
MrLib: Extra GUI Libraries
Version 8.16.0.2

March 3, 2025

1

Contents

1 Aligned Pasteboard 5

1.1 aligned-pasteboard<%> . 5

1.2 horizontal-pasteboard% . 5

1.3 vertical-pasteboard% . 6

1.4 aligned-editor-snip% . 7

1.5 aligned-editor-canvas% . 8

1.6 aligned-pasteboard-parent<%> . 8

1.7 stretchable-snip<%> . 8

2 Arrow Toggle Snip 9

3 Bitmap Label 10

4 Cache-image Snip 11

5 Close Icon 16

6 Expandable Snip 17

7 GIF and Animated GIF Writing 18

8 Graphs 20

8.1 graph-pasteboard<%> . 20

8.2 graph-pasteboard-mixin . 23

8.3 graph-snip<%> . 24

8.4 graph-snip-mixin . 25

8.5 Graph Functions . 25

2

9 Hierarchical List Control 29

9.1 hierarchical-list% . 30

9.2 hierarchical-list-item<%> . 35

9.3 hierarchical-list-compound-item<%> 36

9.4 Snips in a hierarchical-list% Instance 37

10 Include Bitmap 39

11 Interactive Value Port 40

12 Name Message 41

13 Path Dialog 44

14 Plot 47

15 Switchable Button 49

16 Image Core 51

17 Matrix Snip 53

18 Snip Canvases 54

19 Syntax Browser 57

20 TeX Table 58

21 Terminal Window 59

22 White on Black Panel Predicate 62

23 Acknowledgments 63

3

Index 64

Index 64

4

1 Aligned Pasteboard

The aligned-pasteboard library provides classes derived from pasteboard% with geometry
management that mirrors that of vertical-panel% and horizontal-panel%.

(require mrlib/aligned-pasteboard) package: gui-lib

1.1 aligned-pasteboard<%>

aligned-pasteboard<%> : interface?

(send an-aligned-pasteboard get-aligned-min-height) Ñ real?

The minimum height an aligned-pasteboard can be and still fit the heights of all of its chil-
dren.
(send an-aligned-pasteboard get-aligned-min-width) Ñ real?

The minimum width an aligned-pasteboard can be and still fit the widths of all of its children.

(send an-aligned-pasteboard realign width
height) Ñ void?

width : exact-nonnegative-integer?
height : exact-nonnegative-integer?

(send an-aligned-pasteboard realign) Ñ void?

Realigns the children inside the aligned-pasteboard<%> to either a given width and
height or the previously alloted width and height.

(send an-aligned-pasteboard set-aligned-min-sizes) Ñ void?

Calculates the minimum width and height of the of the pasteboard based on children’s min-
sizes and stores it for later retrieval via the getters.

1.2 horizontal-pasteboard%

horizontal-pasteboard% : class?
superclass: pasteboard%
extends: aligned-pasteboard<%>

5

https://pkgs.racket-lang.org/package/gui-lib

(new horizontal-pasteboard% ...superclass-args...)
Ñ (is-a?/c horizontal-pasteboard%)

Passes all arguments to super-init.

(send a-horizontal-pasteboard after-delete snip) Ñ void?
snip : (is-a?/c snip%)

Overrides after-delete in pasteboard%.

(send a-horizontal-pasteboard after-insert snip
before
x
y) Ñ void?

snip : (is-a?/c snip%)
before : (or/c (is-a?/c snip%) false/c)
x : real?
y : real?

Overrides after-insert in pasteboard%.

(send a-horizontal-pasteboard after-reorder snip
to-snip
before?) Ñ boolean?

snip : (is-a?/c snip%)
to-snip : (is-a?/c snip%)
before? : any/c

Overrides after-reorder in pasteboard%.

(send a-horizontal-pasteboard resized snip
redraw-now?) Ñ void?

snip : (is-a?/c snip%)
redraw-now? : any/c

Overrides resized in editor<%>.

1.3 vertical-pasteboard%

vertical-pasteboard% : class?
superclass: pasteboard%
extends: aligned-pasteboard<%>

6

(new vertical-pasteboard% ...superclass-args...)
Ñ (is-a?/c vertical-pasteboard%)

Passes all arguments to super-init.

(send a-vertical-pasteboard after-delete snip) Ñ void?
snip : (is-a?/c snip%)

Overrides after-delete in pasteboard%.

(send a-vertical-pasteboard after-insert snip
before
x
y) Ñ void?

snip : (is-a?/c snip%)
before : (or/c (is-a?/c snip%) false/c)
x : real?
y : real?

Overrides after-insert in pasteboard%.

(send a-vertical-pasteboard after-reorder snip
to-snip
before?) Ñ boolean?

snip : (is-a?/c snip%)
to-snip : (is-a?/c snip%)
before? : any/c

Overrides after-reorder in pasteboard%.

(send a-vertical-pasteboard resized snip
redraw-now?) Ñ void?

snip : (is-a?/c snip%)
redraw-now? : any/c

Overrides resized in editor<%>.

1.4 aligned-editor-snip%

aligned-editor-snip% : class?
superclass: editor-snip%

Calls the realign method when resized.

7

1.5 aligned-editor-canvas%

aligned-editor-canvas% : class?
superclass: editor-canvas%

Calls the realign method when resized.

1.6 aligned-pasteboard-parent<%>

aligned-pasteboard-parent<%> : interface?

This interface must be implemented by any class who’s editor is an aligned-
pasteboard<%>.

(send an-aligned-pasteboard-parent set-aligned-min-sizes)
Ñ void?

1.7 stretchable-snip<%>

stretchable-snip<%> : interface?

This interface must be implemented by any snip class who’s objects will be stretchable when
inserted into an aligned-pasteboard<%>.

(send a-stretchable-snip get-aligned-min-height) Ñ real?

The minimum height that the snip can be resized to

(send a-stretchable-snip get-aligned-min-width) Ñ real?

The minimum width that the snip can be resized to.

(send a-stretchable-snip stretchable-height) Ñ boolean?

Whether or not the snip can be stretched in the Y dimension

(send a-stretchable-snip stretchable-width) Ñ boolean?

Whether or not the snip can be stretched in the X dimension

8

2 Arrow Toggle Snip

(require mrlib/arrow-toggle-snip) package: gui-lib

arrow-toggle-snip% : class?
superclass: snip%

Represents a toggle control, displayed as a right-facing arrow (off or “closed”) or a
downward-facing arrow (on or “open”).

The size of the arrow is determined by the style (and font) applied to the snip. The arrow is
drawn inscribed in a square resting on the baseline, but the snip reports its size (usually) as
the same as a capital X; this means that the snip should look good next to text (in the same
style) no matter whether base-aligned or top-aligned.

(new arrow-toggle-snip% [[callback callback]])
Ñ (is-a?/c arrow-toggle-snip%)
callback : (-> boolean? any) = void

The on-up and on-down callbacks are called when the snip is toggled.

(send an-arrow-toggle-snip get-toggle-state) Ñ boolean?

Get the control’s state.

(send an-arrow-toggle-snip set-toggle-state v) Ñ void?
v : boolean?

Sets the control’s state. If the new state is different from the previous state, the
appropriate callback is called.

9

https://pkgs.racket-lang.org/package/gui-lib

3 Bitmap Label

(require mrlib/bitmap-label) package: gui-lib

(make-bitmap-label str img [font]) Ñ (is-a?/c bitmap%)
str : string?
img : (or/c (is-a?/c bitmap%) path-string?)
font : (is-a?/c font%) = normal-control-font

Constructs a bitmap label suitable for use a button that contains the image specified by img
followed by the text in str .

((bitmap-label-maker str img) future-parent) Ñ (is-a?/c bitmap%)
str : string?
img : (or/c (is-a?/c bitmap%) path-string?)
future-parent : any/c

An older variant of make-bitmap-label that was designed to obtain a font to use from a
container future-parent . The future-parent argument is currently ignored.

10

https://pkgs.racket-lang.org/package/gui-lib

4 Cache-image Snip

(require mrlib/cache-image-snip) package: gui-lib

NOTE: This library is deprecated; use racket/gui, instead. This library will
no longer be public in a future release; much of it will be available privately to
continue to support the implementation of htdp/image, but the other exported
functions here are not useful and have names that confusingly match unrelated
other libraries.

The mrlib/cache-image-snip library provides the core data structure for DrRacket’s
"image.rkt" teachpack. Images in the "image.rkt" teachpack are instances of the
cache-image-snip% class.

The library also defines a new type, argb, that represents a bitmap, but with alpha values. It
has a maker, two selectors, and a predicate.

cache-image-snip% : class?
superclass: image-snip%

The cache-image-snip% class is a subclass of image-snip% simply so that its instances
can be compared with image-snip% using equal?. All image-snip% functionality is over-
ridden or ignored.

(send a-cache-image-snip equal-to? snip
equal?) Ñ boolean?

snip : (is-a?/c image-snip%)
equal? : (any/c any/c . -> . boolean?)

Overrides equal-to? in snip%.

Calls the other-equal-to? method of snip if it is also a cache-image-
snip% instance, otherwise calls the other-equal-to? of a-cache-image-
snip .

(send a-cache-image-snip get-argb) Ñ argb?

Returns a pixel array for this image, forcing it to be computed.

(send a-cache-image-snip get-argb-proc)
Ñ (argb? exact-integer? exact-integer? . -> . void?)

Returns a procedure that fills in an argb with the contents of this image at the
given offset

11

https://pkgs.racket-lang.org/package/gui-lib

(send a-cache-image-snip get-argb/no-compute)
Ñ (or/c false/c argb?)

Returns a pixel array for this image or #f if it has not been computed yet.

(send a-cache-image-snip get-bitmap)
Ñ (or/c false/c (is-a?/c bitmap%))

Overrides get-bitmap in image-snip%.

Builds (if not yet built) a bitmap corresponding to this snip and returns it.

If the width or the height of the snip is 0, this method return #f.

(send a-cache-image-snip get-dc-proc)
Ñ (or/c false/c ((is-a?/c dc<%>) real? real? -> void?))

Either returns false, or a procedure that draws the contents of this snip into a dc.

(send a-cache-image-snip get-pinhole) Ñ real? real?

Returns the pinhole coordinates for this image, counting from the top-left of the
image.

(send a-cache-image-snip get-size)
Ñ exact-nonnegative-integer?

exact-nonnegative-integer?

Returns the width and height for the image.

(send a-cache-image-snip other-equal-to? snip
equal?) Ñ boolean?

snip : (is-a?/c image-snip%)
equal? : (any/c any/c . -> . boolean?)

Overrides other-equal-to? in image-snip%.

Refines the comparison of other-equal-to? in image-snip% to exactly
match alpha channels.

snip-class : (is-a?/c snip-class%)

This snipclass is used for saved cache image snips.

(make-argb vectorof width height) Ñ argb?
vectorof : byte?
width : exact-nonnegative-integer?
height : exact-nonnegative-integer?

12

Constructs a new argb value with the given width and height, using the data in the vector.
The vector has four entries for each pixel, an alpha, red, green, and blue value. The pixels
are specified in row-major order, so that the pixel at location (x,y) comes from vector entry
(4*(x+(width*y))).

(argb-vector argb) Ñ (vectorof byte?)
argb : argb?

Extracts the vector from argb . The resulting vector has entries in row-major order, so that
the data for the pixel at (x,y) winds up in four vector entries beginning at (4*(x+(width*y))).

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(argb-width argb) Ñ exact-nonnegative-integer?
argb : argb?

Extracts the width from argb .

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(argb-height argb) Ñ exact-nonnegative-integer?
argb : argb?

Extracts the height from argb .

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(argb? v) Ñ boolean?
v : any/c

Returns #t if v is an argb, #f otherwise.

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

13

(overlay-bitmap dest dx dy img mask) Ñ void?
dest : argb?
dx : exact-integer?
dy : exact-integer?
img : (is-a?/c bitmap%)
mask : (is-a?/c bitmap%)

Changes argb, overlaying img with masking based on mask at (dx , dy) from the top-left.

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(build-bitmap draw width height) Ñ (is-a?/c bitmap%)
draw : ((is-a?/c dc<%>) . -> . any)
width : (integer-in 1 10000)
height : (integer-in 1 10000)

Builds a bitmap of size width by height , using the procedure draw to render the bitmap
content into the given dc<%>.

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(flatten-bitmap bitmap) Ñ (is-a?/c bitmap%)
bitmap : (is-a?/c bitmap%)

Builds a new bitmap that flattens the original bitmap with its mask (as determined by get-
loaded-mask in bitmap%), producing a bitmap that has no mask, and looks the way that
bitmap would draw (when drawn with the mask) onto a white background.

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(argb->cache-image-snip argb dx dy) Ñ (is-a?/c cache-image-snip%)
argb : argb?
dx : real?
dy : real?

Builds a new cache-image-snip% based on the contents of argb , using dx and dy as the
pinhole.

14

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

(argb->bitmap argb) Ñ (or/c false/c (is-a?/c bitmap%))
argb : argb?

Builds a bitmap that draws the same way as argb ; the alpha pixels are put into the bitmap’s
get-loaded-mask bitmap.

If the width or height of argb is 0, this returns #f.

This function is in a library that will be removed in a future version. Do not use it.

The mentions of “argb” in this library are not bytes? objects (i.e, not the same as for exam-
ple, the result of get-argb-pixels)

15

5 Close Icon

(require mrlib/close-icon) package: gui-lib

The close-icon% class provides a clickable close button icon.

close-icon% : class?
superclass: canvas%

(new close-icon%
[parent parent]

[[callback callback]
[bg-color bg-color]
[horizontal-pad horizontal-pad]
[vertical-pad vertical-pad]])

Ñ (is-a?/c close-icon%)
parent : (is-a? area-container<%>)
callback : (-> any) = void
bg-color : (or/c #f string (is-a?/c color%)) = #f
horizontal-pad : positive-integer? = 4
vertical-pad : positive-integer? = 4

The callback is called when the close icon is clicked.

If bg-color is specified, it is used as the background color of the icon.

16

https://pkgs.racket-lang.org/package/gui-lib

6 Expandable Snip

(require mrlib/expandable-snip) package: gui-lib

expandable-snip% : class?
superclass: editor-snip%

An expandable snip allows the user to toggle between two views—“open” and “closed”—
implemented by two text editors. Typically the closed view is a concise summary and the
open view contains more detailed information. The syntax browser snip is an example of an
expandable snip.

(new expandable-snip%
[[layout layout]
[closed-editor closed-editor]
[open-editor open-editor]
[callback callback]]
...superclass-args...)

Ñ (is-a?/c expandable-snip%)
layout : (or/c 'append 'replace) = 'append
closed-editor : (is-a?/c text%) = (new text%)
open-editor : (is-a?/c text%) = (new text%)
callback : (-> boolean? any) = void

The callback is called when the snip state is toggled. It is called with a
boolean that indicates whether the new state is open.

In closed mode, the toggle arrow and closed-editor are displayed adjacent
on a single line. In open mode, the layout is controlled by the layout argument
as follows:

• 'append — The first line is unchanged (that is, it contains both toggle ar-
row and closed-editor), and open-editor is displayed on the second
line.

• 'replace — The toggle arrow and the open-editor are displayed on a
single line. The closed-editor is not displayed.

(send an-expandable-snip get-open-editor) Ñ (is-a?/c text%)

Get the editor for the open mode.

(send an-expandable-snip get-closed-editor) Ñ (is-
a?/c text%)

Gets the editor for the closed mode.

17

https://pkgs.racket-lang.org/package/gui-lib

7 GIF and Animated GIF Writing

(require mrlib/gif) package: gui-lib

(write-gif bitmap filename) Ñ void?
bitmap : (or/c (is-a?/c bitmap%)

(-> (is-a?/c bitmap%)))
filename : path-string?

Writes the given bitmap to filename as a GIF image, where bitmap is either an in-
stance of bitmap% or a thunk (to be called just once) that generates such an object. If the
bitmap uses more than 256 colors, it is automatically quantized using a simple algorithm; see
quantize. If the bitmap has a mask bitmap via get-loaded-mask, it is used to determine
transparent pixels in the generated GIF image.

(write-animated-gif bitmaps
delay-csec
filename

[#:loop? loop?
#:one-at-a-time? one-at-a-time?
#:last-frame-delay last-frame-delay
#:disposal disposal])

Ñ void?
bitmaps : (and/c

(listof (or/c (is-a?/c bitmap%)
(-> (is-a?/c bitmap%))))

pair?)
delay-csec : (integer-in 0 4294967295)
filename : path-string?
loop? : any/c = (and delay-csec #t)
one-at-a-time? : any/c = #f
last-frame-delay : (or/c (integer-in 0 4294967295) #f) = #f
disposal : (or/c 'any 'keep 'restore-bg 'restore-prev) = 'any

Writes the bitmaps in bitmaps to filename as an animated GIF. The bitmaps list can con-
tain a mixture of bitmap% objects and thunks (each called just once) that produce bitmap%
objects. The delay-csec argument is the amount of time in 1/100s of a second to wait
between transitions. If loop? is a true value, then the GIF is marked as a looping animation.

If one-at-a-time? is #f, then the content of all images is collected and quantized at once,
to produce a single colortable; a drawback to this approach is that it uses more memory, and
it allows less color variation among animation frames. Even when one-at-a-time? is #f,
the result of each thunk in bitmaps is converted to a byte-string one at a time.

If one-at-a-time? is true, then the bitmaps are quantized and written to the file one at a
time; that is, for each thunk in bitmaps , its result is written and discarded before another

18

https://pkgs.racket-lang.org/package/gui-lib

thunk is called. A drawback to this approach is that a separate colortable is written for each
frame in the animation, which can make the resulting file large.

If last-frame-delay is not false, a delay of last-frame-delay (in 1/100s of a second)
is added to the last frame. This extra delay is useful when loop? is true.

The disposal argument specifies the frame disposal method, which determines how the
previous frame is treated when writing a transparent frame. The same disposal method is
applied to every frame. See gif-add-control for the meaning of the various disposal
options.

19

8 Graphs

(require mrlib/graph) package: gui-lib

The mrlib/graph library provides a graph drawing toolkit built out of pasteboard%s.

8.1 graph-pasteboard<%>

graph-pasteboard<%> : interface?

(send a-graph-pasteboard get-arrowhead-params)
Ñ number number number

Returns the current settings for the arrowhead’s drawing.

(send a-graph-pasteboard on-mouse-over-snips lst) Ñ void?
lst : (listof (is-a?/c snip%))

This method is called when the mouse passes over any snips in the editor. It is only called
when the list of snips under the editor changes (ie, if the mouse moves, but remains over the
same list of snips, the method is not called). Also, this method is called with the empty list
if the mouse leaves the pasteboard.

(send a-graph-pasteboard set-arrowhead-params angle-width
short-side
long-size)

Ñ void?
angle-width : real?
short-side : real?
long-size : real?

Sets drawing parameters for the arrowhead. The first is the angle of the arrowhead’s point,
in radians. The second is the length of the outside line of the arrowhead and the last is the
distance from the arrowhead’s point to the place where the arrowhead comes together.

(send a-graph-pasteboard set-draw-arrow-heads? draw-arrow-heads?)
Ñ void?
draw-arrow-heads? : any/c

Sets a boolean controlling whether or not arrow heads are drawn on the edges between nodes.

20

https://pkgs.racket-lang.org/package/gui-lib

This setting does not affect self-links—only links between two different nodes.

(send a-graph-pasteboard set-flip-labels? flip-labels?) Ñ void?
flip-labels? : any/c

Sets a boolean controlling whether or not arrow labels are flipped so the are always right-
side-up. Note that if there are two nodes with edges going from the first to the second, and
from the second to the first, and the two have labels, then this should be turned off or the
labels will appear in the same space.

This setting does not affect self-links—only links between two different nodes.

(send a-graph-pasteboard set-edge-label-font font) Ñ void?
font : (is-a?/c font%)

Updates the font used to draw the edge labels.

(send a-graph-pasteboard get-edge-label-font)
Ñ (is-a?/c font%)

Returns the font currently being used to draw the edge labels

(send a-graph-pasteboard draw-edges dc
left
top
right
bottom
dx
dy) Ñ void?

dc : (is-a?/c dc<%>)
left : real?
top : real?
right : real?
bottom : real?
dx : real?
dy : real?

This is called by the on-paint callback of a graph pasteboard, and is expected to draw the
edges between the snips. The argments are a subset of those passed to on-paint and it is
only called when the before? argument to on-paint is #t.

21

(send a-graph-pasteboard draw-single-edge dc
dx
dy
from
to
from-x
from-y
to-x
to-y
arrow-point-ok?)

Ñ void?
dc : (is-a?/c dc<%>)
dx : real?
dy : real?
from : (is-a?/c graph-snip<%>)
to : (is-a?/c graph-snip<%>)
from-x : real?
from-y : real?
to-x : real?
to-y : real?
arrow-point-ok? : (-> real? real? boolean?)

This method is called to draw each edge in the graph, except for the edges that connect a
node to itself.

The dc , dx , and dy arguments are the same as in on-paint.

The from-x , from-y , to-x , and to-y arguments specify points on the source and des-
tination snip’s bounding box where a straight line between the centers of the snip would
intersect.

The arrow-point-ok? function returns #t when the point specified by its arguments is
inside the smallest rectangle that covers both the source and destination snips, but is outside
of both of the rectangles that surround the source and destination snips themselves.

This default implementation uses update-polygon to compute the arrowheads and oth-
erwise draws a straight line between the two points and then the arrowheads, unless the
arrowhead points are not ok according to arrow-point-ok?, in which case it just draws the
line.

22

(send a-graph-pasteboard update-arrowhead-polygon from-x
from-y
to-x
to-y
point1
point2
point3
point4)

Ñ void?
from-x : real?
from-y : real?
to-x : real?
to-y : real?
point1 : (is-a?/c point%)
point2 : (is-a?/c point%)
point3 : (is-a?/c point%)
point4 : (is-a?/c point%)

Updates the arguments point1 , point2 , point3 , point4 with the coordinates of an ar-
rowhead for a line that connects (from-x ,from-y) to (to-x ,to-y).

8.2 graph-pasteboard-mixin

graph-pasteboard-mixin : (class? . -> . class?)
argument extends/implements: pasteboard%
result implements: graph-pasteboard<%>

(new graph-pasteboard-mixin
[[edge-labels? edge-labels?]
[edge-label-font edge-label-font]]
[cache-arrow-drawing? cache-arrow-drawing?]
...superclass-args...)

Ñ (is-a?/c graph-pasteboard-mixin)
edge-labels? : boolean? = #t
edge-label-font : (or/c #f (is-a?/c font%)) = #f
cache-arrow-drawing? : any

If edge-labels? is #f, no edge labels are drawn. Otherwise, they are.

If edge-label-font is supplied, it is used when drawing the labels on the edges. Other-
wise, the font is not set before drawing the labels, defaulting to the dc<%> object’s font.

23

If cache-arrow-drawing? is #f, then the arrows in the snip are not cached in a bitmap (to
speed up drawing when the mouse moves around). Otherwise, they are.

This mixin overrides many methods to draw lines between graph-snip<%> that it contains.

8.3 graph-snip<%>

graph-snip<%> : interface?

(send a-graph-snip add-child child) Ñ void?
child : (is-a?/c graph-snip<%>)

Adds a child of this snip. If this method is called, the add-parent method must also be
called (with the parent/child arguments reversed).

Instead of calling this method, consider using the add-links function.

(send a-graph-snip add-parent parent) Ñ void?
parent : (is-a?/c graph-snip<%>)

(send a-graph-snip add-parent parent
mouse-over-pen
mouse-off-pen
mouse-over-brush
mouse-off-brush) Ñ void?

parent : (is-a?/c graph-snip<%>)
mouse-over-pen : (or/c false/c (is-a?/c pen%))
mouse-off-pen : (or/c false/c (is-a?/c pen%))
mouse-over-brush : (or/c false/c (is-a?/c brush%))
mouse-off-brush : (or/c false/c (is-a?/c brush%))

Adds a parent of this snip. If this method is called, the add-child method must also be
called (with the parent/child arguments reversed).

Instead of calling this method, consider using the add-links function.

(send a-graph-snip get-children) Ñ (listof snip%)

returns a list of snips that implement graph-snip<%>. Each of these snips will have a line
drawn from it, pointing at this snip.

(send a-graph-snip get-parents) Ñ (listof graph-snip<%>)

24

Returns a list of snips that implement graph-snip<%>. Each of these snips will have a line
drawn to it, starting from this snip.

(send a-graph-snip remove-child child) Ñ void?
child : (is-a?/c graph-snip<%>)

Removes a child snip from this snip. Be sure to remove this snip as a parent from the
argument, too. Instead of calling this method, consider using the remove-links function.

(send a-graph-snip remove-parent parent) Ñ void?
parent : (is-a?/c graph-snip<%>)

Removes a parent snip from this snip. Be sure to remove this snip as a child from the
argument, too. Instead of calling this method, consider using the remove-links function.

(send a-graph-snip set-parent-link-label parent
label) Ñ void?

parent : (is-a?/c graph-snip<%>)
label : (or/c false/c string/)

Changes the label on the edge going to the parent to be label . Ignored if no such egde
exists.

8.4 graph-snip-mixin

graph-snip-mixin : (class? . -> . class?)
argument extends/implements: snip%
result implements: graph-snip<%>

8.5 Graph Functions

(add-links parent child) Ñ void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)

(add-links parent child) Ñ void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)

25

(add-links parent
child
dark-pen
light-pen
dark-brush
light-brush

[label]) Ñ void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
dark-pen : (or/c (is-a?/c pen%) false/c)
light-pen : (or/c (is-a?/c pen%) false/c)
dark-brush : (or/c (is-a?/c brush%) false/c)
light-brush : (or/c (is-a?/c brush%) false/c)
label : (or/c string? false/c) = #f

(add-links parent
child
dark-pen
light-pen
dark-brush
light-brush
dx
dy

[label]) Ñ void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
dark-pen : (or/c (is-a?/c pen%) false/c)
light-pen : (or/c (is-a?/c pen%) false/c)
dark-brush : (or/c (is-a?/c brush%) false/c)
light-brush : (or/c (is-a?/c brush%) false/c)
dx : real?
dy : real?
label : (or/c string? false/c) = #f

Connects a parent snip to a child snip within a pasteboard.

The default dark-pen /dark-brush and light-pen /light-brush are blue and purple,
respectively. The dark-pen and dark-brush are used when the mouse cursor is over the
snip (or a child or parent), and the light-pen and light-brush are used when the mouse
cursor is not over the snip. The brush is used to draw inside the arrow head and the pen is
used to draw the border of the arrowhead and the line connecting the two snips.

if label is provided and not #f, it is used as a label on the edge.

When dx and dy are provided, the are offsets for the head and the tail of the arrow. Other-
wise, 0 offsets are used.

26

(add-links/text-colors parent
child
dark-pen
light-pen
dark-brush
light-brush
dark-text
light-text
dx
dy
label) Ñ void?

parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
dark-pen : (or/c (is-a?/c pen%) false/c)
light-pen : (or/c (is-a?/c pen%) false/c)
dark-brush : (or/c (is-a?/c brush%) false/c)
light-brush : (or/c (is-a?/c brush%) false/c)
dark-text : (or/c (is-a?/c color%) false/c)
light-text : (or/c (is-a?/c color%) false/c)
dx : real?
dy : real?
label : (or/c string? false/c)

Like add-links, but with extra dark-text and light-text arguments to set the colors
of the label.
(remove-links parent child) Ñ void?

parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)

Disconnects a parent snip from a child snip within a pasteboard.

(set-link-label parent child label) Ñ void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
label : (or/c string? false/c)

Changes the label on the edge going from child to parent to be label . If there is no
existing edge between the two nodes, then nothing happens.

(dot-positioning pb
[option
overlap-or-horizontal?]) Ñ void?

pb : (is-a?/c pasteboard%)
option : (or/c dot-label neato-label neato-hier-label neato-ipsep-label)

= dot-label
overlap-or-horizontal? : boolean? = #f

27

This finds the sizes of the graph-snip<%>s in pb and their children and then passes that
information to dot or neato (depending on option), extracting a layout and then applying
it to the snips in pb .

If option is dot-label, then overlap-or-horizontal? controls whether dot uses a
horizontal or vertical alignment. If option is any of the other options, it controls whether
or not neato is allowed to overlap nodes.

If find-dot returns #f, this function does nothing.

(find-dot [neato?]) Ñ (or/c path? #f)
neato? : boolean? = #f

Tries to find the dot or neato binary and, if it succeeds, returns the path to it. If it cannot
find it, returns #f.

dot-label : string?

A string describing the regular dot option for graph layout that dot-positioning uses.

neato-label : string?

A string describing the neato option for graph layout that dot-positioning uses.

neato-hier-label : string?

A string describing the neato hierarchical option for graph layout that dot-positioning
uses.

neato-ipsep-label : string?

A string describing the neato ipsep option for graph layout that dot-positioning uses.

28

9 Hierarchical List Control

(require mrlib/hierlist) package: gui-lib

A hierarchical-list% control is a list of items, some of which can themselves be hier-
archical lists. Each such sub-list has an arrow that the user can click to hide or show the
sub-list’s items.

A short example to demonstrate this control:

#lang racket/gui
(require mrlib/hierlist)

(define set-text-mixin
(mixin (hierarchical-list-item<%>)

((interface () set-text))
(inherit get-editor)
(super-new)
; set-text: this sets the label of the item
(define/public (set-text str)

(define t (get-editor)) ; a text% object
(send t erase)
(send t insert str))))

; new class uses hierarchical-list% to show a directory
(define directory-list%

(class hierarchical-list% (init [dir (current-directory-for-
user)])

(define the-dir dir)
; new-item : create new item for a file or directory
(define (new-item parent directory subpath)

(define item
(if (file-exists? (build-path directory subpath))

(send parent new-item set-text-mixin)
(send parent new-list set-text-mixin)))

(send item set-text (path->string subpath))
(send item user-data (build-path directory subpath))
item)

; Set the top level item, and populate it with an entry
; for each item in the directory.
(define/public (set-directory dir)

(send this delete-item top-dir-list) ; remove previous top item
(set! top-dir-list (send this new-list set-text-mixin))
(send top-dir-list set-text (path->string dir))
; add new-item for each member of dir
(for ([i (directory-list dir)])

29

https://pkgs.racket-lang.org/package/gui-lib

(new-item top-dir-list dir i)))
(super-new)
; top item in hierlist
(define top-dir-list (send this new-list set-text-mixin))
; initialise directory-list% instance
(set-directory the-dir)))

; Create frame
(define f (new frame% [label "frame"] [width 400] [height 400]))
; show frame onscreen
(send f show #t)
; create a directory-list%
(define my-dir (new directory-list%

[parent f]
[dir (find-system-path 'home-dir)]))

; change directory example - try this in the interactions window:
; (send my-dir set-directory (find-system-path 'doc-dir))

The list control supports the following default keystrokes:

• Down: move to the next entry at the current level (skipping lower levels).

• Up: move to the previous entry at the current level (skipping lower levels).

• Left: move to the enclosing level (only valid at embedded levels).

• Right: move down in one level (only valid for lists).

• Return: open/close the current selected level (only valid for lists).

9.1 hierarchical-list%

hierarchical-list% : class?
superclass: editor-canvas%

Creates a hierarchical-list control.

(new hierarchical-list%
[parent parent]

[[style style]])
Ñ (is-a?/c hierarchical-list%)
parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

30

style : (listof (one-of/c 'no-border 'control-border 'combo
'no-hscroll 'no-vscroll
'hide-hscroll 'hide-vscroll
'auto-vscroll 'auto-hscroll
'resize-corner 'deleted 'transparent))

= '(no-hscroll)

Creates the control.

If the style 'transparent is passed, then the use-style-background method will be
called with #t when editor snips are created as part of the hierarchical list, ensuring that the
entire control is transparent.

(send a-hierarchical-list get-selected)
Ñ (or/c (is-a?/c hierarchical-list-item<%>)

false/c)

Returns the currently selected item, if any.

(send a-hierarchical-list new-item [mixin])
Ñ (is-a?/c hierarchical-list-item<%>)
mixin : ((implementation?/c hierarchical-list-item<%>)

. -> .
(implementation?/c hierarchical-list-item<%>))

= (lambda (%) %)

Creates and returns a new (empty) item in the list. See hierarchical-list-item<%> for
methods to fill in the item’s label.

The mixin argument is applied to a class implementing hierarchical-list-item<%>,
and the resulting class is instantiated as the list item.

(send a-hierarchical-list set-no-sublists no-sublists?) Ñ void?
no-sublists? : any/c

Enables/disables sublist mode. When sublists are disabled, space to the left of the list items
(that would normally align non-list items with list items) is omitted. This method can be
called only when the list is empty.

(send a-hierarchical-list new-list [mixin])
Ñ (is-a?/c hierarchical-list-compound-item<%>)
mixin : ((implementation?/c hierarchical-list-compound-item<%>)

. -> .
(implementation?/c hierarchical-list-compound-item<%>))

= (lambda (%) %)

31

Creates and returns a new (empty) sub-list in the list. See hierarchical-list-
compound-item<%> for methods to fill in the item’s label and content.

The mixin argument is applied to a class implementing hierarchical-list-compound-
item<%>, and the resulting class is instantiated as the sub-list.

(send a-hierarchical-list delete-item i) Ñ void?
i : (is-a?/c hierarchical-list-item<%>)

Deletes immediate item or sub-list i from the list.

(send a-hierarchical-list get-items)
Ñ (listof (is-a?/c hierarchical-list-item<%>))

Returns a list of all immediate items in the list control.

(send a-hierarchical-list selectable) Ñ boolean?
(send a-hierarchical-list selectable on?) Ñ void?

on? : any/c

Reports whether items are selectable, or enables/disables item selection.

(send a-hierarchical-list on-select i) Ñ any
i : (or/c (is-a?/c hierarchical-list-item<%>) false/c)

Called for new select of i , where i is #f if no item is now selected.

(send a-hierarchical-list on-click i) Ñ any
i : (is-a?/c hierarchical-list-item<%>)

Called when an item is clicked on, but selection for that item is not allowed. Selection can be
disallowed by selectable or set-allow-selection in hierarchical-list-item<%>.

(send a-hierarchical-list on-double-select i) Ñ any
i : (is-a?/c hierarchical-list-item<%>)

Called for a double-click on i .

(send a-hierarchical-list on-item-opened i) Ñ any
i : (is-a?/c hierarchical-list-compound-item<%>)

32

Called when the arrow for i is turned down.

(send a-hierarchical-list on-item-closed i) Ñ any
i : (is-a?/c hierarchical-list-compound-item<%>)

Called when the arrow for i is turned up.

(send a-hierarchical-list sort less-than-proc
[recur?]) Ñ void?

less-than-proc : ((is-a?/c hierarchical-list-item<%>)
(is-a?/c hierarchical-list-item<%>)
. -> . any/c)

recur? : any/c = #t

Sorts items in the list by calling less-than-proc on pairs of items. If recur? is true,
items in sub-lists are sorted recursively.

(send a-hierarchical-list can-do-edit-operation? op
[recursive?])

Ñ boolean?
op : symbol?
recursive? : any/c = #t

Like can-do-edit-operation? in editor<%>. The default implementation always re-
turns #f.

(send a-hierarchical-list do-edit-operation op
[recursive?]) Ñ void?

op : symbol?
recursive? : any/c = #t

Like do-edit-operation in editor<%>. The default implementation does nothing.

(send a-hierarchical-list select-prev) Ñ void?
(send a-hierarchical-list select-next) Ñ void?
(send a-hierarchical-list select-first) Ñ void?
(send a-hierarchical-list select-last) Ñ void?
(send a-hierarchical-list select-in) Ñ void?
(send a-hierarchical-list select-out) Ñ void?
(send a-hierarchical-list page-up) Ñ void?
(send a-hierarchical-list page-down) Ñ void?

33

Move the selection, scroll, and call on-select.

(send a-hierarchical-list select i) Ñ void?
i : (or/c (is-a?/c hierarchical-list-item<%>) false/c)

Moves the selection, scrolls as necessary to show it, and calls on-select unless disabled
via on-select-always.

The allow-deselect method controls whether i is allowed to be #f to deselect the cur-
rently selected item.

(send a-hierarchical-list click-select i) Ñ void?
i : (or/c (is-a?/c hierarchical-list-item<%>) false/c)

Like select, but always calls on-select.

(send a-hierarchical-list on-select-always) Ñ boolean?
(send a-hierarchical-list on-select-always always?) Ñ void?

always? : any/c

Gets/sets whether the on-select method is called in response to select (as opposed to
click-select).

The initial mode enables on-select calls always.

(send a-hierarchical-list on-click-always) Ñ boolean?
(send a-hierarchical-list on-click-always always?) Ñ void?

always? : any/c

Gets/sets whether the on-click method is called in response to all mouse clicks (as opposed
to only when selected). on-click is called before on-select, if it is called (if the click
results in selction).

This is initially disabled, by default.

(send a-hierarchical-list allow-deselect) Ñ boolean?
(send a-hierarchical-list allow-deselect allow?) Ñ void?

allow? : any/c

Gets/sets whether the on-select can be called with a #f argument to deselect the current
item (leaving none selected).

The initial mode does not allow deselection.

34

9.2 hierarchical-list-item<%>

hierarchical-list-item<%> : interface?

Instantiate this interface via new-item.

(send a-hierarchical-list-item get-editor) Ñ (is-a?/c text%)

Returns a text-editor buffer whose content is the display representation of the item. In other
words, fill in this text editor to set the item’s label.

(send a-hierarchical-list-item is-selected?) Ñ boolean?

Reports whether the item is selected.

(send a-hierarchical-list-item select on?) Ñ void?
on? : any/c

(send a-hierarchical-list-item click-select on?) Ñ void?
on? : any/c

Calls select or click-select. The on? argument can be #f only if allow-deselect in
hierarchical-list% allows it.

(send a-hierarchical-list-item user-data) Ñ any/c
(send a-hierarchical-list-item user-data data) Ñ void?

data : any/c

Gets/sets arbitrary data associated with the item.

(send a-hierarchical-list-item get-clickable-snip)
Ñ (is-a?/c snip%)

Returns the snip that (when clicked) selects this element the list. This method is intended for
use with an automatic test suite.

(send a-hierarchical-list-item get-allow-selection?)
Ñ boolean?

(send a-hierarchical-list-item set-allow-selection allow?)
Ñ void?
allow? : any/c

35

Gets/sets whether this item is allowed to be selected.

(send a-hierarchical-list-item get-parent)
Ñ (or/c (is-a?/c hierarchical-list-compound-item<%>) #f)

Returns the compound list item that contains the item or #f if none exists.

9.3 hierarchical-list-compound-item<%>

hierarchical-list-compound-item<%> : interface?
implements: hierarchical-list-item<%>

Instantiate this interface via new-list.

(send a-hierarchical-list-compound-item new-item [mixin])
Ñ (is-a?/c hierarchical-list-item<%>)
mixin : ((implementation?/c hierarchical-list-item<%>)

. -> .
(implementation?/c hierarchical-list-item<%>))

= (lambda (%) %)

Like new-item in hierarchical-list%.

(send a-hierarchical-list-compound-item set-no-sublists no-sublists?)
Ñ void?
no-sublists? : any/c

Like set-no-sublists in hierarchical-list%.

(send a-hierarchical-list-compound-item new-list [mixin])
Ñ (is-a?/c hierarchical-list-compound-item<%>)
mixin : ((implementation?/c hierarchical-list-compound-item<%>)

. -> .
(implementation?/c hierarchical-list-compound-item<%>))

= (lambda (%) %)

Like new-list in hierarchical-list%.

(send a-hierarchical-list-compound-item delete-item i) Ñ void?
i : (is-a?/c hierarchical-list-item<%>)

36

Deletes immediate item or sub-list i from the sub-list.

(send a-hierarchical-list-compound-item get-items)
Ñ (listof (is-a?/c hierarchical-list-item<%>))

Returns a list of all immediate items in the sub-list.

(send a-hierarchical-list-compound-item open) Ñ void?
(send a-hierarchical-list-compound-item close) Ñ void?
(send a-hierarchical-list-compound-item toggle-open/closed)

Ñ void?

Shows or hides the items of this sub-list.

(send a-hierarchical-list-compound-item is-open?) Ñ boolean?

Reports whether the items of this sub-list are visible.

(send a-hierarchical-list-compound-item get-arrow-snip)
Ñ (is-a?/c snip%)

Returns a snip that corresponds to the arrow to hide/show items of the sub-list. The result is
intended for use by automatic test suites.

9.4 Snips in a hierarchical-list% Instance

The find-snip in text% method of the editor in a hierarchical-list% return instances
of hierarchical-item-snip% and hierarchical-list-snip%.

hierarchical-item-snip% : class?
superclass: editor-snip%

(send a-hierarchical-item-snip get-item)
Ñ (is-a?/c hierarchical-list-item<%>)

Returns the hierarchical-list-item<%> corresponding to the snip.

hierarchical-list-snip% : class?
superclass: editor-snip%

37

(send a-hierarchical-list-snip get-item)
Ñ (is-a?/c hierarchical-list-compound-item<%>)

Returns the hierarchical-list-compound-item<%> corresponding to the
snip.

(send a-hierarchical-list-snip get-content-buffer)
Ñ (is-a?/c text%)

Returns the text% that contains the sub-item snips.

38

10 Include Bitmap

(require mrlib/include-bitmap) package: gui-lib

The include-bitmap form takes a filename containing a bitmap and “inlines” the bitmap
into the program.

Historically, the advantage of inlining the bitmap is that a stand-alone executable can be
created that contains the bitmap and does not refer to the original image file. The define-
runtime-path form, however, now provides a better alternative.

(include-bitmap path-spec)
(include-bitmap path-spec type-expr)

The path-spec is the same as for include form. The type-expr should produce 'un-
known, 'unknown/mask, etc., as for bitmap%, and the default is 'unknown/mask.

(include-bitmap/relative-to source path-spec)
(include-bitmap/relative-to source path-spec [type-expr])

Analogous to include-at/relative-to, though only a source is needed (no context).

39

https://pkgs.racket-lang.org/package/gui-lib

11 Interactive Value Port

(require mrlib/interactive-value-port) package: gui-lib

(set-interactive-display-handler port
[#:snip-handler snip-handler])

Ñ void?
port : output-port?
snip-handler : (or/c #f (-> (is-a?/c snip%) output-port? any))

= #f

Sets port ’s display handler (via port-display-handler) so that when it encounters these
values:

• syntax objects

• snips

it uses write-special to send snips to the port and uses mrlib/syntax-browser to turn
syntax object into snips and then uses write-special with the result to send it to the port.
Otherwise, it behaves like the default handler.

If snip-handler is not #f, then set-interactive-display-handler passes any snips
to it (not those it creates by mrlib/syntax-browser) instead of calling write-special.

To show values embedded in lists and other compound object, it uses pretty-display.

(set-interactive-write-handler port
[#:snip-handler snip-handler])

Ñ void?
port : output-port?
snip-handler : (or/c #f (-> (is-a?/c snip%) output-port? any))

= #f

Like set-interactive-display-handler, but sets the port-write-handler and uses
pretty-write.

(set-interactive-print-handler port
[#:snip-handler snip-handler])

Ñ void?
port : output-port?
snip-handler : (or/c #f (-> (is-a?/c snip%) output-port? any))

= #f

Like set-interactive-display-handler, but sets the port-print-handler and uses
pretty-print.

40

https://pkgs.racket-lang.org/package/gui-lib

12 Name Message

(require mrlib/name-message) package: gui-lib

name-message% : class?
superclass: canvas%

A name-message% control displays a filename that the user can click to show the filename’s
path and select one of the enclosing directories. Override the on-choose-directory
method to handle the user’s selection.

(new name-message% ...superclass-args...)
Ñ (is-a?/c name-message%)

Passes all arguments to super-init.

(send a-name-message on-choose-directory dir) Ñ void?
dir : path-string?

Called when one of the popup menu items is chosen. The argument is a repre-
sents the selected directory.

(send a-name-message on-event event) Ñ void?
event : (is-a?/c mouse-event%)

Overrides on-event in canvas<%>.

Handles the click by popping up a menu or message.

(send a-name-message on-paint) Ñ void?

Overrides on-paint in canvas%.

Draws the control’s current message.

(send a-name-message set-hidden? hidden?) Ñ void?
hidden? : any/c

Calling this method with #f causes the name message to become invisible and
to stop responding to mouse movements.

Calling it with a true value restores its visibility and makes it respond to mouse
movements again.

(send a-name-message set-message file-name?
msg) Ñ void?

file-name? : any/c
msg : (if filename? path-string? string?)

41

https://pkgs.racket-lang.org/package/gui-lib

Sets the label for the control.

If file-name? is #t, msg is treated like a pathname, and a click on the name-
message control creates a popup menu to open a get-file dialog.

If file-name? is #f, msg is treated as a label string. Clicking on the name-
message control pops up a dialog saying that there is no file name until the file
is saved.

(send a-name-message set-short-title short-title?) Ñ void?
short-title? : boolean?

Sets the short-title? flag. The flag defaults to #f.

If the flag is #t, then the label for the control is simply the string "/". Other-
wise, the label is determined by the set-message.

(send a-name-message fill-popup menu reset) Ñ any
menu : (is-a?/c popup-menu%)
reset : (-> void?)

This method is called when the user clicks in the name message. Override it to
fill in the menu items for the popup menu menu .

(send a-name-message get-background-color)
Ñ (or/c #f (is-a/c color%) string?)

The result of this method is used for the background color when redrawing the
name message. If it is #f, the OS’s default panel background is used.

(send a-name-message set-allow-shrinking width) Ñ void?
width : (or/c #f number?)

When this method receives a number, the name-message will then shrink (the
number indicates the minimum width the name message will have).

If it receives false, the name message will not shrink and its minimum width
will be the size required to display its current label.

By default, the name-message does not allow shrinking.

(calc-button-min-sizes dc str [font]) Ñ real? real?
dc : (is-a?/c dc<%>)
str : string?
font : (or/c #f (is-a?/c font%)) = #f

Calculates the minimum width and height of a button label (when drawn with draw-
button-label). Returns two values: the width and height. The dc argument is used for
sizing.

42

(draw-button-label dc
str
dx
dy
width
height
mouse-over?
grabbed?
font
background) Ñ void?

dc : (is-a?/c dc<%>)
str : string?
dx : real?
dy : real?
width : real?
height : real?
mouse-over? : boolean?
grabbed? : boolean?
font : (is-a?/c font%)
background : (or/c (is-a?/c color%) string? #f)

Draws a button label like the one for the (define ...) and filename buttons in the top-left
corner of the DrRacket frame. Use this function to draw similar buttons.

The basic idea is to create a canvas object whose on-paint method is overridden to call this
function. The dc argument should be canvas’s drawing context, and str should be the
string to display on the button. The width and height arguments should be the width
and height of the button, and the dx and dy arguments specify an offset into dc for the
button. The mouse-over? argument should be true when the mouse is over the button,
and the grabbed? argument should be true when the button has been pressed. The font
and background arguments supply the font to use in drawing (possibly normal-control-
font) and the background color to paint (if any).

See calc-button-min-sizes for help calculating the min sizes of the button.

(pad-xywh tx ty tw th) Ñ number? number? (>=/c 0) (>=/c 0)
tx : number?
ty : number?
tw : (>=/c 0)
th : (>=/c 0)

Returns spacing information describing how draw-button-label draws. The inputs are
the x and y coordinates where the text should appear and the width and height of the text,
and the results are the x and y coordinates where the shape should be drawn and the width
and height of the overall shape.

43

13 Path Dialog

(require mrlib/path-dialog) package: gui-lib

path-dialog% : class?
superclass: dialog%

The path-dialog% class implements a platform-independent file/directory dialog. The di-
alog is similar in functionality to the get-file, put-file, get-directory, and get-
file-list procedures, but considerable extra functionality is available through the path-
dialog% class.

(new path-dialog%
[[label label]
[message message]
[parent parent]
[directory directory]
[filename filename]
[put? put?]
[dir? dir?]
[existing? existing?]
[new? new?]
[multi? multi?]
[can-mkdir? can-mkdir?]
[filters filters]
[show-file? show-file?]
[show-dir? show-dir?]
[ok? ok?]
[guard guard]])

Ñ (is-a?/c path-dialog%)
label : (or/c label-string? false/c) = #f
message : (or/c label-string? false/c) = #f
parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) false/c)

= #f
directory : (or/c path-string? false/c) = #f
filename : (or/c path-string? false/c) = #f
put? : any/c = #f
dir? : any/c = #f
existing? : any/c = (not put?)
new? : any/c = #f
multi? : any/c = #f
can-mkdir? : any/c = put?
filters : (or/c (listof (list string? string?))

(one-of/c #f #t))
= #t

show-file? : (or/c (path? . -> . any) false/c) = #f

44

https://pkgs.racket-lang.org/package/gui-lib

show-dir? : (or/c (path? . -> . any) false/c) = #f
ok? : (or/c (path? . -> . any) false/c) = #f
guard : (or/c (path? . -> . any) false/c) = #f

The label argument is the dialog’s title string. If label is #f, the default is
based on other field values.

The message argument is a prompt message to show at the top of the dialog. If
it is #f, no prompt line.

The parent argument is the parent frame or dialog, if any, for this dialog.

The directory argument specifies the dialog’s initial directory. If it is #f, the
initial directory is the last directory that was used by the user (or the current
directory on first use).

The filename argument provides an initial filename text, if any.

If put? is true, the dialog operates in choose-file-to-write mode (and warn the
user if choosing an existing name).

If dir? is true, the dialog operates in directory-choice mode.

If existing? is true, the use must choose an existing file.

If new? is true, the user must choose a non-existant path. Providing both new?
and existing? as true triggers an exception.

If multi? is true, the dialog allows selection of multiple paths.

If can-mkdir? is true, the dialog includes a button for the user to create a new
directory.

The filters argument is one of:

• (list (list filter-name filter-glob) ...) — a list of
pattern names (e.g., "Racket Files") and glob patterns (e.g.,
"*.rkt;*.scrbl"). Any list, including an empty list, enables a
filter box for the user to enter glob patterns, and the given list of choices
is available in a combo-box drop-down menu. Glob patterns are the usual
Unix ones (see glob->regexp), and a semicolon can be used to allow
multiple patterns.

• #f — no patterns and no filter input box.

• #t — use a generic "All" filter, which is "*.*" on Windows and "*" on
other platforms.

The show-file? predicate is used to filter file paths that are shown in the di-
alog. The predicate is applied to the file name as a string while the current-
directory parameter is set. This predicate is intended to be a lightweight filter
for choosing which names to display.

The show-dir? predicate is similar, but for directories instead of files.

The ok? predicate is used in a similar fashion to the show-file? and show-
dir? predicate, but it is used to determine whether the OK button should be

45

enabled when a file or directory is selected (so it need not be as lightweight as
the other predicates).

The guard procedure is a generic verifier for the dialog’s final result, as pro-
duced by the run method. It receives the result that is about to be returned
(which can be a list in a multi-selection dialog), and can return a different value
(any value) instead. If it throws an exception, an error dialog is shown, and the
dialog interaction continues (so it can be used to verify results without dismiss-
ing the dialog). This procedure can also raise #<void>, in which case the dialog
remains without an error message.

(send a-path-dialog run) Ñ any/c

Shows the dialog and returns the selected result. If a guard procedure is not
supplied when the dialog is created, then the result is either a path or a list of
paths (and the latter only when multi? is true when the dialog is created). If a
guard procedure is supplied, its result determines the result of this method.

46

14 Plot

(require mrlib/plot) package: gui-lib

The mrlib/plot library provides a simple tool for plotting data values to a device context.

This is an old library, kept only for compatibility. You will undoubtedly want to use the
plot library instead, which offers many more features and is actively maintained.

(struct data-set (points connected? pen min-x max-x min-y max-y)
#:extra-constructor-name make-data-set)

points : (listof (is-a?/c point%))
connected? : any/c
pen : (is-a?/c pen%)
min-x : real?
max-x : real?
min-y : real?
max-y : real?

The points field contains the data values to plot, and connected? indicates whether the
points are connected by a line. The pen field provides a pen for plotting points/lines. The
remaining fields determine the plotting area within a drawing context.

(struct plot-setup (axis-label-font
axis-number-font
axis-pen
grid?
grid-pen
x-axis-marking
y-axis-marking
x-axis-label
y-axis-label)

#:extra-constructor-name make-plot-setup)
axis-label-font : (is-a?/c font%)
axis-number-font : (is-a?/c font%)
axis-pen : (is-a?/c pen)
grid? : any/c
grid-pen : (is-a?/c pen)
x-axis-marking : (listof real?)
y-axis-marking : (listof real?)
x-axis-label : string?
y-axis-label : string?

Configures a plot. The grid? field determines whether to draw a grid at axis markings, and
the x-axis-marking and y-axis-marking lists supply locations for marks on each axis.
The other fields are self-explanatory.

47

https://pkgs.racket-lang.org/package/gui-lib

(plot dc data setup) Ñ void?
dc : (is-a?/c dc<%>)
data : (listof data-set?)
setup : plot-setup?

Draws the data-sets in data into the given dc . Uses drawing-context coordinates in
data-sets that will accommodate all of the data sets.

48

15 Switchable Button

(require mrlib/switchable-button) package: gui-lib

switchable-button% : class?
superclass: canvas%

A switchable-button% control displays an icon and a string label. It toggles between
display of just the icon and a display with the label and the icon side-by-side.

The panel:discrete-sizes-mixin explicitly uses switchable-button%s via their
get-small-width, get-large-width, and get-without-label-small-width meth-
ods. See panel:discrete-sizes-mixin for more details.

(new switchable-button%
[label label]
[bitmap bitmap]
[callback callback]

[[alternate-bitmap alternate-bitmap]
[vertical-tight? vertical-tight?]
[min-width-includes-label? min-width-includes-label?]]
...superclass-args...)

Ñ (is-a?/c switchable-button%)
label : (or/c string? (is-a?/c bitmap%) #f)
bitmap : (is-a?/c bitmap%)
callback : (-> (is-a?/c switchable-button%) any/c)
alternate-bitmap : (is-a?/c bitmap%) = bitmap
vertical-tight? : boolean? = #f
min-width-includes-label? : boolean? = #f

The callback is called when the button is pressed. The label and bitmap
are used as discussed above.

If alternate-bitmap is supplied, then it is used when the label is not visible
(via a call to set-label-visible). If it is not supplied, both modes show
bitmap .

If the vertical-tight? argument is #t, then the button takes up as little as
possible vertical space.

If the min-width-includes-label? is #t, then the minimum width includes
both the bitmap and the label. Otherwise, it includes only the bitmap.

(send a-switchable-button set-label-
visible visible?) Ñ void?

visible? : boolean?

Sets the visibility of the string part of the label.

49

https://pkgs.racket-lang.org/package/gui-lib

(send a-switchable-button command) Ñ void?

Calls the button’s callback function.

(send a-switchable-button get-button-label) Ñ string?

Returns the label of this button.

(send a-switchable-button get-large-width)
Ñ exact-nonnegative-integer?

Returns the width of the button when it would show both the label and the
bitmap and when it is in label-visible mode (i.e., when set-label-visible
has been called with #t).

(send a-switchable-button get-small-width)
Ñ exact-nonnegative-integer?

Returns the width of the button when it would show both just the bitmap (not the
alternate bitmap), and when it is in label-visible mode (i.e., when set-label-
visible has been called with #t).

(send a-switchable-button get-without-label-small-width)
Ñ exact-nonnegative-integer?

Returns the width of the button when it is not in label-visible mode (i.e., when
set-label-visible has been called with #f).

50

16 Image Core

(require mrlib/image-core) package: gui-lib

This library is the core part of the 2htdp/image library that DrRacket links into the names-
pace of all languages that it runs. This ensures that minimal support for these images are the
same in all languages, specifically including support for printing the images and constructing
the core data structures making up an image.

(render-image image dc dx dy) Ñ void?
image : image?
dc : (is-a?/c dc<%>)
dx : real?
dy : real?

Draws image in dc at the position (dx ,dy).

(image? v) Ñ boolean?
v : any/c

Recognizes the images that library handles.

(un/cache-image image b) Ñ image?
image : image?
b : any/c

Returns an image that either caches its drawing in the snip draw method or doesn’t, depend-
ing on b .

Not all image? values have special caching capabilities; in those cases, this returns a copy
of the value if it is a snip%; otherwise it returns the value itself (if it isn’t a snip%).

(compute-image-cache image) Ñ void?
image : image?

When the image has a bitmap-cache (which it does by default, although un/cache-image
can disable it), this function fills in the bitmap, doing the work to draw image into the bitmap.

Ordinarily, the image’s bitmap cache is computed the first time the image is actually ren-
dered.

(definitely-same-image? i1 i2) Ñ boolean?
i1 : image?
i2 : image?

51

https://pkgs.racket-lang.org/package/gui-lib

Returns #t if i1 and i2 draw identically and #f if they may draw the same or may draw
differently.

This test is intended to be cheaper than a full equality comparison. It is also used by the
implementation of equal? on images to short-circuit the full check. (The full check draws
the two images and then compares the resulting bitmaps.)

snip-class : (is-a?/c snip-class%)

The snipclass used by images (which are snip%s) created by this library.

Not all image? values are snip%s, but those that are use this as their snip-class%.

52

17 Matrix Snip

(require mrlib/matrix-snip) package: gui-lib

The mrlib/matrix-snip library implements a matrix value that displays in 2-D graphical
form.

visible-matrix% : class?
superclass: cache-image-snip%

A 2-D graphical matrix.

53

https://pkgs.racket-lang.org/package/gui-lib

18 Snip Canvases

(require mrlib/snip-canvas) package: gui-lib

snip-canvas% : class?
superclass: editor-canvas%

A canvas that contains a single snip.

Snips cannot be placed directly on dialogs, frames and panels. To use an interactive snip in
a GUI, it must be inserted into an editor, which itself must be placed on a special canvas,
which can be placed in a GUI container. To provide a seamless user experience, the editor
should be enabled but not writable, not be able to receive focus, not have scrollbars, and
other small details.

The snip-canvas% class handles these details, making it easy to use interactive snips as
normal GUI elements.

(new snip-canvas%
[parent parent]
[make-snip make-snip]

[[style style]
[label label]
[horizontal-inset horizontal-inset]
[vertical-inset vertical-inset]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])

Ñ (is-a?/c snip-canvas%)
parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))
make-snip : ((integer-in 0 10000) (integer-in 0 10000) . -> . snip%)
style : (listof (one-of/c 'no-border 'control-border 'combo

'resize-corner 'no-focus 'deleted
'transparent))

= null
label : (or/c label-string? false/c) = #f
horizontal-inset : (integer-in 0 1000) = 5
vertical-inset : (integer-in 0 1000) = 5
enabled : any/c = #t
vert-margin : (integer-in 0 1000) = 0

54

https://pkgs.racket-lang.org/package/gui-lib

horiz-margin : (integer-in 0 1000) = 0
min-width : (integer-in 0 10000) = 0
min-height : (integer-in 0 10000) = 0
stretchable-width : any/c = #t
stretchable-height : any/c = #t

Unlike instances of editor-canvas%, each instance of this class creates and
manages its own editor. The editor contains one object: a snip% instance cre-
ated by make-snip .

The make-snip function receives the requested width and height of the snip,
which are calculated from the size of the snip canvas. It is called the first time
the snip canvas is resized, which most likely coincides with the first time the
snip canvas is shown. The snip is thus created lazily: only when needed, at the
size needed. See on-size for more details and an example.

The style list is prepended with 'no-hscroll and 'no-vscroll before be-
ing passed to the editor-canvas% constructor. The other constructor argu-
ments are passed untouched.

(send a-snip-canvas get-snip) Ñ (or/c (is-a?/c snip%) #f)

Returns the wrapped snip, or #f if make-snip has not been called yet.

(send a-snip-canvas on-size width height) Ñ void?
width : (integer-in 0 10000)
height : (integer-in 0 10000)

Overrides on-size in editor-canvas%.

This is called when the snip canvas is resized.

On the first call, on-size calls make-snip with width and height arguments
respectively (max 0 (- width (* 2 horizontal-inset))) and (max 0
(- height (* 2 vertical-inset))). It then inserts the resulting snip into
its editor.

On subsequent calls, on-size calls the snip’s resize method, calculating the
width and height arguments the same way.

When a snip-canvas% instance is intended to wrap an existing snip% instance,
make-snip should simply resize it and return it.

Example: functions from plot create snips and call a function similar to the
following to place plots in a frame:

(define (make-snip-frame snip w h label)
(define (make-snip width height)

(send snip resize width height)
snip)

55

(define frame
(new frame%

[label label]
[width (+ 5 5 5 5 w)]
[height (+ 5 5 5 5 h)]))

(new snip-canvas%
[parent frame]
[make-snip make-snip]
[horiz-margin 5] [vert-margin 5]
[horizontal-inset 5] [vertical-inset 5])

frame)

56

19 Syntax Browser

(require mrlib/syntax-browser) package: gui-lib

(render-syntax/snip stx
[#:summary-width summary-width])

Ñ (is-a?/c snip%)
stx : syntax?
summary-width : (or/c #f 0 (integer-in 3 #f) +inf.0) = 32

Constructs a snip% object that displays information about stx .

The summary-width parameter controls the width (in characters) of the syntax object that is
shown before the triangle is turned down. If it is #f, the value of the print-syntax-width
parameter is used.

Changed in version 1.59 of package gui-lib: Added summary-width argument and changed default width to 32.

(render-syntax/window stx
[#:summary-width summary-width]) Ñ void?

stx : syntax?
summary-width : (or/c #f 0 (integer-in 3 #f) +inf.0) = 32

Uses render-syntax/snip’s result, together with a frame and editor-canvas to show stx .

Changed in version 1.59 of package gui-lib: Added summary-width argument and changed default width to 32.

snip-class : (is-a?/c snip-class%)

The snipclass used by the result of render-syntax/snip.

render-syntax-focused-syntax-color-style-name : string?

The name of the style that controls the color of the focused portion of the syntax object that’s
being displayed. See also render-syntax-subtitle-color-style-name.

Defaults to a style that’s derived from the basic style with the foreground color "forest-
green".

render-syntax-subtitle-color-style-name : string?

Like render-syntax-focused-syntax-color-style-name but for the subheadings
when the syntax browser details are shown.

Defaults to a style that’s derived from the basic style with the foreground color "navy".

57

https://pkgs.racket-lang.org/package/gui-lib

20 TeX Table

(require mrlib/tex-table) package: tex-table

tex-shortcut-table : (listof
(list/c string?

(lambda (x)
(and (string? x)

(= (string-length x)
1)))))

This is an association list mapping the shortcut strings that DrRacket uses with its control-
\ (or command-\) strings to their corresponding unicode characters. For example, it contains
this mapping:

("alpha" "α")

as well as many more.

58

https://pkgs.racket-lang.org/package/tex-table

21 Terminal Window

(require mrlib/terminal) package: gui-lib

The mrlib/terminal library provides a simple GUI wrapper around functions that nor-
mally would run in command-line scripts.

(in-terminal doit
[#:container container
#:cleanup-thunk cleanup-thunk
#:title title
#:abort-label abort-label
#:aborted-message aborted-message
#:canvas-min-width canvas-min-width
#:canvas-min-height canvas-min-height
#:close-button? close-button?
#:close-label close-label
#:close-callback close-callback]
#:close-when-hidden? boolean?)

Ñ (is-a?/c terminal<%>)
doit : (-> eventspace?

(or/c (is-a?/c top-level-window<%>) #f)
void?)

container : (or/c #f (is-a?/c area-container<%>)) = #f
cleanup-thunk : (-> void?) = void
title : string? = "mrlib/terminal"
abort-label : string?

= (string-constant plt-installer-abort-installation)
aborted-message : string?

= (string-constant plt-installer-aborted)
canvas-min-width : (or/c #f (integer-in 0 10000)) = #f
canvas-min-height : (or/c #f (integer-in 0 10000)) = #f
close-button? : boolean? = #t
close-label : string? = (string-constant close)
close-callback : (-> any) = void
boolean? : #t

Creates a GUI, sets up the current error and output ports to print into the GUI’s content, and
calls doit in a separate thread under a separate custodian. The exit-handler is set to a
function that shuts down the new custodian.

The GUI is created in a new frame%, unless container is not #f, in which case the GUI is
created as a new panel inside container . If a frame is created, it is provided as the second
argument to doit , otherwise the second argument to doit is #f. If a frame is created, its
title is title .

59

https://pkgs.racket-lang.org/package/gui-lib

The result of in-terminal is a terminal<%> object that reports on the state of the terminal;
this result is produced just after doit is started.

The cleanup-thunk is called on a queued callback to the eventspace active when in-
terminal is invoked after doit completes.

In addition to the I/O generated by doit , the generated GUI contains two buttons: the abort
button (with label abort-label) and the close button (with label close-label). The
close button is present only if close-button? is #t.

When the abort button is pushed, the newly created custodian is shut down and the aborted-
message is printed in the dialog. The close button becomes active when doit returns or
when the thread running it is killed (via a custodian shut down, typically).

If container is #f, then the close button closes the frame; otherwise, the close button
causes the container created for the terminal’s GUI to be removed from its parent.

The canvas-min-width and canvas-min-height are passed to the min-width and
min-height initialization arguments of the editor-canvas% object that holds the output
generated by doit .

The value of on-terminal-run is invoked after doit returns, but not if it is aborted or an
exception is raised.

The close-callback function is called after the terminal frame is closed or container is
removed.

When the container argument is not #f, then hiding removing the window from it’s frame
will abort the computation in the terminal, unless close-when-hidden? is #f.

Changed in version 1.4 of package gui-lib: Added the #:close-callback argument.

(on-terminal-run) Ñ (-> void?)
(on-terminal-run run) Ñ void?

run : (-> void?)

Invoked by in-terminal.

terminal<%> : interface?

The interface of a terminal status and control object produced by in-terminal.

(send a-terminal is-closed?) Ñ boolean?

Returns #t if the terminal GUI has been closed, #f otherwise.

(send a-terminal close) Ñ void?

60

Closes the terminal GUI. Call this method only if can-close? returns #t.

(send a-terminal can-close?) Ñ boolean?

Reports whether the terminal GUI can be closed, because the terminal process
is complete (or, equivalently, whether the close button is enabled).

(send a-terminal can-close-evt) Ñ evt?

Returns a synchronizable event that becomes ready for synchronization when
the terminal GUI can be closed.

(send a-terminal get-button-panel)
Ñ (is-a?/c horizontal-panel%)

Returns a panel that contains the abort and close buttons.

61

22 White on Black Panel Predicate

(require mrlib/panel-wob) package: gui-lib

(white-on-black-panel-scheme?) Ñ boolean?

This predicate is intended to determine if the underlying operating system is in a dark mode.

Under relatively recent versions of Mac OS, it queries dark mode directly. See also
application-dark-mode-handler.

On other platforms, it determines if the foreground color of the panel background is lighter
than the background color. If they appear to be the same, white-on-black-panel-
scheme? returns #f.

62

https://pkgs.racket-lang.org/package/gui-lib

23 Acknowledgments

Contributors to this set of libraries include Mike MacHenry.

63

Index
Acknowledgments, 63
add-child (method of graph-snip<%>), 24
add-links, 25
add-links/text-colors, 27
add-parent (method of graph-snip<%>), 24
after-delete (method of

horizontal-pasteboard%), 6
after-delete (method of

vertical-pasteboard%), 7
after-insert (method of

horizontal-pasteboard%), 6
after-insert (method of

vertical-pasteboard%), 7
after-reorder (method of

vertical-pasteboard%), 7
after-reorder (method of

horizontal-pasteboard%), 6
Aligned Pasteboard, 5
aligned-editor-canvas%, 8
aligned-editor-snip%, 7
aligned-pasteboard-parent<%>, 8
aligned-pasteboard<%>, 5
allow-deselect (method of

hierarchical-list%), 34
argb->bitmap, 15
argb->cache-image-snip, 14
argb-height, 13
argb-vector, 13
argb-width, 13
argb?, 13
Arrow Toggle Snip, 9
arrow-toggle-snip%, 9
Bitmap Label, 10
bitmap-label-maker, 10
build-bitmap, 14
Cache-image Snip, 11
cache-image-snip%, 11
calc-button-min-sizes, 42
can-close-evt (method of terminal<%>), 61
can-close? (method of terminal<%>), 61

can-do-edit-operation? (method of
hierarchical-list%), 33

click-select (method of
hierarchical-list%), 34

click-select (method of
hierarchical-list-item<%>), 35

close (method of terminal<%>), 60
close (method of

hierarchical-list-compound-item<%>),
37

Close Icon, 16
close-icon%, 16
command (method of switchable-button%), 50
compute-image-cache, 51
data-set (struct), 47
data-set-connected?, 47
data-set-max-x, 47
data-set-max-y, 47
data-set-min-x, 47
data-set-min-y, 47
data-set-pen, 47
data-set-points, 47
data-set?, 47
definitely-same-image?, 51
delete-item (method of hierarchical-list%),

32
delete-item (method of

hierarchical-list-compound-item<%>),
36

do-edit-operation (method of
hierarchical-list%), 33

dot-label, 28
dot-positioning, 27
draw-button-label, 43
draw-edges (method of graph-pasteboard<%>),

21
draw-single-edge (method of

graph-pasteboard<%>), 22
equal-to? (method of cache-image-snip%), 11
Expandable Snip, 17
expandable-snip%, 17
fill-popup (method of name-message%), 42
find-dot, 28

64

flatten-bitmap, 14
get-aligned-min-height (method of

stretchable-snip<%>), 8
get-aligned-min-height (method of

aligned-pasteboard<%>), 5
get-aligned-min-width (method of

stretchable-snip<%>), 8
get-aligned-min-width (method of

aligned-pasteboard<%>), 5
get-allow-selection? (method of

hierarchical-list-item<%>), 35
get-argb (method of cache-image-snip%), 11
get-argb-proc (method of

cache-image-snip%), 11
get-argb/no-compute (method of

cache-image-snip%), 12
get-arrow-snip (method of

hierarchical-list-compound-item<%>),
37

get-arrowhead-params (method of
graph-pasteboard<%>), 20

get-background-color (method of
name-message%), 42

get-bitmap (method of cache-image-snip%),
12

get-button-label (method of
switchable-button%), 50

get-button-panel (method of terminal<%>),
61

get-children (method of graph-snip<%>), 24
get-clickable-snip (method of

hierarchical-list-item<%>), 35
get-closed-editor (method of

expandable-snip%), 17
get-content-buffer (method of

hierarchical-list-snip%), 38
get-dc-proc (method of cache-image-snip%),

12
get-edge-label-font (method of

graph-pasteboard<%>), 21
get-editor (method of

hierarchical-list-item<%>), 35
get-item (method of

hierarchical-list-snip%), 38

get-item (method of
hierarchical-item-snip%), 37

get-items (method of
hierarchical-list-compound-item<%>),
37

get-items (method of hierarchical-list%),
32

get-large-width (method of
switchable-button%), 50

get-open-editor (method of
expandable-snip%), 17

get-parent (method of
hierarchical-list-item<%>), 36

get-parents (method of graph-snip<%>), 24
get-pinhole (method of cache-image-snip%),

12
get-selected (method of

hierarchical-list%), 31
get-size (method of cache-image-snip%), 12
get-small-width (method of

switchable-button%), 50
get-snip (method of snip-canvas%), 55
get-toggle-state (method of

arrow-toggle-snip%), 9
get-without-label-small-width

(method of switchable-button%), 50
GIF and Animated GIF Writing, 18
Graph Functions, 25
graph-pasteboard-mixin, 23
graph-pasteboard<%>, 20
graph-snip-mixin, 25
graph-snip<%>, 24
Graphs, 20
Hierarchical List Control, 29
hierarchical-item-snip%, 37
hierarchical-list%, 30
hierarchical-list-compound-
item<%>, 36

hierarchical-list-item<%>, 35
hierarchical-list-snip%, 37
horizontal-pasteboard%, 5
Image Core, 51
image?, 51

65

in-terminal, 59
Include Bitmap, 39
include-bitmap, 39
include-bitmap/relative-to, 39
Interactive Value Port, 40
is-closed? (method of terminal<%>), 60
is-open? (method of

hierarchical-list-compound-item<%>),
37

is-selected? (method of
hierarchical-list-item<%>), 35

make-argb, 12
make-bitmap-label, 10
make-data-set, 47
make-plot-setup, 47
Matrix Snip, 53
mrlib/aligned-pasteboard, 5
mrlib/arrow-toggle-snip, 9
mrlib/bitmap-label, 10
mrlib/cache-image-snip, 11
mrlib/close-icon, 16
mrlib/expandable-snip, 17
mrlib/gif, 18
mrlib/graph, 20
mrlib/hierlist, 29
mrlib/image-core, 51
mrlib/include-bitmap, 39
mrlib/interactive-value-port, 40
mrlib/matrix-snip, 53
mrlib/name-message, 41
mrlib/panel-wob, 62
mrlib/path-dialog, 44
mrlib/plot, 47
mrlib/snip-canvas, 54
mrlib/switchable-button, 49
mrlib/syntax-browser, 57
mrlib/terminal, 59
mrlib/tex-table, 58
MrLib: Extra GUI Libraries, 1
Name Message, 41
name-message%, 41
neato-hier-label, 28

neato-ipsep-label, 28
neato-label, 28
new-item (method of

hierarchical-list-compound-item<%>),
36

new-item (method of hierarchical-list%), 31
new-list (method of hierarchical-list%), 31
new-list (method of

hierarchical-list-compound-item<%>),
36

on-choose-directory (method of
name-message%), 41

on-click (method of hierarchical-list%), 32
on-click-always (method of

hierarchical-list%), 34
on-double-select (method of

hierarchical-list%), 32
on-event (method of name-message%), 41
on-item-closed (method of

hierarchical-list%), 33
on-item-opened (method of

hierarchical-list%), 32
on-mouse-over-snips (method of

graph-pasteboard<%>), 20
on-paint (method of name-message%), 41
on-select (method of hierarchical-list%),

32
on-select-always (method of

hierarchical-list%), 34
on-size (method of snip-canvas%), 55
on-terminal-run, 60
open (method of

hierarchical-list-compound-item<%>),
37

other-equal-to? (method of
cache-image-snip%), 12

overlay-bitmap, 14
pad-xywh, 43
page-down (method of hierarchical-list%),

33
page-up (method of hierarchical-list%), 33
Path Dialog, 44
path-dialog%, 44

66

Plot, 47
plot, 48
plot-setup (struct), 47
plot-setup-axis-label-font, 47
plot-setup-axis-number-font, 47
plot-setup-axis-pen, 47
plot-setup-grid-pen, 47
plot-setup-grid?, 47
plot-setup-x-axis-label, 47
plot-setup-x-axis-marking, 47
plot-setup-y-axis-label, 47
plot-setup-y-axis-marking, 47
plot-setup?, 47
realign (method of aligned-pasteboard<%>), 5
remove-child (method of graph-snip<%>), 25
remove-links, 27
remove-parent (method of graph-snip<%>),

25
render-image, 51
render-syntax-focused-syntax-
color-style-name, 57

render-syntax-subtitle-color-
style-name, 57

render-syntax/snip, 57
render-syntax/window, 57
resized (method of horizontal-pasteboard%),

6
resized (method of vertical-pasteboard%), 7
run (method of path-dialog%), 46
select (method of hierarchical-list%), 34
select (method of

hierarchical-list-item<%>), 35
select-first (method of

hierarchical-list%), 33
select-in (method of hierarchical-list%),

33
select-last (method of hierarchical-list%),

33
select-next (method of hierarchical-list%),

33
select-out (method of hierarchical-list%),

33

select-prev (method of hierarchical-list%),
33

selectable (method of hierarchical-list%),
32

set-aligned-min-sizes (method of
aligned-pasteboard<%>), 5

set-aligned-min-sizes (method of
aligned-pasteboard-parent<%>), 8

set-allow-selection (method of
hierarchical-list-item<%>), 35

set-allow-shrinking (method of
name-message%), 42

set-arrowhead-params (method of
graph-pasteboard<%>), 20

set-draw-arrow-heads? (method of
graph-pasteboard<%>), 20

set-edge-label-font (method of
graph-pasteboard<%>), 21

set-flip-labels? (method of
graph-pasteboard<%>), 21

set-hidden? (method of name-message%), 41
set-interactive-display-handler, 40
set-interactive-print-handler, 40
set-interactive-write-handler, 40
set-label-visible (method of

switchable-button%), 49
set-link-label, 27
set-message (method of name-message%), 41
set-no-sublists (method of

hierarchical-list-compound-item<%>),
36

set-no-sublists (method of
hierarchical-list%), 31

set-parent-link-label (method of
graph-snip<%>), 25

set-short-title (method of name-message%),
42

set-toggle-state (method of
arrow-toggle-snip%), 9

Snip Canvases, 54
snip-canvas%, 54
snip-class, 57
snip-class, 12

67

snip-class, 52
Snips in a hierarchical-list% Instance,

37
sort (method of hierarchical-list%), 33
stretchable-height (method of

stretchable-snip<%>), 8
stretchable-snip<%>, 8
stretchable-width (method of

stretchable-snip<%>), 8
struct:data-set, 47
struct:plot-setup, 47
Switchable Button, 49
switchable-button%, 49
Syntax Browser, 57
Terminal Window, 59
terminal<%>, 60
TeX Table, 58
tex-shortcut-table, 58
toggle-open/closed (method of

hierarchical-list-compound-item<%>),
37

un/cache-image, 51
update-arrowhead-polygon (method of

graph-pasteboard<%>), 23
user-data (method of

hierarchical-list-item<%>), 35
vertical-pasteboard%, 6
visible-matrix%, 53
White on Black Panel Predicate, 62
white-on-black-panel-scheme?, 62
write-animated-gif, 18
write-gif, 18

68

	1 Aligned Pasteboard
	1.1 aligned-pasteboard<%>
	1.2 horizontal-pasteboard%
	1.3 vertical-pasteboard%
	1.4 aligned-editor-snip%
	1.5 aligned-editor-canvas%
	1.6 aligned-pasteboard-parent<%>
	1.7 stretchable-snip<%>

	2 Arrow Toggle Snip
	3 Bitmap Label
	4 Cache-image Snip
	5 Close Icon
	6 Expandable Snip
	7 GIF and Animated GIF Writing
	8 Graphs
	8.1 graph-pasteboard<%>
	8.2 graph-pasteboard-mixin
	8.3 graph-snip<%>
	8.4 graph-snip-mixin
	8.5 Graph Functions

	9 Hierarchical List Control
	9.1 hierarchical-list%
	9.2 hierarchical-list-item<%>
	9.3 hierarchical-list-compound-item<%>
	9.4 Snips in a hierarchical-list% Instance

	10 Include Bitmap
	11 Interactive Value Port
	12 Name Message
	13 Path Dialog
	14 Plot
	15 Switchable Button
	16 Image Core
	17 Matrix Snip
	18 Snip Canvases
	19 Syntax Browser
	20 TeX Table
	21 Terminal Window
	22 White on Black Panel Predicate
	23 Acknowledgments
	Index
	Index

