Contract Profiling

Version 9.0.0.1

October 20, 2025

This package provides support for profiling the execution of §7 “Contracts”.

Contracts are a great mechanism for enforcing invariants and producing good error mes-
sages, but they introduce run-time checking which may impose significant costs. The goal
of the contract profiler is to identify where these costs are, and provide information to help
control them.

The simplest way to use this tool is to use the raco contract-profile command, which
takes a file name as argument, and runs the contract profiler on the main submodule of that
file (if it exists), or on the module itself (if there is no main submodule). The tool’s output
is decribed below.

(require contract-profile) package: contract-profile

In addition to using raco contract-profile, it is possible to invoke the contract pro-
filer programmatically. This allows for profiling particular portions of programs, and for
controlling the output.

(contract-profile option ... body ...)
option = #:module-graph-view-file module-graph-view-file
| #:boundary-view-file boundary-view-file

| #:boundary-view-key-file boundary-view-key-file

| #:report-space-efficient? report-space-efficient?

Produces a report of the performance costs related to contract checking in body on standard
output.

Specifically, displays the proportion of body’s running time that was spent checking con-
tracts and breaks that time down by contract, and then breaks down the cost of each contract
between the different contracted values that use it.

If report-space-efficient? is non-false, space-efficient contracts are marked specially


https://pkgs.racket-lang.org/package/contract-profile

in the report. When using raco contract-profile, this is controlled using the --
report-space-efficient flag.

Additional visualizations are available on-demand, controlled by keyword arguments which
specify their destination files. An argument of #f (the default) disables that visualization.

* Module Graph View: Shows a graph of modules (nodes) and the contract boundaries
(edges) between them that were crossed while running body .

The weight on each contract boundary edge corresponds to the time spent checking
contracts applied at this boundary. Modules written in Typed Racket are displayed in
green and untyped modules are displayed in red.

These graphs are rendered using Graphviz, and are only available if the contract pro-
filer can locate a Graphviz install.

When using raco contract-profile, controlled using the --module-graph-
view-file flag.

* Boundary View: Shows a detailed view of how contract checking costs are spread out
across contracted functions, broken down by contract boundary.

Contracted functions are shown as rectangular nodes colored according to the cost of
checking their contracts. Edges represent function calls that cross contract boundaries
and cause contracts to be applied. These edges are extracted from profiling informa-
tion, and therefore represent incomplete information. Because of this, the contract pro-
filer sometimes cannot determine the callers of contracted functions. Non-contracted
functions that call contracted functions across a boundary are shown as gray ellipsoid
nodes. Nodes are clustered by module. Each node reports its (non-contract-related)
self time. In addition, contracted function nodes list the contract boundaries the func-
tion participates in, as well as the cost of checking the contracts associated with each
boundary. For space reasons, full contracts are not displayed on the graph and are
instead numbered. The mapping from numbers to contracts is found in boundary-
view-key-file.

These graphs are rendered using Graphviz, and are only available if the contract pro-
filer can locate a Graphviz install.

When using raco contract-profile, controlled using the --boundary-view-
file and --boundary-view-key-file flags.

Examples:

> (define/contract (sum* numbers)
(-> (listof integer?) integer?)
(for/fold ([total 0])
([n (in-list numbers)])
(+ total n)))
> (contract-profile (sum* (range (expt 10 7))))



Running time is 47.847, contracts
1094/2287 ms

(-> (listof integer?) integer?) 1094
ms
#<blame>::-1

sums 1094
ms
49999995000000

> (define/contract (vector-max* vec-of-numbers)

(-> (vectorof 1list?) integer?)

(for/fold ([total 0])

([numbers (in-vector vec-of-numbers)])
(+ total (sum* numbers))))

> (contract-profile (vector-max* (make-vector 10 (range (expt 10 7)))))
Running time is 93.76% contracts
4180/4458 ms

(-> (vectorof (listof any/c)) integer?) 1939
ms
#<blame>::-1

vector-max* 1939
ms
(-> (listof integer?) integer?) 2241
ms
#<blame>::-1

sum* 2241
ms
499999950000000

(contract-profile-thunk
thunk
[#:module-graph-view-file module-graph-view-file
#:boundary-view-file boundary-view-file
#:boundary-view-key-file boundary-view-key-file
#:report-space-efficient? report-space-efficient?])
— any
thunk : (-> any)
module-graph-view-file : (or/c path-string #f) = #f
boundary-view-file : (or/c path-string #f) = #f
boundary-view-key-file : (or/c path-string #f) = #f
report-space-efficient? : any/c = #f



Like contract-profile, but as a function which takes a thunk to profile as argument.
Example:

> (contract-profile-thunk
(lambda ()
(sum* (range (expt 10 7)))))
Running time is 44.16% contracts
908/2056 ms

(-> (listof integer?) integer?) 908
ms
#<blame>::-1

sum* 908
ms
49999995000000



