
How to Program Racket: a Style Guide
Version 8.16.0.2

Matthias Felleisen, Matthew Flatt, Robby Findler, Jay McCarthy

March 11, 2025

Since 1995 the number of “repository contributors” has grown from a small handful to three
dozen and more. This growth implies a lot of learning and the introduction of inconsistencies
of programming styles. This document is an attempt leverage the former and to start reducing
the latter. Doing so will help us, the developers, and our users, who use the open source code
in our repository as an implicit guide to Racket programming.

To help manage the growth of our code and showcase good Racket style, we need guidelines
that shape the contributions to the code base. These guidelines should achieve some level of
consistency across the different portions of the code base so that everyone who opens files
can easily find their way around.

This document spells out the guidelines and best practices. They cover a range of topics,
from basic work (commit) habits to small syntactic ideas like indentation and naming.

Many pieces of the code base don’t live up to the guidelines yet. Here is how we get started.
When you start a new file, stick to the guidelines. If you need to edit a file, you will need
to spend some time understanding its workings. If doing so takes quite a while due to
inconsistencies with the guidelines, please take the time to fix (portions of) the file. After
all, if the inconsistencies throw you off for that much time, others are likely to have the same
problems. If you help fix it, you reduce future maintenance time. Whoever touches the file
next will be grateful to you. Do run the test suites, and do not change the behavior of the
file.

Also, look over the commit messages. If you see problems with the code deltas, let the
contributor know. If you see a bug fix without docs and tests, let the contributor know. Code
should be viewed by more than one person because a second person is likely to catch logical
mistakes, performance problems, and unintended effects.

Request This document isn’t complete and it isn’t perfect. Consider it a call for improve-
ments and suggestions. If you have ideas, contact the first author via email. If your request
gets ignored, appeal to all four authors.

1

Note The recommendations in this style guide may not jibe with what you grew up with.
(They conflict with some of the ideas that the primary author had about style.) But if you do
write code that ends up in the Racket code base, please follow the recommendations here.
If/when someone else works on your code, this person may “fix” your code if it isn’t in
compliance with the style guide.

2

1 Basic Facts of Life

Favor readers over writers. — Yaron Minsky, JaneStreet, 2010 at NEU/CCS
This ordering is
occasionally wrong.
For example, we
could avoid IEEE
floating point
numbers nearly all
of the time. To
make this precise,
the Racket sqrt
function could
return a rational
number close to the
IEEE float result.
We don’t do such
silly things,
however, because
we have decided to
value speed over
precision in this
context.

Strive to write code that is correct; maintainable; and fast. The ordering of these adjectives
is critical: correct is more important than maintainable; maintainable is more important than
fast; and fast is important to include, because nobody wants to live with slow programs.

This section explains these three points as far as the Racket code base is concerned. The rest
of this guide is to spell out suggestions that should help you make correct, maintainable, and
fast contributions to the Racket code base.

1.1 Correctness and Testing

I have bug reports, therefore I exist. – Matthias, watching Matthew, Robby,
Shriram and others create the original code base

It is the way we choose to fight our bugs that determines our character, not their
presence or absence. – Robby, in response

PLT aims to release good code and to eliminate mistakes as quickly as possible. All software
has mistakes; complete correctness is a perfectionist goal. If mistakes are unknown, the
software isn’t being used. The goal is, however, to ensure some basic level of correctness
before a feature is released and to ensure that the same mistake isn’t introduced again.

We ensure this basic level of correctness with large test suites. Our test suites contain tests
at all levels. In addition to unit tests, you will find test suites that use a “random testing”
strategy and tools, others use fuzz testing, yet others are end-to-end “systems level” tests,
and DrRacket comes with an automatic GUI player that explores its functionality.

For details on testing in the context of the Racket code base, see §2 “Testing”.

1.2 Maintenance

If we wish to create maintainable code, we must ensure that our code is comprehensible.
Code is comprehensible when you can understand its external purpose; when you can guess
from its external purpose at its organization; when the organization and the code live up
to consistent criteria of style; and when the occasional complex part comes with internal
documentation.

Released code must have documentation. Conversely a change to the external behavior of
code must induce a simultaneous change to its documentation. Here “simultaneous” means

3

that the two changes are in the same ’push’ to the code base, not necessarily in the same
’commit’. Also see §8 “Retiquette: Branch and Commit” for more on Git actions.

For style rules on documenting code, refer to the style guide in the Scribble manual. Ide-
ally documentation comes in two parts, possibly located in the same document: a “Guide”
section, which explains the purpose and suggests use cases, and a traditional “Reference”
section, which presents the minutiae. The documentation for HtDP/2e teachpacks is an ex-
ample where the two parts are collocated. Also consider adding examples for each function
and construct in your “Reference” section. Finally, ensure you have all the correct for-
label requires and make use of other useful cross-references.

Having said that, the production of a system like Racket occasionally requires experimen-
tation. Once we understand these new pieces of functionality, though, it is imperative to
discard the “failure branches” of an experiment and to turn the successful part into a main-
tainable package. You may even consider converting your code to Typed Racket eventually.

Without adherence to basic elements of style, code comprehension becomes impossible. The
rest of this document is mostly about these elements of style, including some suggestions on
minimal internal documentation.

1.3 Speed

Making code fast is an endless task. Making code reasonably fast is the goal.

As with correctness, performance demands some “testing.” At a minimum, exercise your
code on some reasonably realistic inputs and some larger ones. Add a file to the test suite
that runs large inputs regularly. For example, a regular test suite for a Universe display
deals with a 50 x 50 display window; one of its stress tests checks whether Universe event
handlers and drawing routines can cope with laptop size displays or even a 30in display. Or,
if you were to write a library for a queue data structure, a regular test suite ensures that it
deals correctly with enqueue and dequeue for small queues, including empty ones; a stress
test suite for the same library would run the queue operations on a variety of queue sizes,
including very large queues of say tens of thousands elements.

Stress tests don’t normally have an expected output, so they never pass. The practice of writ-
ing stress tests exposes implementation flaws or provides comparative data to be used when
choosing between two APIs. Just writing them and keeping them around reminds us that
things can go bad and we can detect when performance degrades through some other door.
Most importantly, a stress test may reveal that your code isn’t implementing an algorithm
with the expected O(.) running time. Finding out that much alone is useful. If you can’t
think of an improvement, just document the weakness in the external library and move on.

And as you read on, keep in mind that we are not perfectionists. We produce reasonable
software.

4

http://docs.racket-lang.org/scribble/how-to-doc.html#%28part._reference-style%29

2 Testing

2.1 Test Suites

This section is specifically for Racketeers who commit to the Racket code base.

Most of our collections come with test suites. These tests suites tend to live in col-
lects/tests/ in the PLT repository, though due to historical reasons, a few collections
come with their own local test suites. If you add a new collection, create a new test suite in
the tests collection.

Run the test suites before you commit. To facilitate testing, we urge you to add a
TESTME.txt file to your collections. Ideally, you may also wish to have a file in this di-
rectory that runs the basic tests. See the 2htdp, which is one of the collections with its own
testing style. The file should describe where the tests are located, how to run these tests,
and what to look for in terms of successes and failures. These files are necessary because
different collections have different needs for testing, and testing evolved in many different
ways in our history.

After you commit, watch for and read(!) DrDr’s emails. Do not ignore them. If you have
tests that are known to fail and fixing this requires a lot of work, consider splitting your test
directory into two parts: success and failure. The former is for tests that should succeed
now, and the latter is for tests that are currently expected to fail. See the Typed Racket testing
arrangement for an example. When you create such failure tests, you may wish to disable
DrDr’s checking like this:

git prop set drdr:command-line "" <file> ...

This is a Racket-specific git command.

2.2 Always Test!

When you debug an existing piece of code, formulate a test case first. Put it into the test suite
for the component so the mistake will never be accidentally re-introduced and add a note that
points to the problem report. Second, modify the code to fix the mistake. Do this second to
be sure you didn’t introduce a mistake in your tests; it is all too easy to think you have fixed
a mistake when in reality your new test just doesn’t properly reveal the old mistake. Third,
re-run the test suite to ensure that the mistake is fixed and no existing tests fail.

If there is no test suite and you aren’t sure how to build one, then ask on the developer
mailing list. Perhaps people will explain why there isn’t one or they will sketch how to
create one. Please don’t ignore the problem. If you cannot build a test suite, you have a few
options:

5

https://github.com/racket/htdp/tree/master/htdp-test/2htdp
http://drdr.racket-lang.org/
https://github.com/racket/typed-racket/tree/master/typed-racket-test
https://github.com/racket/typed-racket/tree/master/typed-racket-test

1. Add functionality to the library to enable testing. Of course, adding functionality
means adding external documentation. Robby and Matthew have done so for the GUI
library, and there is now a large automated test suite for DrRacket. So even GUI
programs can come with extended test suites.

2. Add an end-to-end test that may have to be verified by a human. For example, it might
be hard to test Slideshow, so you could create a slide set and describe what it should
look like so future maintainers to verify when they make changes. Consider this the
last and least desirable option, however.

The lack of tests for some collection will not disappear overnight. But if we all contribute a
little bit, we will eventually expand the test suites to cover the entire code base, and future
generations of maintainers will be grateful.

6

3 Units of Code

3.1 Organization Matters

We often develop units of code in a bottom-up fashion with some top-down planning. There
is nothing surprising about this strategy because we build code atop of existing libraries,
which takes some experimentation, which in turn is done in the REPL. We also want testable
code quickly, meaning we tend to write down those pieces of code first for which we can
develop and run tests. Readers don’t wish to follow our development, however; they wish to
understand what the code computes without necessarily understanding all the details.

So, please take the time to present each unit of code in a top-down manner. This starts with
the implementation part of a module. Put the important functions close to the top, right
below any code and comments as to what kind of data you use. The rule also applies to
classes, where you want to expose public methods before you tackle private methods.
And the rule applies to units, too.

3.2 Size Matters

Keep units of code small. Keep modules, classes, functions and methods small.

A module of 10,000 lines of code is too large. A module of 1,000 lines is tolerable. A
module of 500 lines of code has the right size.

One module should usually contain a class and its auxiliary functions, which in turn deter-
mines the length of a good-sized class.

And a function/method/syntax-case of roughly 66 lines is usually acceptable. The 66 is
based on the length of a screen with small font. It really means "a screen length." Yes,
there are exceptions where functions are more than 1,000 lines long and extremely readable.
Nesting levels and nested loops may look fine to you when you write code, but readers will
not appreciate it keeping implicit and tangled dependencies in their mind. It really helps the
reader to separate functions (with what you may call manual lambda lifting) into a reasonably
flat organization of units that fit on a (laptop) screen and explicit dependencies.

For many years we had a limited syntax transformation language that forced people to create
huge functions. This is no longer the case, so we should try to stick to the rule whenever
possible.

If a unit of code looks incomprehensible, it is probably too large. Break it up. To bring across
what the pieces compute, implement or serve, use meaningful names; see §6.6 “Names”. If
you can’t come up with a good name for such pieces, you are probably looking at the wrong
kind of division; consider alternatives.

7

3.3 Modules and their Interfaces

The purpose of a module is to provide some services:

Equip a module with a short purpose statement.

Often “short” means one line; occasionally you may need several lines.

In order to understand a module’s services, organize the module in three sections below the
purpose statement: its exports, its imports, and its implementation:

good

#lang racket/base

;; the module implements a tv server

(provide
;; launch the tv server function
tv-launch
;; set up a tv client to receive messages from the tv server
tv-client)

;; –-
;; import and implementation section

(require 2htdp/universe htdp/image)

(define (tv-launch)
(universe ...))

(define (tv-client)
(big-bang ...))

If you choose to use provide with contract-out, you may wish to have two require
sections:

• the first one, placed with the provide section, imports the values needed to formulate
the contracts and

• the second one, placed below the provide section, imports the values needed to im-
plement the services.

If your contracts call for additional concepts, define those right below the provide specifi-
cation:

8

good

#lang racket/base

;; the module implements a tv server

(require racket/contract)

(provide
(contract-out
;; initialize the board for the given number of players
[board-init (-> player#/c plain-board/c)]
;; initialize a board and place the tiles
[create-board (-> player#/c (listof placement/c)

(or/c plain-board/c string?))]
;; create a board from an X-expression representation
[board-deserialize (-> xexpr? plain-board/c)]))

(require xml)

(define player# 3)
(define plain-board/c
(instanceof/c (and/c admin-board%/c board%-contracts/c)))

(define placement/c
(flat-named-contract "placement" ...))

;; –-
;; import and implementation section

(require 2htdp/universe htdp/image)

;; implementation:
(define (board-init n)
(new board% ...))

(define (create-board n lop)
(define board (board-init n))
...)

(define board%
(class ... some 900 lines ...))

In the preceding code snippet, xml imports the xexpr? predicate. Since the latter is needed
to articulate the contract for board-deserialize, the require line for xml is a part of the
provide section. In contrast, the require line below the lines imports an event-handling

9

mechanism plus a simple image manipulation library, and these tools are needed only for the
implementation of the provided services.

Prefer specific export specifications over (provide (all-defined-out)).

A test suite section—if located within the module—should come at the very end, including
its specific dependencies, i.e., require specifications.

3.3.1 Require

With require specifications at the top of the implementation section, you let every reader
know what is needed to understand the module.

3.3.2 Provide

A module’s interface describes the services it provides; its body implements these services.
Others have to read the interface if the external documentation doesn’t suffice:

Place the interface at the top of the module.

This helps people find the relevant information quickly.

10

good

#lang racket

;; This module implements
;; several strategies.

(provide
;; Stgy = State -> Action

;; Stgy
;; people’s strategy
human-strategy

;; Stgy
;; tree traversal
ai-strategy)

;; - - - - - - - - - - -
;; implementation

(require "basics.rkt")

(define (general p)
...)

... some 100 lines ...
(define human-strategy
(general create-gui))

... some 100 lines ...
(define ai-strategy
(general traversal))

bad

#lang racket

;; This module implements
;; several strategies.

;; - - - - - - - - - - -
;; implementation

(require "basics.rkt")

;; Stgy = State -> Action

(define (general p)
...)

... some 100 lines ...

(provide
;; Stgy
;; a person’s strategy
human-strategy)

(define human-strategy
(general create-gui))

... some 100 lines ...

(provide
;; Stgy
;; a tree traversal
ai-strategy)

(define ai-strategy
(general traversal))

... some 100 lines ...

As you can see from this comparison, an interface shouldn’t just provide a list of names.
Each identifier should come with a purpose statement. Type-like explanations of data may
also show up in a provide specification so that readers understand what kind of data your
public functions work on.

While a one-line purpose statement for a function is usually enough, syntax should come
with a description of the grammar clause it introduces and its meaning.

good
#lang racket

11

(provide
#; (define-strategy (s:id a:id b:id c:id d:id) action:definition-or-
expression)

;; (define-strategy (s board tiles available score) ...)
;; defines a function from an instance of player to a
;; placement. The four identifiers denote the state of
;; the board, the player’s hand, the places where a
;; tile can be placed, and the player’s current score.
define-strategy)

Use provide with contract-out for module interfaces. Contracts often provide the right
level of specification for first-time readers.

At a minimum, you should use type-like contracts, i.e., predicates that check for the con-
structor of data. They cost almost nothing, especially because exported functions tend to
check such constraints internally anyway and contracts tend to render such checks superflu-
ous.

If you discover that contracts create a performance bottleneck, please report the problem to
the Racket developer mailing list.

3.3.3 Uniformity of Interface

Pick a rule for consistently naming your functions, classes, and methods. Stick to it. For
example, you may wish to prefix all exported names with the name of the data type that they
deal with, say syntax-local.

Pick a rule for consistently naming and ordering the parameters of your functions and meth-
ods. Stick to it. For example, if your module implements an abstract data type (ADT), all
functions on the ADT should consume the ADT-argument first or last.

Finally pick the same name for all function/method arguments in a module that refer to the
same kind of data—regardless of whether the module implements a common data structure.
For example, in "pkgs/racket-index/setup/scribble.rkt", all functions use latex-
dest to refer to the same kind of data, even those that are not exported.

3.3.4 Sections and Sub-modules

Finally, a module consists of sections. It is good practice to separate the sections with com-
ment lines. You may want to write down purpose statements for sections so that readers can
easily understand which part of a module implements which service. Alternatively, consider
using the large letter chapter headings in DrRacket to label the sections of a module.

12

https://github.com/racket/racket/blob/master/pkgs/racket-index/setup/scribble.rkt

With rackunit, test suites can be defined within the module using define/provide-
test-suite. If you do so, locate the test section at the end of the module and require
the necessary pieces for testing specifically for the test suites.

As of version 5.3, Racket supports sub-modules. Use sub-modules to formulate sections,
especially test sections. With sub-modules it is now possible to break up sections into distinct
parts (labeled with the same name) and leave it to the language to stitch pieces together.

fahrenheit.rkt
#lang racket

(provide
(contract-out
;; convert a fahrenheit temperature to a celsius
[fahrenheit->celsius (-> number? number?)]))

(define (fahrenheit->celsius f)
(/ (* 5 (- f 32)) 9))

(module+ test
(require rackunit)
(check-equal? (fahrenheit->celsius -40) -40)
(check-equal? (fahrenheit->celsius 32) 0)
(check-equal? (fahrenheit->celsius 212) 100))

If you develop your code in DrRacket, it will run the test sub-module every time you click
“run” unless you explicitly disable this functionality in the language selection menu. If you
have a file and you just wish to run the tests, use raco to do so:

$ raco test fahrenheit.rkt

Running this command in a shell will require and evaluate the test sub-module from the
fahrenheit.rkt.

3.4 Classes & Units

(I will write something here sooner or later.)

3.5 Functions & Methods

If your function or method consumes more than two parameters, consider keyword argu-
ments so that call sites can easily be understood. In addition, keyword arguments also “thin”
out calls because function calls don’t need to refer to default values of arguments that are

13

considered optional.

Similarly, if your function or method consumes two (or more) optional parameters, keyword
arguments are a must.

Write a purpose statement for your function. If you can, add an informal type and/or contract
statement.

3.6 Contracts

A contract establishes a boundary between a service provider and a service consumer aka
server and client. Due to historical reasons, we tend to refer to this boundary as a module
boundary, but the use of "module" in this phrase does not only refer to file-based or physi-
cal Racket modules. Clearly, contract boundary is better than module boundary because it
separates the two concepts.

When you use provide with contract-out at the module level, the boundary of the phys-
ical module and the contract boundary coincide.

When a module becomes too large to manage without contracts but you do not wish to dis-
tribute the source over several files, you may wish to use one of the following two constructs
to erect contract boundaries internal to the physical module:

• define/contract

• module, as in submodule.

Using the first one, define/contract, is like using define except that it is also possible to
add a contract between the header of the definition and its body. The following code display
shows a file that erects three internal contract boundaries: two for plain constants and one
for a function.

celsius.rkt
#lang racket

(define/contract AbsoluteC real? -273.15)
(define/contract AbsoluteF real? -459.67)

(define/contract (celsius->fahrenheit c)
;; convert a celsius temperature to a fahrenheit temperature
(-> (and/c real? (>=/c AbsoluteC))

(and/c real? (>=/c AbsoluteF)))
;; – IN –
(+ (* 9/5 c) 32))

14

(module+ test
(require rackunit)
(check-equal? (celsius->fahrenheit -40) -40)
(check-equal? (celsius->fahrenheit 0) 32)
(check-equal? (celsius->fahrenheit 100) 212))

To find out how these contract boundaries work, you may wish to conduct some experiments:

1. Add the following line to the bottom of the file:

(celsius->fahrenheit -300)

Save to file and observe how the contract system blames this line and what the blame
report tells you.

2. Replace the body of the celsius->fahrenheit function with

(sqrt c)

Once again, run the program and study the contract exceptions, in particular observe
which party gets blamed.

3. Change the right-hand side of AbsoluteC to 0.0-273.15i, i.e., a complex number.
This time a different contract party gets blamed.

The screen shot below shows that define/contractworks for mutually recursive functions
with modules. This capability is unique to define/contract.

15

In contrast, submodules act exactly like plain modules when it comes to contract boundaries.
Like define/contract, a submodule establishes a contract boundary between itself and the
rest of the module. Any value flow between a client module and the submodule is governed
by contracts. Any value flow within the submodule is free of any constraints.

16

graph-traversal.rkt
#lang racket
...
(module traversal racket
(provide
(contract-out
(find-path (-> graph? node? node? (option/c path?)))))

(require (submod ".." graph) (submod ".." contract))

(define (find-path G s d (visited history0))
(cond
[(node=? s d) '()]
[(been-here? s visited) #f]
[else (define neighbors (node-neighbors G s))

(define there (record s visited))
(define path (find-path* G neighbors d there))
(if path (cons s path) #f)]))

(define (find-path* G s* d visited)
(cond
[(empty? s*) #f]
[else (or (find-path G (first s*) d visited)

(find-path* G (rest s*) d visited))]))

(define (node-neighbors G n)
(rest (assq n G))))

(module+ test
(require (submod ".." traversal) (submod ".." graph))
(find-path G 'a 'd))

Since modules and submodules cannot refer to each other in a mutual recursive fashion,
submodule contract boundaries cannot enforce constraints on mutually recursive functions.
It would thus be impossible to distribute the find-path and find-path* functions from
the preceding code display into two distinct submodules.

17

4 Choosing the Right Construct

Racket provides a range of constructs for the same or similar purposes. Although the Racket
designers don’t think that there is one right way for everything, we prefer certain constructs
in certain situations for consistency and readability.

4.1 Comments

Following Lisp and Scheme tradition, we use a single semicolon for in-line comments (to
the end of a line) and two semicolons for comments that start a line. Think of the second
semicolon as making an emphatic point.

Seasoned Schemers, not necessarily Racketeers, also use triple and quadruple semicolons.
This is considered a courtesy to distinguish file headers from section headers.

In addition to ;, we have two other mechanisms for commenting code: #|...|# for blocks
and #; to comment out an expression. Block comments are for those rare cases when an
entire block of definitions and/or expressions must be commented out at once. Expression
comments—#;—apply to the following S-expression. This makes them a useful tool for de-
bugging. They can even be composed in interesting ways with other comments, for example,
#;#; will comment two expressions, and a line with just ;#; gives you a single-character
“toggle” for the expression that starts on the next line.

The screenshots below illustrate the use of #; and how DrRacket and Emacs (Racket mode)
color such comments by default.

4.2 Definitions

Racket comes with quite a few definitional constructs, including let, let*, letrec, and
define. Except for the last one, definitional constructs increase the indentation level. There-
fore, favor define when feasible.

18

good

#lang racket

(define (swap x y)
(define t (unbox x))
(set-box! x (unbox y))
(set-box! y t))

bad

#lang racket

(define (swap x y)
(let ([t (unbox x)])
(set-box! x (unbox y))
(set-box! y t)))

Warning A let* binding block is not easily replaced with a series of defines because the
former has sequential scope and the latter has mutually recursive scope.

works

#lang racket

(define (print-two f)
(let* ([_ (print (first f))]

[f (rest f)]
[_ (print (first f))]
[f (rest f)])

;; IN
f))

does not
#lang racket

(define (print-two f)
(print (first f))
(define f (rest f))
(print (first f))
(define f (rest f))
;; IN
f)

4.3 Conditionals

Like definitional constructs, conditionals come in many flavors, too. Because cond and its
relatives (case, match, etc) now allow local uses of define, you should prefer them over
if.

good

#lang racket

(cond
[(empty? l) #false]
[else
(define f (first l))
(define r (rest l))
(if (discounted? f)

(rate f)
(curved (g r)))])

bad

#lang racket

(if (empty? l)
#false
(let ([f (first l)]

[r (rest l)])
(if (discounted? f)

(rate f)
(curved (g r)))))

Also, use cond instead of if to eliminate explicit begin.

The above “good” example would be even better with match. In general, use match to
destructure complex pieces of data.

19

You should also favor cond (and its relatives) over if to match the shape of the data defi-
nition. In particular, the above examples could be formulated with and and or but doing so
would not bring across the recursion as nicely.

4.4 Expressions

Don’t nest expressions too deeply. Instead name intermediate results. With well-chosen
names your expression becomes easy to read.

good

#lang racket
(define (next-month d)
(define day (first d))
(define month (second d))
(if (= month 12)

`(,(+ day 1) 1)
`(,day ,(+ month 1))))

bad

#lang racket
(define (next-month d)

(if (= (second d) 12)
`(,(+ (first d) 1)
1)

`(,(first d)
,(+ (second d) 1))))

Clearly “too deeply” is subjective. On occasion it also isn’t the nesting that makes the ex-
pression unreadable but the sheer number of subexpressions. Consider using local definitions
for this case, too.

4.5 Structs vs Lists

Use structs when you represent a combination of a small and fixed number of values. For
fixed length (long) lists, add a comment or even a contract that states the constraints.

If a function returns several results via values, consider using structs or lists when you
are dealing with four or more values.

4.6 Lambda vs Define

While nobody denies that lambda is cute, defined functions have names that tell you what
they compute and that help accelerate reading.

20

good

#lang racket

(define (process f)
(define (complex-step x)
... 10 lines ...)

(map complex-step
(to-list f)))

bad

#lang racket

(define (process f)
(map (lambda (x)

... 10 lines ...)
(to-list f)))

Even a curried function does not need lambda.

good

#lang racket

(define ((cut fx-image) image2)
...)

acceptable

#lang racket

(define (cut fx-image)
(lambda (image2)
...))

The left side signals currying in the very first line of the function, while the reader must read
two lines for the version on the right side.

Of course, many constructs (e.g. call-with-values) or higher-order functions (e.g. fil-
ter) are made for short lambda; don’t hesitate to use lambda for such cases.

4.7 Identity Functions

The identity function is values:

Examples:

> (map values '(a b c))
'(a b c)
> (values 1 2 3)
1
2
3

4.8 Traversals

With the availability of for/fold, for/list, for/vector, and friends, programming with
for loops has become just as functional as programming with map and foldr. With for*
loops, filter, and termination clauses in the iteration specification, these loops are also far

21

more concise than explicit traversal combinators. And with for loops, you can decouple the
traversal from lists. See also for/sum

and for/product
in Racket.good

#lang racket

;; [Sequence X] -> Number
(define (sum-up s)
(for/fold ([sum 0]) ([x s])
(+ sum x)))

;; examples:
(sum-up '(1 2 3))
(sum-up #(1 2 3))
(sum-up
(open-input-string
"1 2 3"))

bad

#lang racket

;; [Listof X] -> Number
(define (sum-up alist)

(foldr (lambda (x sum)
(+ sum x))
0
alist))

;; example:
(sum-up '(1 2 3))

In this example, the for loop on the left comes with two advantages. First, a reader doesn’t
need to absorb an intermediate lambda. Second, the for loop naturally generalizes to other
kinds of sequences. Naturally, the trade-off here is a loss of efficiency; using in-list to
restrict the good example to the same range of data as the bad one speeds up the former.

Note for traversals of user-defined sequences tend to be slow. If performance matters in
these cases, you may wish to fall back on your own traversal functions.

4.9 Functions vs Macros

Define functions when possible, Or, do not introduce macros when functions will do.

good

#lang racket
...
;; Message -> String
(define (name msg)
(first (second msg)))

bad

#lang racket
...
;; Message -> String
(define-syntax-rule (name msg)

(first (second msg)))

A function is immediately useful in a higher-order context. For a macro, achieving the same
goal takes a lot more work.

22

4.10 Exceptions

When you handle exceptions, specify the exception as precisely as possible.

good

#lang racket
...
;; FN [X -> Y] FN -> Void
(define (convert in f out)
(with-handlers

([exn:fail:read? X])
(with-output-to out
(writer f))))

;; may raise exn:fail:read
(define ((writer f))
(with-input-from in
(reader f)))

;; may raise exn:fail:read
(define ((reader f))
... f ...)

bad

#lang racket
...
;; FN [X -> Y] FN -> Void
(define (convert in f out)

(with-handlers
([(lambda _ #t) X])

(with-output-to out
(writer f))))

;; may raise exn:fail:read
(define ((writer f))
(with-input-from in
(reader f)))

;; may raise exn:fail:read
(define ((reader f))
... f ...)

Using (lambda _ #t) as an exception predicate suggests to the reader that you wish to
catch every possible exception, including failure and break exceptions. Worse, the reader
may think that you didn’t remotely consider what exceptions you should be catching.

It is equally bad to use exn? as the exception predicate even if you mean to catch all kinds
of failures. Doing so catches break exceptions, too. To catch all failures, use exn:fail? as
shown on the left:

23

good

#lang racket
...
;; FN [X -> Y] FN -> Void
(define (convert in f out)
(with-handlers

([exn:fail? X])
(with-output-to out
(writer f))))

;; may raise exn:fail:read
(define ((writer f))
(with-input-from in
(reader f)))

;; may raise exn:fail:read
(define ((reader f))
... f ...)

bad

#lang racket
...
;; FN [X -> Y] FN -> Void
(define (convert in f out)

(with-handlers
([exn? X])

(with-output-to out
(writer f))))

;; may raise exn:fail:read
(define ((writer f))
(with-input-from in
(reader f)))

;; may raise exn:fail:read
(define ((reader f))
... f ...)

Finally, a handler for a exn:fail? clause should never succeed for all possible failures
because it silences all kinds of exceptions that you probably want to see:

bad
#lang racket
...
;; FN [X -> Y] FN -> Void
(define (convert in f out)
(with-handlers ([exn:fail? handler])
(with-output-to out
(writer f))))

;; Exn -> Void
(define (handler e)
(cond
[(exn:fail:read? e)
(displayln "drracket is special")]
[else (void)]))

;; may raise exn:fail:read
(define ((writer f))
(with-input-from in
(reader f)))

;; may raise exn:fail:read
(define ((reader f))

24

... f ...)

If you wish to deal with several different kind of failures, say exn:fail:read? and
exn:fail:network?, use distinct clauses in with-handlers to do so and distribute the
branches of your conditional over these clauses.

4.11 Parameters

If you need to set a parameter, use parameterize:

good

#lang racket
...
(define cop
current-output-port)

;; String OPort -> Void
(define (send msg op)
(parameterize ([cop op])
(display msg))

(record msg))

bad

#lang racket
...
(define cop

current-output-port)

;; String OPort -> Void
(define (send msg op)
(define cp (cop))
(cop op)
(display msg)
(cop cp)
(record msg))

As the comparison demonstrates, parameterize clearly delimits the extent of the change,
which is an important idea for the reader. In addition, parameterize ensures that your
code is more likely to work with continuations and threads, an important idea for Racket
programmers.

4.12 Plural

Avoid plural when naming collections and libraries. Use racket/contract and
data/heap, not racket/contracts or data/heaps.

25

5 Scribbling Documentation

This section describes good style for Racket documentation writing.

5.1 Prose and Terminology

In the descriptive body of defform, defproc, etc., do not start with “This ...” Instead, start
with a sentence whose implicit subject is the form or value being described (but only start
the first sentence that way). Capitalize the first word. Thus, the description will often start
with “Returns” or “Produces.” Refer to arguments and sub-forms by name.

Do not use the word “argument” to describe a sub-form in a syntactic form; use the term
“sub-form” instead, reserving “argument” for values or expressions in a function call. Refer
to libraries and languages as such, rather than as “modules” (even though the form to typeset
a library or language name is called racketmodname). Do not call an identifier (i.e., a
syntactic element) a “variable” or a “symbol.” Do not use the word “expression” for a form
that is a definition or might be a definition; use the word “form,” instead. Prefer “function”
to “procedure.”

Use the word “list” only when you mean a run-time value consisting of the empty list and
cons cells; use the word “sequence” in other cases, if you must use any word. For example,
do not write that begin has a “list of sub-forms;” instead, it has a “sequence of sub-forms.”
Similarly, do not refer to a “list of arguments” in a function call; just write “arguments”
if possible, or write “sequence of argument expressions.” (Unfortunately, “sequence” has
acquired a specific run-time meaning, too, but the collision is less severe than the historical
confusion between lists and other entities in Lisp.)

Avoid cut-and-paste for descriptive text. If two functions are similar, consider documenting
them together with deftogether. To abstract a description, consider using explicit prose
abstraction, such as “x is like y, except that ...,” instead of abstracting the source and in-
stantiating it multiple times; often, a prose abstraction is clearer to the reader than a hidden
abstraction in the document implementation.

Hyphenate the words “sub-form” and “sub-expression.”

Use “Windows,” “Mac OS,” and “Unix” for the three “platforms” (as opposed to “systems”)
on which Racket runs. Use “Unix” as a generic term for Unix-like operating systems—
notably including Linux—other than Mac OS. Use “Unix” even when “Gtk” or “the X11
windowing system” would be more precisely correct, but use “X11” as adjective when nec-
essary, such as “X11 display.” Racket runs “on” a platform, as opposed to “under” a plat-
form.

Use “DrRacket” to refer to the Racket programming environment, not “Dr. Racket.”

26

Avoid using a predicate as a noun that stands for a value satisfying the predicate. Instead,
use tech and deftech to establish a connection between an English word or phrase that
describes the class of values and the predicate (or contract). For example, avoid “supply a
path-string?”; prefer “supply a path or string.”

5.2 Typesetting Code

Use id or a name that ends -id in defform to mean an identifier, not identifier, vari-
able, name, or symbol. Similarly, use expr or something that ends -expr for an expres-
sion position within a syntactic form. Use body for a form (definition or expression) in an
internal-definition position—always followed by ...+ in a grammar description. Do not use
expr for something that isn’t exactly an expression, id for something that isn’t exactly an
identifier, etc.; instead, use defform/subs to define a new non-terminal.

Beware of using deftogether to define multiple variants of a syntactic form or procedure,
because each defform or defproc creates a definition point, but each form or procedure
should have a single definition point. (Scribble issues a warning when a binding has multiple
definition points.) Instead, use defproc* or defform*.

For function arguments, use v as the meta-variable for “any value.” Use x as a meta-variable
only for numerical values. Other conventions include lst for a list and proc for a procedure.

Pay attention to the difference between identifiers and meta-variables when using racket,
especially outside of defproc or defform. Prefix a meta-variable with _; for example,

@racket[(rator-expr rand-expr ...)]

would be the wrong way to refer to the grammar of a function call, because it produces
(rator-expr rand-expr ...), where rator-expr and rand-expr are typeset as vari-
ables. The correct description is

@racket[(_rator-expr _rand-expr ...)]

which produces (rator-expr rand-expr ...), where rator-expr and rand-expr are
typeset as meta-variables. The defproc, defform, etc. forms greatly reduce this burden in
descriptions, since they automatically set up meta-variable typesetting for non-literal iden-
tifiers. In defform, be sure to include literal identifiers (i.e., those not meant as variables,
other than the form name being defined) in a #:literals clause.

To typeset an identifier with no particular interpretation—syntax, variable, meta-variable,
etc.—use racketidfont (e.g., as in rand-expr above). Otherwise, use litchar, not
merely racketfont or verbatim, to refer to a specific sequence of characters.

When a syntactic form synthesizes an identifier from a given identifier, use a combination
of racketidfont and racket to describe the identifiers. For example, if id is combined

27

with is- and ? to form is-id?, then implement that identifier as @racketidfont{is-
}@racket[id]@racketidfont{?}.

When using defform to describe a syntactic form, don’t confuse the #:contracts clause
with a grammar specification. Use #:contracts only for expressions within the syntactic
form, and the contract is a run-time constraint—not a syntactic constraint, such as requiring
a sub-form to be an identifier. Use defform/subs for syntactic constraints.

When showing example evaluations, use the REPL-snapshot style:

@examples[
(+ 1 2)
]

See also the scribble/example library and §5.6 “Examples”.

Use four dots,, in place of omitted code, since ... means repetition.

5.3 Typesetting Prose

Refrain from referring to documentation “above” or “below,” and instead have a hyperlink
point to the right place.

In prose, use `` and '' quotation marks instead of ". Use --- for an em dash, and do not
include spaces on either side. Use American style for quotation marks and punctuation at the
end of quotation marks (i.e., a sentence-terminating period goes inside the quotation marks).
Of course, this rule does not apply for quotation marks that are part of code.

Do not use a citation reference (as created by cite) as a noun; use it as an annotation.

Do not start a sentence with a Racket variable name, since it is normally lowercase. For
example, use “The thing argument is...” instead of “thing is...”

Use etc for “etc.” when it does not end a sentence, and include a comma after “etc.” unless
it ends a sentence that is followed by other punctuation (such as a parenthesis).

Do not italicize common Latin phrases and abbreviations, such as “e.g.” and “i.e.”.

5.4 Section Titles

Capitalize all words except articles (“the,” “a,” etc.), prepositions, and conjunctions that are
not at the start of the title.

A manual title should normally start with a suitable keyword or key phrase (such as “Scrib-

28

ble” for this manual) that is in boldface. If the key word is primarily an executable name,
use exec instead of bold. Optionally add further descriptive text in the title after a colon,
where the text starting with the colon is not in boldface.

5.5 Indexing

Document and section titles, identifiers that are documented with defproc, defform, etc.
are automatically indexed, as are terms defined with deftech.

Symbols are not indexed automatically. Use indexed-racket instead of racket for the in-
stance of a symbol that roughly defines the use. For an example, try searching for “truncate”
to find 'truncate as used with open-output-file. Do not use something like (index
"'truncate") to index a symbol, because it will not typeset correctly (i.e., in a fixed-width
font with the color of a literal).

Use index, as-index, and section-index as a last resort. Create index entries for terms
that are completely different from terms otherwise indexed. Do not try to index minor vari-
ations of a term or phrase in an attempt to improve search results; if search fails to find a
word or phrase due to a minor variation, then the search algorithm should be fixed, not the
index entry.

5.6 Examples

Strive to include examples (using examples) with the documentation of every function and
syntactic form. When writing examples, refrain from using nonsense words like “foo” and
“bar.” For example, when documenting member, resist the temptation to write

> (member "foo" '("bar" "foo" "baz"))
'("foo" "baz")

and instead write something like

> (member "Groucho" '("Harpo" "Groucho" "Zeppo"))
'("Groucho" "Zeppo")

29

6 Textual Matters

Simple textual conventions help eyes find pieces of code quickly. Here are some of those
that are easy to check—some automatically and some manually. If you find yourself editing
a file that violates some of the constraints below, edit it into the proper shape. Warning: On rare

occasion a unit test
may depend on the
indentation of a file.
This is extremely
rare and must be
noted at the top so
that readers do not
accidentally
re-indent the file.

6.1 Where to Put Parentheses

Racket isn’t C. Put all closing parentheses on one line, the last line of your code.

good

#lang racket

(define (conversion f)
(* 5/9 (- f 32)))

really bad

#lang racket
(define (conversion f)

(* 5/9 (- f 32)
)

)

You are allowed to place all closing parenthesis on a line by itself at the end of long se-
quences, be those definitions or pieces of data.

acceptable

#lang racket
(define modes

'(edit
help
debug
test
trace
step))

also acceptable

#lang racket
(define turn%

(class object%
(init-field state)

(super-new)

(define/public (place where tile)
(send state where tile))

(define/public (is-placable? place)
(send state legal? place))

))

Doing so is most useful when you expect to add, delete, or swap items in such sequences.

6.2 Indentation

DrRacket indents code and it is the only tool that everyone in PLT agrees on. So use Dr-
Racket’s indentation style. Here is what this means.

30

For every file in the repository, DrRacket’s "indent all" functions leaves the file
alone.

If you prefer to use some other editor (emacs, vi/m, etc), program it so that it follows Dr-
Racket’s indentation style.

Examples:

good

#lang racket

;; drracket style
(if (positive? (rocket-x r))

(launch r)
(redirect (- x)))

bad

#lang racket

;; .el emacs-file if
(if (positive? (rocket-x r))

(launch r)
(redirect (- x)))

Caveat 1: Until language specifications come with fixed indentation rules, we need to use
the default settings of DrRacket’s indentation for this rule to make sense. If you add new
constructs, say a for loop, please contact Robby for advice on how to add a default setting
for the indentation functionality. If you add entire languages, say something on the order
of Typed Racket, see DrRacket support for #lang-based Languages for how to implement
tabbing.

Caveat 2: This rule does not apply to scribble code.

6.3 Tabs

Do not use tab characters in your code. Tabs make it hard to use textual tools like Git or diff
effectively. To disable tabs,

• in DrRacket: you are all set. It doesn’t insert tabs.

• in Emacs: add (setq indent-tabs-mode nil) to your emacs initialization file.

• in vi: :set expandtab

6.4 Line Width

A line in a Racket file is at most 102 characters wide.

If you prefer a narrower width than 102, and if you stick to this width “religiously,” add a
note to the top of the file—right below the purpose statement—that nobody should violate
your file-local rule.

31

This number is a compromise. People used to recommend a line width of 80 or 72 column.
The number is a historical artifact. It is also a good number for several different reasons:
printing code in text mode, displaying code at reasonable font sizes, comparing several dif-
ferent pieces of code on a monitor, and possibly more. So age doesn’t make it incorrect. We
regularly read code on monitors that accommodate close to 250 columns, and on occasion,
our monitors are even wider. It is time to allow for somewhat more width in exchange for
meaningful identifiers.

So, when you create a file, add a line with ;; followed by ctrl-U 99 and -. When you In Vi, the command
is 99a- followed by
Esc.

separate "sections" of code in a file, insert the same line. These lines help both writers and
readers to orient themselves in a file. In Scribble use @; as the prefix.

6.5 Line Breaks

Next to indentation, proper line breaks are critical.

For an if expression, put each alternative on a separate line.

good

#lang racket

(if (positive? x)
(launch r)
(redirect (- x)))

bad

#lang racket

(if (positive? x) (launch r)
(redirect (- x)))

It is acceptable to have an entire if expressions on one line if it fits within the specified line
width (102):

also good
#lang racket

(if (positive? x) x (- x))

Each definition and each local definition deserves at least one line.

good

#lang racket

(define (launch x)
(define w 9)
(define h 33)
...)

bad

#lang racket

(define (launch x)
(define w 9) (define h 33)
...)

All of the arguments to a function belong on a single line unless the line becomes too long,

32

in which case you want to put each argument expression on its own line

good

#lang racket

(place-image img 10 10 background)

;; and

(above img
(- width hdelta)
(- height vdelta)
bg)

bad

#lang racket

(above ufo
10 v-delta bg)

Here is an exception:

good
#lang racket

(overlay/offset (rectangle 100 10 "solid" "blue")
10 10
(rectangle 10 100 "solid" "red"))

In this case, the two arguments on line 2 are both conceptually related and short.

6.6 Names

Use meaningful names. The Lisp convention is to use full English words separated by
dashes. Racket code benefits from the same convention.

good

#lang racket

render-game-state

send-message-to-client

traverse-forest

bad

#lang racket

rndr-st

sendMessageToClient

traverse_forest

Note that _ (the underline character) is also classified as bad Racketeering within names. It
is an acceptable placeholder in syntax patterns, match patterns, and parameters that don’t
matter.

Another widely used convention is to prefix a function name with the data type of the main

33

argument. This convention generalizes the selector-style naming scheme of struct.

good
#lang racket

board-free-spaces board-closed-spaces board-serialize

In contrast, variables use a suffix that indicates their type:

good
#lang racket

(define (win-or-lose? game-state)
(define position-nat-nat (game-state-position game-state))
(define health-level-nat (game-state-health game-state))
(define name-string (game-state-name game-state))
(define name-symbol (string->symbol name-string))
...)

The convention is particularly helpful when the same piece of data shows up in different
guises, say, symbols and strings.

Names are bad if they heavily depend on knowledge about the context of the code. It prevents
readers from understanding a piece of functionality at an approximate level without also
reading large chunks of the surrounding and code.

Finally, in addition to regular alphanumeric characters, Racketeers use a few special charac-
ters by convention, and these characters indicate something about the name:

CharacterKind Example
? predicates and boolean-valued functionsboolean?
! setters and field mutators set!
% classes game-state%
<%> interfaces dc<%>
^ unit signatures game-context^
@ units testing-context@
#% kernel identifiers #%app
/ "with" (a preposition) call/cc

The use of #% to prefix names from the kernel language warns readers that these identifiers Identifiers with the
#% prefix are mostly
used in modules
that define new
languages.

are extremely special and they need to watch out for subtleties. No other identifiers start
with # and, in particular, all tokens starting with #: are keywords.

34

6.7 Graphical Syntax

Do not use graphical syntax (comment boxes, XML boxes, etc).

The use of graphical syntax makes it impossible to read files in alternative editors. It also
messes up some revision control systems. When we figure out how to save such files in an
editor-compatible way, we may relax this constraint.

6.8 Spaces

Don’t pollute your code with spaces at the end of lines.

If you find yourself breaking long blocks of code with blank lines to aid readability, consider
refactoring your program to introduce auxiliary functions so that you can shorten these long
blocks of code. If nothing else helps, consider using (potentially) empty comment lines.

In addition, every pair of expressions on a line should have at least one space between the
two, even if they’re separated by parentheses.

good

#lang racket

(define (f x g)
(cond [(< x 3) (g (g 3))]))

bad

#lang racket

(define(f x g)
(cond[(< x 3)(g(g 3))]))

6.9 End of File

End files with a newline.

35

7 Language and Performance

When you write a module, you first pick a language. In Racket you can choose a lot of
languages. The most important choice concerns racket/base vs racket.

For scripts, use racket/base. The racket/base language loads significantly faster than
the racket language because it is much smaller than the racket.

If your module is intended as a library, stick to racket/base. That way script writers can
use it without incurring the overhead of loading all of racket unknowingly.

Conversely, you should use racket (or even racket/gui) when you just want a convenient
language to write some program. The racket language comes with almost all the batteries,
and racket/gui adds the rest of the GUI base.

7.1 Library Interfaces

Imagine you are working on a library. You start with one module, but before you know it
the set of modules grows to a decent size. Client programs are unlikely to use all of your
library’s exports and modules. If, by default, your library includes all features, you may
cause unnecessary mental stress and run-time cost that clients do not actually use.

In building the Racket language, we have found it useful to factor libraries into different lay-
ers so that client programs can selectively import from these bundles. The specific Racket
practice is to use the most prominent name as the default for the module that includes every-
thing. When it comes to languages, this is the role of racket. A programmer who wishes
to depend on a small part of the language chooses to racket/base instead; this name refers
to the basic foundation of the language. Finally, some of Racket’s constructs are not even
included in racket—consider racket/require for example—and must be required ex-
plicitly in programs.

Other Racket libraries choose to use the default name for the small core. Special names then
refer to the complete library.

We encourage library developers to think critically about these decisions and decide on a
practice that fits their taste and understanding of the users of their library. We encourage
developers to use the following names for different places on the "size" hierarchy:

• library/kernel, the bare minimal conceivable for the library to be usable;

• library/base, a basic set of functionality.

• library, an appropriate "default" of functionality corresponding to either li-
brary/base or library/full.

36

• library/full, the full library functionality.

Keep two considerations in mind as you decide which parts of your library should be in
which files: dependency and logical ordering. The smaller files should depend on fewer
dependencies. Try to organize the levels so that, in principle, the larger libraries can be
implemented in terms of the public interfaces of the smaller ones.

Finally, the advice of the previous section, to use racket/base when building a library,
generalizes to other libraries: by being more specific in your dependencies, you are a re-
sponsible citizen and enable others to have a small (transitive) dependency set.

7.2 Macros: Space and Performance

Macros copy code. Also, Racket is really a tower of macro-implemented languages. Hence,
a single line of source code may expand into a rather large core expression. As you and others
keep adding macros, even the smallest functions generate huge expressions and consume a
lot of space. This kind of space consumption may affect the performance of your project and
is therefore to be avoided.

When you design your own macro with a large expansion, try to factor it into a function call
that consumes small thunks or procedures.

good

#lang racket
...
(define-syntax (search s)
(syntax-parse s
[(_ x (e:expr ...)

(~datum in)
b:expr)

#'(sar/λ (list e ...)
(λ (x) b))]))

(define (sar/λ l p)
(for/fold ([a '()]) ([y l])
(unless (bad? y)
(cons (p y) a))))

(define (bad? x)
... many lines ...)

bad

#lang racket
...
(define-syntax (search s)

(syntax-parse s
[(_ x (e:expr ...)

(~datum in)
b:expr)

#'(begin
(define (bad? x)
... many lines ...)

(define l
(list e ...))

(for/fold ([a '()]) ([x l])
(unless (bad? x)
(cons b a))))]))

As you can see, the macro on the left calls a function with a list of the searchable values and
a function that encapsulates the body. Every expansion is a single function call. In contrast,
the macro on the right expands to many nested definitions and expressions every time it is

37

used.

7.3 No Contracts

Adding contracts to a library is good.

On some occasions, contracts impose a significant performance penalty. For such cases,
we recommend organizing the module into a main module as usual and a submodule called
no-contract so that

• the no-contract submodule provides the functionality without contracts,

• the main module provides the functionality with contracts.

This section explains three strategies for three different situations and levels of implementa-
tion complexity. We will soon supply

a Reference section
in the Evaluation
Model chapter that
explains the basics
of our
understanding of
“safety” and link to
it.

Warning Splitting contracted functionality into two modules in this way renders the code in
the no-contract module unsafe. The creator of the original code might have assumed cer-
tain constraints on some functions’ arguments, and the contracts checked these constraints.
While the documentation of the no-contract submodule is likely to state these constraints,
it is left to the client to check them. If the client code doesn’t check the constraints and the
arguments don’t satisfy them, the code in the no-contract submodule may go wrong in
various ways.

The first and simplest way to create a no-contract submodule is to use the
#:unprotected-submodule functionality of contract-out.

38

good

#lang racket

(define state? zero?)
(define action? odd?)
(define strategy/c
(-> state? action?))

(provide
(contract-out
[human strategy/c]
[ai strategy/c]))

;; - - - - - - - - - - -
;; implementation

(define (general p)
(lambda (_) pi))

(define (human x)
((general 'gui) x))

(define (ai x)
((general 'tra) x))

fast

#lang racket

(define state? zero?)
(define action? odd?)
(define strategy/c

(-> state? action?))

(provide
(contract-out
#:unprotected-submodule no-contract
[human strategy/c]
[ai strategy/c]))

;; - - - - - - - - - - -
;; implementation

(define (general s)
(lambda (_) pi))

(define (human x)
((general 'gui) x))

(define (ai x)
((general 'tra) x))

The module called good illustrates what the code might look like originally. Every exported
functions come with contracts, and the definitions of these functions can be found below
the provide specification in the module body. The fast module on the right requests the
creation of a submodule named no-contract, which exports the same identifiers as the
original module but without contracts.

Once the submodule exists, using the library with or without contracts is straightforward:

39

needs-goodness

#lang racket

(require "fast.rkt")

human
;; comes with contracts
;; as if we had required
;; "good.rkt" itself

(define state1 0)
(define state2
(human state1))

needs-speed

#lang racket

(require (submod "fast.rkt" no-contract))

human
;; comes without
;; a contract

(define state*
(build-list 0 1))

(define action*
(map human state*))

Both modules require the fast module, but needs-goodness on the left goes through the
contracted provide while needs-speed on the right uses the no-contract submodule.
Technically, the left module imports human with contracts; the right one imports the same
function without contract and thus doesn’t have to pay the performance penalty.

Notice, however, that when you run these two client modules—assuming you saved them
with the correct names in some folder—the left one raises a contract error while the right
one binds action* to

'(3.141592653589793 3.141592653589793)

The no-contract submodule generated by this first, easy approach retains the dependency
on racket/contract at both compile and run time. Here is a variant of the above module
that demonstrates this point:

problems-with-unprotected-submodule
#lang racket

(define state? zero?)
(define action? odd?)
(define strategy/c (-> state? action?))

(provide
(contract-out
#:unprotected-submodule no-contract
[human strategy/c]
[ai strategy/c]))

(define (general p) pi)

(define human (general 'gui))

40

(define ai (general 'tra))

Even though the contract-out specification seems to remove the contracts, requiring the
no-contract still raises a contract error:

(require (submod "." server no-contract))

Explanation The no-contract submodule depends on the main module, so the require
runs the body of the main module, and doing so checks the first-order properties of the
exported values. Because human is not a function, this evaluation raises a contract error.

The second way to create a no-contract submodule requires systematic work from the
developer and eliminates the run-time dependency on racket/contract. Here are the two
modules from above, with the right one derived manually from the one on the left:

good2

#lang racket

(define state? zero?)
(define action? odd?)
(define strategy/c
(-> state? action?))

(provide
(contract-out
[human strategy/c]
[ai strategy/c]))

;; - - - - - - - - - - -
;; implementation

(define (general p)
(lambda (_) pi))

(define (human x)
((general 'gui) x))

(define (ai x)
((general 'tra) x))

fast2

#lang racket

(define state? zero?)
(define action? odd?)
(define strategy/c

(-> state? action?))

(provide
(contract-out
[human strategy/c]
[ai strategy/c]))

;; - - - - - - - - - - -
;; implementation

(module no-contract racket
(provide
human
ai)

(define (general s)
(lambda (_) pi))

(define (human x)
((general 'gui) x))

(define (ai x)
((general 'tra) x)))

(require 'no-contract)

41

The fast2 module on the right encapsulates the definitions in a submodule called no-
contract; the provide in this submodule exports the exact same identifiers as the good2
module on the left. The main module requires the submodule immediately, making the
identifiers available in the outer scope so that the contracted provide can re-export them.

While this second way of creating a no-contract submodule eliminates the run-time de-
pendency on racket/contract, its compilation—as a part of the outer module—still de-
pends on this library, which is problematic in a few remaining situations.

The third and last way to create a no-contract submodule is useful when contracts prevents
a module from being used in a context where contracts aren’t available at all—neither at
compile nor at run time. One example is racket/base; another is the contracts library
itself. Again, you may wish you had the same library without contracts. For these cases,
we recommend a file-based strategy one. Assuming the library is located at a/b/c, we
recommend

1. creating a c/ sub-directory with the file no-contract.rkt,

2. placing the functionality into no-contract.rkt,

3. adding (require "c/no-contract.rkt") to c.rkt, and

4. exporting the functionality from there with contracts.

Once this arrangement is set up, a client module in a special context racket/base or
for racket/contract can use (require a/b/c/no-contract). In a regular module,
though, it would suffice to write (require a/b/c) and doing so would import contracted
identifiers.

7.4 Unsafe: Beware

Racket provides a number of unsafe operations that behave like their related, safe variants
but only when given valid inputs. They differ in that they eschew checking for performance
reasons and thus behave unpredictably on invalid inputs.

As one example, consider fx+ and unsafe-fx+. When fx+ is applied to a non-fixnum?, it
raises an error. In contrast, when unsafe-fx+ is applied to a non-fixnum?, it does not raise
an error. Instead it either returns a strange result that may violate invariants of the run-time
system and may cause later operations (such as printing out the value) to crash Racket itself.

Do not use unsafe operations in your programs unless you are writing software that builds
proofs that the unsafe operations receive only valid inputs (e.g., a type system like Typed
Racket) or you are building an abstraction that always inserts the right checks very close to
the unsafe operation (e.g., a macro like for). And even in these situations, avoid unsafe op-
erations unless you have done a careful performance analysis to be sure that the performance
improvement outweighs the risk of using the unsafe operations.

42

8 Retiquette: Branch and Commit

This section is specifically for Racketeers who commit to the Racket code base.

Working with the bug database requires one critical work flow rule.

Working with the code base requires style rules for actions on the repository. Currently we
are using Git and below are a few rules on how to act in this context.

8.1 Bugfix Workflow

Re-assign bug reports only after you can eliminate your own code as the source of a bug.
The best way to accomplish this goal is to create a new example that re-creates the problem
without involvement of your code. When you have such a code snippet, re-assign the code
to the person responsible for the apparently buggy component and submit the code snippet
as part of the justification.

8.2 Commit

New feature commit: Commit the new feature, its tests, and its documentations as you
wish, but please push them together. However, do not commit states that don’t run. (In Git,
this means ’commit’ and not just ’push’.)

Bug fix commit: When you fix a bug, make sure to commit (1) the code delta, (2) the
new test case, and (3) the revised docs (if applicable) in one batch. If the creation of a single
commit is too complex of if you wish to factor out one of the commits, please push all pieces
at once. That way the code base is always in a state where code, tests, and documentation
are in sync, and readers of commit messages can evaluate changes completely.

Style change commit: Submit changes to the style of a file separately from changes to its
behavior (new features, bugs).

Write meaningful commit messages. The first line (say 72 chars) should provide a concise
summary of the commit. If the message must be longer, edit the rest of the message in your
text editor and leave a blank line between the summary line and the rest of the message, like
this:

some quick description

more blah blah blah, with more
details about the actual change

The advantage of a blank line is that git log and other tools display the commit messages

43

properly. If you prefer the -m command line flag over an editor, you can use several of them
in a row.

The message for bug report fixes should contain “Close PR NNNNN” so that bug reports are
automatically closed.

To avoid merge commits, update your repository with git pull --rebase.

8.3 No Commit “Bombs,” Please

On occasion, you will find that you are spending a significant amount of time working with
someone else’s code. To avoid potentially painful merges, please (1) inform the author when
you create the branch and (2) set the mail hook so that Git sends a commit message to both
you and the original author. Furthermore, you should test your changes on the actual code
base. In some cases it is acceptable to delay such tests, e.g., when you will not know for a
long time whether the performance implications allow a commit to the PLT repository.

44

9 Acknowledgment

The rules borrow from many sources, including numerous style guides that the first author re-
read in preparation of writing this document. The first author also conducted focus sessions
with the members of PLT at various sites, and these sessions produced many insights about
coding style. Thank you to everyone for sitting through these sessions and for reading early
drafts of the style guide. Eli Barzilay and Jacob Matthews took the time to write up their
thoughts on various issues, and their help is much appreciated. Rouben Rostamian spotted
some problems in an early draft of the report.

45

10 Todo List, Call for Contributions

1. Write a section on when macros, when functions.

2. Write a section on how to design test cases.

3. Write a section on how to check the stressability of your software.

4. Find and link to good/bad examples in the code base.

46

	1 Basic Facts of Life
	1.1 Correctness and Testing
	1.2 Maintenance
	1.3 Speed

	2 Testing
	2.1 Test Suites
	2.2 Always Test!

	3 Units of Code
	3.1 Organization Matters
	3.2 Size Matters
	3.3 Modules and their Interfaces
	3.3.1 Require
	3.3.2 Provide
	3.3.3 Uniformity of Interface
	3.3.4 Sections and Sub-modules

	3.4 Classes & Units
	3.5 Functions & Methods
	3.6 Contracts

	4 Choosing the Right Construct
	4.1 Comments
	4.2 Definitions
	4.3 Conditionals
	4.4 Expressions
	4.5 Structs vs Lists
	4.6 Lambda vs Define
	4.7 Identity Functions
	4.8 Traversals
	4.9 Functions vs Macros
	4.10 Exceptions
	4.11 Parameters
	4.12 Plural

	5 Scribbling Documentation
	5.1 Prose and Terminology
	5.2 Typesetting Code
	5.3 Typesetting Prose
	5.4 Section Titles
	5.5 Indexing
	5.6 Examples

	6 Textual Matters
	6.1 Where to Put Parentheses
	6.2 Indentation
	6.3 Tabs
	6.4 Line Width
	6.5 Line Breaks
	6.6 Names
	6.7 Graphical Syntax
	6.8 Spaces
	6.9 End of File

	7 Language and Performance
	7.1 Library Interfaces
	7.2 Macros: Space and Performance
	7.3 No Contracts
	7.4 Unsafe: Beware

	8 Retiquette: Branch and Commit
	8.1 Bugfix Workflow
	8.2 Commit
	8.3 No Commit "Bombs," Please

	9 Acknowledgment
	10 Todo List, Call for Contributions

