc loc-expr tmpl)
(quasitemplate tmpl)
(quasitemplate/loc loc-expr tmpl)

Equivalent to syntax, syntax/loc, quasisyntax, and quasisyntax/loc, respectively.

(datum-template tmpl)

Equivalent to datum.

??
?@

Equivalent to ~? and ~@, respectively.

(define-template-metafunction metafunction-id expr)
(define-template-metafunction (metafunction-id . formals) body ...+)

Defines metafunction-id as a template metafunction. A metafunction application in a
syntax or template expression is evaluated by applying the metafunction to the result of
processing the “argument” part of the template.

Examples:

> (define-template-metafunction (join stx)
(syntax-parse stx

[(join (~optional (~seq #:lctx lctx)) a:id b:id ...)
(datum->syntax (or (attribute lctx) #'a)

(string->symbol
(apply string-append

(map symbol->string
(syntax->datum #'(a b ...)))))

stx)]))
> (template (join a b c))
#<syntax:eval:23:0 abc>
> (with-syntax ([(x ...) #'(a b c)])

(template ((x (join tmp- x)) ...)))
#<syntax:eval:24:0 ((a tmp-a) (b tmp-b) (c tmp-c))>

Metafunctions are useful for performing transformations in contexts where macro expansion
does not occur, such as binding occurrences. For example:

95

https://pkgs.racket-lang.org/package/base

> (syntax->datum
(with-syntax ([name #'posn]

[(field ...) #'(x y)])
(template (let-values ([((join name ?)

(join #:lctx name make- name)
(join name - field) ...)

(make-struct-type __)])
__))))

'(let-values (((posn? make-posn posn-x posn-y) (make-struct-type
___))) ___)

If join were defined as a macro, it would not be usable in the context above; instead, let-
values would report an invalid binding list.

1.13 Minimal Library

(require syntax/parse/pre) package: base

The syntax/parse/pre library is useful for accessing most syntax-parsing functionality
while minimizing library dependencies. It provides most of syntax/parse, but omits these
bindings:

expr/c
pattern-expander?
prop:syntax-class
pattern-expander
prop:pattern-expander
syntax-local-syntax-parse-pattern-introduce

In addition, the provided variant of static is a different binding that lacks explicit contract
checks.

96

https://pkgs.racket-lang.org/package/base

2 Syntax Object Helpers

2.1 Deconstructing Syntax Objects

(require syntax/stx) package: base

(stx-null? v) Ñ boolean?
v : any/c

Returns #t if v is either the empty list or a syntax object representing the empty list (i.e.,
syntax-e on the syntax object returns the empty list).

Examples:

> (stx-null? null)
#t
> (stx-null? #'())
#t
> (stx-null? #'(a))
#f

(stx-pair? v) Ñ boolean?
v : any/c

Returns #t if v is either a pair or a syntax object representing a pair (see syntax pair).

Examples:

> (stx-pair? (cons #'a #'b))
#t
> (stx-pair? #'(a . b))
#t
> (stx-pair? #'())
#f
> (stx-pair? #'a)
#f

(stx-list? v) Ñ boolean?
v : any/c

Returns #t if v is a list, or if it is a sequence of pairs leading to a syntax object such that
syntax->list would produce a list.

Examples:

97

https://pkgs.racket-lang.org/package/base

> (stx-list? #'(a b c d))
#t
> (stx-list? #'((a b) (c d)))
#t
> (stx-list? #'(a b (c d)))
#t
> (stx-list? (list #'a #'b))
#t
> (stx-list? #'a)
#f

(stx->list stx-list) Ñ (or/c list? #f)
stx-list : stx-list?

Produces a list by flatting out a trailing syntax object using syntax->list.

Examples:

> (stx->list #'(a b c d))
'(#<syntax:eval:14:0 a>

#<syntax:eval:14:0 b>
#<syntax:eval:14:0 c>
#<syntax:eval:14:0 d>)

> (stx->list #'((a b) (c d)))
'(#<syntax:eval:15:0 (a b)> #<syntax:eval:15:0 (c d)>)
> (stx->list #'(a b (c d)))
'(#<syntax:eval:16:0 a> #<syntax:eval:16:0 b> #<syntax:eval:16:0
(c d)>)
> (stx->list (list #'a #'b))
'(#<syntax:eval:17:0 a> #<syntax:eval:17:0 b>)
> (stx->list #'a)
#f

(stx-car v) Ñ any
v : stx-pair?

Takes the car of a syntax pair.

Examples:

> (stx-car #'(a b))
#<syntax:eval:19:0 a>
> (stx-car (list #'a #'b))
#<syntax:eval:20:0 a>

98

(stx-cdr v) Ñ any
v : stx-pair?

Takes the cdr of a syntax pair.

Examples:

> (stx-cdr #'(a b))
'(#<syntax:eval:21:0 b>)
> (stx-cdr (list #'a #'b))
'(#<syntax:eval:22:0 b>)

(stx-map proc stxl ...) Ñ list?
proc : procedure?
stxl : stx-list?

Equivalent to (map proc (stx->list stxl) ...).

Example:

> (stx-map (λ (id) (free-identifier=? id #'a)) #'(a b c d))
'(#t #f #f #f)

(module-or-top-identifier=? a-id b-id) Ñ boolean?
a-id : identifier?
b-id : identifier?

Returns #t if a-id and b-id are free-identifier=?, or if a-id and b-id have the same
name (as extracted by syntax-e) and a-id has no binding other than at the top level.

This procedure is useful in conjunction with syntax-case* to match procedure names that
are normally bound by Racket. For example, the include macro uses this procedure to rec-
ognize build-path; using free-identifier=? would not work well outside of module,
since the top-level build-path is a distinct variable from the racket/base export (though
it’s bound to the same procedure, initially).

2.2 Matching Fully-Expanded Expressions

(require syntax/kerncase) package: base

(kernel-syntax-case stx-expr trans?-expr clause ...)

99

https://pkgs.racket-lang.org/package/base

A syntactic form like syntax-case*, except that the literals are built-in as the
names of the primitive Racket forms as exported by racket/base, including letrec-
syntaxes+values; see §1.2.3.1 “Fully Expanded Programs”.

The trans?-expr boolean expression replaces the comparison procedure, and instead se-
lects simply between normal-phase comparisons or transformer-phase comparisons. The
clauses are the same as in syntax-case*.

The primitive syntactic forms must have their normal bindings in the context of the kernel-
syntax-case expression. Beware that kernel-syntax-case does not work in a mod-
ule whose language provides different bindings for these primitive syntactic forms, such
as mzscheme which does not provide the primitive if and typed/racket which does not
provide the primitive let-values among others.

(kernel-syntax-case* stx-expr trans?-expr (extra-id ...) clause ...)

A syntactic form like kernel-syntax-case, except that it takes an additional list of extra
literals that are in addition to the primitive Racket forms.

(kernel-syntax-case/phase stx-expr phase-expr clause ...)

Generalizes kernel-syntax-case to work at an arbitrary phase level, as indicated by
phase-expr .

(kernel-syntax-case*/phase stx-expr phase-expr (extra-id ..)
clause ...)

Generalizes kernel-syntax-case* to work at an arbitrary phase level, as indicated by
phase-expr .

(kernel-form-identifier-list) Ñ (listof identifier?)

Returns a list of identifiers that are bound normally, for-syntax, and for-template to the
primitive Racket forms for expressions, internal-definition positions, and module-level and
top-level positions. This function is useful for generating a list of stopping points to provide
to local-expand.

In addition to the identifiers listed in §1.2.3.1 “Fully Expanded Programs”, the list includes
letrec-syntaxes+values, which is the core form for local expand-time binding and can
appear in the result of local-expand.

Changed in version 6.90.0.27 of package base: Added quote-syntax and #%plain-module-begin to the list,
which had previously been unintentionally missing.

2.3 Dictionaries with Identifier Keys

(require syntax/id-table) package: base

100

https://pkgs.racket-lang.org/package/base

This module provides two implementations of identifier tables: dictionaries with identifier
keys that use identifier-specific comparisons instead of eq? or equal?. Identifier tables im-
plement the racket/dict interface, and they are available in both mutable and immutable
variants.

2.3.1 Dictionaries for free-identifier=?

A free-identifier table is a dictionary whose keys are compared using free-identifier=?.
Free-identifier tables implement the dictionary interface of racket/dict, so all of the ap-
propriate generic functions (dict-ref, dict-map, etc) can be used on free-identifier tables.

A caveat for using these tables is that a lookup can fail with unexpected results if the binding
of an identifier changes between key-value insertion and the lookup.

For example, consider the following use:

> (define-syntax-rule (m)
(begin

(begin-for-syntax
(define table (make-free-id-table))
; set table entry to #t
(free-id-table-set! table #'x #t)
; sanity check, it's set to #t
(displayln (free-id-table-ref table #'x #f)))

(define x 'defined-now)

(begin-for-syntax
; might expect to get #t, but prints #f
(displayln (free-id-table-ref table #'x #f)))))

> (m)
#t
#f

The macro m expands to code that initializes an identifier table at compile-time and inserts
a key-value pair for #'x and #t. The #'x identifier has no binding, however, until the
definition (define x 'defined-now) is evaluated.

As a result, the lookup at the end of m will return #f instead of #t because the binding
symbol for #'x changes after the initial key-value pair is put into the table. If the definition
is evaluated before the initial insertion, both expressions will print #t.

(make-free-id-table [init-dict
#:phase phase]) Ñ mutable-free-id-table?

init-dict : dict? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

101

(make-immutable-free-id-table [init-dict
#:phase phase])

Ñ immutable-free-id-table?
init-dict : dict? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

Produces a mutable free-identifier table or immutable free-identifier table, respectively. The
dictionary uses free-identifier=? to compare keys, but also uses a hash table based on
symbol equality to make the dictionary efficient in the common case.

The identifiers are compared at phase level phase . The default phase, (syntax-local-
phase-level), is generally appropriate for identifier tables used by macros, but code that
analyzes fully-expanded programs may need to create separate identifier tables for each
phase of the module.

The optional init-dict argument provides the initial mappings. It must be a dictionary,
and its keys must all be identifiers. If the init-dict dictionary has multiple distinct entries
whose keys are free-identifier=?, only one of the entries appears in the new id-table,
and it is not specified which entry is picked.

(free-id-table? v) Ñ boolean?
v : any/c

Returns #t if v was produced by make-free-id-table or make-immutable-free-id-
table, #f otherwise.

(mutable-free-id-table? v) Ñ boolean?
v : any/c

Returns #t if v was produced by make-free-id-table, #f otherwise.

(immutable-free-id-table? v) Ñ boolean?
v : any/c

Returns #t if v was produced by make-immutable-free-id-table, #f otherwise.

(free-id-table-ref table id [failure]) Ñ any
table : free-id-table?
id : identifier?
failure : any/c = (lambda () (raise (make-exn:fail)))

Like hash-ref. In particular, if id is not found, the failure argument is applied if it is a
procedure, or simply returned otherwise.

(free-id-table-ref! table id failure) Ñ any
table : mutable-free-id-table?
id : identifier?
failure : any/c

102

Like hash-ref!.

Added in version 6.3.0.6 of package base.

(free-id-table-set! table id v) Ñ void?
table : mutable-free-id-table?
id : identifier?
v : any/c

Like hash-set!.

(free-id-table-set table id v) Ñ immutable-free-id-table?
table : immutable-free-id-table?
id : identifier?
v : any/c

Like hash-set.

(free-id-table-set*! table id v) Ñ void?
table : mutable-free-id-table?
id : identifier?
v : any/c

Like hash-set*!.

Added in version 6.3.0.6 of package base.

(free-id-table-set* table id v) Ñ immutable-free-id-table?
table : immutable-free-id-table?
id : identifier?
v : any/c

Like hash-set*.

Added in version 6.3.0.6 of package base.

(free-id-table-remove! table id) Ñ void?
table : mutable-free-id-table?
id : identifier?

Like hash-remove!.

(free-id-table-remove table id) Ñ immutable-free-id-table?
table : immutable-free-id-table?
id : identifier?

103

Like hash-remove.

(free-id-table-update! table
id
updater

[failure]) Ñ void?
table : mutable-free-id-table?
id : identifier?
updater : (any/c . -> . any/c)
failure : any/c = (lambda () (raise (make-exn:fail)))

Like hash-update!.

Added in version 6.3.0.6 of package base.

(free-id-table-update table
id
updater

[failure]) Ñ immutable-free-id-table?
table : immutable-free-id-table?
id : identifier?
updater : (any/c . -> . any/c)
failure : any/c = (lambda () (raise (make-exn:fail)))

Like hash-update.

Added in version 6.3.0.6 of package base.

(free-id-table-map table proc) Ñ list?
table : free-id-table?
proc : (-> identifier? any/c any)

Like hash-map.

(free-id-table-keys table) Ñ (listof identifier?)
table : free-id-table?

Like hash-keys.

Added in version 6.3.0.3 of package base.

(free-id-table-values table) Ñ (listof any/c)
table : free-id-table?

Like hash-values.

Added in version 6.3.0.3 of package base.

104

(in-free-id-table table) Ñ sequence?
table : free-id-table?

Like in-hash.

Added in version 6.3.0.3 of package base.

(free-id-table-for-each table proc) Ñ void?
table : free-id-table?
proc : (-> identifier? any/c any)

Like hash-for-each.

(free-id-table-count table) Ñ exact-nonnegative-integer?
table : free-id-table?

Like hash-count.

(free-id-table-iterate-first table) Ñ id-table-iter?
table : free-id-table?

(free-id-table-iterate-next table position) Ñ id-table-iter?
table : free-id-table?
position : id-table-iter?

(free-id-table-iterate-key table position) Ñ identifier?
table : free-id-table?
position : id-table-iter?

(free-id-table-iterate-value table
position) Ñ identifier?

table : bound-it-table?
position : id-table-iter?

Like hash-iterate-first, hash-iterate-next, hash-iterate-key, and hash-
iterate-value, respectively.

(id-table-iter? v) Ñ boolean?
v : any/c

Returns #t if v represents a position in an identifier table (free or bound, mutable or im-
mutable), #f otherwise.

(free-id-table/c key-ctc
val-ctc

[#:immutable immutable?]) Ñ contract?
key-ctc : flat-contract?
val-ctc : chaperone-contract?
immutable? : (or/c #t #f 'dont-care) = 'dont-care

105

Like hash/c, but for free-identifier tables. If immutable? is #t, the contract accepts only
immutable identifier tables; if immutable? is #f, the contract accepts only mutable identifier
tables.

2.3.2 Dictionaries for bound-identifier=?

A bound-identifier table is a dictionary whose keys are compared using bound-
identifier=?. Bound-identifier tables implement the dictionary interface of
racket/dict, so all of the appropriate generic functions (dict-ref, dict-map, etc) can
be used on bound-identifier tables.

(make-bound-id-table [init-dict
#:phase phase]) Ñ mutable-bound-id-table?

init-dict : dict? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(make-immutable-bound-id-table [init-dict
#:phase phase])

Ñ immutable-bound-id-table?
init-dict : dict? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(bound-id-table? v) Ñ boolean?
v : any/c

(mutable-bound-id-table? v) Ñ boolean?
v : any/c

(immutable-bound-id-table? v) Ñ boolean?
v : any/c

(bound-id-table-ref table id [failure]) Ñ any
table : bound-id-table?
id : identifier?
failure : any/c = (lambda () (raise (make-exn:fail)))

(bound-id-table-ref! table id failure) Ñ any
table : mutable-bound-id-table?
id : identifier?
failure : any/c

(bound-id-table-set! table id v) Ñ void?
table : mutable-bound-id-table?
id : identifier?
v : any/c

(bound-id-table-set table id v) Ñ immutable-bound-id-table?
table : immutable-bound-id-table?
id : identifier?
v : any/c

106

(bound-id-table-set*! table id v) Ñ void?
table : mutable-bound-id-table?
id : identifier?
v : any/c

(bound-id-table-set* table id v)
Ñ immutable-bound-id-table?
table : immutable-bound-id-table?
id : identifier?
v : any/c

(bound-id-table-remove! table id) Ñ void?
table : mutable-bound-id-table?
id : identifier?

(bound-id-table-remove table id) Ñ immutable-bound-id-table?
table : immutable-bound-id-table?
id : identifier?

(bound-id-table-update! table
id
updater

[failure]) Ñ void?
table : mutable-bound-id-table?
id : identifier?
updater : (any/c . -> . any/c)
failure : any/c = (lambda () (raise (make-exn:fail)))

(bound-id-table-update table
id
updater

[failure]) Ñ immutable-bound-id-table?
table : immutable-bound-id-table?
id : identifier?
updater : (any/c . -> . any/c)
failure : any/c = (lambda () (raise (make-exn:fail)))

(bound-id-table-map table proc) Ñ list?
table : bound-id-table?
proc : (-> identifier? any/c any)

(bound-id-table-keys table) Ñ (listof identifier?)
table : bound-id-table?

(bound-id-table-values table) Ñ (listof any/c)
table : bound-id-table?

(in-bound-id-table table) Ñ sequence?
table : bound-id-table?

(bound-id-table-for-each table proc) Ñ void?
table : bound-id-table?
proc : (-> identifier? any/c any)

(bound-id-table-count table) Ñ exact-nonnegative-integer?
table : bound-id-table?

107

(bound-id-table-iterate-first table) Ñ id-table-position?
table : bound-id-table?

(bound-id-table-iterate-next table
position) Ñ id-table-position?

table : bound-id-table?
position : id-table-position?

(bound-id-table-iterate-key table position) Ñ identifier?
table : bound-id-table?
position : id-table-position?

(bound-id-table-iterate-value table
position) Ñ identifier?

table : bound-id-table?
position : id-table-position?

(bound-id-table/c key-ctc
val-ctc

[#:immutable immutable]) Ñ contract?
key-ctc : flat-contract?
val-ctc : chaperone-contract?
immutable : (or/c #t #f 'dont-care) = 'dont-care

Like the procedures for free-identifier tables (make-free-id-table, free-id-table-
ref, etc), but for bound-identifier tables, which use bound-identifier=? to compare keys.

Changed in version 6.3.0.3 of package base: Added bound-id-table-keys, bound-id-table-values, in-bound-id-table.
Changed in version 6.3.0.6: Added bound-id-table-ref!, bound-id-table-set*, bound-id-table-set*!, bound-id-table-
update!, and bound-id-table-update

2.4 Sets with Identifier Keys

(require syntax/id-set) package: base

This module provides identifier sets: sets with identifier keys that use identifier-specific
comparisons instead of the usual equality operators such as eq? or equal?.

This module implements two kinds of identifier sets: one via free-identifier=? and one
via bound-identifier=?. Each are available in both mutable and immutable variants and
implement the gen:set, gen:stream, prop:sequence, and gen:equal+hash generic in-
terfaces.

Identifier sets are implemented using identifier tables, in the same way that hash sets are
implemented with hash tables.

108

https://pkgs.racket-lang.org/package/base

2.4.1 Sets for free-identifier=?

A free-identifier set is a set whose keys are compared using free-identifier=?. Free-
identifier sets implement the gen:set interface, so all of the appropriate generic functions
(e.g., set-add, set-map, etc) can be used on free-identifier sets.

(mutable-free-id-set [init-set
#:phase phase]) Ñ mutable-free-id-set?

init-set : generic-set? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(immutable-free-id-set [init-set
#:phase phase]) Ñ immutable-free-id-set?

init-set : generic-set? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

Produces a mutable free-identifier set or immutable free-identifier set, respectively. The set
uses free-identifier=? to compare keys.

The identifiers are compared at phase level phase . The default phase, (syntax-local-
phase-level), is generally appropriate for identifier sets used by macros, but code that
analyzes fully-expanded programs may need to create separate identifier sets for each phase
of the module.

The optional init-set argument provides the initial set elements. It must be a set
of identifiers. If the init-set set has multiple distinct entries whose keys are free-
identifier=?, only one of the entries appears in the new id-set, and it is not specified
which entry is picked.

(free-id-set? v) Ñ boolean?
v : any/c

Returns #t if v was produced by mutable-free-id-set or immutable-free-id-set,
#f otherwise.

(mutable-free-id-set? v) Ñ boolean?
v : any/c

Returns #t if v was produced by mutable-free-id-set, #f otherwise.

(immutable-free-id-set? v) Ñ boolean?
v : any/c

Returns #t if v was produced by immutable-free-id-set, #f otherwise.

(free-id-set-empty? s) Ñ boolean?
s : free-id-set?

109

Like set-empty?.

(free-id-set-count s) Ñ exact-nonnegative-integer?
s : free-id-set?

Like set-count.

(free-id-set-member? s v) Ñ boolean?
s : free-id-set?
v : identifier?

Like set-member?.

(free-id-set=? s1 s2) Ñ boolean?
s1 : free-id-set?
s2 : free-id-set?

Like set=?.

(free-id-set-add s v) Ñ immutable-free-id-set?
s : immutable-free-id-set?
v : identifier?

Like set-add.

(free-id-set-add! s v) Ñ void?
s : mutable-free-id-set?
v : identifier?

Like set-add!.

(free-id-set-remove s v) Ñ immutable-free-id-set?
s : immutable-free-id-set?
v : identifier?

Like set-remove.

(free-id-set-remove! s v) Ñ void?
s : mutable-free-id-set?
v : identifier?

Like set-remove!.

(free-id-set-first s) Ñ identifier?
s : free-id-set?

110

Like set-first.

(free-id-set-rest s) Ñ immutable-free-id-set?
s : immutable-free-id-set?

Like set-rest.

(in-free-id-set s) Ñ sequence?
s : free-id-set?

Like in-set.

(free-id-set->stream s) Ñ stream?
s : free-id-set?

Like set->stream.

(free-id-set->list s) Ñ list?
s : free-id-set?

Like set->list.

(free-id-set-copy s) Ñ free-id-set?
s : free-id-set?

Like set-copy.

(free-id-set-copy-clear s) Ñ free-id-set?
s : free-id-set?

Like set-copy-clear.

(free-id-set-clear s) Ñ immutable-free-id-set?
s : immutable-free-id-set?

Like set-clear.

(free-id-set-clear! s) Ñ void?
s : mutable-free-id-set?

Like set-clear!.

(free-id-set-union s0 s ...) Ñ immutable-free-id-set?
s0 : immutable-free-id-set?
s : free-id-set?

111

Like set-union.

(free-id-set-union! s0 s ...) Ñ void?
s0 : mutable-free-id-set?
s : free-id-set?

Like set-union!.

(free-id-set-intersect s0 s ...) Ñ immutable-free-id-set?
s0 : immutable-free-id-set?
s : free-id-set?

Like set-intersect.

(free-id-set-intersect! s0 s ...) Ñ void?
s0 : mutable-free-id-set?
s : free-id-set?

Like set-intersect!.

(free-id-set-subtract s0 s ...) Ñ immutable-free-id-set?
s0 : immutable-free-id-set?
s : free-id-set?

Like set-subtract.

(free-id-set-subtract! s0 s ...) Ñ void?
s0 : mutable-free-id-set?
s : free-id-set?

Like set-subtract!.

(free-id-set-symmetric-difference s0 s ...)
Ñ immutable-free-id-set?
s0 : immutable-free-id-set?
s : free-id-set?

Like set-symmetric-difference.

(free-id-set-symmetric-difference! s0 s ...) Ñ void?
s0 : mutable-free-id-set?
s : free-id-set?

Like set-symmetric-difference!.

112

(free-id-subset? s1 s2) Ñ boolean?
s1 : free-id-set?
s2 : free-id-set?

Like subset?.

(free-id-proper-subset? s1 s2) Ñ boolean?
s1 : free-id-set?
s2 : free-id-set?

Like proper-subset?.

(free-id-set-map s f) Ñ list?
s : free-id-set?
f : (-> identifier? any/c)

Like set-map.

(free-id-set-for-each s f) Ñ void?
s : free-id-set?
f : (-> identifier? any/c)

Like set-for-each.

(id-set/c elem-ctc
[#:setidtype idsettype
#:mutability mutability]) Ñ contract?

elem-ctc : flat-contract?
idsettype : (or/c 'dont-care 'free 'bound) = 'dont-care
mutability : (or/c 'dont-care 'mutable 'immutable)

= 'immutable

Creates a contract for identifier sets. If mutability is 'immutable, the contract accepts
only immutable identifier sets; if mutability is 'mutable, the contract accepts only mu-
table identifier sets.

(free-id-set/c elem-ctc
[#:mutability mutability]) Ñ contract?

elem-ctc : flat-contract?
mutability : (or/c 'dont-care 'mutable 'immutable)

= 'immutable

Creates a contract for free-identifier sets. If mutability is 'immutable, the contract ac-
cepts only immutable identifier sets; if mutability is 'mutable, the contract accepts only
mutable identifier sets.

113

2.4.2 Sets for bound-identifier=?

A bound-identifier set is a set whose keys are compared using bound-identifier=?.
Bound-identifier sets implement the gen:set interface, so all of the appropriate generic
functions (e.g., set-add, set-map, etc.) can be used on bound-identifier sets.

(mutable-bound-id-set [init-set
#:phase phase]) Ñ mutable-bound-id-set?

init-set : set? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(immutable-bound-id-set [init-set
#:phase phase])

Ñ immutable-bound-id-set?
init-set : set? = null
phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(bound-id-set? v) Ñ boolean?
v : any/c

(mutable-bound-id-set? v) Ñ boolean?
v : any/c

(immutable-bound-id-set? v) Ñ boolean?
v : any/c

(bound-id-set-empty? s) Ñ boolean?
s : bound-id-set?

(bound-id-set-count s) Ñ exact-nonnegative-integer?
s : bound-id-set?

(bound-id-set-member? s v) Ñ boolean?
s : bound-id-set?
v : identifier?

(bound-id-set=? s1 s2) Ñ boolean?
s1 : bound-id-set?
s2 : bound-id-set?

(bound-id-set-add s v) Ñ immutable-bound-id-set?
s : immutable-bound-id-set?
v : identifier?

(bound-id-set-add! s v) Ñ void?
s : mutable-bound-id-set?
v : identifier?

(bound-id-set-remove s v) Ñ immutable-bound-id-set?
s : immutable-bound-id-set?
v : identifier?

(bound-id-set-remove! s v) Ñ void?
s : mutable-bound-id-set?
v : identifier?

(bound-id-set-first s) Ñ identifier?
s : bound-id-set?

114

(bound-id-set-rest s) Ñ immutable-bound-id-set?
s : immutable-bound-id-set?

(in-bound-id-set s) Ñ sequence?
s : bound-id-set?

(bound-id-set->stream s) Ñ stream?
s : bound-id-set?

(bound-id-set->list s) Ñ list?
s : bound-id-set?

(bound-id-set-copy s) Ñ bound-id-set?
s : bound-id-set?

(bound-id-set-copy-clear s) Ñ bound-id-set?
s : bound-id-set?

(bound-id-set-clear s) Ñ immutable-bound-id-set?
s : immutable-bound-id-set?

(bound-id-set-clear! s) Ñ void?
s : mutable-bound-id-set?

(bound-id-set-union s0 s ...) Ñ immutable-bound-id-set?
s0 : immutable-bound-id-set?
s : bound-id-set?

(bound-id-set-union! s0 s ...) Ñ void?
s0 : mutable-bound-id-set?
s : bound-id-set?

(bound-id-set-intersect s0 s ...) Ñ immutable-bound-id-set?
s0 : immutable-bound-id-set?
s : bound-id-set?

(bound-id-set-intersect! s0 s ...) Ñ void?
s0 : mutable-bound-id-set?
s : bound-id-set?

(bound-id-set-subtract s0 s ...) Ñ immutable-bound-id-set?
s0 : immutable-bound-id-set?
s : bound-id-set?

(bound-id-set-subtract! s0 s ...) Ñ void?
s0 : mutable-bound-id-set?
s : bound-id-set?

(bound-id-set-symmetric-difference s0 s ...)
Ñ immutable-bound-id-set?
s0 : immutable-bound-id-set?
s : bound-id-set?

(bound-id-set-symmetric-difference! s0
s ...) Ñ void?

s0 : mutable-bound-id-set?
s : bound-id-set?

(bound-id-subset? s1 s2) Ñ boolean?
s1 : bound-id-set?
s2 : bound-id-set?

115

(bound-id-proper-subset? s1 s2) Ñ boolean?
s1 : bound-id-set?
s2 : bound-id-set?

(bound-id-set-map s f) Ñ list?
s : bound-id-set?
f : (-> identifier? any/c)

(bound-id-set-for-each s f) Ñ void?
s : bound-id-set?
f : (-> identifier? any/c)

(bound-id-set/c elem-ctc
[#:mutability mutability]) Ñ contract?

elem-ctc : flat-contract?
mutability : (or/c 'dont-care 'mutable 'immutable)

= 'immutable

Like the procedures for free-identifier sets (e.g., immutable-free-id-set, free-id-
set-add, etc.), but for bound-identifier sets, which use bound-identifier=? to compare
keys.

2.5 Hashing on bound-identifier=? and free-identifier=?

This library is for backwards-compatibility. Do not use it for new libraries; use syntax/id-
table instead.

(require syntax/boundmap) package: base

(make-bound-identifier-mapping) Ñ bound-identifier-mapping?
(bound-identifier-mapping? v) Ñ boolean?

v : any/c
(bound-identifier-mapping-get bound-map

id
[failure-thunk]) Ñ any

bound-map : bound-identifier-mapping?
id : identifier?
failure-thunk : (-> any)

= (lambda () (raise (make-exn:fail)))
(bound-identifier-mapping-put! bound-map

id
v) Ñ void?

bound-map : bound-identifier-mapping?
id : identifier?
v : any/c

116

https://pkgs.racket-lang.org/package/base

(bound-identifier-mapping-for-each bound-map
proc) Ñ void?

bound-map : bound-identifier-mapping?
proc : (identifier? any/c . -> . any)

(bound-identifier-mapping-map bound-map
proc) Ñ (listof any?)

bound-map : bound-identifier-mapping?
proc : (identifier? any/c . -> . any)

Similar to make-bound-id-table, bound-id-table?, bound-id-table-ref, bound-
id-table-set!, bound-id-table-for-each, and bound-id-table-map, respectively.

(make-free-identifier-mapping) Ñ free-identifier-mapping?
(free-identifier-mapping? v) Ñ boolean?

v : any/c
(free-identifier-mapping-get free-map

id
[failure-thunk]) Ñ any

free-map : free-identifier-mapping?
id : identifier?
failure-thunk : (-> any)

= (lambda () (raise (make-exn:fail)))
(free-identifier-mapping-put! free-map id v) Ñ void?

free-map : free-identifier-mapping?
id : identifier?
v : any/c

(free-identifier-mapping-for-each free-map
proc) Ñ void?

free-map : free-identifier-mapping?
proc : (identifier? any/c . -> . any)

(free-identifier-mapping-map free-map proc) Ñ (listof any?)
free-map : free-identifier-mapping?
proc : (identifier? any/c . -> . any)

Similar to make-free-id-table, free-id-table?, free-id-table-ref, free-id-
table-set!, free-id-table-for-each, and free-id-table-map, respectively.

(make-module-identifier-mapping) Ñ module-identifier-mapping?
(module-identifier-mapping? v) Ñ boolean?

v : any/c
(module-identifier-mapping-get module-map

id
[failure-thunk]) Ñ any

module-map : module-identifier-mapping?
id : identifier?
failure-thunk : (-> any)

= (lambda () (raise (make-exn:fail)))

117

(module-identifier-mapping-put! module-map
id
v) Ñ void?

module-map : module-identifier-mapping?
id : identifier?
v : any/c

(module-identifier-mapping-for-each module-map
proc) Ñ void?

module-map : module-identifier-mapping?
proc : (identifier? any/c . -> . any)

(module-identifier-mapping-map module-map
proc) Ñ (listof any?)

module-map : module-identifier-mapping?
proc : (identifier? any/c . -> . any)

The same as make-free-identifier-mapping, etc.

2.6 Rendering Syntax Objects with Formatting

(require syntax/to-string) package: base

(syntax->string stx-list) Ñ string?
stx-list : (and/c syntax? stx-list?)

Builds a string with newlines and indenting according to the source locations in stx-list ;
the outer pair of parens are not rendered from stx-list .

2.7 Computing the Free Variables of an Expression

(require syntax/free-vars) package: base

(free-vars expr-stx
[insp
#:module-bound? module-bound?])

Ñ (listof identifier?)
expr-stx : syntax?
insp : inspector? = mod-decl-insp
module-bound? : any/c = #f

Returns a list of free lambda- and let-bound identifiers in expr-stx in the order in which
each identifier first appears within expr-stx . The expression must be fully expanded (see
§1.2.3.1 “Fully Expanded Programs” and expand).

118

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

The inspector insp is used to disarm expr-stx and sub-expressions before extracting iden-
tifiers. The default insp is the declaration-time inspector of the syntax/free-vars mod-
ule.

If module-bound? is non-false, the list of free variables also includes free module-bound
identifiers.

Examples:

> (require (for-syntax racket/base syntax/parse syntax/free-vars))
> (define-syntax (print-body-free-vars stx)

(syntax-parse stx
#:literals (lambda)
[(_ (~and lam (lambda (a ...) b ...)))
(define expanded-body (local-expand #'lam 'expression '()))
(syntax-parse expanded-body

#:literals (#%plain-lambda)
[(#%plain-lambda (arg ...) body)
(displayln (free-vars #'body))
expanded-body])]))

> (lambda (x) (print-body-free-vars (lambda (y) x)))
(#<syntax:eval:3:0 x>)
#<procedure>

2.8 Replacing Lexical Context

(require syntax/strip-context) package: base

(strip-context form) Ñ any/c
form : any/c

Removes all lexical context from syntax objects within form , preserving source-location
information and properties.

Typically, form is a syntax object, and then the result is also a syntax object. Otherwise,
pairs, vectors, boxes, hash tables, and prefab structures are traversed (and copied for the
result) to find syntax objects. Graph structure is not preserved in the result, and cyclic data
structures will cause strip-context to never return.

Changed in version 7.7.0.10 of package base: Repaired to traverse hash tables in stx.

(replace-context ctx-stx form) Ñ any/c
ctx-stx : (or/c syntax? #f)
form : any/c

119

https://pkgs.racket-lang.org/package/base

Uses the lexical context of ctx-stx to replace the lexical context of all parts of all syn-
tax objects in form , preserving source-location information and properties of those syntax
objects.

Syntax objects are found in form the same as in strip-context.

Changed in version 7.7.0.10 of package base: Repaired to traverse hash tables in stx.

2.9 Helpers for Processing Keyword Syntax

The syntax/keyword module contains procedures for parsing keyword options in macros.

(require syntax/keyword) package: base

keyword-table = (dict-of keyword (listof check-procedure))

A keyword-table is a dictionary (dict?) mapping keywords to lists of check-procedures.
(Note that an association list is a suitable dictionary.) The keyword’s arity is the length of
the list of procedures.

Example:

> (define my-keyword-table
(list (list '#:a check-identifier)

(list '#:b check-expression check-expression)))

check-procedure = (syntax syntax -> any)

A check procedure consumes the syntax to check and a context syntax object for error re-
porting and either raises an error to reject the syntax or returns a value as its parsed repre-
sentation.

Example:

> (define (check-stx-string stx context-stx)
(unless (string? (syntax-e stx))

(raise-syntax-error #f "expected string" context-stx stx))
stx)

options = (listof (list keyword syntax-keyword any ...))

Parsed options are represented as an list of option entries. Each entry contains the keyword,
the syntax of the keyword (for error reporting), and the list of parsed values returned by the
keyword’s list of check procedures. The list contains the parsed options in the order they
appeared in the input, and a keyword that occurs multiple times in the input occurs multiple
times in the options list.

120

https://pkgs.racket-lang.org/package/base

(parse-keyword-options stx
table

[#:context ctx
#:no-duplicates? no-duplicates?
#:incompatible incompatible
#:on-incompatible incompatible-handler
#:on-too-short too-short-handler
#:on-not-in-table not-in-table-handler])

Ñ options any/c
stx : syntax?
table : keyword-table
ctx : (or/c #f syntax?) = #f
no-duplicates? : boolean? = #f
incompatible : (listof (listof keyword?)) = '()
incompatible-handler : (-> keyword? keyword?

options syntax? syntax?
(values options syntax?))

= (lambda (....) (error))
too-short-handler : (-> keyword? options syntax? syntax?

(values options syntax?))
= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?
(values options syntax?))

= (lambda (....) (error))

Parses the keyword options in the syntax stx (stx may be an improper syntax list). The
keyword options are described in the table association list. Each entry in table should be
a list whose first element is a keyword and whose subsequent elements are procedures for
checking the arguments following the keyword. The keyword’s arity (number of arguments)
is determined by the number of procedures in the entry. Only fixed-arity keywords are
supported.

Parsing stops normally when the syntax list does not have a keyword at its head (it may be
empty, start with a non-keyword term, or it may be a non-list syntax object). Two values are
returned: the parsed options and the rest of the syntax (generally either a syntax object or a
list of syntax objects).

A variety of errors and exceptional conditions can occur during the parsing process. The
following keyword arguments determine the behavior in those situations.

The #:context ctx argument is used to report all errors in parsing syntax. In addition,
ctx is passed as the final argument to all provided handler procedures. Macros using parse-
keyword-options should generally pass the syntax object for the whole macro use as ctx .

If no-duplicates? is a non-false value, then duplicate keyword options are not allowed. If

121

a duplicate is seen, the keyword’s associated check procedures are not called and an incom-
patibility is reported.

The incompatible argument is a list of incompatibility entries, where each entry is a list
of at least two keywords. If any keyword in the entry occurs after any other keyword in the
entry, an incompatibility is reported.

Note that including a keyword in an incompatibility entry does not prevent it from occurring
multiple times. To disallow duplicates of some keywords (as opposed to all keywords),
include those keywords in the incompatible list as being incompatible with themselves.
That is, include them twice:

; Disallow duplicates of only the #:foo keyword
(parse-keyword-options #:incompatible '((#:foo #:foo)))

When an incompatibility occurs, the incompatible-handler is tail-called with the two
keywords causing the incompatibility (in the order that they occurred in the syntax list, so
the keyword triggering the incompatibility occurs second), the syntax list starting with the
occurrence of the second keyword, and the context (ctx). If the incompatibility is due to a
duplicate, the two keywords are the same.

When a keyword is not followed by enough arguments according to its arity in table , the
too-short-handler is tail-called with the keyword, the options parsed thus far, the syntax
list starting with the occurrence of the keyword, and ctx .

When a keyword occurs in the syntax list that is not in table , the not-in-table-handler
is tail-called with the keyword, the options parsed thus far, the syntax list starting with the
occurrence of the keyword, and ctx .

Handlers typically escape—all of the default handlers raise errors—but if they return, they
should return two values: the parsed options and a syntax object; these are returned as the
results of parse-keyword-options.

Examples:

> (parse-keyword-options
#'(#:transparent #:property p (lambda (x) (f x)))
(list (list '#:transparent)

(list '#:inspector check-expression)
(list '#:property check-expression check-expression)))

'((#:transparent #<syntax:eval:4:0 #:transparent>)
(#:property
#<syntax:eval:4:0 #:property>
#<syntax:eval:4:0 p>
#<syntax:eval:4:0 (lambda (x) (f x))>))

'()
> (parse-keyword-options

122

#'(#:transparent #:inspector (make-inspector))
(list (list '#:transparent)

(list '#:inspector check-expression)
(list '#:property check-expression check-expression))

#:context #'define-struct
#:incompatible '((#:transparent #:inspector)

(#:inspector #:inspector)
(#:inspector #:inspector)))

define-struct: #:inspector option not allowed after
#:transparent option

(parse-keyword-options/eol
stx
table

[#:context ctx
#:no-duplicates? no-duplicates?
#:incompatible incompatible
#:on-incompatible incompatible-handler
#:on-too-short too-short-handler
#:on-not-in-table not-in-table-handler
#:on-not-eol not-eol-handler])

Ñ options
stx : syntax?
table : keyword-table
ctx : (or/c #f syntax?) = #f
no-duplicates? : boolean? = #f
incompatible : (listof (list keyword? keyword?)) = '()
incompatible-handler : (-> keyword? keyword?

options syntax? syntax?
(values options syntax?))

= (lambda (....) (error))
too-short-handler : (-> keyword? options syntax? syntax?

(values options syntax?))
= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?
(values options syntax?))

= (lambda (....) (error))
not-eol-handler : (-> options syntax? syntax?

options)
= (lambda (....) (error))

Like parse-keyword-options, but checks that there are no terms left over after parsing
all of the keyword options. If there are, not-eol-handler is tail-called with the options
parsed thus far, the leftover syntax, and ctx .

123

(options-select options keyword) Ñ (listof list?)
options : options
keyword : keyword?

Selects the values associated with one keyword from the parsed options. The resulting list
has as many items as there were occurrences of the keyword, and each element is a list whose
length is the arity of the keyword.

(options-select-row options
keyword
#:default default) Ñ any

options : options
keyword : keyword?
default : any/c

Like options-select, except that the given keyword must occur either zero or one times
in options . If the keyword occurs, the associated list of parsed argument values is returned.
Otherwise, the default list is returned.

(options-select-value options
keyword
#:default default) Ñ any

options : options
keyword : keyword?
default : any/c

Like options-select, except that the given keyword must occur either zero or one times
in options . If the keyword occurs, the associated list of parsed argument values must have
exactly one element, and that element is returned. If the keyword does not occur in options ,
the default value is returned.

(check-identifier stx ctx) Ñ identifier?
stx : syntax?
ctx : (or/c #f syntax?)

A check-procedure that accepts only identifiers.

(check-expression stx ctx) Ñ syntax?
stx : syntax?
ctx : (or/c #f syntax?)

A check-procedure that accepts any non-keyword term. It does not actually check that the
term is a valid expression.

124

((check-stx-listof check) stx ctx) Ñ (listof any/c)
check : check-procedure
stx : syntax?
ctx : (or/c #f syntax?)

Lifts a check-procedure to accept syntax lists of whatever the original procedure accepted.

(check-stx-string stx ctx) Ñ syntax?
stx : syntax?
ctx : (or/c #f syntax?)

A check-procedure that accepts syntax strings.

(check-stx-boolean stx ctx) Ñ syntax?
stx : syntax?
ctx : (or/c #f syntax?)

A check-procedure that accepts syntax booleans.

125

3 Datum Pattern Matching

(require syntax/datum) package: base

The syntax/datum library provides forms that implement the pattern and template language
of syntax-case, but for matching and constructing datum values instead of syntax.

For most pattern-matching purposes, racket/match is a better choice than syntax/datum.
The syntax/datum library is useful mainly for its template support (i.e., datum) and, to a
lesser extent, its direct correspondence to syntax-case patterns.

(datum-case datum-expr (literal-id ...)
clause ...)

(datum template)

Like syntax-case and syntax, but datum-expr in datum-case should produce a datum
(i.e., plain S-expression) instead of a syntax object to be matched in clauses, and datum
similarly produces a datum. Pattern variables bound in each clause of datum-case (or
syntax-case, see below) are accessible via datum instead of syntax. When a literal-
id appears in a clause ’s pattern, it matches the corresponding symbol (using eq?).

Using datum-case and datum is similar to converting the input to syntax-case using
datum->syntax and then wrapping each use of syntax with syntax->datum, but datum-
case and datum do not create intermediate syntax objects, and they do not destroy existing
syntax objects within the S-expression structure of datum-expr .

Example:

> (datum-case '(1 "x" -> y) (->)
[(a ... -> b) (datum (b (+ a) ...))])

'(y (+ 1) (+ "x"))

The datum form also cooperates with syntax pattern variables such as those bound by
syntax-case and attributes bound by syntax-parse (see §1.4.2 “Pattern Variables and
Attributes” for more information about attributes). As one consequence, datum provides
a convenient way of getting the list of syntax objects bound to a syntax pattern variable
of depth 1. For example, the following expressions are equivalent, except that the datum
version avoids creating and eliminating a superfluous syntax object wrapper:

> (with-syntax ([(x ...) #'(a b c)])
(syntax->list #'(x ...)))

'(#<syntax:eval:3:0 a> #<syntax:eval:3:0 b> #<syntax:eval:3:0 c>)
> (with-syntax ([(x ...) #'(a b c)])

(datum (x ...)))
'(#<syntax:eval:4:0 a> #<syntax:eval:4:0 b> #<syntax:eval:4:0 c>)

126

https://pkgs.racket-lang.org/package/base

A template can also use multiple syntax or datum pattern variables and datum constants, and
it can use the ~@ and ~? template forms:

> (with-syntax ([(x ...) #'(a b c)])
(with-datum ([(y ...) (list 1 2 3)])

(datum ([x -> y] ...))))
'((#<syntax:eval:5:0 a> -> 1)

(#<syntax:eval:5:0 b> -> 2)
(#<syntax:eval:5:0 c> -> 3))

> (with-syntax ([(x ...) #'(a b c)])
(with-datum ([(y ...) (list 1 2 3)])

(datum ((~@ x y) ...))))
'(#<syntax:eval:6:0 a> 1 #<syntax:eval:6:0 b> 2 #<syntax:eval:6:0
c> 3)

See §1.4.2.1 “Attributes and datum” for examples of ~? with datum.

If a datum variable is used in a syntax template, a compile-time error is raised.

Changed in version 7.8.0.9 of package base: Changed datum to cooperate with syntax-case, syntax-parse,
etc.

(with-datum ([pattern datum-expr] ...)
body ...+)

Analogous to with-syntax, but for datum-case and datum instead of syntax-case and
syntax.

Example:

> (with-datum ([(a ...) '(1 2 3)]
[(b ...) '("x" "y" "z")])

(datum ((a b) ...)))
'((1 "x") (2 "y") (3 "z"))

(define/with-datum pattern datum-expr)

The definition form of with-datum. Analogous to define/with-syntax, but for datum-
case and datum.

Examples:

> (define/with-datum ((x y) ...)
'((a 1) (b 2) (c 3)))

> (datum ((x ...)
(y ...)))

127

'((a b c) (1 2 3))

Added in version 8.2.0.8 of package base.

(quasidatum template)
(undatum expr)
(undatum-splicing expr)

Analogous to quasisyntax, unsyntax, and unsyntax-splicing.

Example:

> (with-datum ([(a ...) '(1 2 3)])
(quasidatum ((undatum (- 1 1)) a ... (undatum (+ 2 2)))))

'(0 1 2 3 4)

128

4 Module-Processing Helpers

4.1 Reading Module Source Code

(require syntax/modread) package: base

(with-module-reading-parameterization thunk) Ñ any
thunk : (-> any)

Calls thunk with all reader parameters reset to their default values.

(check-module-form stx
expected-module-sym
source-v) Ñ (or/c syntax? #f)

stx : (or/c syntax? eof-object?)
expected-module-sym : symbol?
source-v : (or/c string? #f)

Inspects stx to check whether evaluating it will declare a module—at least if module is
bound in the top-level to Racket’s module. The syntax object stx can contain a compiled
expression. Also, stx can be an end-of-file, on the grounds that read-syntax can produce
an end-of-file.

The expected-module-sym argument is currently ignored. In previous versions, the mod-
ule form stx was obliged to declare a module who name matched expected-module-sym .

If stx can declare a module in an appropriate top-level, then the check-module-form
procedure returns a syntax object that certainly will declare a module (adding explicit context
to the leading module if necessary) in any top-level. Otherwise, if source-v is not #f, a
suitable exception is raised using the write form of the source in the message; if source-v
is #f, #f is returned.

If stx is eof or eof wrapped as a syntax object, then an error is raised or #f is returned.

4.2 Getting Module Compiled Code

(require syntax/modcode) package: base

129

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(get-module-code path
[#:submodule-path submodule-path
#:sub-path compiled-subdir0
compiled-subdir
#:roots roots
#:compile compile-proc0
compile-proc
#:extension-handler ext-proc0
ext-proc
#:notify notify-proc
#:source-reader read-syntax-proc
#:rkt-try-ss? rkt-try-ss?
#:choose choose-proc]) Ñ any

path : path-string?
submodule-path : (listof symbol?) = '()
compiled-subdir0 : (or/c (and/c path-string? relative-path?)

(listof (and/c path-string? relative-path?)))
= (use-compiled-file-paths)

compiled-subdir : (or/c (and/c path-string? relative-path?)
(listof (and/c path-string? relative-path?)))

= compiled-subdir0
roots : (listof (or/c path-string? 'same))

= (current-compiled-file-roots)
compile-proc0 : (any/c . -> . any) = compile
compile-proc : (any/c . -> . any) = compile-proc0
ext-proc0 : (or/c #f (path? boolean? . -> . any)) = #f
ext-proc : (or/c #f (path? boolean? . -> . any)) = ext-proc0
notify-proc : (any/c . -> . any) = void
read-syntax-proc : (any/c input-port? . -> . (or/c syntax? eof-object?))

= read-syntax
rkt-try-ss? : boolean? = #t
choose-proc : (or/c (-> path? path? path?

(or/c 'src 'zo 'so #f))
#f)

= #f

Returns a compiled expression for the declaration of the module specified by path and
submodule-path , where submodule-path is empty for a root module or a list for a sub-
module.

The roots , compiled-subdir , choose-proc , and rkt-try-ss? and submodule-path
arguments determine which file is consulted to find the compiled code. If the default val-
ues are provided, then this function uses the same logic as the default value of current-
load/use-compiled. In more detail:

• If submodule-path is not the empty list, then the compiled code will never be located

130

in a dynamic extension; instead the original source or a "zo" file will be used.

• The rkt-try-ss? argument defaults to #t. If it is not #f, then if path ends in
".rkt", then the corresponding file ending in ".ss" will be tried as well.

• The choose-proc argument is called with the original source file (which might have
had its ending changed, c.f. the rkt-try-ss? argument) and two other paths that
end with "zo" and "so" (but they are not necessarily the paths that get-module-
code uses). If the choose-proc returns 'src, then compiled files are not used. If it
returns any other result, the result is ignored. In previous versions of this function, the
choose-proc offered more control over which file was used but it no longer does;
the current interface is kept for backwards compatibility.

• The compiled-subdir argument defaults to (use-compiled-file-paths); it
specifies the sub-directories to search for a compiled version of the module. If
compiled-subdir is a list, then the first directory that contains a file with an ap-
propriate name is used as the compiled file.

• The roots list specifies a compiled-file search path in the same way as the current-
compiled-file-roots parameter; it defaults to the current value of current-
compiled-file-roots.

The compile-proc argument defaults to compile. This procedure is used to compile mod-
ule source if an already-compiled version is not available. If submodule-path is not '(),
then compile-proc must return a compiled module form.

The ext-proc argument defaults to #f. If it is not #f, it must be a procedure of two
arguments that is called when a native-code version of path should be used. In that case,
the arguments to ext-proc are the path for the dynamic extension, and a boolean indicating
whether the extension is a _loader file (#t) or not (#f).

If a dynamic extension is preferred or is the only file that exists, it is supplied to ext-proc
when ext-proc is #f, or an exception is raised (to report that an extension file cannot be
used) when ext-proc is #f.

If notify-proc is supplied, it is called for the file (source, ".zo" or dynamic extension)
that is chosen.

If read-syntax-proc is provided, it is used to read the module from a source file (but not
from a bytecode file).

Changed in version 6.90.0.7 of package base: Use (default-compiled-sub-path) for the default value of
compiled-subdir .
Changed in version 8.6.0.12: Generalize the #:sub-path argument, change #:sub-path’s default to
(use-compiled-file-paths), and pay less attention to the #:choose argument.

131

(get-module-path path
#:submodule? submodule?

[#:sub-path compiled-subdir0
compiled-subdir
#:roots roots
#:rkt-try-ss? rkt-try-ss?
#:choose choose-proc])

Ñ path? (or/c 'src 'zo 'so)
path : path-string?
submodule? : boolean?
compiled-subdir0 : (or/c (and/c path-string? relative-path?)

(listof (and/c path-string? relative-path?)))
= (use-compiled-file-paths)

compiled-subdir : (or/c (and/c path-string? relative-path?)
(listof (and/c path-string? relative-path?)))

= compiled-subdir0
roots : (listof (or/c path-string? 'same))

= (current-compiled-file-roots)
rkt-try-ss? : boolean? = #t
choose-proc : any/c = #f

Produces two values. The first is the path of the latest source or compiled file for the module
specified by path ; this result is the path of the file that get-module-code would read to
produce a compiled module expression. The second value is 'src, 'zo, or 'so, depending
on whether the first value represents a Racket source file, a compiled bytecode file, or a
native library file.

The compiled-subdir , roots , choose-proc , and rkt-try-ss? arguments are inter-
preted the same as by get-module-code.

The submodule? argument represents whether the desired module is a submodule of the
one specified by path . When submodule? is true, the result path never refers to a dynamic
extension and the result symbol is never 'so, as native libraries cannot provide submodules.

Changed in version 6.90.0.7 of package base: Use (default-compiled-sub-path) for the default value of
compiled-subdir .
Changed in version 8.6.0.12: Generalize the #:sub-path argument, change #:sub-path’s default to
(use-compiled-file-paths), and pay less attention to the #:choose argument.

(default-compiled-sub-path) Ñ path-string?

If (use-compiled-file-paths) is not '(), returns the first element of the list. Otherwise,
returns "compiled".

This function used to provide the default for the #:sub-path argument to get-module-
code and get-module-path, but it is no longer used by this library.

132

Added in version 6.90.0.7 of package base.

(get-metadata-path path
[#:roots roots]
sub-path ...+) Ñ path?

path : path-string?
roots : (listof (or/c path-string? 'same))

= (current-compiled-file-roots)
sub-path : (or/c path-string? 'same)

Constructs the path used to store compilation metadata for a source file stored in the direc-
tory path . The argument roots specifies the possible root directories to consider and
to search for an existing file. The sub-path arguments specify the subdirectories and
filename of the result relative to the chosen root. For example, the compiled ".zo" file
for "/path/to/source.rkt" might be stored in (get-metadata-path (build-path
"/path/to") "compiled" "source_rkt.zo").

(moddep-current-open-input-file)
Ñ (path-string? . -> . input-port?)

(moddep-current-open-input-file proc) Ñ void?
proc : (path-string? . -> . input-port?)

A parameter whose value is used like open-input-file to read a module source or ".zo"
file.

(struct exn:get-module-code exn:fail (path)
#:extra-constructor-name make-exn:get-module-code)

path : path?

An exception structure type for exceptions raised by get-module-code.

4.3 Resolving Module Paths to File Paths

(require syntax/modresolve) package: base

(resolve-module-path module-path-v
[rel-to-path-v])

Ñ (or/c path? symbol?
(cons/c 'submod (cons/c (or/c path? symbol?) (listof symbol?))))

module-path-v : module-path?
rel-to-path-v : (or/c #f path-string? (-> any)) = #f

Resolves a module path to filename path. The module path is resolved relative to rel-to-
path-v if it is a path string (assumed to be for a file), to the directory result of calling the
thunk if it is a thunk, or to the current directory otherwise.

133

https://pkgs.racket-lang.org/package/base

When module-path-v refers to a module using a collection-based path, resolution invokes
the current module name resolver, but without loading the module even if it is not declared.
Beware that concurrent resolution in namespaces that share a module registry can create race
conditions when loading modules; see also namespace-call-with-registry-lock.

(resolve-module-path-index module-path-index
[rel-to-path-v])

Ñ (or/c path? symbol?
(cons/c 'submod (cons/c (or/c path? symbol?) (listof symbol?))))

module-path-index : module-path-index?
rel-to-path-v : (or/c #f path-string? (-> any)) = #f

Like resolve-module-path but the input is a module path index; in this case, the rel-
to-path-v base is used where the module path index contains the “self” index. If module-
path-index depends on the “self” module path index, then an exception is raised unless
rel-to-path-v is a path string.

See module-path-index-resolve.

Examples:

> (resolve-module-path-index
(module-path-index-join 'racket #f))

#<path:/Users/robby/git/snapshot/racket/racket/collects/racket/main.rkt>
> (resolve-module-path-index

(module-path-index-join "apple.rkt" #f))
#<path:/Users/robby/git/snapshot/racket/build/docs/share/pkgs/racket-
doc/syntax/apple.rkt>
> (resolve-module-path-index

(module-path-index-join '(submod "." test) #f)
(string->path "banana.rkt"))

'(submod #<path:banana.rkt> test)

4.4 Simplifying Module Paths

(require syntax/modcollapse) package: base

(collapse-module-path module-path-v
rel-to-module-path-v) Ñ module-path?

module-path-v : module-path?
rel-to-module-path-v : (or/c module-path?

(-> module-path?))

Returns a “simplified” module path by combining module-path-v with rel-to-module-
path-v , where the latter must have one of the following forms: a '(lib) or sym-
bol module path; a '(file) module path; a '(planet) module path; a path;

134

https://pkgs.racket-lang.org/package/base

'(quote symbol); a '(submod base symbol ...) module path where base would be
allowed; or a thunk to generate one of those.

The result can be a path if module-path-v contains a path element that is needed for the
result, or if rel-to-module-path-v is a non-string path that is needed for the result. Sim-
ilarly, the result can be 'submod wrapping a path. Otherwise, the result is a module path (in
the sense of module-path?) that is not a plain filesystem path.

When the result is a 'lib or 'planet module path, it is normalized so that equivalent
module paths are represented by equal? results. When the result is a 'submod module
path, it contains only symbols after the base module path, and the base is normalized in the
case of a 'lib or 'planet base.

Examples:

> (collapse-module-path "m.rkt" '(lib "n/main.rkt"))
'(lib "n/m.rkt")
> (collapse-module-path '(submod "." x) '(lib "n/main.rkt"))
'(submod (lib "n/main.rkt") x)
> (collapse-module-path '(submod "." x) '(submod (lib "n/main.rkt") y))
'(submod (lib "n/main.rkt") y x)

(collapse-module-path-index module-path-index
rel-to-module-path-v)

Ñ module-path?
module-path-index : module-path-index?
rel-to-module-path-v : (or/c module-path?

(-> module-path?))
(collapse-module-path-index module-path-index)

Ñ (or/c module-path? #f)
module-path-index : module-path-index?

Like collapse-module-path when given two arguments, but the input is a module path
index; in this case, the rel-to-module-path-v base is used where the module path index
contains the “self” index (see module-path-index-split).

When given a single argument, collapse-module-path-index returns a module path that
is relative if the given module path index is relative, except that it returns #f if its argument
is the “self” module path index. A resulting module path is not necessarily normalized.

Changed in version 6.1.1.8 of package base: Added the one-argument variant for collapsing a relative module path
index.
Changed in version 6.9.0.5: Added support for the “self” module path index as the only argument, which meant
extending the result contract to include #f

135

4.5 Inspecting Modules and Module Dependencies

(require syntax/moddep) package: base

Re-exports syntax/modread, syntax/modcode, syntax/modcollapse, and syn-
tax/modresolve, in addition to the following:

(show-import-tree module-path-v
[#:dag? dag?
#:path-to path-to-module-path-v
#:show show]) Ñ void?

module-path-v : module-path?
dag? : any/c = #f
path-to-module-path-v : (or/c #f module-path?) = #f
show : (string? any/c string? (or/c #f exact-integer?) . -> . any)

= (lambda (indent path require-mode phase)
(printf "~a~a~a ~a\n" indent path require-mode phase))

A debugging aid that prints (by default) the import hierarchy starting from a given module
path. Supply an alternate show function to handle each path instead of having it printed; the
second argument is a result of resolved-module-path-name.

If dag? is true, then a module is passed to show only the first time is encountered in the
hierarchy at a given phase.

If path-to-module-path-v is a module path, then only the spines of the tree that reach
path-to-module-path-v are shown.

Changed in version 6.12.0.4 of package base: Added the #:dag? and #:path-to arguments.
Changed in version 7.0.0.10: Added the #:show argument.

4.6 Wrapping Module-Body Expressions

(require syntax/wrap-modbeg) package: base

Added in version 6.0.0.1 of package base.

(make-wrapping-module-begin wrap-form
[module-begin-form])

Ñ (syntax? . -> . syntax?)
wrap-form : syntax?
module-begin-form : syntax? = #'#%plain-module-begin

Provided for-syntax.

136

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

Constructs a function that is suitable for use as a #%module-begin replacement, particularly
to replace the facet of #%module-begin that wraps each top-level expression to print the
expression’s result(s).

The function takes a syntax object and returns a syntax object using module-begin-form .
Assuming that module-begin-form resembles #%plain-module-begin, each top-level
expression expr will be wrapped as (wrap-form expr), while top-level declarations
(such as define-values and require forms) are left as-is. Expressions are detected after
macro expansion and begin splicing, and expansion is interleaved with declaration process-
ing as usual.

137

5 Macro Transformer Helpers

5.1 Extracting Inferred Names

(require syntax/name) package: base

(syntax-local-infer-name stx [use-local?]) Ñ any/c
stx : syntax?
use-local? : any/c = #t

Similar to syntax-local-name, except that stx is checked for an 'inferred-name prop-
erty (which overrides any inferred name). If neither syntax-local-name nor 'inferred-
name produce a name, or if the 'inferred-name property value is #<void>, then a name
is constructed from the source-location information in stx , if any. If no name can be con-
structed, the result is #f.

To support the propagation and merging of consistent properties during expansions, the value
of the 'inferred-name property can be a tree formed with cons where all of the leaves are
the same. For example, (cons 'name 'name) is equivalent to 'name, and (cons (void)
(void)) is equivalent to #<void>.

If use-local? is #f, then syntax-local-name is not used. Provide use-local? as #f to
construct a name for a syntax object that is not an expression currently being expanded.

5.2 Support for local-expand

(require syntax/context) package: base

(build-expand-context v) Ñ list?
v : (or/c symbol? list?)

Returns a list suitable for use as a context argument to local-expand for an internal-
definition context. The v argument represents the immediate context for expansion. The
context list builds on (syntax-local-context) if it is a list.

(generate-expand-context [liberal-definitions?]) Ñ list?
liberal-definitions? : boolean? = #f

Calls build-expand-context with a generated unique value. When liberal-
definitions? is true, the value is an instance of a structure type with a true value for
the prop:liberal-define-context property.

138

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

5.3 Parsing define-like Forms

(require syntax/define) package: base

(normalize-definition defn-stx
lambda-id-stx

[check-context?
opt+kws?]) Ñ identifier? syntax?

defn-stx : syntax?
lambda-id-stx : identifier?
check-context? : boolean? = #t
opt+kws? : boolean? = #f

Takes a definition form whose shape is like define (though possibly with a different name)
and returns two values: the defined identifier and the right-hand side expression.

To generate the right-hand side, this function may need to insert uses of lambda. The
lambda-id-stx argument provides a suitable lambda identifier.

If the definition is ill-formed, a syntax error is raised. If check-context? is true, then a
syntax error is raised if (syntax-local-context) indicates that the current context is an
expression context. The default value of check-context? is #t.

If opt+kws? is #t, then arguments of the form [id expr], keyword id, and keyword
[id expr] are allowed, and they are preserved in the expansion.

(normalize-definition/mk-rhs defn-stx
lambda-id-stx
check-context?
opt+kws?
err-no-body?)

Ñ identifier? (-> syntax? syntax?) syntax?
defn-stx : syntax?
lambda-id-stx : identifier?
check-context? : boolean?
opt+kws? : boolean?
err-no-body? : boolean?

The helper for normalize-definition that produces three values: the defined identifier, a
function that takes the syntax of the body and produces syntax that has the expected binding
structure, and finally the right-hand side expression that normalize-definition gives to
the previous function.

If err-no-body? is true, then there must be a right-hand side expression or else it is a syntax
error. The err-no-body? argument is true for uses of normalize-definition.

Added in version 6.1.1.8 of package base.

139

https://pkgs.racket-lang.org/package/base

5.4 Flattening begin Forms

(require syntax/flatten-begin) package: base

(flatten-begin stx) Ñ (listof syntax?)
stx : syntax?

Extracts the sub-expressions from stx , assuming that it is a begin form. Reports an error
if stx does not have the right shape (i.e., a syntax list). The resulting syntax objects have
annotations transferred from stx using syntax-track-origin.

Examples:

> (flatten-begin #'(begin 1 2 3))
'(#<syntax:eval:2:0 1> #<syntax:eval:2:0 2> #<syntax:eval:2:0 3>)
> (flatten-begin #'(begin (begin 1 2) 3))
'(#<syntax:eval:3:0 (begin 1 2)> #<syntax:eval:3:0 3>)
> (flatten-begin #'(+ (- 1 2) 3))
'(#<syntax:eval:4:0 (- 1 2)> #<syntax:eval:4:0 3>)

(flatten-all-begins stx) Ñ (listof syntax?)
stx : syntax?

Extracts the sub-expressions from a begin form and recursively flattens begin forms nested
in the original one. An error will be reported if stx is not a begin form. The resulting syntax
objects have annotations transferred from stx using syntax-track-origin.

Examples:

> (flatten-all-begins #'(begin 1 2 3))
'(#<syntax:eval:5:0 1> #<syntax:eval:5:0 2> #<syntax:eval:5:0 3>)
> (flatten-all-begins #'(begin (begin 1 2) 3))
'(#<syntax:eval:6:0 1> #<syntax:eval:6:0 2> #<syntax:eval:6:0 3>)

Added in version 6.1.0.3 of package base.

5.5 Expanding define-struct-like Forms

(require syntax/struct) package: base

(parse-define-struct stx orig-stx) Ñ identifier?
(or/c identifier? #f)
(listof identifier?)
syntax?

140

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

stx : syntax?
orig-stx : syntax?

Parses stx as a define-struct form, but uses orig-stx to report syntax errors (under
the assumption that orig-stx is the same as stx , or that they at least share sub-forms).
The result is four values: an identifier for the struct type name, a identifier or #f for the
super-name, a list of identifiers for fields, and a syntax object for the inspector expression.

(build-struct-names name-id
field-ids

[#:constructor-name ctr-name]
omit-sel?
omit-set?

[src-stx])
Ñ (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
ctr-name : (or/c identifier? #f) = #f
omit-sel? : boolean?
omit-set? : boolean?
src-stx : (or/c syntax? #f) = #f

Generates the names bound by define-struct given an identifier for the struct type name
and a list of identifiers for the field names. The result is a list of identifiers:

• struct:name-id

• ctr-name , or make-name-id if ctr-name is #f

• name-id?

• name-id-field , for each field in field-ids .

• set-name-id-field! (getter and setter names alternate).

•

If omit-sel? is true, then the selector names are omitted from the result list. If omit-set?
is true, then the setter names are omitted from the result list.

The default src-stx is #f; it is used to provide a source location to the generated identifiers.

141

(build-struct-generation name-id
field-ids

[#:constructor-name ctr-name]
omit-sel?
omit-set?

[super-type
prop-value-list
immutable-k-list])

Ñ (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
ctr-name : (or/c identifier? #f) = #f
omit-sel? : boolean?
omit-set? : boolean?
super-type : any/c = #f
prop-value-list : list? = '(list)
immutable-k-list : list? = '(list)

Takes the same arguments as build-struct-names and generates an S-expression for code
using make-struct-type to generate the structure type and return values for the identifiers
created by build-struct-names. The optional super-type , prop-value-list , and
immutable-k-list parameters take S-expressions that are used as the corresponding ar-
gument expressions to make-struct-type.

(build-struct-generation* all-name-ids
name-id
field-ids

[#:constructor-name ctr-name]
omit-sel?
omit-set?

[super-type
prop-value-list
immutable-k-list])

Ñ (listof identifier?)
all-name-ids : (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
ctr-name : (or/c identifier? #f) = #f
omit-sel? : boolean?
omit-set? : boolean?
super-type : any/c = #f
prop-value-list : list? = '(list)
immutable-k-list : list? = '(list)

Like build-struct-generation, but given the names produced by build-struct-
names, instead of re-generating them.

142

(build-struct-expand-info name-id
field-ids

[#:omit-constructor? no-ctr?
#:constructor-name ctr-name
#:omit-struct-type? no-type?]
omit-sel?
omit-set?
base-name
base-getters
base-setters) Ñ any

name-id : identifier?
field-ids : (listof identifier?)
no-ctr? : any/c = #f
ctr-name : (or/c identifier? #f) = #f
no-type? : any/c = #f
omit-sel? : boolean?
omit-set? : boolean?
base-name : (or/c identifier? boolean?)
base-getters : (listof (or/c identifier? #f))
base-setters : (listof (or/c identifier? #f))

Takes mostly the same arguments as build-struct-names, plus a parent identifier/#t/#f
and a list of accessor and mutator identifiers (possibly ending in #f) for a parent type, and
generates an S-expression for expansion-time code to be used in the binding for the structure
name.

If no-ctr? is true, then the constructor name is omitted from the expansion-time informa-
tion. Similarly, if no-type? is true, then the structure-type name is omitted.

A #t for the base-name means no super-type, #f means that the super-type (if any) is
unknown, and an identifier indicates the super-type identifier.

(struct-declaration-info? v) Ñ boolean?
v : any/c

Returns #t if x has the shape of expansion-time information for structure type declarations,
#f otherwise. See §5.7 “Structure Type Transformer Binding”.

(generate-struct-declaration orig-stx
name-id
super-id-or-false
field-id-list
current-context
make-make-struct-type

[omit-sel?
omit-set?]) Ñ syntax?

143

orig-stx : syntax?
name-id : identifier?
super-id-or-false : (or/c identifier? #f)
field-id-list : (listof identifier?)
current-context : any/c
make-make-struct-type : procedure?
omit-sel? : boolean? = #f
omit-set? : boolean? = #f

This procedure implements the core of a define-struct expansion.

The generate-struct-declaration procedure is called by a macro expander to generate
the expansion, where the name-id , super-id-or-false , and field-id-list arguments
provide the main parameters. The current-context argument is normally the result of
syntax-local-context. The orig-stx argument is used for syntax errors. The optional
omit-sel? and omit-set? arguments default to #f; a #t value suppresses definitions of
field selectors or mutators, respectively.

The make-struct-type procedure is called to generate the expression to actually create
the struct type. Its arguments are orig-stx , name-id-stx, defined-name-stxes, and
super-info. The first two are as provided originally to generate-struct-declaration,
the third is the set of names generated by build-struct-names, and the last is super-struct
info obtained by resolving super-id-or-false when it is not #f, #f otherwise.

The result should be an expression whose values are the same as the result of make-struct-
type. Thus, the following is a basic make-make-struct-type :

(lambda (orig-stx name-stx defined-name-stxes super-info)
#`(make-struct-type '#,name-stx

#,(and super-info (list-ref super-info 0))
#,(/ (- (length defined-name-stxes) 3) 2)
0 #f))

but an actual make-make-struct-type will likely do more.

5.6 Resolving include-like Paths

(require syntax/path-spec) package: base

(resolve-path-spec path-spec-stx
source-stx
expr-stx) Ñ complete-path?

path-spec-stx : syntax?
source-stx : syntax?
expr-stx : syntax?

144

https://pkgs.racket-lang.org/package/base

Resolves the syntactic path specification path-spec-stx as for include.

The source-stx specifies a syntax object whose source-location information determines
relative-path resolution. The expr-stx is used for reporting syntax errors.

5.7 Controlling Syntax Templates

(require syntax/template) package: base

(transform-template template-stx
#:save save-proc
#:restore-stx restore-proc-stx

[#:leaf-save leaf-save-proc
#:leaf-restore-stx leaf-restore-proc-stx
#:leaf-datum-stx leaf-datum-proc-stx
#:pvar-save pvar-save-proc
#:pvar-restore-stx pvar-restore-stx
#:cons-stx cons-proc-stx
#:ellipses-end-stx ellipses-end-stx
#:constant-as-leaf? constant-as-leaf?])

Ñ syntax?
template-stx : syntax?
save-proc : (syntax? . -> . any/c)
restore-proc-stx : syntax?
leaf-save-proc : (syntax? . -> . any/c) = save-proc
leaf-restore-proc-stx : syntax? = #'(lambda (data stx) stx)
leaf-datum-proc-stx : syntax? = #'(lambda (v) v)
pvar-save-proc : (identifier? . -> . any/c) = (lambda (x) #f)
pvar-restore-stx : syntax? = #'(lambda (d stx) stx)
cons-proc-stx : syntax? = #'cons
ellipses-end-stx : syntax? = #'values
constant-as-leaf? : boolean? = #f

Produces an representation of an expression similar to #`(syntax #,template-stx), but
functions like save-proc can collect information that might otherwise be lost by syntax
(such as properties when the syntax object is marshaled within bytecode), and run-time
functions like the one specified by restore-proc-stx can use the saved information or
otherwise process the syntax object that is generated by the template.

The save-proc is applied to each syntax object in the representation of the original template
(i.e., in template-stx). If constant-as-leaf? is #t, then save-proc is applied only
to syntax objects that contain at least one pattern variable in a sub-form. The result of
save-proc is provided back as the first argument to restore-proc-stx , which indicates
a function with a contract (-> any/c syntax any/c any/c); the second argument to

145

https://pkgs.racket-lang.org/package/base

restore-proc-stx is the syntax object that syntax generates, and the last argument is
a datum that have been processed recursively (by functions such as restore-proc-stx)
and that normally would be converted back to a syntax object using the second argument’s
context, source, and properties. Note that save-proc works at expansion time (with respect
to the template form), while restore-proc-stx indicates a function that is called at run
time (for the template form), and the data that flows from save-proc to restore-proc-
stx crosses phases via quote.

The leaf-save-proc and leaf-restore-proc-stx procedures are analogous to save-
proc and restore-proc-stx , but they are applied to leaves, so there is no third argument
for recursively processed sub-forms. The function indicated by leaf-restore-proc-stx
should have the contract (-> any/c syntax? any/c).

The leaf-datum-proc-stx procedure is applied to leaves that are not syntax objects,
which can happen because pairs and the empty list are not always individually wrapped
as syntax objects. The function should have the contract (-> any/c any/c). When
constant-as-leaf? is #f, the only possible argument to the procedure is null.

The pvar-save and pvar-restore-stx procedures are analogous to save-proc and
restore-proc-stx , but they are applied to pattern variables. The pvar-restore-stx
procedure should have the contract (-> any/c syntax? any/c), where the second argu-
ment corresponds to the substitution of the pattern variable.

The cons-proc-stx procedure is used to build intermediate pairs, including pairs passed
to restore-proc-stx and pairs that do not correspond to syntax objects.

The ellipses-end-stx procedure is an extra filter on the syntax object that follows a
sequence of ... ellipses in the template. The procedure should have the contract (-> any/c
any/c).

The following example illustrates a use of transform-template to implement a syn-
tax/shape form that preserves the 'paren-shape property from the original template,
even if the template code is marshaled within bytecode.

(define-for-syntax (get-shape-prop stx)
(syntax-property stx 'paren-shape))

(define (add-shape-prop v stx datum)
(syntax-property (datum->syntax stx datum stx stx stx)

'paren-shape
v))

(define-syntax (syntax/shape stx)
(syntax-case stx ()

[(_ tmpl)
(transform-template #'tmpl

#:save get-shape-prop

146

#:restore-stx #'add-shape-prop)]))

5.8 Creating Macro Transformers

(require syntax/transformer) package: base

(make-variable-like-transformer reference-stx
[setter-stx])

Ñ (and/c set!-transformer? (-> syntax? syntax?))
reference-stx : (or/c syntax? (-> identifier? syntax?))
setter-stx : (or/c syntax? (-> syntax? syntax?) #f) = #f

Creates a transformer that replaces references to the macro identifier with reference-stx .
Uses of the macro in operator position are interpreted as an application with reference-
stx as the function and the arguments as given. If the reference-stx is a procedure, it is
applied to the macro identifier.

If the macro identifier is used as the target of a set! form, then the set! form expands into
the application of setter-stx to the set! expression’s right-hand side, if setter-stx
is syntax; otherwise, the identifier is considered immutable and a syntax error is raised. If
setter-stx is a procedure, it is applied to the entire set! expression.

Examples:

> (define the-box (box add1))
> (define-syntax op

(make-variable-like-transformer
#'(unbox the-box)
#'(lambda (v) (set-box! the-box v))))

> (op 5)
6
> (set! op 0)
> op
0

Added in version 6.3 of package base.

(make-expression-transformer transformer)
Ñ (-> syntax? syntax?)
transformer : (-> syntax? syntax?)

Creates a transformer derived from transformer that ensures it expands in an expression
context. When invoked in an expression context, it calls transformer . When invoked in
any other context, the new transformer wraps the argument syntax with #%expression.

Added in version 7.7.0.9 of package base.

147

https://pkgs.racket-lang.org/package/base

5.9 Applying Macro Transformers

(require syntax/apply-transformer) package: base

(local-apply-transformer transformer
stx
context
intdef-ctx) Ñ syntax?

transformer : (or/c (-> syntax? syntax?) set!-transformer?)
stx : syntax?
context : (or/c 'expression 'top-level 'module 'module-begin list?)
intdef-ctx : (or/c internal-definition-context?

#f
(listof internal-definition-context?))

For backwards compatibility only; syntax-local-apply-transformer is preferred.

Applies transformer as a syntax transformer to stx in the current expansion context. The
result is similar to expanding a use of an identifier bound as a syntax transformer bound
to transformer with local-expand, except that expansion is guaranteed to stop after
applying a single macro transformation (assuming transformer does not explicitly force
further recursive expansion).

Unlike simply applying transformer to stx directly, using local-apply-transformer
introduces the appropriate use-site scope and macro-introduction scope that would be added
by the expander.

The context and intdef-ctx arguments are treated the same way as the corresponding
arguments to local-expand.

Added in version 6.90.0.29 of package base.

148

https://pkgs.racket-lang.org/package/base

6 Reader Helpers

6.1 Raising exn:fail:read

(require syntax/readerr) package: base

(raise-read-error msg-string
source
line
col
pos
span

[#:extra-srclocs extra-srclocs]) Ñ any
msg-string : string?
source : any/c
line : (or/c exact-positive-integer? #f)
col : (or/c exact-nonnegative-integer? #f)
pos : (or/c exact-positive-integer? #f)
span : (or/c exact-nonnegative-integer? #f)
extra-srclocs : (listof srcloc?) = '()

Creates and raises an exn:fail:read exception, using msg-string as the base error mes-
sage.

Source-location information is added to the error message using the last five arguments and
the extra-srclocs (if the error-print-source-location parameter is set to #t). The
source argument is an arbitrary value naming the source location—usually a file path string.
Each of the line , pos arguments is #f or a positive exact integer representing the location
within source (as much as known), col is a non-negative exact integer for the source
column (if known), and span is #f or a non-negative exact integer for an item range starting
from the indicated position.

The usual location values should point at the beginning of whatever it is you were reading,
and the span usually goes to the point the error was discovered.

(raise-read-eof-error msg-string
source
line
col
pos
span) Ñ any

msg-string : string?
source : any/c
line : (or/c exact-positive-integer? #f)
col : (or/c exact-nonnegative-integer? #f)

149

https://pkgs.racket-lang.org/package/base

pos : (or/c exact-positive-integer? #f)
span : (or/c exact-nonnegative-integer? #f)

Like raise-read-error, but raises exn:fail:read:eof instead of exn:fail:read.

6.2 Module Reader
See also §17.3
“Defining new
#lang Languages”
in The Racket
Guide.

(require syntax/module-reader) package: base

The syntax/module-reader library provides support for defining #lang readers. It is
normally used as a module language, though it may also be required to get make-meta-
reader. It provides all of the bindings of racket/base other than #%module-begin.

(#%module-begin module-path)
(#%module-begin module-path reader-option ... form)
(#%module-begin reader-option ... form)

reader-option = #:read read-expr
| #:read-syntax read-syntax-expr
| #:whole-body-readers? whole?-expr
| #:wrapper1 wrapper1-expr
| #:wrapper2 wrapper2-expr
| #:module-wrapper module-wrapper-expr
| #:language lang-expr
| #:info info-expr
| #:interaction-info interaction-info-expr
| #:language-info language-info-expr

150

https://pkgs.racket-lang.org/package/base

read-expr : (input-port? . -> . any/c)

read-syntax-expr : (any/c input-port? . -> . any/c)

whole?-expr : any/c

wrapper1-expr :
(or/c ((-> any/c) . -> . any/c)

((-> any/c) boolean? . -> . any/c))

wrapper2-expr :

(or/c (input-port? (input-port? . -> . any/c)
. -> . any/c)

(input-port? (input-port? . -> . any/c)
boolean? . -> . any/c))

module-wrapper-expr :
(or/c ((-> any/c) . -> . any/c)
((-> any/c) boolean? . -> . any/c))

info-expr : (symbol? any/c (symbol? any/c . -> . any/c) . -> . any/c)

interaction-info-expr : (or/c (symbol? any/c . -> . any/c) #f)

language-info-expr : (or/c (vector/c module-path? symbol? any/c) #f)

lang-expr :
(or/c module-path?

(and/c syntax? (compose module-path? syntax->datum))
procedure?)

In its simplest form, the body of a module written with syntax/module-reader contains
just a module path, which is used in the language position of read modules. For example, a
module something/lang/reader implemented as

(module reader syntax/module-reader
module-path)

creates a reader such that a module source

#lang something
....

is read as

(module name-id module-path
(#%module-begin))

where name-id is derived from the source input port’s name in the same way as for #lang
s-exp.

Keyword-based reader-options allow further customization, as listed below. Additional
forms are as in the body of racket/base module; they can import bindings and define
identifiers used by the reader-options.

151

• #:read and #:read-syntax (both or neither must be supplied) specify alternate
readers for parsing the module body—replacements read and read-syntax, respec-
tively. Normally, the replacements for read and read-syntax are applied repeatedly
to the module source until eof is produced, but see also #:whole-body-readers?.

Unless #:whole-body-readers? specifies a true value, the repeated use of read or
read-syntax is parameterized to set read-accept-lang to #f, which disables
nested uses of #lang.

See also #:wrapper1 and #:wrapper2, which support simple parameterization of
readers rather than wholesale replacement.

• #:whole-body-readers? specified as true indicates that the #:read and #:read-
syntax functions each produce a list of S-expressions or syntax objects for the module
content, so that each is applied just once to the input stream.

If the resulting list contains a single form that starts with the symbol '#%module-
begin (or a syntax object whose datum is that symbol), then the first item is used as
the module body; otherwise, a '#%module-begin (symbol or identifier) is added to
the beginning of the list to form the module body.

• #:wrapper1 specifies a function that controls the dynamic context in which the read
and read-syntax functions are called. A #:wrapper1-specified function must ac-
cept a thunk, and it normally calls the thunk to produce a result while parameter-
ize-ing the call. Optionally, a #:wrapper1-specified function can accept a boolean
that indicates whether it is used in read (#f) or read-syntax (#t) mode.

For example, a language like racket/base but with case-insensitive reading of sym-
bols and identifiers can be implemented as

(module reader syntax/module-reader
racket/base
#:wrapper1 (lambda (t)

(parameterize ([read-case-sensitive #f])
(t))))

Using a readtable, you can implement languages that are extensions of plain S-
expressions.

• #:wrapper2 is like #:wrapper1, but a #:wrapper2-specified function receives the
input port to be read, and the function that it receives accepts an input port (usually, but
not necessarily the same input port). A #:wrapper2-specified function can optionally
accept an boolean that indicates whether it is used in read (#f) or read-syntax (#t)
mode.

• #:module-wrapper specifies a function that controls the dynamic context in which
the overall module form is produced, including calls to the read and read-syntax
functions and to any #:wrapper1 and #:wrapper2 functions. The #:module-
wrapper-specified function must accept a thunk, and it can optionally accept a
boolean that indicates whether it is used in read (#f) or read-syntax (#t) mode.

152

While a #:wrapper1-specified or #:wrapper2-specified function sees only individ-
ual forms within the read module, a #:module-wrapper-specified function sees the
entire result module form (via the result of its thunk argument).

• #:info specifies an implementation of reflective information that is used by external
tools to manipulate the source of modules in the language something . For example,
DrRacket uses information from #:info to determine the style of syntax coloring that
it should use for editing a module’s source.
The #:info specification should be a function of three arguments: a symbol indicating
the kind of information requested (as defined by external tools), a default value that
normally should be returned if the symbol is not recognized, and a default-filtering
function that takes the first two arguments and returns a result.
The expression after #:info is placed into a context where language-module
and language-data are bound. The language-module identifier is bound to the
module-path that is used for the read module’s language as written directly or as de-
termined through #:language. The language-data identifier is bound to the second
result from #:language, or #f by default.
The default-filtering function passed to the #:info function is intended to pro-
vide support for information that syntax/module-reader can provide automati-
cally. Currently, it recognizes only the 'module-language key, for which it returns
language-module; it returns the given default value for any other key.
In the case of the DrRacket syntax-coloring example, DrRacket supplies 'color-
lexer as the symbol argument, and it supplies #f as the default. The default-filtering
argument (i.e., the third argument to the #:info function) currently just returns the
default for 'color-lexer.

• #:interaction-info specifies an implementation of reflective information that is
used by external tools for interactive evaluation. When interaction-info-expr
produces a function, the function accepts two arguments: a symbol a symbol indi-
cating the kind of information requested (as defined by external tools), and a default
value that normally should be returned if the symbol is not recognized.
As long as interaction-info-expr is specified, module-path is specified, or
lang-expr is literally a quote form, then get-interaction-info is defined an ex-
ported. Normally, interaction information is used by setting current-interaction-
info to a vector with the enclosing module’s path as its first element and 'get-
interaction-info as its second element. The third element of the vector is
an argument to get-interaction-info, and it is bound as language-data in
interaction-info-expr .
If interaction-info-expr is omitted or is literally #f, and if module-path is
specified or lang-expr is literally a quote form, then get-interaction-info is
automatically defined to use the same implementation as #:info, but instantiated with
language-module as #f.

• #:language-info specifies an implementation of reflective information that is used
by external tools to manipulate the module in the language something in its ex-
panded, compiled, or declared form (as opposed to source). For example, when

153

Racket starts a program, it uses information attached to the main module to initial-
ize the run-time environment.

Submodules are normally a better way to implement reflective information, instead
of #:language-info. For example, when Racket starts a program, it also checks
for a configure-runtime submodule of the main module to initialize the run-time
environment. The #:language-info mechanism pre-dates submodules.

Since the expanded/compiled/declared form exists at a different time than when the
source is read, a #:language-info specification is a vector that indicates an im-
plementation of the reflective information, instead of a direct implementation as a
function like #:info. The first element of the vector is a module path, the second is a
symbol corresponding to a function exported from the module, and the last element is
a value to be passed to the function. The last value in the vector must be one that can
be written with write and read back with read. When the exported function indicated
by the first two vector elements is called with the value from the last vector element,
the result should be a function or two arguments: a symbol and a default value. The
symbol and default value are used as for the #:info function (but without an extra
default-filtering function).

The value specified by #:language-info is attached to the module form that is
parsed from source through the 'module-language syntax property. See module for
more information.

The expression after #:language-info is placed into a context where language-
module are language-data are bound, the same as for #:info.

In the case of the Racket run-time configuration example, Racket uses the
#:language-info vector to obtain a function, and then it passes 'configure-
runtime to the function to obtain information about configuring the runtime envi-
ronment. See also §18.1.5 “Language Run-Time Configuration”.

• #:language allows the language of the read module to be computed dynamically
and based on the program source, instead of using a constant module-path . (Either
#:language or module-path must be provided, but not both.)

This value of the #:language option can be either a module path (possibly as a syntax
object) that is used as a module language, or it can be a procedure. If it is a procedure
it can accept either

– 0 arguments;

– 1 argument: an input port; or

– 5 arguments: an input port, a syntax object whose datum is a module path for
the enclosing module as it was referenced through #lang or #reader, a starting
line number (positive exact integer) or #f, a column number (non-negative exact
integer) or #f, and a position number (positive exact integer) or #f.

The result can be either

– a single value, which is a module path or a syntax object whose datum is a
module path, to be used like module-path ; or

154

– two values, where the first is like a single-value result and the second can be any
value.

The second result, which defaults to #f if only a single result is produced, is made
available to the #:info and #:module-info functions through the language-data
binding. For example, it can be a specification derived from the input stream that
changes the module’s reflective information (such as the syntax-coloring mode or the
output-printing styles).

As another example, the following reader defines a “language” that ignores the contents of
the file, and simply reads files as if they were empty:

(module ignored syntax/module-reader
racket/base
#:wrapper1 (lambda (t) (t) '()))

Note that the wrapper still performs the read, otherwise the module loader would complain
about extra expressions.

As a more useful example, the following module language is similar to at-exp, where the
first datum in the file determines the actual language (which means that the library specifi-
cation is effectively ignored):

(module reader syntax/module-reader
-ignored-
#:wrapper2
(lambda (in rd stx?)

(let* ([lang (read in)]
[mod (parameterize ([current-readtable

(make-at-readtable)])
(rd in))]

[mod (if stx? mod (datum->syntax #f mod))]
[r (syntax-case mod ()

[(module name lang* . body)
(with-syntax ([lang (datum->syntax

#'lang* lang #'lang*)])
(syntax/loc mod (module name lang . body)))])])

(if stx? r (syntax->datum r))))
(require scribble/reader))

The ability to change the language position in the resulting module expression can be useful
in cases such as the above, where the base language module is chosen based on the input.
To make this more convenient, you can omit the module-path and instead specify it via
a #:language expression. This expression can evaluate to a datum or syntax object that
is used as a language, or it can evaluate to a thunk. In the latter case, the thunk is invoked

155

to obtain such a datum before reading the module body begins, in a dynamic extent where
current-input-port is the source input. A syntax object is converted using syntax-
>datum when a datum is needed (for read instead of read-syntax). Using #:language,
the last example above can be written more concisely:

(module reader syntax/module-reader
#:language read
#:wrapper2 (lambda (in rd stx?)

(parameterize ([current-readtable
(make-at-readtable)])

(rd in)))
(require scribble/reader))

For such cases, however, the alternative reader constructor make-meta-reader implements
a more tightly controlled reading of the module language.

Changed in version 6.3 of package base: Added the #:module-reader option.

(make-meta-reader self-sym
path-desc-str

[#:read-spec read-spec]
module-path-parser
convert-read
convert-read-syntax
convert-get-info)

Ñ procedure? procedure? procedure?
self-sym : symbol?
path-desc-str : string?
read-spec : (input-port? . -> . any/c) = (lambda (in))
module-path-parser : (any/c . -> . (or/c module-path? #f

(vectorof module-path?)))
convert-read : (procedure? . -> . procedure?)
convert-read-syntax : (procedure? . -> . procedure?)
convert-get-info : (procedure? . -> . procedure?)

Generates procedures suitable for export as read (see read and #lang), read-syntax (see
read-syntax and #lang), and get-info (see read-language and #lang), respectively,
where the procedures chains to another language that is specified in an input stream. The at-exp,

reader, and
planet languages
are implemented
using this function.

The generated functions expect a target language description in the input stream that is pro-
vided to read-spec . The default read-spec extracts a non-empty sequence of bytes af-
ter one or more space and tab bytes, stopping at the first whitespace byte or end-of-file
(whichever is first), and it produces either such a byte string or #f. If read-spec produces
#f, a reader exception is raised, and path-desc-str is used as a description of the expected
language form in the error message. The reader

language supplies
read for
read-spec . The
at-exp and
planet languages
use the default
read-spec .

156

The result of read-spec is converted to a module path using module-path-parser . If
module-path-parser produces a vector of module paths, they are tried in order using
module-declared?. If module-path-parser produces #f, a reader exception is raised
in the same way as when read-spec produces a #f. The planet languages supply a
module-path-parser that converts a byte string to a module path. Lang-extensions like
at-exp use lang-reader-module-paths as this argument.

If loading the module produced by module-path-parser succeeds, then the loaded mod-
ule’s read, read-syntax, or get-info export is passed to convert-read , convert-
read-syntax , or convert-get-info , respectively. See §1.3.18 “Reading via an Exten-
sion” for information on the protocol of read and read-syntax. The at-exp

language supplies
convert-read and
convert-read-syntax
to add
@-expression
support to the
current readtable
before chaining to
the given
procedures.

The procedures generated by make-meta-reader are not meant for use with the
syntax/module-reader language; they are meant to be exported directly.

(lang-reader-module-paths bstr)
Ñ (or/c #f (vectorof module-path?))
bstr : bytes?

To be used as the third argument to make-meta-reader in lang-extensions like at-exp.
On success, it returns a vector of module paths, one of which should point to the reader
module for the #lang bstr language. These paths are (submod base-path reader) and
base-path/lang/reader.

(wrap-read-all mod-path
in
read
mod-path-stx
src
line
col
pos) Ñ any/c

mod-path : module-path?
in : input-port?
read : (input-port . -> . any/c)
mod-path-stx : syntax?
src : (or/c syntax? #f)
line : number?
col : number?
pos : number?

This function is deprecated; the syntax/module-reader language can be adapted using
the various keywords to arbitrary readers; please use it instead.

Repeatedly calls read on in until an end of file, collecting the results in order into lst ,
and derives a name-id from (object-name in) in the same way as #lang s-exp. The

157

last five arguments are used to construct the syntax object for the language position of the
module. The result is roughly

`(module ,name-id ,mod-path ,@lst)

158

7 Parsing for Bodies

(require syntax/for-body) package: base

The syntax/for-body module provides a helper function for for-like syntactic forms that
wrap the body of the form while expanding to another for-like form, and the wrapper should
apply only after the last #:break or #:final clause in the body.

(split-for-body stx body-stxes) Ñ syntax?
stx : syntax?
body-stxes : syntax?

The body-stxes argument must have the form (pre-body ... post-body ...), and
it is rewritten into ((pre-body ...) (post-body ...)) such that (post-body ...)
is as large as possible without containing a #:break or #:final clause.

The stx argument is used only for reporting syntax errors.

Use split-for-body instead of assuming that the last form in a for-like form’s body
can be wrapped separately. In particular, the last form might contain definitions that need
to be spliced in the same definition context as earlier forms to create mutually-recursive
definitions.

159

https://pkgs.racket-lang.org/package/base

8 Unsafe for Clause Transforms

(require syntax/unsafe/for-transform) package: base

The syntax/unsafe/for-transform module provides a helper function that gives access
to the sequence transformers defined by define-sequence-syntax. This is what the for
forms use and enables faster sequence traversal than what the sequence interface provides.

The output may use unsafe operations.

(expand-for-clause* orig-stx clause) Ñ syntax?
orig-stx : syntax?
clause : syntax?

Expands a for clause of the form [(x ...) seq-expr], where x are identifiers, to:

(([(outer-id ...) outer-expr] ...)
outer-check
([loop-id loop-expr] ...)
pos-guard
([(inner-id ...) inner-expr] ...)
inner-check
pre-guard
post-guard
(loop-arg ...))

which can then be spliced into the appropriate iterations. See :do-in for more information.

The result may use unsafe operations.

The first argument orig-stx is used only for reporting syntax errors.

Added in version 8.10.0.3 of package base.

(expand-for-clause orig-stx clause) Ñ syntax?
orig-stx : syntax?
clause : syntax?

Like expand-for-clause*, but the result omits a inner-check part:

(([(outer-id ...) outer-expr] ...)
outer-check
([loop-id loop-expr] ...)
pos-guard
([(inner-id ...) inner-expr] ...)
pre-guard

160

https://pkgs.racket-lang.org/package/base

post-guard
(loop-arg ...))

If a clause expands to a inner-check clauses that is not ignorable, expand-for-clause
reports an error. An ignorable clause is (void) or a begin form wrapping ignorable clauses.

161

9 Source Locations

There are two libraries in this collection for dealing with source locations; one for manipu-
lating representations of them, and the other for quoting the location of a particular piece of
source code.

9.1 Representations

(require syntax/srcloc) package: base

This module defines utilities for manipulating representations of source locations, including
both srcloc structures and all the values accepted by datum->syntax’s third argument:
syntax objects, lists, vectors, and #f.

(source-location? x) Ñ boolean?
x : any/c

(source-location-list? x) Ñ boolean?
x : any/c

(source-location-vector? x) Ñ boolean?
x : any/c

These functions recognize valid source location representations. The first, source-
location?, recognizes srcloc structures, syntax objects, lists, and vectors with appro-
priate structure, as well as #f. The latter predicates recognize only valid lists and vectors,
respectively.

Examples:

> (source-location? #f)
#t
> (source-location? #'here)
#t
> (source-location? (make-srcloc 'here 1 0 1 0))
#t
> (source-location? (make-srcloc 'bad 1 #f 1 0))
#f
> (source-location? (list 'here 1 0 1 0))
#t
> (source-location? (list* 'bad 1 0 1 0 'tail))
#f
> (source-location? (vector 'here 1 0 1 0))
#t
> (source-location? (vector 'bad 0 0 0 0))
#f

162

https://pkgs.racket-lang.org/package/base

(check-source-location! name x) Ñ void?
name : symbol?
x : any/c

This procedure checks that its input is a valid source location. If it is, the procedure returns
(void). If it is not, check-source-location! raises a detailed error message in terms of
name and the problem with x .

Examples:

> (check-source-location! 'this-example #f)
> (check-source-location! 'this-example #'here)
> (check-source-location! 'this-example (make-
srcloc 'here 1 0 1 0))
> (check-source-location! 'this-example (make-
srcloc 'bad 1 #f 1 0))
this-example: expected a source location with line number
and column number both numeric or both #f; got 1 and #f
respectively: (srcloc 'bad 1 #f 1 0)
> (check-source-location! 'this-example (list 'here 1 0 1 0))
> (check-source-location! 'this-example (list* 'bad 1 0 1 0 'tail))
this-example: expected a source location (a list of 5
elements); got an improper list: '(bad 1 0 1 0 . tail)
> (check-source-location! 'this-example (vector 'here 1 0 1 0))
> (check-source-location! 'this-example (vector 'bad 0 0 0 0))
this-example: expected a source location with a positive
line number or #f (second element); got line number 0:
'#(bad 0 0 0 0)

(build-source-location loc ...) Ñ srcloc?
loc : source-location?

(build-source-location-list loc ...) Ñ source-location-list?
loc : source-location?

(build-source-location-vector loc ...) Ñ source-location-vector?
loc : source-location?

(build-source-location-syntax loc ...) Ñ syntax?
loc : source-location?

These procedures combine multiple (zero or more) source locations, merging locations
within the same source and reporting #f for locations that span sources. They also convert
the result to the desired representation: srcloc, list, vector, or syntax object, respectively.

Examples:

> (build-source-location)

163

(srcloc #f #f #f #f #f)
> (build-source-location-list)
'(#f #f #f #f #f)
> (build-source-location-vector)
'#(#f #f #f #f #f)
> (build-source-location-syntax)
#<syntax ()>
> (build-source-location #f)
(srcloc #f #f #f #f #f)
> (build-source-location-list #f)
'(#f #f #f #f #f)
> (build-source-location-vector #f)
'#(#f #f #f #f #f)
> (build-source-location-syntax #f)
#<syntax ()>
> (build-source-location (list 'here 1 2 3 4))
(srcloc 'here 1 2 3 4)
> (build-source-location-list (make-srcloc 'here 1 2 3 4))
'(here 1 2 3 4)
> (build-source-location-vector (make-srcloc 'here 1 2 3 4))
'#(here 1 2 3 4)
> (build-source-location-syntax (make-srcloc 'here 1 2 3 4))
#<syntax:here:1:2 ()>
> (build-source-location (list 'here 1 2 3 4) (vector 'here 5 6 7 8))
(srcloc 'here 1 2 3 12)
> (build-source-location-list (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))
'(here 1 2 3 12)
> (build-source-location-vector (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))
'#(here 1 2 3 12)
> (build-source-location-syntax (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))
#<syntax:here:1:2 ()>
> (build-source-location (list 'here 1 2 3 4) (vector 'there 5 6 7 8))
(srcloc #f #f #f #f #f)
> (build-source-location-list (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))
'(#f #f #f #f #f)
> (build-source-location-vector (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))
'#(#f #f #f #f #f)
> (build-source-location-syntax (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))
#<syntax ()>

(source-location-known? loc) Ñ boolean?
loc : source-location?

This predicate reports whether a given source location contains more information than sim-
ply #f.

164

Examples:

> (source-location-known? #f)
#f
> (source-location-known? (make-srcloc #f #f #f #f #f))
#f
> (source-location-known? (make-srcloc 'source 1 2 3 4))
#t
> (source-location-known? (list #f #f #f #f #f))
#f
> (source-location-known? (vector 'source #f #f #f #f))
#t
> (source-location-known? (datum->syntax #f null #f))
#f
> (source-location-known? (datum->syntax #f null (list 'source #f #f #f #f)))
#t

(source-location-source loc) Ñ any/c
loc : source-location?

(source-location-line loc) Ñ (or/c exact-positive-integer? #f)
loc : source-location?

(source-location-column loc)
Ñ (or/c exact-nonnegative-integer? #f)
loc : source-location?

(source-location-position loc)
Ñ (or/c exact-positive-integer? #f)
loc : source-location?

(source-location-span loc)
Ñ (or/c exact-nonnegative-integer? #f)
loc : source-location?

These accessors extract the fields of a source location.

Examples:

> (source-location-source #f)
#f
> (source-location-line (make-srcloc 'source 1 2 3 4))
1
> (source-location-column (list 'source 1 2 3 4))
2
> (source-location-position (vector 'source 1 2 3 4))
3
> (source-location-span (datum->syntax #f null (list 'source 1 2 3 4)))
4

165

(source-location-end loc)
Ñ (or/c exact-nonnegative-integer? #f)
loc : source-location?

This accessor produces the end position of a source location (the sum of its position and
span, if both are numbers) or #f.

Examples:

> (source-location-end #f)
#f
> (source-location-end (make-srcloc 'source 1 2 3 4))
7
> (source-location-end (list 'source 1 2 3 #f))
#f
> (source-location-end (vector 'source 1 2 #f 4))
#f

(update-source-location loc
#:source source
#:line line
#:column column
#:position position
#:span span) Ñ source-location?

loc : source-location?
source : any/c
line : (or/c exact-nonnegative-integer? #f)
column : (or/c exact-positive-integer? #f)
position : (or/c exact-nonnegative-integer? #f)
span : (or/c exact-positive-integer? #f)

Produces a modified version of loc , replacing its fields with source , line , column , po-
sition , and/or span , if given.

Examples:

> (update-source-location #f #:source 'here)
'(here #f #f #f #f)
> (update-source-location (list 'there 1 2 3 4) #:line 20 #:column 79)
'(there 20 79 3 4)
> (update-source-location (vector 'everywhere 1 2 3 4) #:position #f #:span #f)
'#(everywhere 1 2 #f #f)

166

(source-location->string loc) Ñ string?
loc : source-location?

(source-location->prefix loc) Ñ string?
loc : source-location?

These procedures convert source locations to strings for use in error messages. The first
produces a string describing the source location; the second appends ": " to the string if it
is non-empty.

Examples:

> (source-location->string (make-srcloc 'here 1 2 3 4))
"here:1:2"
> (source-location->string (make-srcloc 'here #f #f 3 4))
"here::3-7"
> (source-location->string (make-srcloc 'here #f #f #f #f))
"here"
> (source-location->string (make-srcloc #f 1 2 3 4))
":1:2"
> (source-location->string (make-srcloc #f #f #f 3 4))
"::3-7"
> (source-location->string (make-srcloc #f #f #f #f #f))
""
> (source-location->prefix (make-srcloc 'here 1 2 3 4))
"here:1:2: "
> (source-location->prefix (make-srcloc 'here #f #f 3 4))
"here::3-7: "
> (source-location->prefix (make-srcloc 'here #f #f #f #f))
"here: "
> (source-location->prefix (make-srcloc #f 1 2 3 4))
":1:2: "
> (source-location->prefix (make-srcloc #f #f #f 3 4))
"::3-7: "
> (source-location->prefix (make-srcloc #f #f #f #f #f))
""

Changed in version 8.1.0.5 of package base: Changed format to separate a line and column with : instead of .

9.2 Source Location Utilities

(require syntax/location) package: base

(syntax-source-directory stx) Ñ (or/c path? #f)
stx : syntax?

167

https://pkgs.racket-lang.org/package/base

(syntax-source-file-name stx) Ñ (or/c path? #f)
stx : syntax?

These produce the directory and file name, respectively, of the path with which stx is asso-
ciated, or #f if stx is not associated with a path.

Examples:

(define loc
(list (build-path "/tmp" "dir" "somewhere.rkt")

#f #f #f #f))
(define stx1 (datum->syntax #f 'somewhere loc))
> (syntax-source-directory stx1)
#<path:/tmp/dir/>
> (syntax-source-file-name stx1)
#<path:somewhere.rkt>
(define stx2 (datum->syntax #f 'nowhere #f))
> (syntax-source-directory stx2)
#f
> (syntax-source-directory stx2)
#f

Added in version 6.3 of package base.

9.2.1 Quoting

The following macros evaluate to various aspects of their own source location.

Note: The examples below illustrate the use of these macros and the representation of their
output. However, due to the mechanism by which they are generated, each example is con-
sidered a single character and thus does not have realistic line, column, and character posi-
tions.

Furthermore, the examples illustrate the use of source location quoting inside macros, and
the difference between quoting the source location of the macro definition itself and quoting
the source location of the macro’s arguments.

(quote-srcloc)
(quote-srcloc form)
(quote-srcloc form #:module-source expr)

Quotes the source location of form as a srcloc structure, using the location of the whole
(quote-srcloc) expression if no expr is given. Uses relative directories for paths found
within the collections tree, the user’s collections directory, or the PLaneT cache.

168

Examples:

> (quote-srcloc)
(srcloc 'eval 2 0 2 1)
> (define-syntax (not-here stx) #'(quote-srcloc))
> (not-here)
(srcloc 'eval 3 0 3 1)
> (not-here)
(srcloc 'eval 3 0 3 1)
> (define-syntax (here stx) #`(quote-srcloc #,stx))
> (here)
(srcloc 'eval 7 0 7 1)
> (here)
(srcloc 'eval 8 0 8 1)

(quote-source-file)
(quote-source-file form)
(quote-line-number)
(quote-line-number form)
(quote-column-number)
(quote-column-number form)
(quote-character-position)
(quote-character-position form)
(quote-character-span)
(quote-character-span form)

You can achieve an
effect similar to
__FILE__ from
Perl or Ruby and
__file__ from
Python by using
quote-source-file.

Quote various fields of the source location of form , or of the whole macro application if no
form is given.

Examples:

> (list (quote-source-file)
(quote-line-number)
(quote-column-number)
(quote-character-position)
(quote-character-span))

'(eval 2 0 2 1)
> (define-syntax (not-here stx)

#'(list (quote-source-file)
(quote-line-number)
(quote-column-number)
(quote-character-position)
(quote-character-span)))

> (not-here)
'(eval 3 0 3 1)
> (not-here)
'(eval 3 0 3 1)

169

http://perldoc.perl.org/functions/__FILE__.html
http://ruby-doc.org/docs/keywords/1.9/Object.html#method-i-__FILE__
https://docs.python.org/3/reference/import.html#__file__

> (define-syntax (here stx)
#`(list (quote-source-file #,stx)

(quote-line-number #,stx)
(quote-column-number #,stx)
(quote-character-position #,stx)
(quote-character-span #,stx)))

> (here)
'(eval 7 0 7 1)
> (here)
'(eval 8 0 8 1)

(quote-srcloc-string)
(quote-srcloc-string form)
(quote-srcloc-prefix)
(quote-srcloc-prefix form)

Quote the result of source-location->string or source-location->prefix, respec-
tively, applied to the source location of form , or of the whole macro application if no form
is given.

Examples:

> (list (quote-srcloc-string)
(quote-srcloc-prefix))

'("eval:2:0" "eval:2:0: ")
> (define-syntax (not-here stx)

#'(list (quote-srcloc-string)
(quote-srcloc-prefix)))

> (not-here)
'("eval:3:0" "eval:3:0: ")
> (not-here)
'("eval:3:0" "eval:3:0: ")
> (define-syntax (here stx)

#`(list (quote-srcloc-string #,stx)
(quote-srcloc-prefix #,stx)))

> (here)
'("eval:7:0" "eval:7:0: ")
> (here)
'("eval:8:0" "eval:8:0: ")

(quote-module-name submod-path-element ...)

Quotes the name of the module in a form suitable for printing, but not necessarily as a valid
module path. See quote-module-path for constructing quoted module paths.

170

Returns a path, symbol, list, or 'top-level, where 'top-level is produced when used
outside of a module. A list corresponds to a submodule in the same format as the result
of variable-reference->module-name. Any given submod-path-elements (as in a
submod form) are added to form a result submodule path.

To produce a name suitable for use in printed messages, apply path->relative-
string/library when the result is a path.

Examples:

> (module A racket
(require syntax/location)
(define-syntax-rule (name) (quote-module-name))
(define a-name (name))
(module+ C

(require syntax/location)
(define c-name (quote-module-name))
(define c-name2 (quote-module-name ".."))
(provide c-name c-name2))

(provide (all-defined-out)))
> (require 'A)
> a-name
'A
> (require (submod 'A C))
> c-name
'(A C)
> c-name2
'(A C "..")
> (module B racket

(require syntax/location)
(require 'A)
(define b-name (name))
(provide (all-defined-out)))

> (require 'B)
> b-name
'B
> (quote-module-name)
'top-level
> (current-namespace (module->namespace ''A))
> (quote-module-name)
'A

(quote-module-path submod-path-element ...)

Quotes the name of the module in which the form is compiled. When possible, the result is
a valid module path suitable for use by dynamic-require and similar functions.

171

Builds the result using quote, a path, submod, or 'top-level, where 'top-level is pro-
duced when used outside of a module. Any given submod-path-elements (as in a submod
form) are added to form a result submodule path.

Examples:

> (module A racket
(require syntax/location)
(define-syntax-rule (path) (quote-module-path))
(define a-path (path))
(module+ C

(require syntax/location)
(define c-path (quote-module-path))
(define c-path2 (quote-module-path ".."))
(provide c-path c-path2))

(provide (all-defined-out)))
> (require 'A)
> a-path
''A
> (require (submod 'A C))
> c-path
'(submod 'A C)
> c-path2
'(submod 'A C "..")
> (module B racket

(require syntax/location)
(require 'A)
(define b-path (path))
(provide (all-defined-out)))

> (require 'B)
> b-path
''B
> (quote-module-path)
'top-level
> (current-namespace (module->namespace ''A))
> (quote-module-path)
''A

172

10 Preserving Source Locations

(require syntax/quote) package: base

The syntax/quote module provides support for quoting syntax so that its source locations
are preserved in marshaled bytecode form.

(quote-syntax/keep-srcloc datum)
(quote-syntax/keep-srcloc #:source source-expr datum)

Like (quote-syntax datum), but the source locations of datum are preserved. If a
source-expr is provided, then it is used in place of a syntax-source value for each
syntax object within datum .

Unlike a quote-syntax form, the results of evaluating the expression multiple times are
not necessarily eq?.

173

https://pkgs.racket-lang.org/package/base

11 Non-Module Compilation And Expansion

(require syntax/toplevel) package: base

(expand-syntax-top-level-with-compile-time-evals stx) Ñ syntax?
stx : syntax?

Expands stx as a top-level expression, and evaluates its compile-time portion for the benefit
of later expansions.

The expander recognizes top-level begin expressions, and interleaves the evaluation and
expansion of the begin body, so that compile-time expressions within the begin body affect
later expansions within the body. (In other words, it ensures that expanding a begin is the
same as expanding separate top-level expressions.)

The stx should have a context already, possibly introduced with namespace-syntax-
introduce.
(expand-top-level-with-compile-time-evals stx) Ñ syntax?

stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, but stx is first given
context by applying namespace-syntax-introduce to it.

(expand-syntax-top-level-with-compile-time-evals/flatten stx)
Ñ (listof syntax?)
stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, except that it returns a
list of syntax objects, none of which have a begin. These syntax objects are the flattened
out contents of any begins in the expansion of stx .

(eval-compile-time-part-of-top-level stx) Ñ void?
stx : syntax?

Evaluates expansion-time code in the fully expanded top-level expression represented by
stx (or a part of it, in the case of begin expressions). The expansion-time code might affect
the compilation of later top-level expressions. For example, if stx is a require expression,
then namespace-require/expansion-time is used on each require specification in the
form. Normally, this function is used only by expand-top-level-with-compile-time-
evals.
(eval-compile-time-part-of-top-level/compile stx)

Ñ (listof compiled-expression?)
stx : syntax?

Like eval-compile-time-part-of-top-level, but the result is compiled code.

174

https://pkgs.racket-lang.org/package/base

12 Trusting Standard Recertifying Transformers

(require syntax/trusted-xforms) package: base

The syntax/trusted-xforms library has no exports. It exists only to require other mod-
ules that perform syntax transformations, where the other transformations must use syntax-
disarm or syntax-arm. An application that wishes to provide a less powerful code in-
spector to a sub-program should generally attach syntax/trusted-xforms to the sub-
program’s namespace so that things like the class system from racket/class work prop-
erly.

175

https://pkgs.racket-lang.org/package/base

13 Attaching Documentation to Exports

(require syntax/docprovide) package: base

NOTE: This library is deprecated; use scribble/srcdoc, instead.

(provide-and-document doc-label-id doc-row ...)

doc-row = (section-string (name type-datum doc-string ...) ...)
| (all-from prefix-id module-path doc-label-id)
| (all-from-except prefix-id module-path doc-label-id id ...)

name = id
| (local-name-id external-name-id)

A form that exports names and records documentation information.

The doc-label-id identifier is used as a key for accessing the documentation through
lookup-documentation. The actual documentation is organized into “rows”, each with a
section title.

A row has one of the following forms:

• (section-string (name type-datum doc-string ...) ...)

Creates a documentation section whose title is section-string , and pro-
vides/documents each name . The type-datum is arbitrary, for use by clients that
call lookup-documentation. The doc-strings are also arbitrary documentation
information, usually concatenated by clients.

A name is either an identifier or a renaming sequence (local-name-id extenal-
name-id).

Multiple rows with the same section name will be merged in the documentation output.
The final order of sections matches the order of the first mention of each section.

• (all-from prefix-id module-path doc-label-id)

• (all-from-except prefix-id module-path doc-label-id id ...)

Merges documentation and provisions from the specified module into the current one;
the prefix-id is used to prefix the imports into the current module (so they can
be re-exported). If ids are provided, the specified ids are not re-exported and their
documentation is not merged.

(lookup-documentation module-path-v
label-sym) Ñ any

module-path-v : module-path?
label-sym : symbol?

176

https://pkgs.racket-lang.org/package/base

Returns documentation for the specified module and label. The module-path-v argument
is a quoted module path, like the argument to dynamic-require. The label-sym identifies
a set of documentation using the symbol as a label identifier in provide-and-document.

177

14 Contracts for Macro Subexpressions

(require syntax/contract) package: base

This library provides a procedure wrap-expr/c for applying contracts to macro subexpres-
sions.

(wrap-expr/c contract-expr
expr

[#:arg? arg?
#:positive pos-blame
#:negative neg-blame
#:name expr-name
#:macro macro-name
#:context context
#:phase phase]) Ñ syntax?

contract-expr : syntax?
expr : syntax?
arg? : any/c = #t
pos-blame : (or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)
= 'from-macro

neg-blame : (or/c syntax? string? module-path-index?
'from-macro 'use-site 'unknown)

= 'use-site
expr-name : (or/c identifier? symbol? string? #f) = #f
macro-name : (or/c identifier? symbol? string? #f) = #f
context : (or/c syntax? #f) = (current-syntax-context)
phase : exact-integer? = (syntax-local-phase-level)

Returns a syntax object representing an expression that applies the contract represented by
contract-expr to the value produced by expr .

The other arguments have the same meaning as for expr/c.

Examples:

> (define-syntax (myparameterize1 stx)
(syntax-case stx ()

[(_ ([p v]) body)
(with-syntax ([cp (wrap-expr/c

#'parameter? #'p
#:name "the parameter argument"
#:context stx)])

#'(parameterize ([cp v]) body))]))
> (myparameterize1 ([current-input-port

178

https://pkgs.racket-lang.org/package/base

(open-input-string "(1 2 3)")])
(read))

'(1 2 3)
> (myparameterize1 (['whoops 'something])

'whatever)
myparameterize1: contract violation

expected: parameter?
given: 'whoops
in: parameter?

macro argument contract on the parameter argument
contract from: top-level
blaming: top-level

(assuming the contract is correct)
at: eval:4:0

> (module mod racket
(require (for-syntax syntax/contract))
(define-syntax (app stx)

(syntax-case stx ()
[(app f arg)
(with-syntax ([cf (wrap-expr/c

#'(-> number? number?)
#'f
#:name "the function argument"
#:context stx)])

#'(cf arg))]))
(provide app))

> (require 'mod)
> (app add1 5)
6
> (app add1 'apple)
app: broke its own contract

promised: number?
produced: 'apple
in: the 1st argument of

(-ą number? number?)
macro argument contract on the function argument

contract from: 'mod
blaming: (quote mod)

(assuming the contract is correct)
at: eval:8:0

> (app (lambda (x) 'pear) 5)
app: contract violation

expected: number?
given: 'pear
in: the range of

(-ą number? number?)

179

macro argument contract on the function argument
contract from: 'mod
blaming: top-level

(assuming the contract is correct)
at: eval:9:0

Added in version 6.3 of package base.
Changed in version 7.2.0.3: Added the #:arg? keyword argument and changed the default values and interpretation
of the #:positive and #:negative arguments.
Changed in version 7.3.0.3: Added the #:phase keyword argument.

180

15 Macro Testing

(require syntax/macro-testing) package: base

(phase1-eval ct-expr maybe-quote maybe-catch?)

maybe-quote =
| #:quote quote-id

maybe-catch? =
| #:catch? catch?

Evaluates ct-expr at compile time and quotes the result using quote-id , which defaults
to quote. Another suitable argument for quote-id is quote-syntax.

If catch? is #t, then if the evaluation of ct-expr raises a compile-time exception, it is
caught and converted to a run-time exception.

Examples:

> (struct point (x y))
> (phase1-eval (extract-struct-info (syntax-local-value #'point)))
'(struct:point point point? (point-y point-x) (#f #f) #t)
> (phase1-eval (extract-struct-info (syntax-local-value #'point))

#:quote quote-syntax)
#<syntax (struct:point point point? (point-y point-x) (#f #f) #t)>

Added in version 6.3 of package base.

(convert-compile-time-error expr)

Equivalent to (#%expression expr) except if expansion of expr causes a compile-time
exception to be raised; in that case, the compile-time exception is converted to a run-time
exception raised when the expression is evaluated.

Use convert-compile-time-error to write tests for compile-time error checking like
syntax errors:

Examples:

> (check-exn #rx"missing an \"else\" expression"
(lambda () (convert-compile-time-error (if 1 2))))

> (check-exn #rx"missing formals and body"
(lambda () (convert-compile-time-error (lambda))))

181

https://pkgs.racket-lang.org/package/base

FAILURE
name: check-exn
location: eval:6:0
params: '(#rx"missing formals and body" #ăprocedureą)
message: "Wrong exception raised"
exn-message: "eval:6:0: lambda: bad syntaxzn in: (lambda)"
exn:

#(struct:exn:fail:syntax "eval:6:0: lambda: bad syntaxzn in: (lambda)"
#ăcontinuation-mark-setą (#ăsyntax:eval:6:0 (lambda)ą))

Without the use of convert-compile-time-error, the checks above would not be exe-
cuted because the test program would not compile.

Added in version 6.3 of package base.

(convert-syntax-error expr)

Like convert-compile-time-error, but only catches compile-time exn:fail:syntax?
exceptions and sets error-print-source-location to #f around the expansion of expr
to make the message easier to match exactly.

Example:

> (check-exn #rx"^lambda: bad syntax$"
(lambda () (convert-syntax-error (lambda))))

Added in version 6.3 of package base.

182

16 Internal-Definition Context Helpers

(require syntax/intdef) package: base

Added in version 6.3.0.4 of package base.

(internal-definition-context-track intdef-ctx
stx) Ñ syntax?

intdef-ctx : internal-definition-context?
stx : syntax?

Adjusts the syntax properties of stx to record that parts of stx were expanded via intdef-
ctx .

Specifically, the identifiers produced by (internal-definition-context-binding-
identifiers intdef-ctx) are added to the 'disappeared-binding property of stx .

183

https://pkgs.racket-lang.org/package/base

Index
#%module-begin, 150
#:and, 41
#:attr, 41
#:cut, 44
#:declare, 39
#:do, 44
#:fail-unless, 43
#:fail-when, 42
#:post, 40
#:undo, 44
#:when, 43
#:with, 41
...+, 58
3D syntax, 41
??, 95
?@, 95
__FILE__, __file__, 169
action pattern, 69
Action Patterns, 69
annotated pattern variable, 55
Applying Macro Transformers, 148
Attaching Documentation to Exports, 176
attribute, 47
attribute, 44
Attributes and datum, 47
boolean, 79
bound-id-proper-subset?, 116
bound-id-set->list, 115
bound-id-set->stream, 115
bound-id-set-add, 114
bound-id-set-add!, 114
bound-id-set-clear, 115
bound-id-set-clear!, 115
bound-id-set-copy, 115
bound-id-set-copy-clear, 115
bound-id-set-count, 114
bound-id-set-empty?, 114
bound-id-set-first, 114
bound-id-set-for-each, 116
bound-id-set-intersect, 115

bound-id-set-intersect!, 115
bound-id-set-map, 116
bound-id-set-member?, 114
bound-id-set-remove, 114
bound-id-set-remove!, 114
bound-id-set-rest, 115
bound-id-set-subtract, 115
bound-id-set-subtract!, 115
bound-id-set-symmetric-difference,

115
bound-id-set-symmetric-
difference!, 115

bound-id-set-union, 115
bound-id-set-union!, 115
bound-id-set/c, 116
bound-id-set=?, 114
bound-id-set?, 114
bound-id-subset?, 115
bound-id-table-count, 107
bound-id-table-for-each, 107
bound-id-table-iterate-first, 108
bound-id-table-iterate-key, 108
bound-id-table-iterate-next, 108
bound-id-table-iterate-value, 108
bound-id-table-keys, 107
bound-id-table-map, 107
bound-id-table-ref, 106
bound-id-table-ref!, 106
bound-id-table-remove, 107
bound-id-table-remove!, 107
bound-id-table-set, 106
bound-id-table-set!, 106
bound-id-table-set*, 107
bound-id-table-set*!, 107
bound-id-table-update, 107
bound-id-table-update!, 107
bound-id-table-values, 107
bound-id-table/c, 108
bound-id-table?, 106
bound-identifier-mapping-for-each,

117
bound-identifier-mapping-get, 116

184

bound-identifier-mapping-map, 117
bound-identifier-mapping-put!, 116
bound-identifier-mapping?, 116
build-expand-context, 138
build-source-location, 163
build-source-location-list, 163
build-source-location-syntax, 163
build-source-location-vector, 163
build-struct-expand-info, 143
build-struct-generation, 142
build-struct-generation*, 142
build-struct-names, 141
byte-regexp, 80
char, 79
character, 80
check-expression, 124
check-identifier, 124
check-module-form, 129
check-procedure, 120
check-source-location!, 163
check-stx-boolean, 125
check-stx-listof, 125
check-stx-string, 125
collapse-module-path, 134
collapse-module-path-index, 135
Computing the Free Variables of an Expres-

sion, 118
Configuring Error Reporting, 87
Contracts for Macro Sub-expressions, 89
Contracts for Macro Subexpressions, 178
Contracts for Syntax Classes, 89
Contracts on Macro Sub-expressions, 27
Controlling Syntax Templates, 145
conventions, 78
convert-compile-time-error, 181
convert-syntax-error, 182
Creating Macro Transformers, 147
current-report-configuration, 87
cut, 70
datum, 126
Datum Pattern Matching, 126
datum-case, 126

datum-template, 95
debug-parse, 88
debug-syntax-parse!, 89
Debugging and Inspection Tools, 88
Deconstructing Syntax Objects, 97
default-compiled-sub-path, 132
define-conventions, 78
define-eh-alternative-set, 93
define-literal-set, 76
define-primitive-splicing-syntax-
class, 92

define-simple-macro, 75
define-splicing-syntax-class, 37
define-syntax-class, 34
define-syntax-class/specialize, 94
define-syntax-parse-rule, 74
define-syntax-parser, 75
define-template-metafunction, 95
define/syntax-parse, 34
define/with-datum, 127
Defining Simple Macros, 74
Dictionaries for bound-identifier=?, 106
Dictionaries for free-identifier=?, 101
Dictionaries with Identifier Keys, 100
ellipsis depth, 46
Ellipsis-head Alternative Sets, 93
ellipsis-head alternative sets, 93
ellipsis-head pattern, 67
Ellipsis-head Patterns, 67
eval-compile-time-part-of-top-
level, 174

eval-compile-time-part-of-top-
level/compile, 174

exact-integer, 80
exact-nonnegative-integer, 80
exact-positive-integer, 80
Examples, 16
exn:get-module-code (struct), 133
exn:get-module-code-path, 133
exn:get-module-code?, 133
expand-for-clause, 160
expand-for-clause*, 160

185

expand-syntax-top-level-with-
compile-time-evals, 174

expand-syntax-top-level-with-
compile-time-evals/flatten, 174

expand-top-level-with-compile-
time-evals, 174

Expanding define-struct-like Forms,
140

Experimental, 89
expr, 79
expr/c, 81
Extracting Inferred Names, 138
flatten-all-begins, 140
flatten-begin, 140
Flattening begin Forms, 140
formal, 83
formals, 84
formals-no-rest, 85
free-id-proper-subset?, 113
free-id-set->list, 111
free-id-set->stream, 111
free-id-set-add, 110
free-id-set-add!, 110
free-id-set-clear, 111
free-id-set-clear!, 111
free-id-set-copy, 111
free-id-set-copy-clear, 111
free-id-set-count, 110
free-id-set-empty?, 109
free-id-set-first, 110
free-id-set-for-each, 113
free-id-set-intersect, 112
free-id-set-intersect!, 112
free-id-set-map, 113
free-id-set-member?, 110
free-id-set-remove, 110
free-id-set-remove!, 110
free-id-set-rest, 111
free-id-set-subtract, 112
free-id-set-subtract!, 112
free-id-set-symmetric-difference,

112

free-id-set-symmetric-difference!,
112

free-id-set-union, 111
free-id-set-union!, 112
free-id-set/c, 113
free-id-set=?, 110
free-id-set?, 109
free-id-subset?, 113
free-id-table-count, 105
free-id-table-for-each, 105
free-id-table-iterate-first, 105
free-id-table-iterate-key, 105
free-id-table-iterate-next, 105
free-id-table-iterate-value, 105
free-id-table-keys, 104
free-id-table-map, 104
free-id-table-ref, 102
free-id-table-ref!, 102
free-id-table-remove, 103
free-id-table-remove!, 103
free-id-table-set, 103
free-id-table-set!, 103
free-id-table-set*, 103
free-id-table-set*!, 103
free-id-table-update, 104
free-id-table-update!, 104
free-id-table-values, 104
free-id-table/c, 105
free-id-table?, 102
free-identifier-mapping-for-each,

117
free-identifier-mapping-get, 117
free-identifier-mapping-map, 117
free-identifier-mapping-put!, 117
free-identifier-mapping?, 117
free-vars, 118
Function Headers, 83
function-header, 83
generate-expand-context, 138
generate-struct-declaration, 143
get-metadata-path, 133
get-module-code, 130

186

get-module-path, 132
Getting Module Compiled Code, 129
Hashing on bound-identifier=? and
free-identifier=?, 116

head pattern, 63
Head Patterns, 63
Helpers for Processing Keyword Syntax, 120
id, 80
id-set/c, 113
id-table-iter?, 105
identifier, 79
identifier sets, 108
identifier tables, 101
immutable-bound-id-set, 114
immutable-bound-id-set?, 114
immutable-bound-id-table?, 106
immutable-free-id-set, 109
immutable-free-id-set?, 109
immutable-free-id-table?, 102
in-bound-id-set, 115
in-bound-id-table, 107
in-free-id-set, 111
in-free-id-table, 105
incompatibility, 122
Inspecting Modules and Module Dependen-

cies, 136
integer, 80
Internal-Definition Context Helpers, 183
internal-definition-context-track,

183
Introduction, 6
kernel-form-identifier-list, 100
kernel-literals, 83
kernel-syntax-case, 99
kernel-syntax-case*, 100
kernel-syntax-case*/phase, 100
kernel-syntax-case/phase, 100
keyword, 79
keyword-table, 120
lang-reader-module-paths, 157
Library Syntax Classes and Literal Sets, 79
list patterns, 53

literal, 56
Literal Sets, 83
literal sets, 76
Literal Sets and Conventions, 76
literal-set->predicate, 77
local-apply-transformer, 148
lookup-documentation, 176
Macro Testing, 181
Macro Transformer Helpers, 138
make-bound-id-table, 106
make-bound-identifier-mapping, 116
make-exn:get-module-code, 133
make-expression-transformer, 147
make-free-id-table, 101
make-free-identifier-mapping, 117
make-immutable-bound-id-table, 106
make-immutable-free-id-table, 102
make-meta-reader, 156
make-module-identifier-mapping, 117
make-variable-like-transformer, 147
make-wrapping-module-begin, 136
Matching Fully-Expanded Expressions, 99
Minimal Library, 96
moddep-current-open-input-file, 133
Module Reader, 150
module-identifier-mapping-for-
each, 118

module-identifier-mapping-get, 117
module-identifier-mapping-map, 118
module-identifier-mapping-put!, 118
module-identifier-mapping?, 117
module-or-top-identifier=?, 99
Module-Processing Helpers, 129
More Keyword Arguments, 25
mutable-bound-id-set, 114
mutable-bound-id-set?, 114
mutable-bound-id-table?, 106
mutable-free-id-set, 109
mutable-free-id-set?, 109
mutable-free-id-table?, 102
nat, 80
nested attributes, 55

187

Non-Module Compilation And Expansion,
174

Non-syntax-valued Attributes, 24
normalize-definition, 139
normalize-definition/mk-rhs, 139
number, 80
Optional Arguments with define-
splicing-syntax-class, 20

Optional Arguments with ~?, 19
Optional Keyword Arguments, 18
options, 120
options-select, 124
options-select-row, 124
options-select-value, 124
parse-define-struct, 140
parse-keyword-options, 121
parse-keyword-options/eol, 123
Parsing and Specifying Syntax, 6
Parsing define-like Forms, 139
Parsing for Bodies, 159
Parsing Syntax, 29
pattern, 37
Pattern Directives, 39
pattern directives, 39
Pattern Expanders, 73
pattern expanders, 73
pattern variable, 54
Pattern Variables and Attributes, 44
pattern-directive, 39
pattern-expander, 73
pattern-expander?, 74
phase1-eval, 181
Phases and Reusable Syntax Classes, 16
Preserving Source Locations, 173
Procedural Splicing Syntax Classes, 92
prop:pattern-expander, 73
prop:syntax-class, 38
proper head pattern, 63
proper single-term pattern, 53
provide-and-document, 176
provide-syntax-class/contract, 89
quasidatum, 128

quasitemplate, 95
quasitemplate/loc, 95
quote-character-position, 169
quote-character-span, 169
quote-column-number, 169
quote-line-number, 169
quote-module-name, 170
quote-module-path, 171
quote-source-file, 169
quote-srcloc, 168
quote-srcloc-prefix, 170
quote-srcloc-string, 170
quote-syntax/keep-srcloc, 173
Quoting, 168
raise-read-eof-error, 149
raise-read-error, 149
Raising exn:fail:read, 149
Reader Helpers, 149
Reading Module Source Code, 129
Reflection, 90
regexp, 80
reified-splicing-syntax-class?, 90
reified-syntax-class-arity, 90
reified-syntax-class-attributes, 90
reified-syntax-class-curry, 90
reified-syntax-class-keywords, 90
reified-syntax-class?, 90
reify-syntax-class, 90
Rendering Syntax Objects with Formatting,

118
replace-context, 119
Replacing Lexical Context, 119
report-configuration?, 88
Representations, 162
resolve-module-path, 133
resolve-module-path-index, 134
resolve-path-spec, 144
Resolving include-like Paths, 144
Resolving Module Paths to File Paths, 133
Sets for bound-identifier=?, 114
Sets for free-identifier=?, 109
Sets with Identifier Keys, 108

188

show-import-tree, 136
Simplifying Module Paths, 134
single-term pattern, 52
Single-term Patterns, 52
Source Location Utilities, 167
Source Locations, 162
source-location->prefix, 167
source-location->string, 167
source-location-column, 165
source-location-end, 166
source-location-known?, 164
source-location-line, 165
source-location-list?, 162
source-location-position, 165
source-location-source, 165
source-location-span, 165
source-location-vector?, 162
source-location?, 162
Specifying Syntax with Syntax Classes, 34
splicing syntax class, 37
split-for-body, 159
static, 80
str, 80
strip-context, 119
struct-declaration-info?, 143
struct:exn:get-module-code, 133
stx->list, 98
stx-car, 98
stx-cdr, 99
stx-list?, 97
stx-map, 99
stx-null?, 97
stx-pair?, 97
Support for local-expand, 138
Syntactic Normalization, 23
syntax class, 35
Syntax Class Specialization, 94
Syntax Classes, 79
Syntax Object Helpers, 97
Syntax Patterns, 49
syntax patterns, 49
Syntax Templates, 95

syntax->string, 118
syntax-class-arity, 88
syntax-class-attributes, 88
syntax-class-keywords, 88
syntax-class-parse, 88
syntax-class/c, 90
syntax-local-infer-name, 138
syntax-local-syntax-parse-
pattern-introduce, 74

syntax-parse, 30
syntax-parse-state-cons!, 85
syntax-parse-state-ref, 85
syntax-parse-state-set!, 85
syntax-parse-state-update!, 85
syntax-parse-track-literals, 86
syntax-parser, 33
syntax-source-directory, 167
syntax-source-file-name, 168
syntax-valued attribute, 45
syntax/apply-transformer, 148
syntax/boundmap, 116
syntax/context, 138
syntax/contract, 178
syntax/datum, 126
syntax/define, 139
syntax/docprovide, 176
syntax/flatten-begin, 140
syntax/for-body, 159
syntax/free-vars, 118
syntax/id-set, 108
syntax/id-table, 100
syntax/intdef, 183
syntax/kerncase, 99
syntax/keyword, 120
syntax/location, 167
syntax/macro-testing, 181
syntax/modcode, 129
syntax/modcollapse, 134
syntax/moddep, 136
syntax/modread, 129
syntax/modresolve, 133
syntax/module-reader, 150

189

syntax/name, 138
syntax/parse, 6
syntax/parse/debug, 88
syntax/parse/define, 74
syntax/parse/experimental/contract,

89
syntax/parse/experimental/eh, 93
syntax/parse/experimental/provide,

89
syntax/parse/experimental/reflect,

90
syntax/parse/experimental/specialize,

94
syntax/parse/experimental/splicing,

92
syntax/parse/experimental/template,

95
syntax/parse/lib/function-header,

83
syntax/parse/pre, 96
syntax/parse/report-config, 87
syntax/path-spec, 144
syntax/quote, 173
syntax/readerr, 149
syntax/srcloc, 162
syntax/strip-context, 119
syntax/struct, 140
syntax/stx, 97
syntax/template, 145
syntax/to-string, 118
syntax/toplevel, 174
syntax/transformer, 147
syntax/trusted-xforms, 175
syntax/unsafe/for-transform, 160
syntax/wrap-modbeg, 136
Syntax: Meta-Programming Helpers, 1
template, 95
template metafunction, 95
template/loc, 95
this-syntax, 38
transform-template, 145
Trusting Standard Recertifying Transform-

ers, 175

undatum, 128
undatum-splicing, 128
Unsafe for Clause Transforms, 160
Unwindable State, 85
update-source-location, 166
Variants with Uniform Meanings, 20
Variants with Varied Meanings, 23
with-datum, 127
with-module-reading-
parameterization, 129

wrap-expr/c, 178
wrap-read-all, 157
Wrapping Module-Body Expressions, 136
~!, 70
~alt, 68
~and, 51
~between, 69
~bind, 70
~commit, 51
~datum, 56
~delimit-cut, 52
~describe, 51
~do, 71
~eh-var, 93
~fail, 71
~literal, 56
~not, 60
~once, 68
~optional, 52
~or, 51
~or*, 51
~parse, 71
~peek, 66
~peek-not, 67
~post, 52
~reflect, 91
~rest, 61
~seq, 64
~splicing-reflect, 91
~undo, 72
~var, 50

190

	1 Parsing and Specifying Syntax
	1.1 Introduction
	1.2 Examples
	1.2.1 Phases and Reusable Syntax Classes
	1.2.2 Optional Keyword Arguments
	1.2.3 Variants with Uniform Meanings
	1.2.4 Variants with Varied Meanings
	1.2.5 More Keyword Arguments
	1.2.6 Contracts on Macro Sub-expressions

	1.3 Parsing Syntax
	1.4 Specifying Syntax with Syntax Classes
	1.4.1 Pattern Directives
	1.4.2 Pattern Variables and Attributes

	1.5 Syntax Patterns
	1.5.1 Single-term Patterns
	1.5.2 Head Patterns
	1.5.3 Ellipsis-head Patterns
	1.5.4 Action Patterns
	1.5.5 Pattern Expanders

	1.6 Defining Simple Macros
	1.7 Literal Sets and Conventions
	1.8 Library Syntax Classes and Literal Sets
	1.8.1 Syntax Classes
	1.8.2 Literal Sets
	1.8.3 Function Headers

	1.9 Unwindable State
	1.10 Configuring Error Reporting
	1.11 Debugging and Inspection Tools
	1.12 Experimental
	1.12.1 Contracts for Macro Sub-expressions
	1.12.2 Contracts for Syntax Classes
	1.12.3 Reflection
	1.12.4 Procedural Splicing Syntax Classes
	1.12.5 Ellipsis-head Alternative Sets
	1.12.6 Syntax Class Specialization
	1.12.7 Syntax Templates

	1.13 Minimal Library

	2 Syntax Object Helpers
	2.1 Deconstructing Syntax Objects
	2.2 Matching Fully-Expanded Expressions
	2.3 Dictionaries with Identifier Keys
	2.3.1 Dictionaries for IdentifierColorbluefree-identifier=?
	2.3.2 Dictionaries for IdentifierColorbluebound-identifier=?

	2.4 Sets with Identifier Keys
	2.4.1 Sets for IdentifierColorbluefree-identifier=?
	2.4.2 Sets for IdentifierColorbluebound-identifier=?

	2.5 Hashing on IdentifierColorbluebound-identifier=? and IdentifierColorbluefree-identifier=?
	2.6 Rendering Syntax Objects with Formatting
	2.7 Computing the Free Variables of an Expression
	2.8 Replacing Lexical Context
	2.9 Helpers for Processing Keyword Syntax

	3 Datum Pattern Matching
	4 Module-Processing Helpers
	4.1 Reading Module Source Code
	4.2 Getting Module Compiled Code
	4.3 Resolving Module Paths to File Paths
	4.4 Simplifying Module Paths
	4.5 Inspecting Modules and Module Dependencies
	4.6 Wrapping Module-Body Expressions

	5 Macro Transformer Helpers
	5.1 Extracting Inferred Names
	5.2 Support for IdentifierColorbluelocal-expand
	5.3 Parsing IdentifierColorblackdefine-like Forms
	5.4 Flattening IdentifierColorblackbegin Forms
	5.5 Expanding IdentifierColorblackdefine-struct-like Forms
	5.6 Resolving IdentifierColorinclude-like Paths
	5.7 Controlling Syntax Templates
	5.8 Creating Macro Transformers
	5.9 Applying Macro Transformers

	6 Reader Helpers
	6.1 Raising IdentifierColorblueexn:fail:read
	6.2 Module Reader

	7 Parsing IdentifierColorblackfor Bodies
	8 Unsafe IdentifierColorblackfor Clause Transforms
	9 Source Locations
	9.1 Representations
	9.2 Source Location Utilities
	9.2.1 Quoting

	10 Preserving Source Locations
	11 Non-Module Compilation And Expansion
	12 Trusting Standard Recertifying Transformers
	13 Attaching Documentation to Exports
	14 Contracts for Macro Subexpressions
	15 Macro Testing
	16 Internal-Definition Context Helpers
	Index
	Index

