Framework: Racket GUI Application Framework

Version 9.0.0.1

Robert Bruce Findler
and Matthew Flatt

October 20, 2025

(require framework) package: [gui-1ib

The framework provides a number of mixins, classes and functions designed to help you
build a complete application program on top of the racket/gui library.

Thanks Thanks to Shriram Krishnamurthi, Cormac Flanagan, Matthias Felleisen, lan Bar-
land, Gann Bierner, Richard Cobbe, Dan Grossman, Stephanie Weirich, Paul Steckler, Se-
bastian Good, Johnathan Franklin, Mark Krentel, Corky Cartwright, Michael Ernst, Kennis
Koldewyn, Bruce Duba, and many others for their feedback and help.

https://pkgs.racket-lang.org/package/gui-lib

1 Framework Libraries Overview

* Entire Framework: framework

This library provides all of the definitions and syntax described in this manual.

¢ Test Suite Engine: framework/test
This library provides all of the definitions beginning with test: described in this
manual.

» GUI Utilities framework/gui-utils
This libraries provides all of the definitions beginning with gui-utils: described in
this manual.

* Preferences framework/preferences
This library provides a subset of the names of the framework library, namely those

for manipulating preference settings and is designed to be used from racket.

* Splash Screen framework/splash This library provides support for a splash screen.
See framework/splash for more.

* Notify-boxes framework/notify This library provides boxes and controls that allow
listeners to execute when their value changes. See framework/splash for more.

2 Application

(application:current-app-name) — string?
(application:current-app-name name) — void?
name : string?

This is a parameter specifying the name of the current application. It is used in the help
menu (see frame: standard-menusY) and in frame titles (see frame:editor¥). The first
case in the case-lambda returns the current name, and the second case in the case-lambda
sets the name of the application to name.

3 Autosave

autosave:autosavable<’> : interface?

Classes that implement this interface can be autosaved.

(send an-autosave:autosavable do-autosave) — void?

This method is called when the object is registered to be autosaved (see
autosave:register).

(autosave:register obj) — void?
obj : (and/c (is-a?/c autosave:autosavable<y>)
(is-a?/c editor<y%>))

Adds obj to the list of objects to be autosaved. When it is time to autosave, the do-
autosave method of the object is called. This method is responsible for performing the
autosave.

There is no need to de-register an object because the autosaver keeps a weak reference to the
object; i.e., the autosaver does not keep an object from garbage collection.

autosave:current-toc-path : (make-parameter path?)

The path to the a table-of-contents file for the autosave files.

The parameter is inspected only when the autosave timer expires, which will not happen
until after the first call to autosave:register

autosave:toc-path : path?

The default value of the parameter autosave:current-toc-path, and the path to the
autosave that DrRacket uses.

(autosave:restore-autosave-files/gui [table]) — void?
table : (or/c #f (listof (list/c (or/c #f absolute-path?) absolute-path?)))
= #f

Opens a GUI to ask the user about recovering any autosave files left around from crashes or
other catastrophic failures.

If table is not supplied, then the file in autosave:current-toc-path is consulted to
find the files to restore. If it is supplied, then it is used to find the files to recover. Each inner
list names the original file and the autosave file. If the original file was never saved, then the
first element of the list is #£.

This function doesn’t return until the user has finished restoring the autosave files. It uses
yield to handle events, however.)

4 Canvas

canvas:basic<)> : interface?
implements: editor-canvas

canvas:basic-mixin : (class? . -> . class?)
argument extends/implements: editor-canvas?,
result implements: canvas:basic<}>

canvas:color<y> : interface?
implements: canvas:basic<%>

Mixins that implement this interface initialize the background color of the canvas to the
value of the 'framework:basic-canvas-background preference. Adds a callback so
that when that preference is modified, the background color changes.

canvas:color-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<}>
result implements: canvas:color<%>

canvas:delegate<),> : interface?
implements: canvas:basic<y>

This class is part of the delegate window implementation.

canvas:delegate-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<)>
result implements: canvas:delegate<’>

Provides an implementation of canvas:delegate<),>.

(send a-canvas:delegate on-superwindow-show shown?) — void?
shown? : boolean?

Overrides on-superwindow-show in window<%>.

Notifies the delegate window when the original window is visible. When invis-
ible, the blue highlighting is erased.

canvas:info<%> : interface?
implements: canvas:basic<y>

canvas:info-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<})>
result implements: canvas:info<%>

(send a-canvas:info on-focus) — void?

Overrides on-focus in editor-canvasb.

sets the canvas that the frame displays info about.
(send a-canvas:info set-editor) — void?
Overrides set-editor in editor-canvasb.

Calls update-info to update the frame’s info panel.

canvas:wide-snip<%> : interface?
implements: canvas:basic<%>

Any canvasY, that matches this interface will automatically resize selected snips when its

size changes. Use add-tall-snip and add-wide-snip to specify which snips should be
resized.

(send a-canvas:wide-snip recalc-snips) — void?

Recalculates the sizes of the wide snips.

(send a-canvas:wide-snip add-wide-snip snip) — void?
snip : (is-a?/c snip%)

Snips passed to this method will be resized when the canvas’s size changes.
Their width will be set so they take up all of the space from their lefts to the
right edge of the canvas.

(send a-canvas:wide-snip add-tall-snip snip) — void?
snip : (is-a?/c snip%)

Snips passed to this method will be resized when the canvas’s size changes.
Their height will be set so they take up all of the space from their tops to the
bottom of the canvas.

canvas:wide-snip-mixin : (class? . -> . class?)
argument extends/implements: canvas:basic<})>
result implements: canvas:wide-snip</>

This canvas maintains a list of wide and tall snips and adjusts their heights and widths when
the canvas’s size changes.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send a-canvas:wide-snip on-size width
height) — void?
width : dimension-integer?
height : dimension-integer?

Overrides on-size in editor-canvas’,.
Adjusts the sizes of the marked snips.

See add-wide-snip and add-tall-snip.

canvas:basic) : class?
superclass: (canvas:basic-mixin editor-canvas,)

canvas:colory, : class?
superclass: (canvas:color-mixin canvas:basic})

canvas:info% : class?
superclass: (canvas:info-mixin canvas:basicy)

canvas:delegate}, : class?
superclass: (canvas:delegate-mixin canvas:basic,)

canvas:wide-snip}, : class?
superclass: (canvas:wide-snip-mixin canvas:basic,)

5 Color Model

(color-model:rgb->xyz r g b) — color-model:xyz?
r : number?
g . number?
b : number?

Converts a color represented as a red-green-blue tuple (each value from 0 to 255) into an
XYZ tuple. This describes a point in the CIE XYZ color space.

(color-model:rgb-color-distance red-a
green-a
blue-a
red-b
green-b
blue-b) — number?

red-a : number?
green-a . number?
blue-a : number?
red-b : number?
green-b : number?
blue-b : number?

This calculates a distance between two colors. The smaller the distance, the closer the colors

should appear to the human eye. A distance of 10 is reasonably close that it could be called
the same color.

This function is not symmetric in red, green, and blue, so it is important to pass red, green,
and blue components of the colors in the proper order. The first three arguments are red,
green and blue for the first color, respectively, and the second three arguments are red green
and blue for the second color, respectively.

(color-model:xyz->rgb x y z) — (list/c number? number? number?)
X : number?
y . number?
Z : number?

Converts an XYZ-tuple (in the CIE XYZ colorspace) into a list of values representing an
RGB-tuple.

(color-model:xyz? val) — boolean?
val : any/c

10

Determines if val an xyz color record.

(color-model:xyz-x xyz) — number?
Xyz . color-model:xyz?

Extracts the x component of xyz.

(color-model:xyz-y xyz) — number?
xyz : color-model:xyz?

Extracts the y component of xyz.

(color-model:xyz-z xyz) — number?
xyz : color-model:xyz?

Extracts the z component of xyz.

(color-model:hsl->rgb hue
saturation
lightness) — byte? byte? byte?
hue : (real-in 0 360)
saturation : (real-in 0 1)
lightness : (real-in 0 1)

Computes rgb color values for the hsl color inputs.

(color-model:rgb->hsl red green blue) — (real-in 0 360)
(real-in 0 1)
(real-in 0 1)

red : byte?
green : byte?
blue : byte?

Computes hsl color values for the rgb color inputs.

11

6 Color Prefs

(color-prefs:set-default/color-scheme pref-sym
black-on-white-color
white-on-black-color)

— void?

pref-sym : symbol?
black-on-white-color : (or/c (is-a?/c color’) string?)
white-on-black-color : (or/c (is-a?/c color’,) string?)

Registers a preference whose value will be updated when the user clicks on one of the color
scheme default settings in the preferences dialog, but does not give it a name that can be
configured by a color scheme; consider using color-prefs:add-color-scheme-entry
instead.

Also calls preferences:set-default and preferences:set-un/marshall with ap-
propriate arguments to register the preference.

(color-prefs:register-color-preference
pref-name
style-name
color/sd
|[white-on-black-color
#:background background])
— void?
pref-name : symbol?
style-name : string?
color/sd : (or/c (is-a?/c color%) (is-a?/c style-deltal))
white-on-black-color : (or/c string? (is-a?/c color¥%) #f) = #f
background : (or/c (is-a?/c colory) #f) = #f

This function registers a color preference but does not give it a name that can be configured
by a color scheme; consider using color-prefs:add-color-scheme-entry instead.

This function calls preferences:set-default and preferences:set-un/marshall to
install the pref for pref-name, using color/sd as the default color. The preference is
bound to a style-deltaj, and initially the style-delta, changes the foreground color
to color/sd, unless color/sd is a style delta already, in which case it is just used directly.
Then, it calls editor:set-standard-style-list-delta passing the style-name and
the current value of the preference pref-name.

Finally, it adds calls preferences:add-callback to set a callback for pref-name that
updates the style list when the preference changes.

If white-on-black-color is not #f, then the color of the color/sd argument is used

12

in combination with white-on-black-color to register this preference with color-
prefs:set-default/color-scheme.

If background is not #£, then it is used to construct the default background color for the
style delta.

(color-prefs:add-background-preferences-panel) — void?

Adds a preferences panel that configures the background color for editor:basic-mixin.

(color-prefs:add-to-preferences-panel name
func
[#:style style]) — void?
name : string?
func : (-> (is-a?/c vertical-panel),) void?)
style : (listof (or/c 'border
'hscroll 'auto-hscroll 'hide-hscroll
'vscroll 'auto-vscroll 'hide-vscroll))

='0

Calls func with the subpanel of the preferences coloring panel that corresponds to name.

The panel is created as a vertical-panel, passing style as the style argument to its
constructor.

Changed in version 1.61 of package gui-1ib: Added the #:style argument.

(color-prefs:build-color-selection-panel

parent

pref-sym

style-name

example-text

[#:background? background?])
— void?

parent : (is-a?/c area-container<y>)
pref-sym : symbol?

style-name : string?

example-text : string?

background? : boolean? = #f

Builds a panel with a number of controls for configuring a font: its color (including a back-
ground configuration if background is #t) and check boxes for bold, italic, and underline.
The parent argument specifies where the panel will be placed. The pref-sym should be a

13

preference (suitable for use with preferences:get and preferences:set). The style-
name specifies the name of a style in the style list returned from editor:get-standard-
style-list and example-text is shown in the panel so users can see the results of their
configuration.

(color-prefs:normalize-color-selection-button-widths parent)
— void?
parent : (is-a?/c area-container<y>)

Given a panel that was passed to color-prefs:build-color-selection-panel (per-
haps multiple times), color-prefs:normalize-color-selection-button-widths
will ensure that the panel contents line up with each other, by making sure that the color
selection buttons all have the same size.

Added in version 1.72 of package gui-1ib.

(color-prefs:marshall-style-delta style-delta) — printable/c
style-delta : (is-a?/c style-delta)

Builds a printed representation for a style-delta.

(color-prefs:unmarshall-style-delta marshalled-style-delta)
— (or/c false/c (is-a?/c style-deltal,))
marshalled-style-delta : printable/c

Builds a style delta from its printed representation. Returns #f if the printed form cannot be
parsed.

(color-prefs:white-on-black) — any

Sets the colors registered by color-prefs:register-color-preference to their white-
on-black variety.

(color-prefs:black-on-white) — any

Sets the colors registered by color-prefs:register-color-preference to their black-
on-white variety.

14

(color-prefs:add-color-scheme-entry name
black-on-white-color
white-on-black-color
[#:style style
#:bold? bold
#:underline? underline?
#:italic? italic?
#:background background])

— void?

name : symbol?
black-on-white-color : (or/c string? (is-a?/c color’))
white-on-black-color : (or/c string? (is-a?/c color%))
style : (or/c #f string?) = #f
bold : (if style (or/c boolean? 'base) #f) = #f
underline? : (if style boolean? #f) = #f
italic? : (if style boolean? #f) = #f
background : (if style
(or/c #f string? (is-a?/c color%))
#£)

#f

Registers a new color or style named name for use in the color schemes. If style is not #f,
a new style is registered; if not a color is registered.

If a style is registered, the style is stored in the style list returned from editor:get-
standard-style-list.

Use color-prefs:lookup-in-color-scheme to get the current value of the entry.

(color-prefs:add-color-scheme-preferences-panel [#:extras extras])
— void?
extras : (-> (is-a?/c panel’,) any) = void

Adds a panel for choosing a color-scheme to the preferences dialog.

The extras argument is called after the color schemes have been added to the preferences
panel. It is passed the panel containing the color schemes and can add items to it.

(color-prefs:register-info-based-color-schemes) — void?

Reads the "info.rkt" file in each collection, looking for the key 'framework:color-
schemes. Each definition must bind a list of hash tables, each of which introduces a new
color scheme. Each hash table should have keys that specify details of the color scheme, as
follows:

15

e 'name: must be either a string or a symbol; it names the entire color scheme. If it is a
symbol and string-constant?, it is passed to dynamic-string-constant to get
the name; otherwise it is used as the name directly. If absent, the name of the directory
containing the "info.rkt" file is used as the name.

e 'white-on-black-base?: must be a boolean indicating if this color-scheme is
based on an inverted color scheme. If absent, it is #£.

e 'inverted-base-name: must be a symbol or #f. If it is a symbol, the symbol
indicates the name of a color scheme that corresponds to the present scheme, but
in the inverted color mode. If absent, it defaults to #f. When a color scheme has an
inverted color scheme named, that color scheme must have the opposite boolean in
its 'white-on-black-base? field and, under Mac OS, switching to and from dark
mode will switch between the two color schemes. Note that both schemes must name
the opposite mode color scheme.

e 'example: must be a string and is used in the preferences dialog to show an example
of the color scheme. If absent, the string used in the “Classic” color scheme is used.

e 'colors: must be a non-empty list whose first position is a symbol, naming a color
or style entry in the color scheme. The rest of the elements describe the style or color.
In either case, an element may be a vector describing a color, see below. If the name
corresponds to a style, then the list may also contain

— Symbols 'bold, 'italic, or 'underline, changing the font style or underline
status, or

— A prefab struct "#s(background ,vec), specifying the background color
where vec is a vector describing a color.

A vector describing a color is either a vector of three bytes describing the red, green
and blue component of a non-transparent color, or a vector of three bytes followed by
areal number between 0 and 1, giving the alpha value in addition to color components.
In other words, a vector satisfying the following contract describes a color:

(or/c (vector/c byte? byte? byte? #:flat? #t)
(vector/c byte? byte? byte? (between/c 0.0 1.0) #:flat? #t))

Examples:

' ((framework:syntax-color:scheme:symbol
#(0 0 0))
(framework:syntax-color:scheme: comment
#(194 116 31) italic)
(framework:syntax-color:scheme:error
bold underline #(255 0 0))
(plt:htdp:test-coverage-off
#(255 165 0)
#s (background #(0 0 0))))

16

The names of the colors and styles are extensible; new ones can be added by call-
ing color-prefs:add-color-scheme-entry. When color-prefs:register-info-
based-color-schemes is called, it logs the active set of color names and style names to
the color-scheme logger at the info level. So, for example, starting up DrRacket like this:
racket -W info@color-scheme -1 drracket will print out the styles used in your ver-
sion of DrRacket.

Changed in version 1.68 of package gui-1ib: Added 'inverted-base-name.

(color-prefs:set-current-color-scheme name) — void?
name : symbol?

Sets the current color scheme to the scheme named name, if name is one of the color
schemes. Otherwise, sets the color scheme to the default color scheme.

(color-prefs:get-current-color-scheme-name) — symbol?

Returns the current color scheme’s name.

(color-prefs:known-color-scheme-name? name) — boolean?
name : any/c

Returns #t if the input is a symbol? that names a color or style that is an entry in the current
color scheme.

In order to return #t, name must have been passed as the first argument to color-
prefs:add-color-scheme-entry.

(color-prefs:get-inverted-base-color-scheme name)
— (or/c #f symbol?)
name : symbol?

Returns the inverted-base color scheme name of color scheme named name, if it has one.

Added in version 1.68 of package gui-1ib.

(color-prefs:color-scheme-style-name? name) — boolean?
name : any/c

Returns #t if name is a known color scheme name, and is connected to a style.

17

In order to return #t, name must have been passed as the first argument to color-
prefs:add-color-scheme-entry and the #:style argument must have also been
passed.

(color-prefs:color-scheme-color-name? name) — boolean?
name : any/c

Returns #t if name is a known color scheme name, and is connected to a color.

In order to return #t, name must have been passed as the first argument to color-
prefs:add-color-scheme-entry and the #:style argument must have also been omit-
ted or be #f.

(color-prefs:lookup-in-color-scheme name)
— (if (color-prefs:color-scheme-style-name? name)
(is-a?/c style-deltay)
(is-a?/c color%))
name : color-prefs:known-color-scheme-name?

Returns the current style delta or color associated with name.

(color-prefs:set-in-color-scheme name
new-val) — void?
name : color-prefs:known-color-scheme-name?
new-val : (if (color-prefs:color-scheme-style-name? name)
(is-a?/c style-deltal)
(is-a?/c color%))

Updates the current color or style delta associated with name in the current color scheme.

(color-prefs:register-color-scheme-entry-change-callback
name
fn
[weak?
#:style-list style-list])
— void?
name : color-prefs:known-color-scheme-name?
fn : (if weak?
(procedure-arity-includes/c 1)
(-> (if (color-prefs:color-scheme-style-name? name)
(is-a?/c style-deltal,)
(is-a?/c color’))
any))

18

weak? : boolean? = #f
style-list : (or/c #f (is-a?/c style-list%)) = #f

Registers a callback that is invoked whenever the color mapped by name changes. Changes
may happen due to calls to color-prefs:set-in-color-scheme or due to calls to
color-prefs:set-current-color-scheme.

If weak? is #t, the fn argument is held onto weakly; otherwise it is held onto strongly.
If style-1ist is not #f then calls to all of the registered callbacks (including fn) are
bracketed by calls to begin-style-change-sequence and end-style-change-sequence for the

given style-1list/.

Changed in version 1.68 of package gui-1ib: added the style-1ist argument

(color-prefs:get-color-scheme-names) — set? set?

Returns two sets; the first is the known color scheme names that are just colors and the
second is the known color scheme names that are styles.

These are all of the names that have been passed to color-prefs:add-color-scheme-
entry.

19

7 Color

color:text<)> : interface?
implements: text:basic<}>
color-textoid<¥%>

This interface describes how coloring is stopped and started for text that knows how to color
itself. It also describes how to query the lexical and s-expression structure of the text.

(send a-color:text start-colorer token-sym->style
get-token
pairs) — void?
token-sym->style : (-> symbol? string?)
get-token : (or/c (-> input-port?
(values any/c
(or/c symbol?
(hash/c symbol? any/c #:immutable #t))
(or/c symbol? #f)
(or/c exact-positive-integer? #f)
(or/c exact-positive-integer? #f)))
(-> input-port?
exact-nonnegative-integer?
(not/c dont-stop?)
(values any/c
(or/c symbol?
(hash/c symbol? any/c #:immutable #t))
(or/c symbol? #f)
(or/c exact-positive-integer? #f)
(or/c exact-positive-integer? #f)
exact-nonnegative-integer?
any/c)))
pairs : (listof (list/c symbol? symbol?))

Starts tokenizing the buffer for coloring and parenthesis matching.

The main argument is get-token. It accepts either three arguments or only the
first of these three:

* input-port — An input port to parse from. The port is not necessarily
the same for every call to get-token.

* offset — An integer that can be added to the position of input-port
to obtain an absolute coordinate within a text stream.

* mode — An arbitrary value that is #f when input-port represents the
start of the input stream, and otherwise is the last result of get-token as
returned for the just-preceding token.

20

The mode value is intended to record the state of parsing in a way that
allows it to be restarted mid-stream. The mode value should not be a
mutable value; if part of the input stream is re-tokenized, the mode saved
from the immediately preceding token is given again to the get-token
function.

The get-token function produces either 7 results or the first 5 of these results,
depending on how many arguments get-token accepts:

* token — A value intended to represent the textual component of the to-
ken. This value is ignored by start-colorer.

* attribs — Either a symbol or a hash table with symbol keys. Except
for 'eof, a symbol by itself is treated the same as a hash table that maps
"type to the symbol. A get-token that accepts only a single argument
must always produce just a symbol for attribs.

The symbol 'eof (not a hash table) must be returned as attribs to indi-
cate when all the tokens have been consumed.

The value of 'color in attribs is passed to token-sym->style,
which returns a style name that that is used to “color” the token. If ' color
is not mapped by attribs, then the value of 'type is used, instead. In
addition, if ' comment? is mapped to a true value, then the token’s color is
adjusted to de-emphasize it relative to surrounding text.

Certain values for 'type in attribs are treated specially. The symbols
'white-space and 'comment should always be used for whitespace and
comment tokens, respectively. The symbol 'no-color can be used to
indicate that although the token is not whitespace, it should not be colored.
These and other keys in attribs can be used by tools that call
classify-positionk.

* paren — A symbol indicating how the token should be treated by the
parenthesis matcher, or #f if the token does not correspond to an open or
close parentheses. A parens symbol should be one of the symbols in the
pairs argument.

Parenthesis matching uses this symbol in combination with parens to de-
termine matching pairs and to enable navigation options that take matches
into account.

For example, suppose pairs is '(C[Cl [)[) CICI [1]) (begin
end)). This means that there are three kinds of parentheses. Any token
that has 'begin as its paren value will act as an open for matching to-
kens that have 'end as paren. Similarly, any token with ' [] | will actas a
closing match for tokens with ' | [|. When trying to correct a mismatched
closing parenthesis, each closing symbol in pairs will be converted to a
string and tried as a closing parenthesis.

» start — The starting position of the token (or #f for an end-of-file). This
number is relative to the third result of (port-next-location input-
port).

21

* _end — The ending position of the token (or #f for an end-of-file). This
is number is also relative to the port’s location, like start.

* backup — A backup distance, which indicates the maximum number of
characters to back up (counting from the start of the token) and for re-
parsing after a change to the editor within the token’s region. A backup
is typically 0.

* mode (the new one) — A value that is passed to a later call to get-token
to continue parsing the input program.

If mode is a dont-stop structure, then the value inside the structure is
considered the new mode, and the colorer is guaranteed not to be inter-
rupted until at least the next call to get-token that does not return a
dont-stop structure (unless, of course, it returns an 'eof value for at-
tribs, in which case the new mode result is ignored). A dont-stop re-
sult is useful, for example, when a lexer has to read ahead in input-port
to decide on the tokens at this point; that read-ahead will be inconsistent if
an edit happens, so a dont-stop structure ensures that no changes to the
buffer happen between calls.

As mentioned above, the mode result should not be a mutable value. Also,
it should be comparable with equal? to short-circuit reparsing when get-
token returns the same results for an input position.

The token-sym->style and parens arguments are used as described above
with the attribs and paren results, respectively.

The get-token argument’s contract above reflects just the basic constraints
it should satisfy. It is also expected to satisfy the lexer*/c contract, which
attempts to check the following additional invariants:

 Every position in the buffer must be accounted for in exactly one token,
and every token must have a non-zero width. Accordingly, get-token
must never refuse to accept certain token streams (e.g., by raising an ex-
ception). The idea is that, while a normal parser for the language could
signal errors by helpfully raising exceptions, a colorer should instead re-
turn a token with the type 'error and possibly continue to color the re-
mainder of the buffer. For example, the racket-1lexer identifiers strings
that have malformed escape characters inside strings by returning 'error,
but then continuing to color the rest of text as normal.

* The token returned by get-token must rely only on the contents of the
input port argument plus the mode argument. This constraint means that
the tokenization of some part of the input cannot depend on earlier parts
of the input except through the mode (and implicitly through the starting
positions for tokens).

* A change to the stream must not change the tokenization of the stream
prior to the token immediately preceding the change plus the backup dis-
tance. In the following example, this invariant does not hold for a zero
backup distance: If the buffer contains

22

"123
and the tokenizer treats the unmatched " as its own token (a string error
token), and separately tokenizes the 1 2 and 3, an edit to make the buffer
look like

"1 23"
would result in a single string token modifying previous tokens. To handle
these situations, get-token can treat the first line as a single token, or it
can precisely track backup distances.

The get-token function is usually be implemented with a lexer using the
parser-tools/lex library, but can be implemented directly. For example,
here is a lexer that colors alternating characters as if they were symbols and
strings:

(A4 (port offset mode)
(define-values (line col pos) (port-next-
location port))
(define ¢ (read-char port))
(cond
[(eof-object? c)
(values c 'eof #f #f #f 0 mode)]
[else
(values (string c)
(if mode 'symbol 'string)
#f
(+ pos)
(+ pos 1)
0
(not mode))]))

Changed in version 1.63 of package gui-1ib: Added support for hash-table attribs results.

(send a-color:text stop-colorer [clear-colors?]) — void?
clear-colors? . boolean? = #t

Stops coloring and paren matching the buffer.
If clear-colors? is true all the text in the buffer will have its style set to
Standard.

(send a-color:text force-stop-colorer stop?) — void?
stop? : boolean?

Causes the entire tokenizing/coloring system to become inactive. Intended for
debugging purposes only.

stop? determines whether the system is being forced to stop or allowed to wake
back up.

23

(send a-color:text is-stopped?) — boolean?

Indicates if the colorer for this editor has been stopped, or not.

(send a-color:text is-frozen?) — boolean?

Indicates if this editor’s colorer is frozen. See also freeze-colorer and
thaw-colorer.

(send a-color:text freeze-colorer) — void?

Keep the text tokenized and paren matched, but stop altering the colors.

freeze-colorer will not return until the coloring/tokenization of the entire
text is brought up-to-date. It must not be called on a locked text.

(send a-color:text thaw-colorer [recolor?
retokenize?]) — void?
recolor? : boolean? = #t
retokenize? : boolean? = #f

Start coloring a frozen buffer again.

If recolor? is #t, the text is re-colored. If it is #f the text is not recolored.
When recolor? is #t, retokenize? controls how the text is recolored. #f
causes the text to be entirely re-colored before thaw-colorer returns using the
existing tokenization. #t causes the entire text to be retokenized and recol-
ored from scratch. This will happen in the background after the call to thaw-
colorer returns.

(send a-color:text reset-region start end) — void?
start : exact-nonnegative-integer?
end : (or/c exact-nonnegative-integer? 'end)

Set the region of the text that is tokenized.

(send a-color:text reset-regions regions) — void?
regions : (listof (list/c exact-nonnegative-integer?
(or/c exact-nonnegative-integer? 'end)))

Sets the currently active regions to be regions. The numbers in the regions
argument must be increasing and only the last number can be replaced with
'end.

Note that editing outside of the active regions violates (unchecked) invariants
of this class and edits that move text across region boundaries may also violate
(unchecked) invariants. DrRacket uses this method in the interactions window
in a way that disallows edits anywhere except the last region and the last region
has 'end as its second argument.

24

(send a-color:text get-spell-check-strings) — boolean?

Returns #t if the colorer will attempt to spell-check string constants.

(send a-color:text set-spell-check-strings b?) — void?
b? : boolean?

If called with #t, tell the colorer to spell-check string constants. Otherwise,
disable spell-checking of string constants.

(send a-color:text get-spell-check-text) — boolean?

Returns #t if the colorer will attempt to spell-check text (e.g., the words inside
{ and } in Scribble documents).

(send a-color:text set-spell-check-text b?) — void?
b? : boolean?

If called with #t, tell the colorer to spell-check text constants. Otherwise, dis-
able spell-checking of text.

(send a-color:text set-spell-current-dict dict) — void?
dict : (or/c string? #f)

Sets the current dictionary used with aspell to dict. If dict is #£, then the
default dictionary is used.

(send a-color:text get-spell-current-
dict) — (or/c string? #f)

Get the current dictionary used with aspell. If the result is #f, then the default
dictionary is used.

(send a-color:text get-spell-suggestions pos)
— (or/c #f (list/c exact-nonnegative-integer?
exact-nonnegative-integer?
(listof string?)))
pos : exact-nonnegative-integer?

Returns suggested spelling corrections (and the span of the entire word) to re-
place the word at pos. If the word is spelled correctly or spell checking is
disabled, returns #£.

(send a-color:text get-regions)
— (listof (list/c exact-nonnegative-integer? (or/c exact-nonnegative-integer? 'end)))

25

This returns the list of regions that are currently being colored in the editor.

(send a-color:text get-matching-paren-string paren-str
[get-side])
— (or/c string? #f)
paren-str : string?
get-side : (or/c 'open 'close 'either) = 'either

Returns a string of a paren matching the other side of paren-str as specified by
the pairs argument of start-colorer, if one exists on the side indicated by
get-side. If there is no match on the corresponding side, including if paren-
str contains any characters other than a single paren token (even whitespace),
returns #f instead.

(send a-color:text skip-whitespace position
direction
comments?)

— exact-nonnegative-integer?

position : exact-nonnegative-integer?
direction : (or/c 'forward 'backward)
comments? . boolean?

Returns the next non-whitespace character.

Starts from position and skips whitespace in the direction indicated by direc-
tion. If comments? is true, comments are skipped as well as whitespace. skip-
whitespace determines whitespaces and comments by comparing the token type
to 'white-space and 'comment.

Must only be called while the tokenizer is started.

(send a-color:text backward-match position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Skip all consecutive whitespaces and comments (using skip-whitespace)im-
mediately preceding the position. If the token at this position is a close, return
the position of the matching open, or #f if there is none. If the token was an
open, return #£. For any other token, return the start of that token.

Must only be called while the tokenizer is started.

(send a-color:text backward-containing-sexp position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

26

Return the starting position of the interior of the (non-atomic) s-expression con-
taining position, or #f is there is none.

Must only be called while the tokenizer is started.

(send a-color:text forward-match position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Skip all consecutive whitespaces and comments (using skip-whitespace)im-
mediately following position. If the token at this position is an open, return the
position of the matching close, or #f if there is none. For any other token, return
the end of that token.

Must only be called while the tokenizer is started.

(send a-color:text insert-close-paren position
char
flash?
fixup?
[smart-skip?]) — void?
position : exact-nonnegative-integer?
char : char?
flash? : boolean?
fixup? : boolean?
smart-skip? : (or/c #f 'adjacent 'forward) = #f

Inserts a close parentheses, or, under scenarios described further below, skips
past a subsequent one. The position is the place to put the parenthesis, or
from which to start searching for a subsequent one, and char is the parenthesis
to be added (e.g., that the user typed). If fixup? is true, the right kind of
closing parenthesis will be chosen from the set previously passed to start-
colorer—but only if an inserted char would be colored as a parenthesis (i.e.,
with the 'parenthesis classification). Otherwise, char will be inserted (or
skipped past), even if it is not the right kind. If f1ash? is true, the matching
open parenthesis will be flashed when the insertion or skip is done.

The "smart skipping" behavior of this function is determined by smart-skip?.
If smart-skip? is false, no skip will take place. A parenthesis will simply
be inserted as described in the paragraph above. When smart-skip?is 'ad-
jacent, if the next token after position, ignoring whitespace and comments
(see skip-whitespace), is a properly matched closing parenthesis (which may
not necessarily match char if fixup? is true) then simply move the cursor to
the position immediately after that already present closing parenthesis. When
smart-skip?is 'forward, this function attempts to determine the closest pair

27

of properly balanced parentheses around position. If that exists, then the cur-
sor position skips to the position immediately after the closing parenthesis of
that outer pair. If a properly balanced outer pair is not present, then the cursor
attempts to skip immediately after the next closing parenthesis that occurs af-
ter position, ignoring whitespace, comments, and all other tokens. In both
non-false cases of smart-skip?, if there is no subsequent parenthesis, then a
parenthesis is simply inserted, as previously described.

(send a-color:text classify-position position)
— (or/c symbol? #f)
position : exact-nonnegative-integer?

Return a symbol for the lexer-determined token type for the token that contains
the item after position. Using classify-position is the same as using
classify-position* and checking for a 'type value in the resulting hash.

Must only be called while the tokenizer is started.
(send a-color:text classify-position* position)

— (or/c (and/c (hash/c symbol? any/c) immutable?) #f)
position : exact-nonnegative-integer?

Return a hash table for the lexer-determined token attributes for the token that
contains the item after position. The result is #f if no attributes are available
for the position.

Must only be called while the tokenizer is started.
Added in version 1.63 of package gui-1ib.
(send a-color:text get-token-range position)
— (or/c #f exact-nonnegative-integer?)

(or/c #f exact-nonnegative-integer?)
position : exact-nonnegative-integer?

Returns the range of the token surrounding position, if there is a token there.

This method must be called only when the tokenizer is started.

(send a-color:text get-backward-navigation-limit start)
— exact-integer?
start : exact-integer?

Returns a limit for backward-matching parenthesis starting at position start.

Added in version 1.65 of package gui-1ib.

(send a-color:text on-lexer-valid valid?) — any
valid? : boolean?

28

Refine this method with augment.

This method is an observer for when the lexer is working. It is called when the
lexer’s state changes from valid to invalid (and back). The valid? argument
indicates if the lexer has finished running over the editor (or not).

The default method just returns (void?).
(send a-color:text is-lexer-valid?) — boolean?
This method is final, so it cannot be overridden.

Indicates if the lexer is currently valid for this editor.

color:text-mixin : (class? . -> . class?)
argument extends/implements: text:basic<¥%>
result implements: color:text<y>

Adds the functionality needed for on-the-fly coloring and parenthesis matching based on
incremental tokenization of the text.

(send a-color:text lock) — void?

Overrides lock in editor<%>.

(send a-color:text on-focus) — void?

Overrides on-focus in editor<y>.

(send a-color:text after-edit-sequence) — void?
Augments after-edit-sequence in editor<y>.

(send a-color:text after-set-position) — void?
Augments after-set-position in text.

(send a-color:text after-change-style) — void?
Augments after-change-style in text/.

(send a-color:text on-set-size-constraint) — void?
Augments on-set-size-constraint in text¥.

(send a-color:text after-insert) — void?

29

Augments after-insert in text¥.
(send a-color:text after-delete) — void?

Augments after-delete in text¥.

color:text), : class?
superclass: (color:text-mixin text:keymap¥)

color:text-mode<%> : interface?

(send a-color:text-mode set-get-token get-token) — void?
get-token : procedure?

Sets the get-token function used to color the contents of the editor.

See start-colorer’s get-token argument for the contract on this method’s
get-token argument.

(send a-color:text-mode set-matches matches) — void?
matches : (listof (list/c symbol? symbol?))

Sets the matching parentheses pairs for this editor.

See start-colorer’s pairs argument for more information about this argu-
ment.

Added in version 1.60 of package gui-1ib.

color:text-mode-mixin : (class? . -> . class?)
argument extends/implements: mode:surrogate-text<¥%>
result implements: color:text-mode<’>

This mixin adds coloring functionality to the mode.

(new color:text-mode-mixin
[[get-token get-token]
[token-sym->style token-sym->style]
[matches matches]])

30

— (is-a?/c color:text-mode-mixin)
get-token : lexer = default-lexer
token-sym->style : (symbol? . -> . string?)
= (1 (x) "Standard")
matches : (listof (list/c symbol? symbol?)) = null

The arguments are passed to start-colorer.
(send a-color:text-mode on-disable-surrogate) — void?
Overrides on-disable-surrogate in mode: surrogate-text<y>.
(send a-color:text-mode on-enable-surrogate) — void?

Overrides on-enable-surrogate in mode: surrogate-text<>.

color:text-mode) : class?
superclass: (color:text-mode-mixin mode:surrogate-text?)

(color:get-parenthesis-colors-table)
— (listof (list/c symbol? string? (vectorof (is-a?/c color%)) (or/c 'low 'high)))

Returns a table of colors that get used for parenthesis highlighting. Each entry in the table
consists of a symbolic name, a name to show in a GUI, the color to use, and the priority
argument to pass to text:basic<)> highlight-range when highlighting the parens.
Generally the priority should be 'low if the color is solid (@=1) but can be 'high if the
a component is small.

When an entry in the table has multiple colors, they are used to show the nesting structure in
the parentheses.

color:misspelled-text-color-style-name : string?

The name of the style used to color misspelled words. See also get-spell-check-strings.

31

8 Comment Box

comment-box:snip’, : class?
superclass: editor-snip:decorated
extends: readable-snip<%>

This snip implements the comment boxes that you see in DrRacket.

(send a-comment-box:snip make-editor) — (is-a?/c text%)

Overrides make-editor in editor-snip:decoratedi.

Makes an instance of

(racket:text-mixin text:keymapl)

(send a-comment-box:snip make-snip) — (is-a?/c comment-
snip%)

Overrides make-snip in editor-snip:decoratedy.

Returns an instance of the comment-snip} class.

(send a-comment-box:snip get-corner-bitmap)
— (is-a?/c bitmap%)

Overrides get-corner-bitmap in editor-snip:decorated-mixin.
Returns the semicolon bitmap from the file
(build-path (collection-path "icons") "semicolon.gif")

(send a-comment-box:snip get-position)
— (symbols 'left-top 'top-right)

Overrides get-position in editor-snip:decorated-mixin.
Returns 'left-top
(send a-comment-box:snip get-text) — string

Overrides get-text in snip¥.

Returns the same string as the super method, but with newlines replaced by
newline-semicolon-space.

(send a-comment-box:snip get-menu) — (is-a?/c popup-menu)

32

Overrides get-menu in editor-snip:decorated-mixin.

Returns a menu with a single item to change the box into semicolon comments.

comment-box:snipclass : (is-a?/c snip-class¥%)

The snip-class?, object used by comment-box:snip¥.

33

9 Decorated Editor Snip

(require framework/decorated-editor-snip) package: [gui-1ib

This library is here for backwards compatibility. The functionality in it has moved into the
framework proper, in the|§10 “Editor Snip”|section.

decorated-editor-snip/

Use editor-snip:decoratedy instead.

decorated-editor-snipclass’,

Use editor-snip:decorated-snipclassy instead.

decorated-editor-snip-mixin

Use editor-snip:decorated-mixin instead.

decorated-editor-snip<>

Use editor-snip:decorated<y> instead.

34

https://pkgs.racket-lang.org/package/gui-lib

10 Editor Snip

editor-snip:decorated<’,> : interface?
implements: editor-snip%

(send an-editor-snip:decorated get-corner-bitmap)
— (or/c false/c (is-a?/c bitmap’))

Returns a bitmap that is drawn in the upper-right corner of this snip.

(send an-editor-snip:decorated get-color)
— (or/c string? (is-a?/c color’))

Returns the color used to draw the background part of the snip.

(send an-editor-snip:decorated get-menu)
— (or/c false/c (is-a?/c popup-menu’))

Returns a popup menu that is used when clicking on the top part of the snip.

(send an-editor-snip:decorated get-position)
— (symbols 'top-right 'left-top)

Returns the location of the image and the clickable region. The symbol ' top-
right indicates top portion is clickable and icon on right. The symbol 'left-
top means left portion is clickable and icon on top.

(send an-editor-snip:decorated reset-min-sizes) — void?

Sets the minimum sizes based on the result of get-corner-bitmap.

editor-snip:decorated-mixin : (class? . -> . class?)
argument extends/implements: editor-snip%
result implements: editor-snip:decorated<’%>

(send an-editor-snip:decorated get-corner-bitmap)
— (or/c false/c (is-a?/c bitmap%))

Returns #f.

35

(send an-editor-snip:decorated get-color)
— (or/c string? (is-a?/c color))

Returns

(if (preferences:get 'framework:white-on-black?)
"white"
"black")

(send an-editor-snip:decorated get-menu)
— (or/c false/c (is-a?/c popup-menu))

Returns #f.

(send an-editor-snip:decorated get-position)
— (symbols 'top-right 'left-top)

Returns 'top-right.

editor-snip:decorated), : class?
superclass: (editor-snip:decorated-mixin editor-snip%)

(new editor-snip:decorated’ ...superclass-args...)
— (is-a?/c editor-snip:decorated})

Invokes the super constructor with the keyword editor as a call to make-
editor.

(send an-editor-snip:decorated make-snip)
— (is-a?/c editor-snip:decorated)

This method should return an instance of the class it is invoked in. If you create a
subclass of this class, be sure to override this method and have it create instances
of the subclass.

(send an-editor-snip:decorated make-editor)
— (is-a?/c editor<%>)

Creates an editor to be used in this snip.

36

(send an-editor-snip:decorated copy)
— (is-a?/c editor-snip:decoratedy)

Uses the make-editor and make-snip methods to create a copy of this snip,
as follows:

#lang (let ([snip (make-snip)]) (send snip set-editor
(send (get-editor) copy-self)) (send snip set-style
(get-style)) snip)

editor-snip:decorated-snipclassy, : class?
superclass: snip-class

(send an-editor-snip:decorated-snipclass make-snip stream-
in)

— (is-a?/c editor-snip:decorated<’>)

stream-in : (is-a?/c editor-stream-in})

Returns an instance of editor-snip:decoratedy.

(send an-editor-snip:decorated-snipclass read stream-in)
— (is-a?/c editor-snip:decorated<’>)
stream-in : (is-a?/c editor-stream-iny)

Calls make-snip to get an object and then invokes its editor<%>’s read-
from-file method in order to read a snip from stream-in, eg:

(let ([snip (make-snip stream-in)])

(send (send snip get-editor) read-from-file stream-
in #f)
snip)

37

11 Editor

editor:basic<’%> : interface?
implements: editor<y%>

Classes matching this interface support the basic editor<%> functionality required by the
framework.

(send an-editor:basic has-focus?) — boolean?

This function returns #t when the editor has the keyboard focus. It is imple-
mented using: on-focus

(send an-editor:basic local-edit-sequence?) — boolean?

Indicates if this editor is in an edit sequence. Enclosing buffer’s edit-sequence
status is not considered by this method.

See begin-edit-sequence and end-edit-sequence for more info about
edit sequences.

(send an-editor:basic run-after-edit-sequence thunk
[tag]) — void?
thunk : (-> void?)
tag : (or/c symbol? #f) = #f

This method is used to install callbacks that will be run after any edit-sequence
completes.

The procedure thunk will be called immediately if the edit is not in an edit-
sequence. If the edit is in an edit-sequence, it will be called when the edit-
sequence completes.

If tag is a symbol, the thunk is keyed on that symbol, and only one thunk
per symbol will be called after the edit-sequence. Specifically, the last call to
run-after-edit-sequence’s argument will be called.

(send an-editor:basic get-top-level-window)
— (or/c #f (is-a?/c top-level-window<%>))

Returns the top-level-window<%> currently associated with this buffer.

Note that the result of this method may not currently be displaying this editor
(e.g., the editor may be for a tab that’s not currently active in DrRacket).

(send an-editor:basic save-file-out-of-date?) — boolean?

38

Returns #t if the file on disk has been modified, by some other program.

(send an-editor:basic save-file/gui-error [filename
format
show-errors?])
— boolean?
filename : (or/c path? #f) = #f
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)
= 'same
show-errors? : boolean? = #t

This method is an alternative to save-file. Rather than showing errors via the
original stdout, it opens a dialog with an error message showing the error.

It returns #t if no error occurred and cancel was not clicked, and it returns #£ if
an error occurred or cancel was clicked.

(send an-editor:basic load-file/gui-error [filename
format
show-errors?])
— boolean?
filename : (or/c string? #f) = #f
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)
= 'guess
show-errors? . boolean? = #t

Loads filename, much like load-file. Rather than showing errors via the
original stdout, however, it shows a dialog box when an error occurs.

The result indicates if an error happened (the error has already been shown to
the user). It returns #t if no error occurred and #f if an error occurred.

(send an-editor:basic revert/gui-error [show-

errors?]) — boolean?
show-errors? : boolean? = #t

Reverts the content of the editor to the file on the disk, showing errors to the
user via load-file/gui-error.

The result indicates if an error happened (the error has already been shown to
the user). It returns #t if no error occurred and #f if an error occurred.

If get-filename returns #f or if the filename is a temporary filename, the
buffer is unchanged and the result is #£.

(send an-editor:basic on-close) — void?

This method is called when an editor is closed. Typically, this method is called
when the frame containing the editor is closed, but in some cases an editor

39

is considered “closed” before the frame it is in is closed (e.g., when a tab in
DrRacket is closed), and thus on-close will be called at that point.

See also can-close? and close.

Default: does nothing.

(send an-editor:basic can-close?) — boolean?

This method is called to query the editor if is okay to close the editor. Although
there is no visible effect associated with closing an editor, there may be some
cleanup actions that need to be run when the user is finished with the editor
(asking if it should be saved, for example).

See also on-close and close.

Returns #t.

(send an-editor:basic close) — boolean?

This method is merely

(if (can-close?)
(begin (on-close) #t)
#£)

It is intended as a shorthand, helper method for closing an editor. See also
can-close? and on-close.

(send an-editor:basic get-filename/untitled-name) — string?

Returns the printed version of the filename for this editor. If the editor doesn’t
yet have a filename, it returns a symbolic name (something like "Untitled").

(send an-editor:basic get-pos/text event)
— (or/c false/c number?)
(or/c false/c (is-a?/c editor<¥>))
event : (is-a%?/c mouse-event},)

Calls get-pos/text-dc-location with the x and y coordinates of event.

(send an-editor:basic get-pos/text-dc-location x
y)
— (or/c false/c number?)
(or/c false/c (is-a?/c editor<¥>))
x . exact-integer?
y : exact-integer?

40

This method’s first result is #f when the mouse event does not correspond to a
location in the editor.

If the second result is a text, object, then the first result will be a position in
the editor and otherwise the first result will be #£f. The position is found by
calling find-position, using #f as the at-eol? argument.

The editor<%> object will always be the nearest enclosing editor containing
the point (x, y).

editor:basic-mixin : (class? . -> . class?)
argument extends/implements: editor<y>
result implements: editor:basic<%>

This provides the basic editor services required by the rest of the framework.
The result of this mixin uses the same initialization arguments as the mixin’s argument.

Each instance of a class created with this mixin contains a private keymap/ that is chained
to the global keymap via: (send keymap chain-to-keymap (keymap:get-global)
#£).

This installs the global keymap keymap: get-global to handle keyboard and mouse map-
pings not handled by keymap. The global keymap is created when the framework is invoked.

(send an-editor:basic can-save-file? filename
format) — boolean?
filename : string?
format : symbol?

Augments can-save-file? in editor<y>.

Checks to see if the file on the disk has been modified out side of this editor,
using save-file-out-of-date?. If it has, this method prompts the user to be
sure they want to save.

See also editor:doing-autosave? and editor:silent-cancel-on-
save-file-out-of-date?.

(send an-editor:basic after-save-file success?) — void?
success? : boolean?

Augments after-save-file in editor<¥%>.

If the current filename is not a temporary filename, this method calls
handler:add-to-recentwith the current filename.

to add the new filename to the list of recently opened files.

Additionally, updates a private instance variable with the modification time of
the file, for using in implementing save-file-out-of-date?.

41

(send an-editor:basic after-load-file success?) — void?
success? : boolean?

Augments after-load-file in editor<%>.
Updates a private instance variable with the modification time of the file, for
using in implementing save-file-out-of-date?

(send an-editor:basic on-focus on?) — void?
on? : boolean?

Overrides on-focus in editor<y>.

Manages the state to implement has-focus?

(send an-editor:basic on-edit-sequence) — boolean?

Augments on-edit-sequence in editor<y>.

Always returns #t. Updates a flag for local-edit-sequence?

(send an-editor:basic after-edit-sequence) — void?

Augments after-edit-sequence in editor<y>.

Helps to implement run-after-edit-sequence.

(send an-editor:basic on-new-box type) — (is-a?/c editor-

snip%)
type : (or/c 'pasteboard 'text)

Overrides on-new-box in editor<y%>.

Creates instances of pasteboard:basic) or text:basic, instead of the built
in pasteboardy and text classes.

(send an-editor:basic on-new-image-snip filename
kind
relative-path?
inline?)
— (is-a?/c image-snip%)
filename : (or/c path? false/c)
kind : (one-of/c 'unknown 'gif 'jpeg 'xbm 'xpm 'bmp 'pict)
relative-path? : any/c
inline? : any/c

Overrides on-new-image-snip in editor<y>.

42

(super on-new-image-snip
(if (eq? kind 'unknown) 'unknown/mask kind)
relative-path?
inline?)

(send an-editor:basic get-file directory) — string
directory : (or/c path-string? false/c)

Overrides get-file in editor<y>.

Uses finder:get-file to find a filename. Also, sets the parame-
ter finder:dialog-parent-parameter to the result of get-top-level-
window.

(send an-editor:basic put-file directory
default-name) — string
directory : (or/c path? false/c)
default-name : (or/c path? false/c)

Overrides put-file in editor<y>.

Uses finder:put-file to find a filename. Also, sets the parame-
ter finder:dialog-parent-parameter to the result of get-top-level-
window.

editor:standard-style-1list<%> : interface?
implements: editor<%>

This interface is implemented by the results of editor:standard-style-list-mixin.

editor:standard-style-list-mixin : (class? . -> . class?)
argument extends/implements: editor<j>
result implements: editor:standard-style-list<})>

The mixin adds code to the initialization of the class that sets the editor’s style list (via
set-style-1list) to the result of editor:get-standard-style-1list.

In addition, it calls set-load-overwrites-styles with #f. This ensures that saved files
with different settings for the style list do not clobber the shared style list.

43

editor:keymap</%> : interface?
implements: editor:basic<y>

Classes matching this interface add support for mixing in multiple keymaps. They provides
an extensible interface to chained keymaps, through the get-keymaps method.

This editor is initialized by calling add-editor-keymap-functions, add-text-keymap-
functions, and add-pasteboard-keymap-functions.

(send an-editor:keymap get-keymaps)
— (list-of (is-a?/c keymap%))

The keymaps returned from this method are chained to this editor<y>’s
keymap.

The result of this method should not change — that is, it should return the same
list of keymaps each time it is called.

See also editor:add-after-user-keymap.

Returns (1ist (keymap:get-user) (keymap:get-global)) by default.

editor:keymap-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<}>
result implements: editor:keymap<}%>

This provides a mixin that implements the editor:keymap<%> interface.

editor:autowrap<’> : interface?
implements: editor:basic<y>

Classes implementing this interface keep the auto-wrap state set based on the
'framework:auto-set-wrap? preference (see preferences:get for more information
about preferences).

They install a preferences callback with preferences:add-callback that sets the state

when the preference changes and initialize the value of auto-wrap to the current value of
'framework:auto-set-wrap? via preferences:get.

44

editor:autowrap-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<}>
result implements: editor:autowrap<y>

See editor:autowrap<y>

editor:file<%> : interface?
implements: editor:keymap<y%>

Objects supporting this interface are expected to support files.

(send an-editor:file get-can-close-parent)
— (or/c false (is-a?/c frame)) (is-a?/c dialogh))

The result of this method is used as the parent for the dialog that asks about
closing.

Returns #f by default.

(send an-editor:file update-frame-filename) — void?

Attempts to find a frame that displays this editor. If it does, it updates the
frame’s title based on a new filename in the editor.

(send an-editor:file allow-close-with-no-
filename?) — boolean?

This method indicates if closing the file when it hasn’t been saved is a reason to
alert the user. See also can-close?.

Returns #f by default.

(send an-editor:file user-saves-or-not-modified? allow-

cancel?)
— boolean?

allow-cancel? : #t

If the file has not been saved, this prompts the user about saving and, if the user
says to save, then it saves the file.

The result is #t if the save file is up to date, or if the user says it is okay to
continue without saving. Generally used when closing the file or quiting the

app.

45

editor:file-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<J>
result implements: editor:file<y,>

This editor locks itself when the file that is opened is read-only in the filesystem.

The class that this mixin produces uses the same initialization arguments as its input.

(send an-editor:file set-filename name
[temp?]) — void?
name : string?
temp? . boolean? = #f

Overrides set-filename in editor<y>.

Updates the filename on each frame displaying this editor, for each frame that
matches frame: editor<y>.

(send an-editor:file can-close?) — boolean?

Augments can-close? in editor:basic<y>.

If the allow-close-with-no-filename? method returns #f, this method
checks to see if the file has been saved at all yet. If not, it asks the user about
saving (and saves if they ask).

If the allow-close-with-no-filename? method returns #t, this method
does as before, except only asks if the editor’s get-filenamemethod returns a
path.

Also calls inner.

(send an-editor:file get-keymaps)
— (list-of (is-a?/c keymap’))

Overrides get-keymaps in editor:keymap<}>.

This returns a list containing the super-class’s keymaps, plus the result of
keymap:get-file

editor:backup-autosave<),> : interface?
implements: editor:basic<y>

Classes matching this interface support backup files and autosaving.

46

(send an-editor:backup-autosave backup?) — boolean?

Indicates whether this editor<¥> should be backed up.
Returns the value of the preferences:get applied to ' framework:backup-

files?.

(send an-editor:backup-autosave autosave?) — boolean?

Indicates whether this editor<%> should be autosaved.

Returns #t.

(send an-editor:backup-autosave do-autosave) — (or/c #f path?)

This method is called to perform the autosaving. See also
autosave:register.

When the file has been modified since it was last saved and autosaving it turned
on (via the autosave? method) an autosave file is created for this editor<%>.

Returns the filename where the autosave took place, or #f if none did. This
method sets the parameter editor:doing-autosave? to #t during the dy-
namic extent of the call it makes to save-file.

(send an-editor:backup-autosave remove-autosave) — void?

This method removes the autosave file associated with this editor<%>.

editor:backup-autosave-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<}>
result implements: editor:backup-autosave<y>
autosave:autosavable<)>

This mixin adds backup and autosave functionality to an editor.
During initialization, this object is registered with autosave:register.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send an-editor:backup-autosave on-save-file filename
format)
— boolean?
filename : path?
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)

47

Augments on-save-file in editor<y>.

If a backup file has not been created this session for this file, deletes any existing
backup file and copies the old save file into the backup file. For the backup file’s
name, see path-utils:generate-backup-name

(send an-editor:backup-autosave on-close) — void?

Augments on-close in editor:basic<y>.

Deletes the autosave file and turns off autosaving.

(send an-editor:backup-autosave on-change) — void?

Augments on-change in editor<%>.

Sets a flag indicating that this editor<%> needs to be autosaved.

(send an-editor:backup-autosave set-
modified modified?) — void?

modified? : any/c
Overrides set-modified in editor<y>.

If the file is no longer modified, this method deletes the autosave file. If it is, it
updates a flag to indicate that the autosave file is out of date.

editor:autoload<’> : interface?
implements: editor:basic<y>

This interface does not add any methods, but signals that the given class was produced by
editor:autoload-mixin.

editor:autoload-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<})>
result implements: editor:autoload<’>

The result of this mixin uses filesystem-change-evt to track changes to the file that this
editor saves to, offering to revert the buffer to match the file when the file changes.

It strives to make sure that there is never a moment when the file is unmonitored so there
should be no races with other processes. That said a call to set-filename will disrupt the
connection.

The result of this mixin calls enable-shal during initialization of the object.

48

The mixin uses editor:doing-autosave? to avoid tracking changes to autosave files (as
autosaving also uses save-file and load-file).

(send an-editor:autoload set-filename filename
[temporary?]) — void?
filename : (or/c path-string? #f)
temporary? : any/c = #f

Overrides set-filename in editor<¥%>.

Disables the monitoring, unless the call is in the dynamic extent of a call to
load-file or save-file.

(send an-editor:autoload on-close) — void?

Augments on-close in editor:basic<y>.
Uses filesystem-change-evt-cancel to stop tracking changes to the file.
(send an-editor:autoload on-save-file filename
format) — void?

filename : path?
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)

Augments on-save-file in editor<y>.

Establishes the monitoring of filename and ties it to this editor<y>.

(send an-editor:autoload after-save-file success?) — void?
success? : any/c

Augments after-save-file in editor<%>.
Uses the updated shal from get-file-shal, now that the editor’s content and
the file on the disk have been synchronized.

(send an-editor:autoload on-load-file filename
format) — void?
filename : path?
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)

Augments on-load-file in editor<y>.

Establishes the monitoring of filename and ties it to this editor<y>.

(send an-editor:autoload after-load-file success?) — void?
success? : any/c

49

Augments after-load-file in editor<%>.
Uses the updated shal from get-file-shal, now that the editor’s content and
the file on the disk have been synchronized.

(send an-editor:autoload update-shal? path) — any/c
path : path-string?

Overrides update-shal? in editor<y>.

Returns #f when (editor:doing-autosave?) is #t; otherwise returns the
result of the super method.

editor:info<Y> : interface?
implements: editor:basic<y>

An editor<%> matching this interface provides information about its lock state to its top-
level-window<%>.

editor:info-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<%>
result implements: editor:info<y>

This editor tells the frame when it is locked and unlocked. See also frame:text-info<¥%>.

(send an-editor:info lock lock?) — void?
lock? : boolean?

Overrides lock in editor<%>.

Uses run-after-edit-sequence to call lock-status-changed.

editor:font-size-message’ : class?
superclass: canvas/

(new editor:font-size-messagel

[message message]

[[stretchable-height stretchable-height]])
— (is-a?/c editor:font-size-message’)

50

message : (or/c string? (listof string?))
stretchable-height : any/c = #f

The message field controls the initial contents. If there is a list of strings, then
each string is put on a separate line. If there is just a single string, it is split on
newlines and then treated as if it were a list.

The stretchable-height has the opposite default from the canvasy, super-
class.

(send an-editor:font-size-message set-
message message) — void?
message : (or/c string? (listof string?))

Changes the message.

If message is a list of strings, then each string is put on a separate line. If there
is just a single string, it is split on newlines and then treated as if it were a list
argument.

(editor:doing-autosave?) — boolean?
(editor:doing-autosave? autosaving?) — void?
autosaving? : boolean?

A parameter that indicates whether or not we are currently saving the editor because of an
autosave. See also do-autosave.

(editor:silent-cancel-on-save-file-out-of-date?) — boolean?
(editor:silent-cancel-on-save-file-out-of-date? autosaving?)
— void?

autosaving? : boolean?

A parameter that indicates how to handle the situation where a save happens but the file
saved on the disk is newer than the last time this editor was saved.

If editor:silent-cancel-on-save-file-out-of-date?’s value is #true, then a save
that might overwrite some other change is silently ignored and no save actually happens (via
can-save-file?). If it is #false (and editor:doing-autosave? is also #false) then a
dialog is opened to ask the user what to do.

Added in version 1.53 of package gui-1ib.

(editor:set-current-preferred-font-size new-size) — void?
new-size . exact-nonnegative-integer?

51

Sets the font preference for the current monitor configuration to new-size.

See also editor:get-current-preferred-font-size and editor:font-size-
pref->current-font-size.

(editor:get-current-preferred-font-size)
— exact-nonnegative-integer?

Gets the current setting for the font size preference. Calls editor:font-size-pref-
>current-font-size with the current preference setting.

See also editor:set-current-preferred-font-size and editor:get-change-
font-size-when-monitors-change?.

(editor:font-size-pref->current-font-size font-preference)
— exact-nonnegative-integer?
font-preference : (vector/c

(hash/c

(non-empty-listof (list/c exact-nonnegative-integer?
exact-nonnegative-integer?))

exact-nonnegative-integer?
#:flat? #t)

exact-nonnegative-integer?
#:flat? #t)

Determines the current monitor configuration and uses that to pick one of the sizes
from its argument. The argument is expected to come from the preference value of
'framework:standard-style-list:font-size.

Except if editor:get-change-font-size-when-monitors-change? returns #f, in
which case the current monitor configuration is not considered and the last-set size (the
second position in the vector) is always returned.

As background, the font size preference is actually saved on a per-monitor configuration
basis; specifically the preference value (using the same contract as the argument of this
function) contains a table mapping a list of monitor sizes (but not their positions) obtained
by get-display-size to the preferred font size (plus a default size used for new configu-
rations).

See also editor:get-current-preferred-font-size, editor:get-current-

52

preferred-font-size, and editor:get-change-font-size-when-monitors-
change?.

(editor:get-change-font-size-when-monitors-change?) — boolean?

Returns #t when the framework will automatically adjust the current font size in the "Stan-
dard" style of the result of editor:get-standard-style-1list based on the monitor
configuration.

Defaults to #f

See also editor:set-change-font-size-when-monitors-change?; editor:font-
size-pref->current-font-size.

(editor:set-change-font-size-when-monitors-change? b?) — void?
b? : boolean?

Controls the result of editor:get-change-font-size-when-monitors-change?.

See also editor:get-change-font-size-when-monitors-change?.

(editor:set-default-font-color fg-color
[bg-color]) — void?
fg-color : (is-a?/c color,)
bg-color : (or/c #f (is-a?/c color%)) = #f

Sets the foreground color of the style named editor:get-default-color-style-name
to fg-color. If bg-color is not #f, then editor:set-default-font-color sets the
background color to bg-color.

(editor:get-default-color-style-name) — string?

The name of the style (in the list returned by editor:get-standard-style-1ist) that
holds the default color.

(editor:set-standard-style-list-delta name
delta) — void?
name : string?
delta : (is-a?/c style-deltal,)

Finds (or creates) the style named by name in the result of editor:get-standard-style-
list and sets its delta to delta.

53

If the style named by name is already in the style list, it must be a delta style.

(editor:set-standard-style-list-pref-callbacks) — any

Installs the font preference callbacks that update the style list returned by editor:get-
standard-style-list based on the font preference symbols.

(editor:get-standard-style-list) — (is-a?/c style-list})

Returns a style list that is used for all instances of editor:standard-style-list/,.

(editor:add-after-user-keymap keymap
keymaps)
— (listof (is-a?/c keymap%))
keymap : (is-a?/c keymap%)
keymaps : (listof (is-a?/c keymap%))

Returns a list that contains all of the keymaps in keymaps, in the same relative order, but
also with keymap, where keymap is now the first keymap after keymap : get-user (if that
keymap is in the list.)

54

12 Exit

(exit:exiting?) — boolean?

Returns #t to indicate that an exit operation is taking place. Does not indicate that the app
will actually exit, since the user may cancel the exit.

See also exit:insert-on-callback and exit:insert-can?-callback.

(exit:set-exiting exiting?) — void?
exiting? : boolean?

Sets a flag that affects the result of exit:exiting?.

(exit:insert-on-callback callback) — (-> void?)
callback : (-> void?)

Adds a callback to be called when exiting. This callback must not fail. If a callback should
stop an exit from happening, use exit:insert-can?-callback.

(exit:insert-can?-callback callback) — (-> void?)
callback : (-> boolean?)

Use this function to add a callback that determines if an attempted exit can proceed. This
callback should not clean up any state, since another callback may veto the exit. Use
exit:insert-on-callback for callbacks that clean up state.

(exit:can-exit?) — boolean?

Calls the “can-callbacks” and returns their results. See exit:insert-can?-callback for
more information.

(exit:on-exit) — void?
Calls the “on-callbacks”. See exit:insert-on-callback for more information.

(exit:exit) — any

exit:exit performs four actions:

55

* sets the result of the exit:exiting? function to #t.

¢ invokes the exit-callbacks, with exit:can-exit? if none of the “can?” callbacks
return #£,

¢ invokes exit:on-exit and then

e queues a callback that calls exit (a racket procedure) and (if exit returns) sets the
result of exit:exiting? back to #f.

(exit:user-oks-exit) — boolean?

Opens a dialog that queries the user about exiting. Returns the user’s decision.

56

13 Finder

(finder:dialog-parent-parameter)

— (or/c false/c (is-a?/c dialogl) (is-a?/c frame}))
(finder:dialog-parent-parameter parent) — void?

parent : (or/c false/c (is-a?/c dialog},) (is-a?/c frame%))

This parameter determines the parent of the dialogs created by finder:get-
file, finder:put-file, finder:common-get-file, finder:common-put-file,
finder:common-get-file-list, finder:std-get-file, and finder:std-put-
file.

(finder:default-extension) — string?
(finder:default-extension extension) — void?
extension : string?

This parameter controls the default extension for the framework’s finder:put-file and
finder:get-file dialog. Its value gets passed as the extension argument to put-file
and get-file.

Its default value is "".

(finder:default-filters) — (listof (list/c string? string?))
(finder:default-filters filters) — void?
filters : (listof (list/c string? string?))

This parameter controls the default filters for the framework’s finder:put-file dialog.
Its value gets passed as the default-filters argument to put-file.

Its default value is ' (("Any" "*.x")).

(finder:common-put-file [name
directory
replace?
prompt
filter
filter-msg
parent]) — (or/c false/c path?)
name : string? = "Untitled"
directory : (or/c false/c path?) = #f
replace? : boolean? = #f
prompt : string? = "Select File"
filter : (or/c false/c byte-regexp?) = #f

57

filter-msg : string?
= "That filename does not have the right form."
parent : (or/c (is-a?/c top-level-window<%>) false/c)
= (finder:dialog-parent-parameter)

This procedure queries the user for a single filename, using a platform-independent dialog
box. Consider using finder:put-file instead of this function.

(finder:common-get-file [directory
prompt
filter
filter-msg
parent]) — (or/c path? false/c)
directory : (or/c path? false/c) = #f
prompt : string? = "Select File"
filter : (or/c byte-regexp? false/c) = #f
filter-msg : string?
= "That filename does not have the right form."
parent : (or/c false/c (is-a?/c top-level-window<}>)) = #f

This procedure queries the user for a single filename, using a platform-independent dialog
box. Consider using finder:get-file instead of this function

(finder:std-put-file [name
directory
replace?
prompt
filter
filter-msg
parent]) — (or/c false/c path?)
name : string? = "Untitled"
directory : (or/c false/c path?) = #f
replace? : boolean? = #f
prompt : string? = "Select File"
filter : (or/c false/c byte-regexp?) = #f
filter-msg : string?
= "That filename does not have the right form."
parent : (or/c (is-a?/c top-level-window<%>) false/c)
= (finder:dialog-parent-parameter)

This procedure queries the user for a single filename, using a platform-dependent dialog box.
Consider using finder:put-file instead of this function.

58

(finder:std-get-file [directory

prompt

filter

filter-msg

parent]) — (or/c path? false/c)
directory : (or/c path? false/c) = #f
prompt : string? = "Select File"
filter : (or/c byte-regexp? false/c) = #f
filter-msg : string?

= "That filename does not have the right form."

parent : (or/c false/c (is-a?/c top-level-window<}>)) = #f

This procedure queries the user for a single filename, using a platform-dependent dialog box.
Consider using finder:get-file instead of this function.

(finder:put-file [name
directory
replace?
prompt
filter
filter-msg
parent]) — (or/c false/c path?)
name : string? = "Untitled"
directory : (or/c false/c path?) = #f
replace? : boolean? = #f
prompt : string? = "Select File"
filter : (or/c false/c byte-regexp?) = #f
filter-msg : string?
= "That filename does not have the right form."
parent : (or/c (is-a?/c top-level-window<%>) false/c)
= (finder:dialog-parent-parameter)

Queries the user for a filename.

If the result of (preferences:get 'framework:file-dialogs) is 'std this calls
finder:std-put-file, and ifitis ' common, finder: common-put-file is called.

(finder:get-file [directory
prompt
filter
filter-msg
parent]) — (or/c path? false/c)
directory : (or/c path? false/c) = #f

59

prompt : string? = "Select File"

filter : (or/c byte-regexp? string? false/c) = #f

filter-msg : string?

= "That filename does not have the right form."
parent : (or/c false/c (is-a?/c top-level-window<}>)) = #f

Queries the user for a filename.

If the result of (preferences:get 'framework:file-dialogs) is 'std this calls
finder:std-get-file, and ifitis 'common, finder: common-get-file is called.

60

14 Frame

frame:basic<¥%> : interface?
implements: frame?,

Classes matching this interface support the basic framey functionality required by the
framework.

(send a-frame:basic get-area-container?,)
— (implementation?/c area-container<y>)

The class that this method returns is used to create the area-container<%> in
this frame.

(send a-frame:basic get-area-container)
— (is-a?/c area-container<’>)

This returns the main area-container<%> in the frame

(send a-frame:basic get-menu-bar)) — (subclass?/c menu-
bar?)

The result of this method is used to create the initial menu bar for this frame.

Return menu-bar’,.

(send a-frame:basic make-root-area-container class
parent)
— (is-a?/c area-container<’>)
class : (implementation?/c area-container<y>)
parent : (is-a?/c area-container<y>)

Override this method to insert a panel in between the panel used by the clients
of this frame and the frame itself. For example, to insert a status line panel
override this method with something like this:

(class

(define status-panel #f)
(define/override (make-root-area-container cls parent)
(set! status-panel
(super make-root-area-container vertical-
pane’, parent))
(let ([root (make-object cls status-panel)])

61

; ... add other children to status-panel

root))

In this example, status-panel will contain a root panel for the other classes, and
whatever panels are needed to display status information.

The searching frame is implemented using this method.

Calls make-object with class and parent.

(send a-frame:basic close) — void?

This method closes the frame by calling the can-close?, on-close, and show
methods.

Its implementation is:
(inherit can-close? on-close)
(define/public (show)
(when (can-close?)

(on-close)
(show #£)))

(send a-frame:basic editing-this-file? filename) — boolean?
filename : path?

Indicates if this frame contains this buffer (and can edit that file).

Returns #f.

(send a-frame:basic get-all-open-files) — (listof path?)

Indicates the files that are currently open in this frame.
Returns ' ().

Added in version 1.74 of package gui-1ib.

(send a-frame:basic get-filename [temp]) — (or/c #f path?)
temp : (or/c #f (box boolean?)) = #f

This returns the filename that the frame is currently being saved as, or #f if
there is no appropriate filename.

Returns #f by default.

If temp is a box, it is filled with #t or #f, depending if the filename is a tempo-
rary filename.

62

(send a-frame:basic make-visible filename
[#:start-pos start-pos
#:end-pos end-pos]) — void?
filename : (or/c path-string? symbol?)
start-pos : #f = (or/c #f exact-nonnegative-integer?)
end-pos : start-pos = (or/c #f exact-nonnegative-integer?)

Makes the file named by filename visible (intended for use with tabbed edit-
ing), using port-name-matches? to find the editor if filename is a symbol?.

If both start-pos and end-pos are numbers, sets the insertion point to the
range from start-pos and end-pos.

Changed in version 1.75 of package gui-1ib: generalized the filename argument to allow sym-

bols and added the start-pos and end-pos arguments.

frame:basic-mixin : (class? . -> . class?)
argument extends/implements: frame?,
result implements: frame:basic<}>

This mixin provides the basic functionality that the framework expects. It helps manage the
list of frames in the group: ¥ object returned by group: get-the-frame-group.

Do not give panely or control<%> objects this frame as parent. Instead, use the result of
the get-area-container method.

This mixin also creates a menu bar for the frame, as the frame is initialized. It uses the
class returned by get-menu-bar?. It only passes the frame as an initialization argument. In
addition, it creates the windows menu in the menu bar.

This mixin calls its accept-drop-files with #t.
It also calls its set-icon method according to the current value of frame: current-icon.

See also frame:reorder-menus.

(send a-frame:basic show on?) — void?
on? : boolean?

Overrides show in top-level-window<%>.
Calls the super method.

When on? is #t, inserts the frame into the frame group and when it is #f,
removes the frame from the group.

63

(send a-frame:basic can-exit?) — boolean?

Overrides can-exit? in top-level-window<}>.
This, together with on-exit mimics exit:exit.

First, it calls exit:set-exiting with #t. Then, it calls exit:can-exit?. If
it returns #t, so does this method. If it returns #f, this method calls exit:set-
exiting with #£.

(send a-frame:basic on-exit) — void?

Overrides on-exit in top-level-window<%>.
Together with can-exit? this mimics the behavior of exit:exit.

Calls exit:on-exit and then queues a callback to call Racket’s exit function.
If that returns, it calls exit:set-exiting to reset that flag to #f.

(send a-frame:basic on-superwindow-show shown?) — void?
shown? : any/c

Overrides on-superwindow-show in window<%>.

Notifies the result of (group:get-the-frame-group) that a frame has been
shown, by calling the frame-shown/hidden method.

(send a-frame:basic on-drop-file pathname) — void?
pathname : string?

Overrides on-drop-file in window<%>.

Calls handler:edit-file with pathname as an argument.
(send a-frame:basic after-new-child) — void?

Overrides after-new-child in area-container<y>.

Raises an exception if attempting to add a child to this frame (except if using
the make-root-area-container method).

frame:focus-table<’> : interface?
implements: top-level-window<%>

64

frame:focus-table-mixin : (class? . -> . class?)
argument extends/implements: frame}
result implements: frame:focus-table<)>

Instances of classes returned from this mixin track how frontmost they are based on calls
made to methods at the Racket level, instead of using the calls made by the operating system
as it tracks the focus.

See also frame:lookup-focus-table, test:use-focus-table and test:get-
active-top-level-window.

(send a-frame:focus-table show on?) — void?
on? : boolean?

Overrides show in top-level-window<%>.

When on?is #t, adds this frame to the front of the list of frames stored with the
frame’s eventspace. When on? is #f, this method removes this frame from the
list.

See also frame:lookup-focus-table, test:use-focus-table and
test:get-active-top-level-window.

(send a-frame:focus-table on-close) — void?

Augments on-close in top-level-window<%>.
Removes this frame from the list of frames stored with the frame’s eventspace.

See also frame:lookup-focus-table, test:use-focus-table and
test:get-active-top-level-window.

frame:size-pref<’> : interface?
implements: frame:basic<%>

(send a-frame:size-pref adjust-size-when-monitor-setup-
changes?)
— boolean?

Determines if the frame’s size should be automatically adjusted when the mon-
itors configuration changes.

Defaults to returning #f.

65

frame:size-pref-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:size-pref<y>

(new frame:size-pref-mixin

—

[size-preferences-key size-preferences-key]
[[position-preferences-key position-preferences-key]
[width width]

[height height]

[x x]

[y ¥11

...superclass-args...)

(is-a?/c frame:size-pref-mixin)

size-preferences-key : symbol?
position-preferences-key : (or/c symbol? #f) = #f
width : (or/c dimension-integer? #f) = #f

height : (or/c dimension-integer? #f) = #f

X
y :

(or/c position-integer? #f) = #f
(or/c position-integer? #f) = #f

The size-preferences-key symbol is used with preferences:get and
preferences:set to track the current size.

If present, the position-preferences-key symbol is used with
preferences:get and preferences:set to track the current position.

Both preferences are tracked on a per-monitor-configuration basis. That is, the
preference value saved is a mapping from the current monitor configuration
(derived from the results of get-display-count, get-display-left-top-
inset, and get-display-size).

Passes the x, y, and width and height initialization arguments to the super-
class and calls maximize based on the current values of the preferences.

See also frame:setup-size-pref.

(send a-frame:size-pref on-size width

height) — void?

width : dimension-integer?
height : dimension-integer?

Overrides on-size in window<%>.

Updates the preferences, according to the width and height. The preferences
key is the one passed to the initialization argument of the class.

(send a-frame:size-pref on-move x y) — void?

b'q
y

. position-integer?
. position-integer?

66

Overrides on-move in window<%>.

Updates the preferences according to the x,y position, if position-
preferences-key is not #f, using it as the preferences key.

frame:register-group<’%> : interface?

Frames that implement this interface are registered with the group. See group:get-the-
frame-group and frame:register-group-mixin.

frame:register-group-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:register-group<%>

During initialization, calls insert-framewith this.

(send a-frame:register-group can-close?) — boolean?

Augments can-close? in top-level-window<%>.
Calls the inner method, with a default of #t. If that returns #t, it checks for one
of the these three conditions:

* exit:exiting? returns #t

* there is more than one frame in the group returned by group:get-the-
frame-group, or

* the procedure exit:user-oks-exit returns #t.

If any of those conditions hold, the method returns #t.
(send a-frame:register-group on-close) — void?

Augments on-close in top-level-window<%>.

First calls the inner method. Next, calls the remove-frame method of the re-
sult of group:get-the-frame-group with this as an argument. Finally, un-
less exit:exiting? returns #t, and if there are no more frames open, it calls
exit:exit.

(send a-frame:register-group on-activate on?) — void?
on? : boolean?

67

Overrides on-activate in top-level-window<%>.

Calls set-active-frame with this when on?is true.

frame:status-line<%> : interface?
implements: frame:basic<)>

The mixin that implements this interface provides an interface to a set of status lines at the

bottom of this frame.

Each status line must be opened with open-status-1ine before any messages are shown in
the status line and once close-status-1line is called, no more messages may be displayed,

unless the status line is re-opened.

The screen space for status lines is not created until update-status-1ine is called with a
string. Additionally, the screen space for one status line is re-used when by another status
line when the first passes #f to update-status-1line. In this manner, the status line frame
avoids opening too many status lines and avoids flashing the status lines open and closed too

often.

(send a-frame:status-line open-status-line id) — void?
id : symbol?

Creates a new status line identified by the symbol argument. The line will not
appear in the frame until a message is put into it, via update-status-1line.

(send a-frame:status-line close-status-line id) — void?
id : symbol?

Closes the status line id.

(send a-frame:status-line update-status-line id
status) — void?
id : symbol?
status : (or/c #f string?)

Updates the status line named by id with status. If status is #£, the status
line is becomes blank (and may be used by other ids).

frame:status-line-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:status-line<),>

68

(send a-frame:status-line make-root-area-container class
parent)
— (is-a?/c panel})
class : (subclass?/c panel’,)
parent : (is-a?/c panel})

Overrides make-root-area-container in frame:basic<¥%>.

Adds a panel at the bottom of the frame to hold the status lines.

frame:info<%> : interface?
implements: frame:basic<}>

Frames matching this interface support a status line.

The preference 'framework:show-status-1line controls the visibility of the status line.
If it is #t, the status line is visible and if it is #f, the status line is not visible (see
preferences:get for more info about preferences)

(send a-frame:info determine-width str
canvas
text) — integer
str . string
canvas : (is-a?/c editor-canvas})
text : (is-a%?/c text)

This method is used to calculate the size of an editor-canvas?’, with a par-
ticular set of characters in it. It is used to calculate the sizes of the edits in the
status line.

(send a-frame:info lock-status-changed) — void?

This method is called when the lock status of the editor<%> changes.

Updates the lock icon in the status line panel.

(send a-frame:info update-info) — void?

This method updates all of the information in the panel.

(send a-frame:info set-info-canvas canvas) — void?
canvas : (or/c (is-a?/c canvas:basic}) #f)

69

Sets this canvas to be the canvas that the info frame shows info about. The on-
focus and set-editor methods call this method to ensure that the info canvas is
set correctly.

(send a-frame:info get-info-canvas)
— (or/c (is-a?/c canvas:basic}) #f)

Returns the canvas that the frame: info<¥> currently shows info about. See
also set-info-canvas

(send a-frame:info get-info-editor)
— (or/c #f (is-a?/c editor<y>))

Override this method to specify the editor that the status line contains informa-
tion about.

Returns the result of get-editor.

(send a-frame:info get-info-panel)
— (is-a?/c horizontal-panel,)

This method returns the panel where the information about this editor is dis-
played.

(send a-frame:info show-info) — void?

Shows the info panel.

See also is-info-hidden?.

(send a-frame:info hide-info) — void?

Hides the info panel.

See also is-info-hidden?.

(send a-frame:info is-info-hidden?) — boolean?

Result indicates if the show info panel has been explicitly hidden with hide-
info.

If this method returns #t and (preferences:get 'framework:show-
status-1ine) is #f, then the info panel will not be visible. Otherwise, it
is visible.

70

frame:info-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:info<%>

This mixin provides support for displaying various info in the status line of the frame.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send a-frame:info make-root-area-container class
parent)
— (is-a?/c area-container<y>)
class : (subclass?/c area-container<}>)
parent : (is-a?/c area-container<y>)

Overrides make-root-area-container in frame:basic<%>.

Builds an extra panel for displaying various information.
(send a-frame:info on-close) — void?

Augments on-close in top-level-window<%>.

Removes the GC icon with unregister-collecting-blit and cleans up
other callbacks.

frame:text-info<)> : interface?
implements: frame:info<y>

Objects matching this interface receive information from editors constructed with
editor:info-mixin and display it.

(send a-frame:text-info set-macro-recording on?) — void?
on? : boolean?

Shows/hides the icon in the info bar that indicates if a macro recording is in
progress.

(send a-frame:text-info overwrite-status-changed) — void?

This method is called when the overwrite mode is turned either on or off in the
editor<¥> in this frame.

(send a-frame:text-info anchor-status-changed) — void?

71

This method is called when the anchor is turned either on or off in the edi-
tor<Y%> in this frame.

(send a-frame:text-info editor-position-changed) — void?

This method is called when the position in the editor<Y> changes.

(send a-frame:text-info add-line-number-menu-items menu)
— void?
menu : (is-a?/c menu-item-container<y>)

This method is called when the line/column display in the info bar is clicked. It
is passed a menu-item-container<y> that can be filled in with menu items;
those menu items will appear in the menu that appears when line/colun display
is clicked.

frame:text-info-mixin : (class? . -> . class?)
argument extends/implements: frame:info<}>
result implements: frame:text-info<y>

This mixin adds status information to the info panel relating to an edit.

(send a-frame:text-info on-close) — void?

Augments on-close in top-level-window<%>.

removes a preferences callback for 'framework:line-offsets. See
preferences:add-callback for more information.

(send a-frame:text-info update-info) — void?

Overrides update-info in frame: info<y%>.

Calls overwrite-status-changed, anchor-status-changed, and
editor-position-changed.

frame:pasteboard-info<%> : interface?
implements: frame:info<}>

frame:pasteboard-info-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:pasteboard-info<%>

72

frame:standard-menus<’,> : interface?
implements: frame:basic<y>

(send a-frame:standard-menus on-close) — void?

Removes the preferences callbacks for the menu items

(send a-frame:standard-menus get-menuy)
— (is-a?/c menu:can-restore-underscore-menul)

The result of this method is used as the class for creating the result of these
methods: get-file-menu, get-edit-menu, and get-help-menu.

(send a-frame:standard-menus get-menu-itemy)
— (is-a?/c menu:can-restore-menu-itemy)

The result of this method is used as the class for creating the menu items in this
frame.

Returns menu: can-restore-menu-item by default.

(send a-frame:standard-menus get-checkable-menu-item})
— (is-a?/c menu:can-restore-checkable-menu-itemy)

The result of this method is used as the class for creating checkable menu items
in this class.

returns menu: can-restore-checkable-menu-item by default.

(send a-frame:standard-menus get-file-menu) — (is-
a?/c menul,)

Returns the file menu. See also get-menu¥.

(send a-frame:standard-menus get-edit-menu) — (is-
a?/c menul,)

Returns the edit menu. See also get-menu’,.

(send a-frame:standard-menus get-help-menu) — (is-
a?/c menu’;)

73

Returns the help menu. See also get-menu¥.

(send a-frame:standard-menus file-menu:get-new-item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-new?).

(send a-frame:standard-menus file-menu:create-
new?) — boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:new-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event)

Defaults to
(begin (handler:edit-file #f) #t)

(send a-frame:standard-menus file-menu:new-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:new-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant new-menu-item).

(send a-frame:standard-menus file-menu:new-help-string)
— string?

74

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant new-info).

(send a-frame:standard-menus file-menu:between-new-and-

open menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the new and the open menu-item.
Override it to add additional menu items at that point.

(send a-frame:standard-menus file-menu:get-open-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu: create-open?).

(send a-frame:standard-menus file-menu:create-open?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:open-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event?)

Defaults to
(begin (handler:open-file) #t)

(send a-frame:standard-menus file-menu:open-on-demand menu-

item)
— void?

menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(void)

75

(send a-frame:standard-menus file-menu:open-
string) — string?

The result of this method is used as the name of the menu-iteml.

Defaults to (string-constant open-menu-item).

(send a-frame:standard-menus file-menu:open-help-string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant open-info).

(send a-frame:standard-menus file-menu:get-open-recent-item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-open-recent?).

(send a-frame:standard-menus file-menu:create-open-recent?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:open-recent-callback x

)
— void?
x : (is-a?/c menu-item})
y @ (is-a?/c control-event)

Defaults to
(void)

(send a-frame:standard-menus file-menu:open-recent-on-

demand menu)
— void?

menu : (is-a?/c menu-itemY)

The menu item’s on-demand proc calls this method.

Defaults to

76

(handler:install-recent-items menu)

(send a-frame:standard-menus file-menu:open-recent-string)
— string?

The result of this method is used as the name of the menu-itemb.

Defaults to (string-constant open-recent-menu-item).

(send a-frame:standard-menus file-menu:open-recent-help-
string)
— string?

The result of this method is used as the help string when the menu-item} object
is created.

Defaults to (string-constant open-recent-info).

(send a-frame:standard-menus file-menu:between-open-and-

revert menu)
— void?

menu : (is-a?/c menu-itemY)

This method is called between the addition of the open and the revert menu-
item. Override it to add additional menu items at that point.

(send a-frame:standard-menus file-menu:get-revert—item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-revert?).

(send a-frame:standard-menus file-menu:create-revert?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus file-menu:revert-callback
item

control)

— void?

item : (is-a?/c menu-item},)

control : (is-a?/c control-eventY)

71

Defaults to

(void)

(send a-frame:standard-menus file-menu:revert-on-

demand menu-item)
— void?
menu-item : (is-a?/c menu-item},)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:revert-string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant revert-menu-item).

(send a-frame:standard-menus file-menu:revert-help-string)
— string?

The result of this method is used as the help string when the menu-itemy object
is created.

Defaults to (string-constant revert-info).

(send a-frame:standard-menus file-menu:between-revert-and-

save menu)
— void?

menu : (is-a?/c menu-itemY)

This method is called between the addition of the revert and the save menu-
item. Override it to add additional menu items at that point.
(send a-frame:standard-menus file-menu:get-save-item)

— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-save?).

(send a-frame:standard-menus file-menu:create-save?)
— boolean?

78

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #£.
(send a-frame:standard-menus file-menu:save-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event)

Defaults to
(void)

(send a-frame:standard-menus file-menu:save-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.
Defaults to

(void)

(send a-frame:standard-menus file-menu:save-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant save-menu-item).

(send a-frame:standard-menus file-menu:save-help-string)
— string?

The result of this method is used as the help string when the menu-itemy object
is created.

Defaults to (string-constant save-info).

(send a-frame:standard-menus file-menu:get-save-as-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-save-as?).

79

(send a-frame:standard-menus file-menu:create-save-as?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus file-menu:save-as-callback
item

control)

— void?

item : (is-a?/c menu-item})

control : (is-a?/c control-event?)

Defaults to
(void)

(send a-frame:standard-menus file-menu:save-as-on-

demand menu-item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.
Defaults to
(void)

(send a-frame:standard-menus file-menu:save-as-string)
— string?

The result of this method is used as the name of the menu-item).
Defaults to (string-constant save-as-menu-item).

(send a-frame:standard-menus file-menu:save-as-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant save-as-info).

80

(send a-frame:standard-menus file-menu:between-save-as-and-

print menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the save-as and the print
menu-item. Override it to add additional menu items at that point.

(send a-frame:standard-menus file-menu:get-print-item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-print?).

(send a-frame:standard-menus file-menu:create-print?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus file-menu:print-callback item
control)
— void?
item : (is-a?/c menu-item,)
control : (is-a?/c control-eventY)

Defaults to
(void)

(send a-frame:standard-menus file-menu:print-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:print-
string) — string?

81

The result of this method is used as the name of the menu-item).

Defaults to (string-constant print-menu-item).

(send a-frame:standard-menus file-menu:print-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant print-info).

(send a-frame:standard-menus file-menu:between-print-and-

close menu)
— void?

menu : (is-a?/c menu-itemY)

This method is called between the addition of the print and the close menu-
item. Override it to add additional menu items at that point.

Defaults to creating a separator-menu-itemy,.

(send a-frame:standard-menus file-menu:get-close-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemj, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-close?).

(send a-frame:standard-menus file-menu:create-close?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus file-menu:close-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-eventY)

Defaults to

(begin (when (can-close?) (on-close) (show #f)) #t)

82

(send a-frame:standard-menus file-menu:close-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:close-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (if (eq? (system-type) 'unix) (string-constant
close-menu-item) (string-constant close-window-menu-item)).

(send a-frame:standard-menus file-menu:close-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant close-info).

(send a-frame:standard-menus file-menu:between-close-and-

quit menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the close and the quit menu-

item. Override it to add additional menu items at that point.

(send a-frame:standard-menus file-menu:get-quit-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by file-menu:create-quit?).

(send a-frame:standard-menus file-menu:create-quit?)
— boolean?

The result of this method determines if the corresponding menu item is created.

Override it to control the creation of the menu item.

Defaults to (not (eq? (system-type) 'macosx)).

83

(send a-frame:standard-menus file-menu:quit-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event)

Defaults to

(when (exit:user-oks-exit) (exit:exit))

(send a-frame:standard-menus file-menu:quit-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus file-menu:quit-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (if (eq? (system-type) 'windows) (string-constant
quit-menu-item-windows) (string-constant quit-menu-item-
others)).

(send a-frame:standard-menus file-menu:quit-help-string)
— string?

The result of this method is used as the help string when the menu-item} object
is created.

Defaults to (string-constant quit-info).
(send a-frame:standard-menus file-menu:after-

quit menu) — void?
menu : (is-a?/c menu-itemy)

This method is called after the addition of the quit menu-item. Override it to
add additional menu items at that point.

84

(send a-frame:standard-menus edit-menu:get-undo-item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu: create-undo?).

(send a-frame:standard-menus edit-menu:create-undo?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:undo-callback menu
evt)
— void?
menu : (is-a?/c menu-item),)
evt : (is-a?/c control-event},)

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<’>))
(send edit do-edit-operation 'undo)))
#t)

(send a-frame:standard-menus edit-menu:undo-on-demand item)
— void?
item : (is-a?/c menu-itemj,)

The menu item’s on-demand proc calls this method.

Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<¥%>)
(send editor can-do-edit-
operation? 'undo))))
(send item enable enable?))

85

(send a-frame:standard-menus edit-menu:undo-
string) — string?

The result of this method is used as the name of the menu-itemb.

Defaults to (string-constant undo-menu-item).

(send a-frame:standard-menus edit-menu:undo-help-string)
— string?

The result of this method is used as the help string when the menu-item} object
is created.

Defaults to (string-constant undo-info).

(send a-frame:standard-menus edit-menu:get-redo-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu: create-redo?).

(send a-frame:standard-menus edit-menu:create-redo?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:redo-callback menu
evt)
— void?
menu : (is-a?/c menu-item},)
evt : (is-a?/c control-event},)

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<y>))
(send edit do-edit-operation 'redo)))
#t)

(send a-frame:standard-menus edit-menu:redo-on-demand item)
— void?
item : (is-a?/c menu-itemY)

86

The menu item’s on-demand proc calls this method.

Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'redo))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:redo-
string) — string?

The result of this method is used as the name of the menu-item/.

Defaults to (string-constant redo-menu-item).

(send a-frame:standard-menus edit-menu:redo-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant redo-info).

(send a-frame:standard-menus edit-menu:between-redo-and-

cut menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the redo and the cut menu-item.
Override it to add additional menu items at that point.

Defaults to creating a separator-menu-itemy,.

(send a-frame:standard-menus edit-menu:get-cut-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-cut?).

(send a-frame:standard-menus edit-menu:create-
cut?) — boolean?

87

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:cut-callback menu
evt)
— void?
menu : (is-a?/c menu-item},)
evt : (is-a?/c control-event,)

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<%>))
(send edit do-edit-operation 'cut)))
#t)

(send a-frame:standard-menus edit-menu:cut-on-demand item)
— void?
item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'cut))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:cut-
string) — string?

The result of this method is used as the name of the menu-itemb.

Defaults to (string-constant cut-menu-item).

(send a-frame:standard-menus edit-menu:cut-help-string)
— string?

88

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant cut-info).

(send a-frame:standard-menus edit-menu:between-cut-and-
copy menu)

— void?

menu : (is-a?/c menu-itemY)

This method is called between the addition of the cut and the copy menu-item.
Override it to add additional menu items at that point.

(send a-frame:standard-menus edit-menu:get-copy-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu: create-copy?).

(send a-frame:standard-menus edit-menu:create-copy?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:copy-callback menu
evt)
— void?
menu : (is-a?/c menu-item),)
evt : (is-a?/c control-event},)

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<y>))
(send edit do-edit-operation 'copy)))
#t)

(send a-frame:standard-menus edit-menu:copy-on-demand item)
— void?
item : (is-a?/c menu-item})

&9

The menu item’s on-demand proc calls this method.
Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'copy))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:copy-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant copy-menu-item).

(send a-frame:standard-menus edit-menu:copy-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant copy-info).

(send a-frame:standard-menus edit-menu:between-copy-and-

paste menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the copy and the paste menu-
item. Override it to add additional menu items at that point.

(send a-frame:standard-menus edit-menu:get-paste-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by edit-menu: create-paste?).

(send a-frame:standard-menus edit-menu:create-paste?)
— boolean?

The result of this method determines if the corresponding menu item is created.

Override it to control the creation of the menu item.

Defaults to #t.

90

(send a-frame:standard-menus edit-menu:paste-callback menu
evt)
— void?
menu : (is-a?/c menu-itemy)
evt : (is-a?/c control-event)

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<%>))
(send edit do-edit-operation 'paste)))
#t)

(send a-frame:standard-menus edit-menu:paste-on-

demand item)
— void?

item : (is-a%?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'paste))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:paste-
string) — string?

The result of this method is used as the name of the menu-itemb.

Defaults to (string-constant paste-menu-item).

(send a-frame:standard-menus edit-menu:paste-help-string)
— string?

The result of this method is used as the help string when the menu-item}, object

is created.

Defaults to (string-constant paste-info).

91

(send a-frame:standard-menus edit-menu:between-paste-and-

clear menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the paste and the clear menu-
item. Override it to add additional menu items at that point.

(send a-frame:standard-menus edit-menu:get-clear-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-clear?).

(send a-frame:standard-menus edit-menu:create-clear?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

(send a-frame:standard-menus edit-menu:clear-callback menu
evt)
— void?
menu : (is-a?/c menu-item},)
evt : (is-a?/c control-event})

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<’>))
(send edit do-edit-operation 'clear)))
#t)

(send a-frame:standard-menus edit-menu:clear-on-

demand item)
— void?
item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

92

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'clear))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:clear-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (if (eq? (system-type) 'windows) (string-constant
clear-menu-item-windows) (string-constant clear-menu-item-
windows)).

(send a-frame:standard-menus edit-menu:clear-help-string)
— string?

The result of this method is used as the help string when the menu-itemj object
is created.

Defaults to (string-constant clear-info).

(send a-frame:standard-menus edit-menu:between-clear-and-

select-all menu)
— void?

menu : (is-a?/c menu-itemy)
This method is called between the addition of the clear and the select-all
menu-item. Override it to add additional menu items at that point.
(send a-frame:standard-menus edit-menu:get-select-all-item)

— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-select-all?).

(send a-frame:standard-menus edit-menu:create-select-all?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #t.

93

(send a-frame:standard-menus edit-menu:select-all-callback
menu

evt)
— void?

menu : (is-a?/c menu-item},)

evt : (is-a%7/c control-event,)

Defaults to

(begin
(let ((edit (get-edit-target-object)))
(when (and edit (is-a? edit editor<%>))
(send edit do-edit-operation 'select-all)))
#t)

(send a-frame:standard-menus edit-menu:select-all-on-

demand item)
— void?
item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.
Defaults to

(let* ((editor (get-edit-target-object))
(enable?
(and editor
(is-a? editor editor<%>)
(send editor can-do-edit-
operation? 'select-all))))
(send item enable enable?))

(send a-frame:standard-menus edit-menu:select-all-string)
— string?

The result of this method is used as the name of the menu-itemy.
Defaults to (string-constant select-all-menu-item).
(send a-frame:standard-menus edit-menu:select-all-help-

string)
— string?

The result of this method is used as the help string when the menu-item}, object

is created.

Defaults to (string-constant select-all-info).

94

(send a-frame:standard-menus edit-menu:between-select-all-

and-find menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the select-all and the find
menu-item. Override it to add additional menu items at that point.

Defaults to creating a separator-menu-itemy,.

(send a-frame:standard-menus edit-menu:get-find-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-find?).

(send a-frame:standard-menus edit-menu:create-find?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus edit-menu:find-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event)

Defaults to
(void)
(send a-frame:standard-menus edit-menu:find-on-demand item)

— void?
item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.
Defaults to
(send item enable

(let ((target (get-edit-target-object)))
(and target (is-a? target editor<%>))))

95

(send a-frame:standard-menus edit-menu:find-
string) — string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant find-menu-item).

(send a-frame:standard-menus edit-menu:find-help-string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant find-info).

(send a-frame:standard-menus edit-menu:get-find-from-

selection-item)
— (or/c false/c (is-a%?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-find-from-
selection?).

(send a-frame:standard-menus edit-menu:create-find-from-

selection?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus edit-menu:find-from-selection-callback
item

control)
— void?

item : (is-a?/c menu-item,)

control : (is-a?/c control-eventY)

Defaults to
(void)

(send a-frame:standard-menus edit-menu:find-from-selection-

on-demand item)
— void?
item : (is-a?/c menu-itemY)

96

The menu item’s on-demand proc calls this method.

Defaults to

(send item enable
(let ((target (get-edit-target-object)))
(and target (is-a? target editor<%>))))

(send a-frame:standard-menus edit-menu:find-from-selection-
string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant find-from-selection-menu-item).

(send a-frame:standard-menus edit-menu:find-from-selection-
help-string)
— string?

The result of this method is used as the help string when the menu-itemy, object
is created.

Defaults to (string-constant find-info).

(send a-frame:standard-menus edit-menu:get-find-next-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-find-next?).

(send a-frame:standard-menus edit-menu:create-find-next?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus edit-menu:find-next-callback
item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event?)

Defaults to

97

(void)

(send a-frame:standard-menus edit-menu:find-next-on-

demand item)
— void?
item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(send item enable
(let ((target (get-edit-target-object)))
(and target (is-a? target editor<%>))))

(send a-frame:standard-menus edit-menu:find-next-string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant find-next-menu-item).

(send a-frame:standard-menus edit-menu:find-next-help-
string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant find-next-info).

(send a-frame:standard-menus edit-menu:get-find-previous-

item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy object corresponding to this menu item, if
it has been created (as controlled by edit-menu:create-find-previous?).

(send a-frame:standard-menus edit-menu:create-find-

previous?)
— boolean?

The result of this method determines if the corresponding menu item is created.

Override it to control the creation of the menu item.

Defaults to #f.

98

(send a-frame:standard-menus edit-menu:find-previous-callback
item

control)
— void?

item : (is-a?/c menu-item})

control : (is-a?/c control-event?)

Defaults to

(void)

(send a-frame:standard-menus edit-menu:find-previous-on-

demand item)
— void?
item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.
Defaults to
(send item enable

(let ((target (get-edit-target-object)))
(and target (is-a? target editor<%>))))

(send a-frame:standard-menus edit-menu:find-previous-string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant find-previous-menu-item).

(send a-frame:standard-menus edit-menu:find-previous-help-
string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant find-previous-info).
(send a-frame:standard-menus edit-menu:get-show/hide-

replace-item)
— (or/c false/c (is-a?/c menu-item},))

99

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-show/hide-

replace?).

(send a-frame:standard-menus edit-menu:create-show/hide-

replace?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus edit-menu:show/hide-replace-callback
item

control)

— void?

item : (is-a?/c menu-item})

control : (is-a?/c control-event%)

Defaults to
(void)

(send a-frame:standard-menus edit-menu:show/hide-replace-on-

demand menu-item)
— void?
menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to
(void)

(send a-frame:standard-menus edit-menu:show/hide-replace-

string)
— string?

The result of this method is used as the name of the menu-itemy.
Defaults to (string-constant show-replace-menu-item).
(send a-frame:standard-menus edit-menu:show/hide-replace-

help-string)
— string?

100

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant show/hide-replace-info).

(send a-frame:standard-menus edit-menu:get-replace-item)
— (or/c false/c (is-a?/c menu-item,))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu: create-replace?).

(send a-frame:standard-menus edit-menu:create-replace?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Opverride it to control the creation of the menu item.

Defaults to #f.
(send a-frame:standard-menus edit-menu:replace-callback
item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event)

Defaults to
(void)

(send a-frame:standard-menus edit-menu:replace-on-

demand menu-item)
— void?

menu-item : (is-a?/c menu-item},)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus edit-menu:replace-string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant replace-menu-item).

101

(send a-frame:standard-menus edit-menu:replace-help-string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant replace-info).

(send a-frame:standard-menus edit-menu:get-replace-all-item)
— (or/c false/c (is-a?/c menu-item}%))

This method returns the menu-itemy object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-replace-all?).

(send a-frame:standard-menus edit-menu:create-replace-all?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.

(send a-frame:standard-menus edit-menu:replace-all-callback
item
control)
— void?
item : (is-a?/c menu-item},)
control : (is-a?/c control-event?)

Defaults to

(void)

(send a-frame:standard-menus edit-menu: replace-all-on-

demand menu-item)
— void?
menu-item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

102

(send a-frame:standard-menus edit-menu:replace-all-string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant replace-all-menu-item).

(send a-frame:standard-menus edit-menu:replace-all-help-
string)
— string?

The result of this method is used as the help string when the menu-1itemy, object
is created.

Defaults to (string-constant replace-all-info).

(send a-frame:standard-menus edit-menu:get-find-case-

sensitive-item)
— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-find-case-
sensitive?).

(send a-frame:standard-menus edit-menu:create-find-case-

sensitive?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #f.
(send a-frame:standard-menus edit-menu:find-case-sensitive-callback
item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-eventY)

Defaults to

(void)

103

(send a-frame:standard-menus edit-menu:find-case-sensitive-

on-demand item)
— void?
item : (is-a?/c menu-item,)

The menu item’s on-demand proc calls this method.

Defaults to

(send item enable
(let ((target (get-edit-target-object)))
(and target (is-a? target editor<%>))))

(send a-frame:standard-menus edit-menu:find-case-sensitive-

string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant find-case-sensitive-menu-item).

(send a-frame:standard-menus edit-menu:find-case-sensitive-

help-string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant find-case-sensitive-info).

(send a-frame:standard-menus edit-menu:between-find-and-

preferences menu)
— void?
menu : (is-a?/c menu-itemY)

This method is called between the addition of the find and the preferences
menu-item. Override it to add additional menu items at that point.
(send a-frame:standard-menus edit-menu:get-preferences-item)

— (or/c false/c (is-a?/c menu-item},))

This method returns the menu-itemy, object corresponding to this menu item,
if it has been created (as controlled by edit-menu:create-preferences?).

(send a-frame:standard-menus edit-menu:create-preferences?)

— boolean?

104

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to (not (current-eventspace-has-standard-menus?)).

(send a-frame:standard-menus edit-menu:preferences-callback
item

control)

— void?

item : (is-a?/c menu-item,)

control : (is-a?/c control-eventY)

Defaults to

(begin (preferences:show-dialog) #t)

(send a-frame:standard-menus edit-menu:preferences-on-

demand menu-item)
— void?
menu-item : (is-a?/c menu-itemj,)

The menu item’s on-demand proc calls this method.

Defaults to

(void)

(send a-frame:standard-menus edit-menu:preferences-string)
— string?

The result of this method is used as the name of the menu-item).

Defaults to (string-constant preferences-menu-item).

(send a-frame:standard-menus edit-menu:preferences-help-
string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant preferences-info).

(send a-frame:standard-menus edit-menu:after-

preferences menu)
— void?
menu : (is-a?/c menu-itemY)

105

This method is called after the addition of the preferences menu-item. Over-
ride it to add additional menu items at that point.

(send a-frame:standard-menus help-menu:before-about menu)
— void?
menu : (is-a?/c menu-item})

This method is called before the addition of the about menu-item. Override it
to add additional menu items at that point.

(send a-frame:standard-menus help-menu:get-about-item)
— (or/c false/c (is-a?/c menu-item%))

This method returns the menu-itemj, object corresponding to this menu item,
if it has been created (as controlled by help-menu:create-about?).

(send a-frame:standard-menus help-menu:create-about?)
— boolean?

The result of this method determines if the corresponding menu item is created.
Override it to control the creation of the menu item.

Defaults to #£.

(send a-frame:standard-menus help-menu:about-callback item
control)
— void?
item : (is-a?/c menu-item})
control : (is-a?/c control-event?)

Defaults to
(void)

(send a-frame:standard-menus help-menu:about-on-demand menu-

item)
— void?
menu-item : (is-a?/c menu-item})

The menu item’s on-demand proc calls this method.

Defaults to

(void)

106

(send a-frame:standard-menus help-menu:about-
string) — string?

The result of this method is used as the name of the menu-iteml.

Defaults to (string-constant about-menu-item).

(send a-frame:standard-menus help-menu:about-help-string)
— string?

The result of this method is used as the help string when the menu-item}, object
is created.

Defaults to (string-constant about-info).
(send a-frame:standard-menus help-menu:after-about menu)

— void?
menu : (is-a?/c menu-itemY)

This method is called after the addition of the about menu-item. Override it to
add additional menu items at that point.

frame:standard-menus-mixin : (class? . -> . class?)
argument extends/implements: frame:basic<}>
result implements: frame:standard-menus<%>

The result of this mixin implements frame : standard-menus<%>.

(send a-frame:standard-menus on-close) — void?

Augments on-close in top-level-window<%>.

Removes the preferences callbacks for the menu items

frame:editor<¥%> : interface?
implements: frame:standard-menus<y>

Frame classes matching this interface support embedded editors.

(send a-frame:editor get-entire-label) — string

This method returns the entire label for the frame. See also set-label and
set-label-prefix.

107

(send a-frame:editor get-label-prefix) — string?

This returns the prefix for the frame’s label.

(send a-frame:editor set-label-prefix prefix) — void?
prefix : string?

Sets the prefix for the label of the frame.

(send a-frame:editor get-canvasy)
— (subclass?/c editor-canvas)

The result of this method is used to create the canvas for the editor<%> in this
frame.

Returns editor-canvasb.

(send a-frame:editor get-canvas<}>) — (is-
a?/c canvas:basic¥)

The result of this method is used to guard the result of the get-canvas
method.

(send a-frame:editor get-editory)
— (implementation?/c editor<%>)

The result of this class is used to create the editor<y> in this frame.
Override this method to specify a different editor class.

Returns the value of the init-field editorY.

(send a-frame:editor get-editor<)>) — interface?

The result of this method is used by make-editor to check that get-editor
is returning a reasonable editor.

Returns editor<y%>.

(send a-frame:editor make-editor) — (is-a?/c editor<)>)

This method is called to create the editor in this frame. It calls get-editor<y>
and uses that interface to make sure the result of get-editor} is reasonable.

Calls (make-object get-editori).

(send a-frame:editor revert) — void?

108

Loads the most recently saved version of the file to the disk. If the editor<y>
is a text, the start and end positions are restored.

(send a-frame:editor save [format]) — boolean?
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)
= 'same

Saves the file being edited, possibly calling save-as if the editor has no file-
name yet.

Returns #f if the user cancels this operation (only possible when the file has not
been saved before and the user is prompted for a new filename) and returns #t
if not.

(send a-frame:editor save-as [format]) — boolean?
format : (or/c 'guess 'standard 'text 'text-force-cr 'same 'copy)
= 'same

Queries the use for a file name and saves the file with that name.

Returns #f if the user cancels the file-choosing dialog and returns #t otherwise.

(send a-frame:editor get-canvas) — (is-a?/c canvasy)

Returns the canvas used to display the editor<%> in this frame.

(send a-frame:editor get-editor) — (is-a?/c editor<y>)

Returns the editor in this frame.

(send a-frame:editor find-editor predicate)
— (or/c (is-a?/c editor<%>) #f)
predicate : ((is-a?/c editor<y%>) . -> . boolean?)

Finds an editor matching the predicate, or returns #£ if there isn’t any.

frame:editor-mixin : (class? . -> . class?)
argument extends/implements: frame:standard-menus<y>
result implements: frame:editor<%>

This mixin adds functionality to support an editor<%> in the frame. This includes manage-
ment of the title, implementations of some of the menu items, a reasonable initial size, and
access to the editor<y> itself.

The size of this frame with be either 600 by 650 or 65 less than the width and height of the
screen, whichever is smaller.

109

(new frame:editor-mixin
[filename filename]
[editor’% editory]
[[parent parent]
[width width]
[height height]
[x x]
by vl
[style style]
[enabled enabled]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c frame:editor-mixin)
filename : string?
editor), : (implementation?/c editor:basic<}>)
parent : (or/c (is-a?/c frame}) false/c) = #f
width : (or/c dimension-integer? false/c) = #f
height : (or/c dimension-integer? false/c) = #f
x : (or/c position-integer? false/c) = #f
y @ (or/c position-integer? false/c) = #f
style : (listof (or/c 'no-resize-border = null
'no-caption
'no-system-menu
'hide-menu-bar
'mdi-parent
'mdi-child
'toolbar-button
'float
'metal))
enabled : any/c = #t
border : spacing-integer? = 0
spacing : spacing-integer? = 0
alignment : (list/c (or/c 'left 'center 'right) (or/c 'top 'center 'bottom))
= '(center top)
min-width : dimension-integer? = graphical-minimum-width
min-height : dimension-integer? = graphical-minimum-height
stretchable-width : any/c = #t
stretchable-height : any/c = #t

| (send a-frame:editor get-filename) — (or/c #f path?)

110

Overrides get-filename in frame:basic<y>.
Returns the filename in the editor returned by get-editor.
(send a-frame:editor editing-this-file? filename) — boolean?

filename : path?

Overrides editing-this-file? in frame:basic<%>.

Returns #t if the filename is the file that this frame is editing.

(send a-frame:editor get-all-open-files) — (listof path?)

Overrides get-all-open-files in frame:basic<)>.
Returns a list of all the paths for files that are open in this frame.

Added in version 1.74 of package gui-1ib.

(send a-frame:editor on-close) — void?

Augments on-close in frame: standard-menus<y%>.

Calls the editor:basic<%>’s method on-close.

(send a-frame:editor can-close?) — void?

Augments can-close? in top-level-window<%>.

Calls the editor:basic<%>’s method can-close?.

(send a-frame:editor get-label) — string?

Overrides get-1label in window<%>.
Returns the portion of the label after the hyphen. See also get-entire-label.

(send a-frame:editor set-label label) — void?
label : string?

Overrides set-1label in window<%>.
Sets the label, but preserves the label’s prefix. See also set-label-prefix.
(send a-frame:editor file-menu:open-callback item
evt) — void?

item : (is-a?/c menu-item<}>)
evt : (is-a?/c mouse-eventY)

Overrides file-menu:open-callback in frame:standard-menus<J>.

Calls handler:open-file with the directory of the saved file associated with
this editor (if any).

111

(send a-frame:editor file-menu:revert-on-demand) — void?

Overrides file-menu:revert-on-demand in frame:standard-menus<y>.

Disables the menu item when the editor is locked.

(send a-frame:editor file-menu:revert-callback item
evt) — void?
item : (is-a?/c menu-item})
evt : (is-a?/c control-event},)

Overrides file-menu:revert-callback in frame:standard-menus<’%>.

Informs the user that this action is not undoable and, if they still want to con-
tinue, calls revert.

(send a-frame:editor file-menu:create-revert?) — boolean?

Overrides file-menu:create-revert? in frame: standard-menus<%>.
returns #t.
(send a-frame:editor file-menu:save-callback item
evt) — void?

item : (is-a%?/c menu-item)
evt : (is-a?/c control-event%)

Overrides file-menu:save-callback in frame:standard-menus<%>.

Saves the file in the editor.

(send a-frame:editor file-menu:create-save?) — boolean?

Overrides file-menu:create-save? in frame: standard-menus<%>.

returns #t.

(send a-frame:editor file-menu:save-as-callback item
evt) — void?
item : (is-a?/c menu-item})
evt : (is-a?/c control-event},)

Overrides file-menu:save-as-callback in frame:standard-menus</>.

Prompts the user for a file name and uses that filename to save the buffer. Calls
save-as with no arguments.

(send a-frame:editor file-menu:create-save-as?) — boolean?

Overrides file-menu:create-save-as? in frame: standard-menus<%>.

returns #t.

112

(send a-frame:editor file-menu:print-callback item
evt) — void?
item : (is-a?/c menu-item})
evt : (is-a?/c control-event},)

Overrides file-menu:print-callback in frame:standard-menus<y>.

Calls the print method of editor<%> with the default arguments, except that
the output-mode argument is the result of calling preferences:get with
'framework:print-output-mode.

(send a-frame:editor file-menu:create-print?) — boolean?

Overrides file-menu: create-print? in frame:standard-menus<y>.
returns #t.
(send a-frame:editor file-menu:between-save-as-and-
print file-menu)
— void?
file-menu : (is-a?/c menu,)

Overrides file-menu:between-save-as-and-print in frame:standard-
menus</%>.

Creates a Print Setup menu item if can-get-page-setup-from-user? and
file-menu:create-print? both return true.

(send a-frame:editor edit-menu:between-select-all-and-

find edit-menu)
— void?

edit-menu : (is-a?/c menuY)

Overrides edit-menu:between-select-all-and-find in
frame:standard-menus</>.

Adds a menu item for toggling auto-wrap in the focused text.
(send a-frame:editor help-menu:about-callback item
evt) — void?
item : (is-a?/c menu-item},)
evt : (is-a?/c control-event)

Overrides help-menu: about-callback in frame: standard-menus<y%>.

Calls message-box with a message welcoming the user to the application
named by application:current-app-name

(send a-frame:editor help-menu:about-string) — string

113

Overrides help-menu: about-string in frame: standard-menus<y>.

Returns the result of (application:current-app-name)

(send a-frame:editor help-menu:create-about?) — boolean?

Overrides help-menu: create-about? in frame:standard-menus<y>.

returns #t.

frame:text<)> : interface?
implements: frame:editor<y>

Frames matching this interface provide support for text¥s.

frame:text-mixin : (class? . -> . class?)
argument extends/implements: frame:editor<y>
result implements: frame:text<y%>

This mixins adds support for text%s in the frame.

(new frame:text-mixin [editor?, editor}])
— (is-a?/c frame:text-mixin)
editory, : (extends text¥)

Calls the super initialization with either the value of the editor init or, if none
was supplied, it passes textl.

(send a-frame:text get-editor<%>) — interface

Overrides get-editor<y> in frame:editor<y>.

Returns (class->interface text%).

frame:pasteboard<y,> : interface?
implements: frame:editor<y>

Frames matching this interface provide support for pasteboardys.

114

frame:pasteboard-mixin : (class? . -> . class?)
argument extends/implements: frame:editor<y>
result implements: frame:pasteboard<y>

This mixin provides support for pasteboards in a frame.

(new frame:pasteboard-mixin [editor’, editorj])
— (is-a?/c frame:pasteboard-mixin)
editoryj, : (extends pasteboard},)

Calls the super initialization with either the value of the editor?, init or, if none
was supplied, it passes pasteboard’.

(send a-frame:pasteboard get-editor<y>) — interface

Overrides get-editor<%> in frame:editor<y%>.

Returns (class->interface pasteboardy,).

frame:delegate<),> : interface?
implements: frame:status-line<),>
frame:text<%>

Frames that implement this interface provide a 20,000 feet overview of the text in the main
editor. The term delegate in these method descriptions refers to the original editor and the
term delegatee refers to the editor showing the 20,000 feet overview.

(send a-frame:delegate get-delegated-text)

— (or/c #f (is-a?/c text:delegate<%>))

Returns the current delegate text, if any.

(send a-frame:delegate set-delegated-text d) — void?
d : (or/c #f (is-a?/c text:delegate<i>))

Sets the delegate text to d.

(send a-frame:delegate delegated-text-shown?) — boolean?

Returns #t if the delegate is visible, and #f if it isn’t.

115

(send a-frame:delegate hide-delegated-text) — void?

Hides the delegated text.

When the delegated text is hidden, it is not being updated. This is accomplished
by calling the set-delegate method of get-editorwith #f.

See also show-delegated-text

(send a-frame:delegate show-delegated-text) — void?

Makes the delegated text visible.

When the delegated text is shown, the set-delegate method of get-
delegated-textis called with the text to delegate messages to.

See also hide-delegated-text.

(send a-frame:delegate delegate-moved) — void?

This method is called when the visible region of the delegate editor changes, so
that the blue region in the delegatee is updated.

frame:delegate-mixin : (class? . -> . class?)
argument extends/implements: frame:status-line<}>
frame:text<)%>

result implements: frame:delegate<}>

Adds support for a 20,000-feet view via text:delegate<’> and text:delegate-mixin.

(send a-frame:delegate make-root-area-container class
parent)

— (is-a?/c panel},)
class : (subclass?/c panel’,)
parent : (is-a?/c panel%)

Overrides make-root-area-container in frame:basic<¥%>.

Adds a panel outside to hold the delegate editor-canvasy, and text/.

(send a-frame:delegate get-editor<)>) — interface

Overrides get-editor<y> in frame:editor<y>.

Returns text:delegate<y>.

116

(send a-frame:delegate get-editor’)
— (is-a?/c text:delegate<)>)

Overrides get-editory in frame:editor<y>.

returns the super result, with the text:delegate-mixin mixed in.

frame:searchable<’> : interface?
implements: frame:basic<y>

Frames that implement this interface support searching.

(send a-frame:searchable search direction) — void?
direction : (symbols 'forward 'backward)

Searches for the text in the search edit in the result of get-text-to-search.

If the text is found and it sets the selection to the found text.

(send a-frame:searchable search-replace) — boolean?

If there is a dark purple bubble (ie, if the replace portion of the search bar is
visible and there is a search hit after the insertion point), then this will replace
it with the contents of the replace editor and move the insertion point to just
after that, or to the end of the editor (if there are no more search hits after the
insertion point, but there are search hits before it).

(send a-frame:searchable replace-all) — void?

Loops through the text from the beginning to the end, replacing all occurrences
of the search string with the contents of the replace edit.

(send a-frame:searchable get-text-to-search) — (is-
a?/c texti)

Returns the last value passed to set-text-to-search.

(send a-frame:searchable set-text-to-search txt) — void?
txt : (or/c false/c (is-a?/c (subclass?/c text%)))

Sets the current text to be searched.

(send a-frame:searchable search-hidden?) — boolean?

117

Returns #t if the search subwindow is visiable and #f otherwise.

(send a-frame:searchable hide-search) — void?

This method hides the searching information on the bottom of the frame.

(send a-frame:searchable unhide-search
move-focus?
[#:new-search-string-from-selection? new-search-string-from-selection?])
— void?
move-focus? : boolean?
new-search-string-from-selection? : boolean? = #f

When the searching sub window is hidden, makes it visible. If move-focus?is
#f, the focus is not moved, but if it is any other value, the focus is moved to the
find window.

If new-search-string-from-selection? is a true value and the selection
in the result of get-text-to-search is not empty, then the search editor is
replaced with the selection.

(send a-frame:searchable unhide-search-and-toggle-

focus [#:new-search-string-from-selection? new-search-

string-from-selection?])
— void?
new-search-string-from-selection? : boolean? = #f

Like unhide-search, except it also moves the focus into the text to be
searched, or into the search string text, depending on where it currently is.

(send a-frame:searchable get-case-sensitive-search?)
— boolean?

Returns #t if the search is currently case-sensitive. (This method’s value de-
pends on the preference 'framework:case-sensitive-search?, but the
preference is only consulted when the frame is created.)

(send a-frame:searchable search-hits-changed) — void?

This method is final, so it cannot be overridden.

This method is called when the number of search matches changes and it up-
dates the GUL

frame:searchable-mixin : (class? . -> . class?)
argument extends/implements: frame:standard-menus<y>
result implements: frame:searchable<)>

This mixin adds support for searching in the editor<%> in this frame.

118

(send a-frame:searchable edit-menu:find-
callback) — boolean?

Overrides edit-menu:find-callback in frame:standard-menus<%>.

Toggles the focus between the find window and the window being searched.
When moving to the window with the search string, selects the entire range in

the buffer.

(send a-frame:searchable edit-menu:create-find?) — boolean?

Overrides edit-menu:create-find? in frame:standard-menus<’%>.

returns #t.

(send a-frame:searchable edit-menu:find-next-callback item
evt)

— void?
item : (is-a?/c menu-itemY)
evt : (is-a?/c control-event%)

Overrides edit-menu:find-next-callback in frame:standard-
menus<%>.
Calls unhide-search and then search.

(send a-frame:searchable edit-menu:create-find-next?)
— boolean?

Overrides edit-menu:create-find-next? in frame:standard-

menus<%>.

returns #t.
(send a-frame:searchable edit-menu:find-previous-callback

item

evt)
— void?

item : (is-a%?/c menu-item)

evt : (is-a?/c control-event%)

Overrides edit-menu:find-previous-callback in frame:standard-
menus<%>.

Calls unhide-search and then search.

(send a-frame:searchable edit-menu:create-find-previous?)

— boolean?

Overrides edit-menu:create-find-previous? in frame:standard-
menus<%>.

returns #t.

119

(send a-frame:searchable edit-menu:replace-all-callback)
— boolean?

Overrides edit-menu:replace-all-callback in frame:standard-
menus<}>.

Calls replace-all.

(send a-frame:searchable edit-menu:replace-all-on-

demand item)
— void?

item : menu-item),

Overrides edit-menu:replace-all-on-demand in frame:standard-
menus<}%>.

Disables item when search-hidden? returns #t and enables it when that
method returns #£.

(send a-frame:searchable edit-menu:create-replace-all?)
— boolean?

Overrides edit-menu:create-replace-all? in frame:standard-
menus<%>.

returns #t.

(send a-frame:searchable edit-menu:find-case-sensitive-

callback)
— boolean?

Overrides edit-menu:find-case-sensitive-callback in
frame:standard-menus<y>.

Updates the state of the case-sensitive searching for this frame, and sets the
'framework:case-sensitive-search? preference for later frames.

(send a-frame:searchable edit-menu:find-case-sensitive-on-

demand item)
— void?

item : menu-item),

Overrides edit-menu:find-case-sensitive-on-demand in
frame:standard-menus<}>.

Checks item when searching is case-sensitive and unchecks it otherwise.

(send a-frame:searchable edit-menu:create-find-case-

sensitive?)
— boolean?

120

Overrides edit-menu:create-find-case-sensitive?
frame:standard-menus</>.

returns #t.

(send a-frame:searchable make-root-area-container)
— (is-a?/c area-container<’>)

Overrides make-root-area-container in frame:basic<%>.

Builds a panel for the searching information.

(send a-frame:searchable on-close) — void?

Augments on-close in frame: standard-menus<y>.

Cleans up after the searching frame.

frame:searchable-text<%> : interface?
implements: frame:searchable<y>
frame:text<)>

frame:searchable-text-mixin : (class? . -> . class?)
argument extends/implements: frame:text<¥%>
frame:searchable<)>
result implements: frame:searchable-text<%>

(send a-frame:searchable-text get-text-to-search)
— (is-a?/c texth)

in

Overrides get-text-to-search in frame:searchable<’>. This method is

final, so it cannot be overridden.

Returns the result of get-editor.

(send a-frame:searchable-text get-editor<)>)
— (is-a?/c editor<)>)

Overrides get-editor<%> in frame:editor<y%>.

Returns text:searching<%>.

(send a-frame:searchable-text get-editor¥%)
— (is-a?/c editor<%>)

121

Overrides get-editory in frame:editor<y>.

Returns (text:searching-mixin (super get-editory)).

frame:basic), : class?
superclass: (frame:register-group-mixin (frame:basic-mixin frame))

frame:size-pref’ : class?
superclass: (frame:size-pref-mixin frame:basic¥)

frame:info% : class?
superclass: (frame:info-mixin frame:basic})

frame:text-info% : class?
superclass: (frame:text-info-mixin frame:info,)

frame:pasteboard-info), : class?
superclass: (frame:pasteboard-info-mixin frame:text-info)

frame:status-line), : class?
superclass: (frame:status-line-mixin frame:text-info,)

frame:standard-menus’, : class?
superclass: (frame:standard-menus-mixin frame:status-line},)

122

frame:editory% : class?
superclass: (frame:editor-mixin frame:standard-menus)

frame:text) : class?
superclass: (frame:text-mixin frame:editor)

frame:searchable}, : class?
superclass: (frame:searchable-text-mixin (frame:searchable-mixin frame:text?%))

frame:delegate’, : class?
superclass: (frame:delegate-mixin frame:searchable)

frame:pasteboardy, : class?
superclass: (frame:pasteboard-mixin frame:editor?,)

(frame:setup-size-pref

size-pref-sym

width

height

[#:maximized? maximized?

#:position-preferences position-preferences-sym])
— void?

size-pref-sym : symbol?

width : number?

height : number?

maximized? : boolean? = #f
position-preferences-sym : (or/c #f symbol?) = #f

123

Initializes a preference for the frame: size-pref mixin.

The first argument should be the preferences symbol, and the second and third should be the
default width and height, respectively. If the window should be maximized by default, pass
#t for the maximized? argument.

If position-preferences-sym is passed, then that symbol will be used to track the posi-
tion of the window.

(frame:add-snip-menu-items menu
menu-itemy,
[func]) — void?
menu : (is-a?/c menu})
menu-itemy, : (subclass?/c menu-itemy,)
func : (-> (is-a?/c menu-itemy) void?) = void

Inserts three menu items into menu, one that inserts a text box, one that inserts a pasteboard
box, and one that inserts an image into the currently focused editor (if there is one). Uses
menu-itemy, as the class for the menu items.

Calls func right after inserting each menu item.

(frame:reorder-menus frame) — void?
frame : (is-a?/c frame,)

Re-orders the menus in a frame. It moves the “File” and “Edit” menus to the front of the
menubar and moves the “Windows” and “Help” menus to the end of the menubar.

This is useful in conjunction with the frame classes. After instantiating the class and adding
ones own menus, the menus will be mis-ordered. This function fixes them up.

(frame:remove-empty-menus frame) — void?
frame : (is-a?/c frame},)

Removes empty menus in a frame.

(frame:current-icon) — (or/c #f
(is-a?/c bitmap)
(cons/c (is-a?/c bitmap%)
(is-a?/c bitmap%)))
(frame:current-icon icon-spec) — void?
icon-spec : (or/c #f
(is-a?/c bitmap¥)
(cons/c (is-a?/c bitmap%)
(is-a?/c bitmap%)))

124

The value of this parameter is used by the initialization code of frame:basic-mixin.

o Ifitis #f, then its value is ignored.

e If it is a bitmap¥, then the set-icon is called with the bitmap, the result of invoking
the bitmap’% get-loaded-mask method, and 'both.

e If it is a pair of bitmaps, then the set-icon method is invoked twice, once with each
bitmap in the pair. The first bitmap is passed (along with the result of its bitmap
get-loaded-mask) and 'small, and then the second bitmap is passed (also along
with the result of its bitmap), get-loaded-mask)and 'large.

Defaults to #f.

(frame:lookup-focus-table [eventspace])
— (listof (is-a?/c frame:focus-table<%>))
eventspace : eventspace? = (current-eventspace)

Returns a list of the frames in eventspace, where the first element of the list is the frame
with the focus.

The order and contents of the list are maintained by the methods in frame:focus-table-
mixin, meaning that the OS-level callbacks that track the focus of individual frames is ig-
nored.

See also test:use-focus-table and test:get-active-top-level-window.

125

15 Group

group:% : class?
superclass: object’

This class manages a group of frames matching the frame:basic<y> interface. There is
one instance created by the framework, returned by the function group:get-the-frame-
group and every frame that was constructed with frame:basic-mixin adds itself to the

result of group:get-the-frame-group.

(send a-group: get-mdi-parent)
— (or/c false/c (is-a?/c frame’,))

The result of this method must be used as the parent frame for each frame in the
group.

(send a-group: get-frames)
— (list-of (is-a?/c frame:basic<}>))

Returns the frames in the group.

(send a-group: frame-label-changed frame) — void?
frame : (is-a?/c frame:basic<}>)

This method is called by frames constructed with frame:basic-mixin when
their titles change.

Updates the windows menu of each frame in the group.

(send a-group: frame-shown/hidden) — void?

This method is called by instances of frame:basicy to notify the frame group
that a frame’s visibility is changed.

Updates the Windows menus of all of the frames in the frame group.

(send a-group: for-each-frame f) — void?
f : ((is-a?/c frame:basic<¥%>) -> void?)

This method applies a function to each frame in the group. It also remembers
the function and applies it to any new frames that are added to the group when
they are added.

See also get-frames.

Applies £ to each frame in the group

126

(send a-group: get-active-frame) — (is-a?/c frame:basic<%>)

Returns the frame with the keyboard focus or the first frame in the group.
(send a-group: set-active-frame frame) — void?
frame : (is-a?/c frame:basic<%>)
Sets the active frame in the group. This method is called by on-activate.
(send a-group: insert-frame frame) — void?
frame : (is-a?/c frame:basic<%>)
Inserts a frame into the group.
(send a-group: remove-frame frame) — void?
frame : (is-a?/c frame:basic<%>)
Removes a frame from the group.

(send a-group: clear) — boolean?

This removes all of the frames in the group. It does not close the frames. See

also on-close-alland can-close-all?.

(send a-group: on-close-all) — void?

Call this method to close all of the frames in the group. The function can-
close-all? must have been called just before this function and it must have
returned #t.

Calls the on-close method and the show method (with #f as argument) on
each frame in the group.

(send a-group: can-close-all?) — boolean?

Call this method to make sure that closing all of the frames in the frame groups
is permitted by the user. The function on-close-all is expected to be called
just after this method is called.

Calls the can-close? method of each frame in the group.

(send a-group: locate-file name)
— (or/c false/c (is-a?/c frame:basic<}%>))
name : (or/c path? symbol?)

127

Returns the frame that is editing or viewing the file name.

If name is a symbol?, uses the port-name-matches? method to find a window
that’s editing this file.

Changed in version 1.75 of package gui-1ib: generalized the filename argument to allow sym-

bols and added the start-pos and end-pos arguments.

(group:get-the-frame-group) — (is-a?/c group:%)

This returns the frame group.

(group:on-close-action) — void?

See also group: can-close-check.

Call this function from the can-close? callback of a frame in order for the group to properly
close the application.

(group:can-close-check) — boolean?

See also group:on-close-action.

Call this function from the can-close? callback of a frame in order for the group to properly
close the application.

(group:add-to-windows-menu proc) — any
proc : (-> (is-a?/c menu},) any)

Procedures passed to this function are called when the Windows menu is created. Use it to
add additional menu items.

(group:create-windows-menu mb) — (is-a?/c menu’)
mb : (is-a?/c menu-item-container<y>)

Creates a windows menu, registers it (internally) with the frame group (see (get-the-
frame-group)), and returns it.

128

16 GUI Utilities

(require framework/gui-utils) package: |[gui-1ib

(gui-utils:trim-string str size)
— (and/c string?
(4 (str)
((string-length str) . <= . size)))
str . string?
size : (and/c number? positive?)

Constructs a string whose size is less than size by trimming the str and inserting an
ellispses into it.

(gui-utils:quote-literal-label string
[#:quote-amp? quote-amp?])
— (and/c string?
(1 (str) ((string-length str) . <= . 200)))
string : string?
quote-amp? : any/c = #t

Constructs a string whose length is less than 200 and, if quote-amp? is not #£, then it also
quotes the ampersand in the result (making the string suitable for use in menu-itemy label,

for example).

(gui-utils:format-literal-label str
rest ...)
— (and/c string?
(lambda (str)
((string-length str) . <= . 200)))
str . string?
rest : (listof any/c)

Formats a string whose ampersand characters are mk-escaped; the label is also trimmed to
<= 200 mk-characters.

(gui-utils:cancel-on-right?) — boolean?

Returns #t if cancel should be on the right-hand side (or below) in a dialog and #f otherwise.
Just returns what system-position-ok-before-cancel? does.

See also gui-utils:ok/cancel-buttons.

129

https://pkgs.racket-lang.org/package/gui-lib

(gui-utils:ok/cancel-buttons parent
confirm-callback
cancel-callback
[confirm-label
cancel-label
#:confirm-style confirm-style])
— (is-a?/c button’) (is-a?/c buttoni,)
parent : (is-a?/c area-container<y>)

confirm-callback : ((is-a?/c button}) (is-a?/c eventl) . -> . any)
cancel-callback : ((is-a?/c button%) (is-a?/c event®) . -> . any)
confirm-label : string? = (string-constant ok)

cancel-label : string? = (string-constant cancel)

confirm-style : (listof symbol?) = '(border)

Adds an Ok and a cancel button to a panel, changing the order to suit the platform. Under
Mac OS and unix, the confirmation action is on the right (or bottom) and under Windows,
the canceling action is on the right (or bottom). The buttons are also sized to be the same
width.

The first result is be the OK button and the second is the cancel button.

By default, the confirmation action button has the ' (border) style, meaning that hitting
return in the dialog will trigger the confirmation action. The confirm-style argument can
override this behavior, tho. See buttony for the precise list of allowed styles.

See also gui-utils:cancel-on-right?.
(gui-utils:next-untitled-name) — string?

Returns a name for the next opened untitled frame. The first name is “Untitled”, the second
is “Untitled 27, the third is “Untitled 3”, and so forth.

(gui-utils:cursor-delay) — real?
(gui-utils:cursor-delay new-delay) — void?
new-delay : real?

This function is not a parameter. Instead, the state is just stored in the closure.

The first case in the case lambda returns the current delay in seconds before a watch cur-
sor is shown, when either gui-utils:local-busy-cursor or gui-utils:show-busy-
cursor is called.

The second case in the case lambda Sets the delay, in seconds, before a watch cur-

sor is shown, when either gui-utils:local-busy-cursor or gui-utils:show-busy-
cursor is called.

130

(gui-utils:show-busy-cursor thunk [delay]) — any/c
thunk : (-> any/c)
delay : integer? = (gui-utils:cursor-delay)

Evaluates (thunk) with a watch cursor. The argument delay specifies the amount of time
before the watch cursor is opened. Use gui-utils:cursor-delay to set this value to all
calls.

This function returns the result of thunk.

(gui-utils:delay-action delay-time
open
close) — (-> void?)
delay-time : real?
open : (-> void?)
close : (-> void?)

Use this function to delay an action for some period of time. It also supports canceling the
action before the time period elapses. For example, if you want to display a watch cursor,
but you only want it to appear after 2 seconds and the action may or may not take more than
two seconds, use this pattern:

(let ([close-down
(gui-utils:delay-action

2
(1 () .. init watch cursor ...)
(1) .. close watch cursor ...))])

(close-down))

Creates a thread that waits delay-time. After delay-time has elapsed, if the result thunk
has not been called, call open. Then, when the result thunk is called, call close. The
function close will only be called if open has been called.

(gui-utils:local-busy-cursor window
thunk
[delay]) — any/c
window : (is-a?/c window<%>)
thunk : (-> any/c)
delay : integer? = (gui-utils:cursor-delay)

Evaluates (thunk) with a watch cursor in window. If window is #f, the watch cursor is
turned on globally. The argument delay specifies the amount of time before the watch cur-
sor is opened. Use gui-utils:cursor-delay to set this value for all uses of this function.

131

The result of this function is the result of thunk.

(gui-utils:unsaved-warning filename
action
[can-save-now?
parent
cancel?
#:dialog-mixin dialog-mixin])
— (symbols 'continue 'save 'cancel)
filename : string?
action : string?
can-save-now? : boolean? = #f
parent : (or/c false/c
(is-a?/c frame},)
(is-a?/c dialogh))
cancel? . boolean? = #t
dialog-mixin : (make-mixin-contract dialog}%) = values

#f

This displays a dialog that warns the user of a unsaved file.

The string, action, indicates what action is about to take place, without saving. For exam-
ple, if the application is about to close a file, a good action is "Close Anyway". The result
symbol indicates the user’s choice. If can-save-now? is #£, this function does not give the
user the “Save” option and thus will not return 'save.

If cancel?is #t there is a cancel button in the dialog and the result may be 'cancel. If it
is #f, then there is no cancel button, and ' cancel will not be the result of the function.

The dialog-mixin argument is passed to message-box/custom.

Changed in version 1.29 of package gui-1ib: Added the dialog-mixin argument.

(gui-utils:get-choice message
true-choice
false-choice
[title
default-result
parent
style
checkbox-proc
checkbox-label
#:dialog-mixin dialog-mixin]) — any/c

message : string?
true-choice : string?
false-choice : string?

132

title : string? = (string-constant warning)

default-result : any/c = 'disallow-close
parent : (or/c false/c (is-a?/c frame},) (is-a?/c dialogh))
= #f
style : (symbols 'app 'caution 'stop) = 'app
checkbox-proc : (or/c false/c (case-> (boolean? . -> . void?)
(-> boolean?)))
= #f
checkbox-label : string? = (string-constant dont-ask-again)

dialog-mixin : (make-mixin-contract dialog}) = values

Opens a dialog that presents a binary choice to the user. The user is forced to choose between
these two options, ie cancelling or closing the dialog opens a message box asking the user to
actually choose one of the two options.

The dialog will contain the string message and two buttons, labeled with the true-choice
and the false-choice. If the user clicks on true-choice #t is returned. If the user clicks
on false-choice, #f is returned.

The argument default-result determines how closing the window is treated. If the ar-
gument is 'disallow-close, closing the window is not allowed. If it is anything else, that
value is returned when the user closes the window.

If gui-utils:cancel-on-right? returns #t, the false choice is on the right. Otherwise,
the true choice is on the right.

The style parameter is (eventually) passed to message as an icon in the dialog.

If checkbox-proc is given, it should be a procedure that behaves like a parameter for get-
ting/setting a boolean value. The intention for this value is that it can be used to disable
the dialog. When it is given, a checkbox will appear with a checkbox-label label (de-
faults to the dont-ask-again string constant), and that checkbox value will be sent to the
checkbox-proc when the dialog is closed. Note that the dialog will always pop-up — it is
the caller’s responsibility to avoid the dialog if not needed.

The dialog-mixin argument is passed to message-box/custom or message+check-
box/custom.

Changed in version 1.29 of package gui-1lib: Added the dialog-mixin argument.
(gui-utils:get-clicked-clickback-delta [white-on-black?])

— (is-a?/c style-deltal)
white-on-black? : boolean? = #f

This delta is designed for use with set-clickback. Use it as one of the style-delta} argu-
ment to set-clickback.

133

If white-on-black? is true, the function returns a delta suitable for use on a black back-
ground.

See also gui-utils:get-clickback-delta.
(gui-utils:get-clickback-delta [white-on-black?])

— (is-a?/c style-deltal)
white-on-black? : boolean? = #f

This delta is designed for use with set-clickback. Use the result of this function as the style
for the region text where the clickback is set.

If white-on-black? is true, the function returns a delta suitable for use on a black back-
ground.

See also gui-utils:get-clicked-clickback-delta.

134

17 Handler

(handler:handler? obj) — boolean?
obj : any/c

This predicate determines if its input is a handler.

(handler:handler-name handler) — string?
handler : handler:handler?

Extracts the name from a handler.

(handler:handler-extension handler)
— (or/c (path? . -> . boolean?) (listof string?))
handler : handler:handler?

Extracts the extension from a handler.

(handler:handler-handler handler)
— (path? . -> . (is-a?/c frame:editor<y%>))
handler : handler:handler?

Extracts the handler’s handling function.

(handler:insert-format-handler name
pred
handler) — void?
name : string?
pred : (or/c string? (listof string?) (path? . -> . boolean?))
handler : (path? . -> . (or/c false/c (is-a?/c frame:editor<y>)))

This function inserts a format handler.

The string, name names the format handler for use with handler:find-named-format-
handler. If pred is a string, it is matched with the extension of a filename by
handler:find-format-handler. If pred is a list of strings, they are each matched with
the extension of a filename by handler:find-format-handler. If it is a function, the
filename is applied to the function and the functions result determines if this is the handler
to use.

The most recently added format handler takes precedence over all other format handlers.

135

(handler:find-named-format-handler name)
— (or/c #f (-> path? (is-a?/c frame:editor<y>)))
name : string?

This function selects a format handler. See also handler:insert-format-handler.

It finds a handler based on name.

(handler:find-format-handler filename)
— (or/c #f (-> path? (is-a?/c frame:editor<y>)))
filename : path?

This function selects a format handler. See also handler:insert-format-handler.

It finds a handler based on filename.

(handler:edit-file filename
[make-default
#:start-pos start-pos
#:end-pos end-pos])
— (or/c false/c (is-a?/c frame:editor<%>))
filename : (or/c path? symbol? #f)
make-default : (-> (is-a?/c frame:editor<%>))
= (1 O ((handler:current-create-new-window) (and (path? filename) filename))
start-pos : (or/c exact-nonnegative-integer? #f) = #f
end-pos : (or/c exact-nonnegative-integer? #f) = start-pos

This function invokes the appropriate format handler to open the file (see handler:insert-
format-handler).

e If filename is a string or a symbol, this function checks the result of group:get-
the-frame-group’s locate-file method to see if the filename is already open by a
frame in the group.

— If so, it returns the frame.

— If not and if filename is a string, this function calls handler:find-format-
handler with filename.
+ If a handler is found, it is applied to filename and its result is the final
result.
If not, make-default is used.

— If the file is not already open by a frame in the group and if filename is a
symbol, make-default is used.

136

o If filename is #f, make-default is used.

Changed in version 1.75 of package gui-1lib: generalized the filename argument to allow symbols and added

the start-pos and end-pos arguments.

(handler:current-create-new-window)

— (-> (or/c false/c path?) (is-a?/c frame%))

(handler:current-create-new-window proc) — void?
proc : (-> (or/c false/c path?) (is-a?/c frame}))

This is a parameter that controls how the framework creates new application windows.

The default setting is this:

(41 (filename)
(let ([frame (make-object frame:text-info-file), filename)])
(send frame show #t)
frame))

(handler:open-file [dir])
— (or/c false/c (is-a?/c frame:basic<%>))
dir : (or/c false/c path? string?) = #f

This function queries the user for a filename and opens the file for editing. It uses
handler:edit-file to open the file, once the user has chosen it.

Calls finder:get-file and handler:edit-file, passing along dir.

(handler:install-recent-items menu) — void?
menu : (is-a?/c menu’,)

This function deletes all of the items in the given menu and adds one menu item for each
recently opened file. These menu items, when selected, call handler:edit-file with the
filename of the recently opened file.

The menu’s size is limited to 10.

(handler:set-recent-items-frame-superclass frame) — void?
frame : (implementation?/c frame:standard-menus<%>)

Sets the superclass for the recently opened files frame. It must be derived from
frame:standard-menus.

137

(handler:add-to-recent filename) — void?
filename : path?

Adds a filename to the list of recently opened files.

(handler:set-recent-position filename
start
end) — void?
filename : path?
start : number?
end : number?

Sets the selection of the recently opened file to start and end.

(handler:size-recently-opened-files num) — void?
num : number?

Sizes the 'framework:recently-opened-files/pos preference list length to num.

(handler:update-currently-open-files) — void?

This is called when new files are opened or when files are closed or when the frontmost
window changes. As long as the app is not currently exiting, it updates the preference with
the key 'framework:last-opened-files to hold a list of list of paths, to record the lists
of files that are currently open in tabs.

138

18 Icon
(icon:get-paren-highlight-bitmap) — (is-a?/c bitmap%)

This returns the parenthesis highlight bitmapJ. It is only used on black and white screens.
(icon:get-eof-bitmap) — (is-a?/c bitmap%)

This returns the bitmap¥ used for the clickable “eof” icon from text :ports.
(icon:get-autowrap-bitmap) — (is-a?/c bitmap¥%)

This returns the autowrap’s bitmap’.

The bitmap may not respond #t to the ok? method.
(icon:get-lock-bitmap) — (is-a?/c bitmap)

This returns the lock’s bitmap.

The bitmap may not respond #t to the ok? method.
(icon:get-unlock-bitmap) — (is-a?/c bitmap%)

This returns the reset unlocked bitmap.

The bitmap may not respond #t to the ok? method.
(icon:get-anchor-bitmap) — (is-a?/c bitmap%)

This returns the anchor’s bitmap.

The bitmap may not respond #t to the ok? method.

(icon:get-left/right-cursor) — (is-a?/c cursor’%)

This function returns a cursor? object that indicates left/right sizing is possible, for use
with columns inside a window.

The cursor may not respond #t to the ok? method.

139

(icon:get-up/down-cursor) — (is-a?/c cursor?)

This function returns a cursor?y, object that indicates up/down sizing is possible, for use
with columns inside a window.

The cursor may not respond #t to the ok? method.

(icon:get-gc-on-bitmap) — (is-a?/c bitmapi)

This returns a bitmap to be displayed in an frame: info<¥> frame when garbage collection
is taking place.

The bitmap may not respond #t to the ok? method.

(icon:get-gc-off-bitmap) — (is-a?/c bitmap%)

This returns a bitmap to be displayed in an frame: info<Y> frame when garbage collection
is not taking place.

The bitmap may not respond #t to the ok? method.

140

19 Keymap

keymap:aug-keymap<%> : interface?
implements: keymap

This keymap overrides some of the built in keymap?’, methods to be able to extract the key-
bindings from the keymap.

(send a-keymap:aug-keymap get-chained-keymaps)
— (listof (is-a?/c keymap’))

Returns the list of keymaps that are chained to this one.

(send a-keymap:aug-keymap get-map-function-table) — hash?

Returns a hash-table that maps symbols naming key sequences to the names of
the keymap functions the are bound to.

(send a-keymap:aug-keymap get-map-function-
table/ht ht) — hash?
ht : hash?

This is a helper function for get-map-function-table that returns a sim-
ilar result, except it accepts a hash-table that it inserts the bindings into. It
does not replace any bindings already in ht. The result is different from
get-map-function-table only in that keymap : aug-keymap<’%> get-map-
function-table will remove keybindings that are also have a prefix (since
those keybindings are not active).

keymap:aug-keymap-mixin : (class? . -> . class?)
argument extends/implements: keymap?
result implements: keymap :aug-keymap<%>

(send a-keymap:aug-keymap chain-to-keymap next
prefix?) — void
next : (is-a?/c keymap%)
prefix? : boolean?

Overrides chain-to-keymap in keymapb.

Keeps a list of the keymaps chained to this one.

141

(send a-keymap:aug-keymap remove-chained-
keymap keymap) — void
keymap : (is-a?/c keymap)

Overrides remove-chained-keymap in keymap’,.

Keeps the list of the keymaps chained to this one up to date.

(send a-keymap:aug-keymap map-function key-name
function-name) — void
key-name : string
function-name : string

Overrides map-function in keymap¥.

Keeps a separate record of the key names and functions that they are bound to
in this keymap.

keymap:aug-keymapy}, : class?
superclass: (keymap:aug-keymap-mixin keymap%)

(keymap:remove-user-keybindings-file user-keybindings-path)
— any
user-keybindings-path : any/c

Removes the keymap previously added by keymap: add-user-keybindings-file.

(keymap:add-user-keybindings-file user-keybindings-path-or-require-
spec)

— any

user-keybindings-path-or-require-spec : any/c

Chains the keymap defined by user-keybindings-path-or-require-spec to the global
keymap, returned by keymap:get-global.

If user-keybindings-path-or-require-spec is a path, the module is loaded directly
from that path. Otherwise, user-keybindings-path-or-require-spec is treated like
an argument to require.

142

(keymap:add-to-right-button-menu) — (-> (is-a?/c popup-menu},)
(is-a?/c editor<)>)
(is-a?/c event’)
void?)
(keymap:add-to-right-button-menu proc) — void?
proc : (-> (is-a?/c popup-menu},)
(is-a?/c editor<¥%>)
(is-a?/c event})
void?)

When the keymap that keymap: get-global returns is installed into an editor, this parame-
ter’s value is used for right button clicks.

Before calling this procedure, the function append-editor-operation-menu-items is
called.

See also keymap:add-to-right-button-menu/before.

(keymap:add-to-right-button-menu/before)

— (-> (is-a?/c popup-menuj%) (is-a?/c editor<}>) (is-a?/c event}) void?)
(keymap:add-to-right-button-menu/before proc) — void?

proc : (-> (is-a?/c popup-menu},) (is-a?/c editor<})>) (is-a?/c event’) void?)

When the keymap that keymap: get-global returns is installed into an editor, this function
is called for right button clicks.

After calling this procedure, the function append-editor-operation-menu-items is
called.

See also keymap:add-to-right-button-menu.

(keymap:call/text-keymap-initializer thunk-proc) — any/c
thunk-proc : (-> any/c)

This function parameterizes the call to thunk-proc by setting the keymap-initialization
procedure (see current-text-keymap-initializer) to install the framework’s standard
text bindings.

(keymap:canonicalize-keybinding-string keybinding-string)
— string?

keybinding-string : string?

Returns a string that denotes the same keybindings as the input string, except that it is in
canonical form; two canonical keybinding strings can be compared with string="7.

143

(keymap:get-editor) — (is-a?/c keymap’%)

This returns a keymap for handling standard editing operations. It binds these keys:

e "z":undo

e "y": redo
e 'x": cut
e ""c": copy

e "y'": paste

e "a'": select all

where each key is prefixed with the menu-shortcut key, based on the platform. Under Unix,
the shortcut is "a: "; under windows the shortcut key is "c: " and under MacOS, the shortcut
key is "d:".

(keymap:get-file) — (is-a?/c keymapl)

This returns a keymap for handling file operations.

(keymap:get-user) — (is-a?/c keymap’)

This returns a keymap that contains all of the keybindings in the keymaps loaded via
keymap:add-user-keybindings-file

(keymap:get-global) — (is-a?/c keymap%)

This returns a keymap for general operations. See keymap: setup-global for a list of the
bindings this keymap contains.

(keymap:get-search) — (is-a?/c keymap’%)

This returns a keymap for searching operations.

(keymap:make-meta-prefix-list key
[mask-control?]) — (listof string?)
key : string?
mask-control? : boolean? = #f

144

This prefixes a key with all of the different meta prefixes and returns a list of the pre-
fixed strings. If mask-control? is #t, then the result strings include "~c:" in them (see
keymap : send-map-function-meta) for a fuller discussion of this boolean).

Takes a keymap, a base key specification, and a function name; it prefixes the base
key with all “meta” combination prefixes, and installs the new combinations into the
keymap. For example, (keymap:send-map-function-meta keymap "a" func) maps
"m:a" and "ESC;a" to func.

(keymap:send-map-function-meta

keymap

key

func

[mask-control?

#:alt-as-meta-keymap alt-as-meta-keymap])
— void?

keymap : (is-a?/c keymapl)

key : string?

func : string?

mask-control? : boolean? = #f
alt-as-meta-keymap : (or/c (is-a?/c keymap%) #f) = #f

Most keyboard and mouse mappings are inserted into a keymap by calling the keymap’s
map-function method. However, “meta” combinations require special attention. The "m:"
prefix recognized by map-function applies only to the Meta key that exists on some key-
boards. By convention, however, “meta” combinations can also be accessed by using “ESC”
as a prefix.

This procedure binds all of the key-bindings obtained by prefixing key with a meta-prefix
to func in keymap.

If alt-as-meta-keymap is a keymap’% object, then the the key binding (string-
append "7:a:" key) is bound to func in alt-as-meta-keymap. Additionally, if func
has not been added (via keymap%) to alt-as-meta-keymap, then keymap:send-map-
function-meta signals an error.

If mask-control? is #t, then the result strings include "~c:" in them. This is important
under Windows where international keyboards often require characters that are unmodified
on US keyboards to be typed with the AltGr key; such keys come into the system as having
both the control and the meta modified applied to them and, generally speaking, keybindings
should not change the behavior of those keys.

(keymap:setup-editor keymap) — void?
keymap : (is-a?/c keymap%)

145

This sets up the input keymap with the bindings described in keymap: get-editor.

(keymap:setup-file keymap) — void?
keymap : (is-a?/c keymap%)

This extends a keymap% with the bindings for files.

(keymap:setup-global keymap
[#:alt-as-meta-keymap alt-as-meta-keymap])
— void?
keymap : (is-a?/c keymap%)
alt-as-meta-keymap : (or/c #f (is-a?/c keymap%)) = #f

This function extends a keymap? with the following functions:

* ring-bell (any events) — Rings the bell (using bell) and removes the search panel

from the frame, if there.

* save-file (key events) — Saves the buffer. If the buffer has no name, then

finder:put-file is invoked.
* save-file-as (key events) — Calls finder:put-file to save the buffer.

¢ load-file (key events) — Invokes finder:open-file.

* find-string (key events) — Opens the search buffer at the bottom of the frame, unless

it is already open, in which case it searches for the text in the search buffer.

* find-string-reverse (key events) — Same as “find-string”, but in the reverse direction.

* find-string-replace (key events) — Opens a replace string dialog box.

* toggle-anchor (key events) — Turns selection-anchoring on or off.

* center-view-on-line (key events) — Centers the buffer in its display using the currently

selected line.

* collapse-space (key events) — Collapses all non-return whitespace around the caret

into a single space.

* remove-space (key events) — Removes all non-return whitespace around the caret.

¢ collapse-newline (key events) — Collapses all empty lines around the caret into a

single empty line. If there is only one empty line, it is removed.

 open-line (key events) — Inserts a new line.

146

« transpose-chars (key events) — Transposes the characters before and after the caret
and moves forward one position.

* transpose-words (key events) — Transposes words before and after the caret and
moves forward one word.

* capitalize-word (key events) — Changes the first character of the next word to a capital
letter and moves to the end of the word.

» upcase-word (key events) — Changes all characters of the next word to capital letters
and moves to the end of the word.

* downcase-word (key events) — Changes all characters of the next word to lowercase
letters and moves to the end of the word.

« kill-word (key events) — Kills the next word.
¢ backward-kill-word (key events) — Kills the previous word.
* goto-line (any events) — Queries the user for a line number and moves the caret there.

* goto-position (any events) — Queries the user for a position number and moves the
caret there.

* copy-clipboard (mouse events) — Copies the current selection to the clipboard.
* cut-clipboard (mouse events) — Cuts the current selection to the clipboard.
* paste-clipboard (mouse events) — Pastes the clipboard to the current selection.

» copy-click-region (mouse events) — Copies the region between the caret and the input
mouse event.

* cut-click-region (mouse events) — Cuts the region between the caret and the input
mouse event.

* paste-click-region (mouse events) — Pastes the clipboard into the position of the input
mouse event.

* select-click-word (mouse events) — Selects the word under the input mouse event.
* select-click-line (mouse events) — Selects the line under the input mouse event.

* start-macro (key events) — Starts recording a keyboard macro

* end-macro (key events) — Stops recording a keyboard macro

* do-macro (key events) — Executes the last keyboard macro

* toggle-overwrite (key events) — Toggles overwriting mode

These functions are bound to the following keys (C = control, S = shift, A = alt, M = “meta”,
D = command):

147

C-g : “ring-bell”

M-C-g : “ring-bell”

C-c C-g: “ring-bell”

C-x C-g : “ring-bell”

C-p : “previous-line”

S-C-p : “select-previous-line”

C-n : “next-line”

S-C-n : “select-next-line”

C-e : “end-of-line”

S-C-e : “select-to-end-of-line”
D-RIGHT : “end-of-line”
S-D-RIGHT : “select-to-end-of-line”
M-RIGHT : “end-of-line”
S-M-RIGHT : “select-to-end-of-line”
C-a : “beginning-of-line”

S-C-a : “select-to-beginning-of-line”
D-LEFT : “beginning-of-line”
D-S-LEFT : “select-to-beginning-of-line”
M-LEFT : “beginning-of-line”
M-S-LEFT : “select-to-beginning-of-line”
C-h : “delete-previous-character”
C-d : “delete-next-character”

C-f : “forward-character”

S-C-f': “select-forward-character”
C-b : “backward-character”

S-C-b : “select-backward-character”
M-f : “forward-word”

S-M-f : “select-forward-word”

148

A-RIGHT : “forward-word”
A-S-RIGHT : “forward-select-word”
M-b : “backward-word”

S-M-b : “select-backward-word”
A-LEFT : “backward-word”
A-S-LEFT : “backward-select-word”
M-d : “kill-word”

M-DELETE : “backward-kill-word”
M-c : “capitalize-word”

M-u : “upcase-word”

M-1: “downcase-word”

M-< : “beginning-of-file”

S-M-< : “select-to-beginning-of-file”
M-> : “end-of-file”

S-M-> : “select-to-end-of-file”

C-v : “next-page”

S-C-v : “select-next-page”

M-v : “previous-page”

S-M-v : “select-previous-page”

C-1: “center-view-on-line”

C-k : “delete-to-end-of-line”

C-y : “paste-clipboard” (Except Windows)
A-v : “paste-clipboard”

D-v : “paste-clipboard”

C-_: “undo”

C-xu: “undo”

C-+: “redo”

C-w : “cut-clipboard”

149

* M-w : “copy-clipboard”

e C-x C-s: “save-file”

e C-x C-w : “save-file-as”

* C-x C-f: “load-file”

e C-s: “find-string”

e C-r: “find-string-reverse”

* M-% : “find-string-replace”

* SPACE : “collapse-space”

* M-Backslash : “remove-space”

* C-x C-0: “collapse-newline”

* C-o0: “open-line”

e C-t: “transpose-chars”

* M-t: “transpose-words”

* C-SPACE : “toggle-anchor”

* M-g: “goto-line”

* M-p: “goto-position”

* LEFTBUTTONTRIPLE : “select-click-line”

* LEFTBUTTONDOUBLE : “select-click-word”

e RIGHTBUTTON : “copy-click-region”

* RIGHTBUTTONDOUBLE : “cut-click-region”

 MIDDLEBUTTON : “paste-click-region”

¢ C-RIGHTBUTTON : “copy-clipboard”

* INSERT : “toggle-overwrite”

* M-o: “toggle-overwrite”
If alt-as-meta-keymap is not #f, then for each of the M- mappings, a “flexible” A- variant
of the mapping is added to alt-as-meta-keymap. The flexible mapping matches a key
combination where the non-modifier part of the mapping would match if the modifier had

not affected the non-modifier part (e.g., matching Option-p as A-p on Mac OS even when an
Option-p combination produces “z”).

Changed in version 1.34 of package gui-1ib: Added the #:alt-as-meta-keymap argument.

150

(keymap:setup-search keymap) — void?
keymap : (is-a?/c keymapl)

This extends a keymap?, with the bindings for searching.

(keymap:set-chained-keymaps keymap
children-keymaps) — void?
keymap : (is-a?/c keymap:aug-keymap<%>)
children-keymaps : (listof (is-a?/c keymap%))

Sets keymap’s chained keymaps to children-keymaps, unchaining any keymaps that are
currently chained to keymap.

(keymap:remove-chained-keymap editor
keymap) — void?
editor : (is-a?/c editor<y>)
keymap : (is-a?/c keymap:aug-keymap<%>)

Removes keymap from the keymaps chained to editor. Also (indirectly) removes all
keymaps chained to keymap from editor, since they are removed when unchaining
keymap itself.

Each of the keymaps chained to editor must be an keymap: aug-keymap? and keymap
cannot be the result of (send editor get-keymap) That is, keymap must be chained to
some keymap attached to the editor.

(keymap:region-click text mouse-event f) — any
text : any/c
mouse-event : any/c
f : (-> number? boolean? number? number? any)

Calls f after computing where the event corresponds to in the text. If event is not a
mouse-eventy object or if text is not a texty, object, this function does nothing, returning
(void).

The arguments to £ are:

* the position where the click occurred

* aboolean indicating if the position is at the right-hand edge of the screen (to cover the
eol ambiguity)

151

20 Menu

menu:can-restore<¥%> : interface?
implements: selectable-menu-item<’>

Classes created with this mixin remember their keybindings so the keybindings can be re-
moved and then restored.

(send a-menu:can-restore restore-keybinding) — void?

Sets the keyboard shortcut to the setting it had when the class was created.

menu:can-restore-mixin : (class? . -> . class?)
argument extends/implements: selectable-menu-item<%>
result implements: menu:can-restore<y>

menu:can-restore-underscore<’> : interface?
implements: labelled-menu-item<%>

These menus can save and restore the underscores (indicated via the & characters in the
original labels) in their labels.

If the preference 'framework:menu-bindings is #f, calls erase-underscores during
initialization.

(send a-menu:can-restore-underscore erase-

underscores) — void?

Erases the underscores in the label of this menu, but remembers them so they
can be restores with restore-underscores.

(send a-menu:can-restore-underscore restore-underscores)

— void?

Restores underscores in the menu’s label to their original state.

152

menu:can-restore-underscore-mixin : (class? . -> . class?)
argument extends/implements: labelled-menu-item<%>
result implements: menu:can-restore-underscore<y>

menu:can-restore-menu-itemj, : class?
superclass: (menu:can-restore-mixin menu-itemy,)

menu:can-restore-checkable-menu-item}), : class?
superclass: (menu:can-restore-mixin checkable-menu-itemy,)

menu:can-restore-underscore-menuj, : class?
superclass: (menu:can-restore-underscore-mixin menu)

153

21 Mode

mode: surrogate-text<y%> : interface?

(send a-mode:surrogate-text on-enable-surrogate txt) — any
txt : (is-a?/c text%)

Called by set-surrogate to notify the surrogate that it has just become active.

(send a-mode:surrogate-text on-disable-

surrogate txt) — any
txt : (is-a%?/c texti)

Called by set-surrogate to notify the surrogate that it has just been disabled.

mode:surrogate-text), : class?
superclass: object’
extends: mode:surrogate-text<%>

(send a-mode:surrogate-text on-change orig
call-inner) — any
orig : (is-a?/c textl)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-char orig
call-super

event) — any
orig : (is-a?/c text%)
call-super : (-> any)
event : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-default-char orig
call-super

event) — any
orig : (is-a?/c textl)
call-super : (-> any)
event : any/c

154

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-default-event orig
call-super
event) — any
orig : (is-a?/c text%)
call-super : (-> any)
event : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-display-size orig
call-inner) — any
orig : (is-a?/c text%)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-edit-sequence orig
call-inner) — any
orig : (is-a?/c textl)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-event orig
call-super
event) — any
orig : (is-a?/c texti)
call-super : (-> any)
event : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-focus orig
call-super
on?) — any
orig : (is-a?/c text%)
call-super : (-> any)
on? : any/c

Returns the result of invoking call-super.

155

(send a-mode:surrogate-text on-load-file orig

call-inner
filename
format) — any

orig : (is-a?/c textl)

call-inner : (-> any)

filename : any/c

format : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-local-char orig
call-super
event) — any
orig : (is-a?/c texti)
call-super : (-> any)
event : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-local-event orig
call-super
event) — any
orig : (is-a?/c texti)
call-super : (-> any)
event : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-new-box orig
call-super

type) — any
orig : (is-a?/c texti)
call-super : (-> any)
type : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-new-image-snip orig
call-super

filename

kind
relative-path?
inline?)

156

— any
orig : (is-a?/c text%)
call-super : (-> any)
filename : any/c
kind : any/c
relative-path? : any/c
inline? : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-paint orig
call-super
before?
dc
left
top
right
bottom
dx
dy
draw-caret) — any

orig : (is-a?/c text%)
call-super : (-> any)
before? : any/c

dc : any/c
left : any/c
top : any/c

right : any/c
bottom : any/c

dx : any/c

dy : any/c
draw-caret : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-save-file orig

call-inner
filename
format) — any

orig : (is-a?/c textl)

call-inner : (-> any)

filename : any/c

format : any/c

Returns the result of invoking call-super.

157

(send a-mode:surrogate-text on-snip-modified orig
call-inner
snip
modified?) — any
orig : (is-a?/c textl)
call-inner : (-> any)
snip : any/c
modified? : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-change-style orig
call-inner
start
len) — any
orig : (is-a?/c textl)
call-inner : (-> any)
start : any/c
len : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-delete orig
call-inner
start
len) — any
orig : (is-a?/c text%)
call-inner : (-> any)
start : any/c
len : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-insert orig
call-inner
start
len) — any
orig : (is-a?/c text%)
call-inner : (-> any)
start : any/c
len : any/c

Returns the result of invoking call-super.

158

(send a-mode:surrogate-text on-new-string-snip orig
call-super)
— any
orig : (is-a?/c textl)
call-super : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-new-tab-snip orig
call-super) — any
orig : (is-a?/c text%)
call-super : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text on-set-size-constraint orig
call-inner)
— any
orig : (is-a?/c text%)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-change-style orig
call-inner
start
len)

— any

orig : (is-a?/c textl)
call-inner : (-> any)
start : any/c

len : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-delete orig
call-inner
start
len) — any
orig : (is-a?/c text%)
call-inner : (-> any)
start : any/c
len : any/c

159

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-insert orig
call-inner
start
len) — any
orig : (is-a?/c textl)
call-inner : (-> any)
start : any/c
len : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-set-position orig
call-inner)
— any
orig : (is-a?/c texti)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-set-size-constraint
orig

call-inner)
— any

orig : (is-a?/c text%)

call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-edit-sequence orig
call-inner)
— any
orig : (is-a?/c texti)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-load-file orig
call-inner
success?) — any
orig : (is-a?/c textl)
call-inner : (-> any)
success? : any/c

160

Returns the result of invoking call-super.

(send a-mode:surrogate-text after-save-file orig
call-inner
success?) — any

orig : (is-a?/c text%)
call-inner : (-> any)
success? : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text can-change-style? orig
call-inner

orig : (is-a?/c textl)
call-inner : (-> any)
start : any/c

len : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text can-delete?

orig : (is-a?/c text%)
call-inner : (-> any)
start : any/c

len : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text can-insert?

orig : (is-a?/c textl)
call-inner : (-> any)
start : any/c

len : any/c

Returns the result of invoking call-super.

161

orig

start
len)

call-inner

start
len)

orig

call-inner

start
len)

—)any

— any

— any

(send a-mode:surrogate-text can-set-size-constraint?
orig
call-inner)
— any
orig : (is-a?/c textl)
call-inner : (-> any)

Returns the result of invoking call-super.

(send a-mode:surrogate-text can-do-edit-operation? orig
call-super
op)

— any

orig : (is-a?/c textl)
call-super : (-> any)
op : any/c

(send a-mode:surrogate-text can-do-edit-operation? orig
call-super
op
recursive?)

— any

orig : (is-a?/c text)
call-super : (-> any)
op : any/c
recursive? : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text can-load-file? orig

call-inner
filename
format) — any

orig : (is-a?/c textl)

call-inner : (-> any)

filename : any/c

format : any/c

Returns the result of invoking call-super.

(send a-mode:surrogate-text can-save-file? orig
call-inner
filename
format) — any
orig : (is-a?/c text%)

162

call-inner : (-> any)
filename : any/c
format : any/c

Returns the result of invoking call-super.
(send a-mode:surrogate-text put-file orig

call-super
directory
default-name) — any

orig : (is-a?/c textl)

call-super : (-> any)

directory : any/c

default-name : any/c

Returns the result of invoking call-super.

mode:host-text<%> : interface?

(send a-mode:host-text get-surrogate)
— (or/c false/c (is-a?/c mode:surrogate-text<}>))

Returns the currently active surrogate.

(send a-mode:host-text set-surrogate surrogate) — void?
surrogate : (or/c false/c (is-a?/c mode:surrogate-text<y>))

Sets the current surrogate to surrogate.

mode:host-text-mixin : (class? . -> . class?)
result implements: mode:host-text<)>

(send a-mode:host-text on-change) — any

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-char event) — any
event : any/c

163

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-default-char event) — any
event : any/c

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-default-event event) — any
event : any/c

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-display-size) — any

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-edit-sequence) — any

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-event event) — any
event : any/c

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-focus on?) — any
on? : any/c

Delegates to the result of get-surrogate if it is not #f.
(send a-mode:host-text on-load-file filename
format) — any

filename : any/c
format : any/c

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-local-char event) — any
event : any/c

Delegates to the result of get-surrogate if it is not #£.

164

(send a-mode:host-text on-local-event event) — any
event : any/c

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-new-box type) — any
type : any/c

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-new-image-snip filename

kind
relative-path?
inline?) — any

filename : any/c

kind : any/c

relative-path? : any/c

inline? : any/c

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-paint before?
dc
left
top
right
bottom
dx
dy
draw-caret) — any
before? : any/c

dc : any/c
left : any/c
top : any/c

right : any/c
bottom : any/c

dx : any/c

dy : any/c
draw-caret : any/c

Delegates to the result of get-surrogate if it is not #f.

165

(send a-mode:host-text on-save-file filename
format) — any
filename : any/c
format : any/c

Delegates to the result of get-surrogate if it is not #f.
(send a-mode:host-text on-snip-modified snip
modified?) — any

snip : any/c
modified? : any/c

Delegates to the result of get-surrogate if it is not #f.
(send a-mode:host-text on-change-style start
len) — any

start : any/c
len : any/c

Delegates to the result of get-surrogate if it is not #£.
(send a-mode:host-text on-delete start len) — any

start : any/c
len : any/c

Delegates to the result of get-surrogate if it is not #£.
(send a-mode:host-text on-insert start len) — any

start : any/c
len : any/c

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-new-string-snip) — any

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text on-new-tab-snip) — any

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text on-set-size-constraint) — any

166

Delegates to the result of get-surrogate if it is not #£.
(send a-mode:host-text after-change-style start
len) — any

start : any/c
len : any/c

Delegates to the result of get-surrogate if it is not #f£.
(send a-mode:host-text after-delete start
len) — any

start : any/c
len : any/c

Delegates to the result of get-surrogate if it is not #£.
(send a-mode:host-text after-insert start
len) — any

start : any/c
len : any/c

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text after-set-position) — any

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text after-set-size-constraint) — any

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text after-edit-sequence) — any

Delegates to the result of get-surrogate if it is not #f.

(send a-mode:host-text after-load-file success?) — any
success? : any/c

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text after-save-file success?) — any
success? : any/c

167

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text can-change-style? start

start
len

: any/c
: any/c

Delegates to the result of get-surrogate if it is not #f£.

(send a-mode:host-text can-delete? start

start
len

: any/c
: any/c

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text can-insert? start

start
len

: any/c
: any/c

len) — any
len) — any
len) — any

Delegates to the result of get-surrogate if it is not #£

(send a-mode:host-text can-set-size-constraint?) — any

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text can-do-edit-operation? op) — any

op : any/c

(send a-mode:host-text can-do-edit-operation? op

op : any/c

recursive? : any/c

recursive?) — any

Delegates to the result of get-surrogate if it is not #£.

(send a-mode:host-text can-load-file? filename

filename
format

: any/c
1 any/c

format)

—>any

Delegates to the result of get-surrogate if it is not #£.

168

(send a-mode:host-text can-save-file? filename
format) — any

filename : any/c
format : any/c

Delegates to the result of get-surrogate if it is not #f.
(send a-mode:host-text put-file directory
default-name) — any

directory : any/c
default-name : any/c

Delegates to the result of get-surrogate if it is not #£.

169

22 Notify-boxes

(require framework/notify) package: [gui-1ib

notify:notify-box% : class?
superclass: object,

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:

> (define nb (new notify:notify-box), (value 'apple)))

> (send nb get)

'apple

> (send nb set 'orange)

> (send nb listen (lambda (v) (printf "New value: “s\n" v)))
> (send nb set 'potato)

New value: potato

(new notify:notify-box% [value valuel)
— (is-a?/c notify:notify-box%)
value : any/c

Creates a notify-box initially containing value.

(send a-notify:notify-box get) — any/c

Gets the value currently stored in the notify-box.

(send a-notify:notify-box set v) — void?
v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify:notify-box listen listener) — void?
listener : (-> any/c any)

Adds a callback to be invoked on the new value when the notify-box’s contents
change.

170

https://pkgs.racket-lang.org/package/gui-lib

(send a-notify:notify-box remove-listener listener) — void?
listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify:notify-box remove-all-listeners) — void?

Removes all previously registered callbacks.

Added in version 1.18 of package gui-1ib.

(notify:notify-box/pref proc
[#:readonly? readonly?])
— (is-a?/c notify:notify-box%)
proc : (case-> (-> any/c) (-> any/c void?))
readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:

(define animal (make-parameter 'ant))
(define nb (notify:notify-box/pref animal))
(send nb listen (lambda (v) (printf "New value: “s\n" v)))
(send nb set 'bee)

New value: bee

> (animal 'cow)

> (send nb get)

'bee

> (send nb set 'deer)

New value: deer

> (animal)

'deer

vV V V V

Added in version 1.18 of package gui-1ib.

(notify:define-notify name value-expr)

value-expr : (is-a?/c notify:notify-box¥)

171

Class-body form. Declares name as a field and get-name, set-name, and listen-name
as methods that delegate to the get, set, and 1isten methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:

> (define config),
(class object’
(notify:define-notify food (new notify:notify-
box’ (value 'apple)))
(notify:define-notify animal (new notify:notify-
boxY (value 'ant)))
(super-new)))
> (define c (new configih))
> (send c listen-food
(lambda (v) (when (eq? v 'honey) (send c set-
animal 'bear))))
> (let ([food (get-field food c)])
(send food set 'honey))
> (send c get-animal)
'bear

Added in version 1.18 of package gui-1ib.

(notify:menu-option/notify-box parent
label
notify-box)
— (is-a?/c checkable-menu-itemy)
parent : (or/c (is-a?/c menuj,) (is-a?/c popup-menu))
label : label-string?
notify-box : (is-a?/c notify:notify-box%)

Creates a checkable-menu-itemy tied to notify-box. The menu item is checked when-
ever (send notify-box get) is true. Clicking the menu item toggles the value of
notify-box and invokes its listeners.

Added in version 1.18 of package gui-1ib.

(notify:check-box/notify-box parent
label
notify-box) — (is-a?/c check-box%)
parent : (or/c (is-a?/c frame)) (is-a?/c dialogh)
(is-a?/c panel},) (is-a?/c panel))

172

label : label-string?
notify-box : (is-a?/c notify:notify-box)

Creates a check-box tied to notify-box. The check-box is checked whenever (send
notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.

Added in version 1.18 of package gui-1ib.

(notify:choice/notify-box parent
label
choices
notify-box) — (is-a?/c choicel)
parent : (or/c (is-a?/c frame}) (is-a?/c dialogh)
(is-a?/c panel},) (is-a?/c panel))
label : label-string?
choices : (listof label-string?)
notify-box : (is-a?/c notify:notify-box%)

Creates a choicel, tied to notify-box. The choice control has the value (send notify-
box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices, either initially or upon an update, an error is
raised.

Added in version 1.18 of package gui-1ib.

(notify:menu-group/notify-box parent
labels
notify-box)
— (listof (is-a?/c checkable-menu-itemy))
parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu’))
labels : (listof label-string?)
notify-box : (is-a?/c notify:notify-box%)

Returns a list of checkable-menu-item) controls tied to notify-box. A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box’s listeners.

Added in version 1.18 of package gui-1ib.

173

23 Number Snip

number-snip:snip-class’, : class?
superclass: snip-class¥

(send a-number-snip:snip-class read f)
— (or/c (is-a?/c snip%) #f)
f : (is-a?/c editor-stream-in})

Overrides read in snip-class.

Constructs a number snip from its input.

(number-snip:number->string/snip
num
[#:exact-prefix exact-prefix
#:inexact-prefix inexact-prefix
#:fraction-view fraction-view])
— (or/c number-snip:is-number-snip? string?)
num : number?

exact-prefix : (or/c 'always 'never 'when-necessary) = 'never
inexact-prefix : (or/c 'always 'nmever 'when-necessary)
= 'never

fraction-view : (or/c #f 'mixed 'improper 'decimal) = #f

For a number num, returns a number snip or a string according to the specified format argu-
ments.

The exact-prefix argument specifies whether the representation should carry a #e pre-
fix: Always, never, or when necessary to identify a representation that would otherwise be
considered inexact.

Similarly for inexact-prefix. Note however that 'when-necessary is usually equiva-
lent to 'never, as inexact numbers are always printed with a decimal dot, which is sufficient
to identify a number representation as inexact.

The fraction-view field specifies how exact non-integer reals - fractions - should be ren-
dered: As a mixed fraction, an improper fraction, or a decimal, possibly identifying periodic
digits. For 'decimal, if it’s not possible to render the number as a decimal exactly, a fraction
representation might be generated. This is currently the case for complex numbers.

If fraction-view is #f, this option comes from the 'framework:fraction-snip-
style preference.

174

(number-snip:make-pretty-print-size
[#:exact-prefix exact-prefix
#:inexact-prefix inexact-prefix
#:fraction-view fraction-view])

— (number? boolean? output-port? . -> . exact-nonnegative-integer?)
exact-prefix : (or/c 'always 'never 'when-necessary) = 'never
inexact-prefix : (or/c 'always 'never 'when-necessary)

= 'never

fraction-view : (or/c #f 'mixed 'improper 'decimal) = #f

This returns a procedure usable in a pretty-print-size-hook implementation, to
go with number-snip:number->string/snip. The arguments are as with number-
snip:number->string/snip.

(number-snip:make-repeating-decimal-snip num
show-prefix?)
— number-snip:is-number-snip?
num : real?
show-prefix? : boolean?

Makes a number snip that shows the decimal expansion for number. The boolean indicates
if a #e prefix appears on the number.

See also number-snip:make-fraction-snip.

(number-snip:make-fraction-snip num
show-prefix-in-decimal-view?)
— number-snip:is-number-snip?
num : real?
show-prefix-in-decimal-view? : boolean?

Makes a number snip that shows a fractional view of number. The boolean indicates if a #e
prefix appears on the number, when shown in the decimal state.

See also number-snip:make-repeating-decimal-snip.

(number-snip:is-number-snip? v) — boolean?
v : any/c

Determines if v is a number snip, i.e., created by number-snip:make-fraction-snip or
number-snip:make-repeating-decimal-snip.

All values that answer #t to this predicate are also snip¥s.

175

(number-snip:get-number ns) — real?
ns : number-snip:is-number-snip?

Returns the number that this number snip displays.

(number-snip:remove-decimal-looking-number-snips-on-insertion-

mixin text)
— (subclass?/c text})

texty), : (subclass?/c text})

Overrides the on-insert and after-insert to replace number-snip objects that look like
ASCII with their corresponding ASCII text.

176

24 Panel

panel:single<%> : interface?
implements: area-container<y>

See panel:single-mixin.

(send a-panel:single active-child child) — void?
child : (is-a?/c area<’>)
(send a-panel:single active-child) — (is-a?/c area<y>)

Sets the active child to be child

Returns the current active child.

panel:single-mixin : (class? . -> . class?)
argument extends/implements: area-container<y>
result implements: panel:single<y>

This mixin adds single panel functionality to an implementation of the area-
container<}> interface.

Single panels place all of the children in the center of the panel, but allow only one child to
be visible at a time. The active-child method controls which panel is currently active.

The show method is used to hide and show the children of a single panel.

(send a-panel:single after-new-child child) — void?
child : (is-a?/c subarea<%>)

Overrides after-new-child in area-container<y>.
Hides this child by calling (send child show #f), unless this is the first
child in which case it does nothing.

(send a-panel:single container-size)
— exact-integer? exact-integer?

Overrides container-size in area-container<y>.

Returns the maximum width of all the children and the maximum height of all
of the children.

(send a-panel:single place-children)
— (listof (list/c exact-integer? exact-integer? exact-integer? exact-integer?))

177

Overrides place-children in area-container<y%>

Returns the positions for single panels and panes.

panel:single-window<%> : interface?
implements: panel:single<y>
window<%>

panel:single-window-mixin : (class? . -> . class?)

argument extends/implements: panel:single<}>
window<>

result implements: panel:single-window<%>

(send a-panel:single-window container-size info)
— exact-integer? exact-integer?
info : (listof (list/c exact-integer?
exact-integer?
boolean?
boolean?))

Overrides container-size in area-container<y>

Factors the border width into the size calculation.

panel:single’, : class?
superclass: (panel:single-window-mixin (panel:single-mixin panel’))

panel:single-pane}, : class?
superclass: (panel:single-mixin pane,)

panel:dragable<’,> : interface?
implements: window<%>
area-container<%>

178

Classes matching this interface implement a panel where the user can adjust the percentage
of the space that each takes up. The user adjusts the size by clicking and dragging the empty
space between the children.

(send a-panel:dragable after-percentage-change) — void?

This method is called when the user changes the percentage by dragging the bar
between the children, or when a new child is added to the frame, but not when
set-percentages is called.

Use get-percentages to find the current percentages.

(send a-panel:dragable get-default-percentages subwindow-

count)
— (listof (and/c real? (between/c 0 1)))

subwindow-count : exact-positive-integer?

Called when the number of children in the panel changes; the result is used as
the initial percentages for each of the new windows.

The numbers in the result list must sum to 1.

(send a-panel:dragable right-click-in-gap evt
before
after) — void?
evt : (is-a?/c mouse-event,)
before : (is-a?/c subarea<%>)
after : (is-a?/c subarea<},>)

This method is called when the user right-clicks in the space between two chil-
dren. It receives the mouse event and the child before and after the gap where
the user clicked.

(send a-panel:dragable set-percentages new-
percentages) — void?
new-percentages : (listof number?)

Call this method to set the percentages that each window takes up of the panel.

The argument, new-percentages must be a list of numbers that sums to 1. Its
length must be equal to the number of children of the panel (see get-children)
and each percentage must correspond to a number of pixels that is equal to or
larger than the minimum width of the child, as reported by min-width.

(send a-panel:dragable get-percentages) — (listof number?)

Return the current percentages of the children.

179

(send a-panel:dragable get-vertical?) — boolean?

This method controls the behavior of the other overridden methods in mixins
that implement this interface.

If it returns #t, the panel will be vertically aligned and if it returns #£, they will
be horizontally aligned.

(send a-panel:dragable set-orientation horizontal?) — void?
horizontal? : boolean?

Sets the orientation of the panel, switching it from behaving like a
panel:horizontal-dragable<y> and panel:vertical-dragable<y>.

panel:vertical-dragable<’,> : interface?
implements: panel:dragable<}>

A panel that implements panel:vertical-dragable<>. It aligns its children vertically.

panel:horizontal-dragable<y%> : interface?
implements: panel:dragable<y>

A panel that implements panel :horizontal-dragable<y>. It aligns its children horizon-
tally.

panel:dragable-mixin : (class? . -> . class?)
argument extends/implements: window<%>
area-container<%>
result implements: panel:dragable<%>

This mixin adds the panel:dragable<%> functionality to a panely.

It is not useful unless the get-vertical? method is overridden.

(send a-panel:dragable after-new-child child) — void?
child : (is-a?/c subarea<},>)

180

Overrides after-new-child in area-container<y>.

Updates the number of percentages to make sure that it matches the number of
children and calls after-percentage-change.

(send a-panel:dragable on-subwindow-event receiver
event) — boolean?
receiver : (is-a?/c window<%>)
event : (is-a%?/c mouse-event},)

Overrides on-subwindow-event in window<%>.

When the cursor is dragging the middle bar around, this method handles the
resizing of the two panes.

(send a-panel:dragable place-children info
W
h)
— (listof (list/c exact-integer? exact-integer? exact-integer? exact-integer?))
info : (listof (list/c exact-integer? exact-integer?))
w . exact-integer?
h : exact-integer?

Overrides place-children in area-container<y>.
Places the children vertically in the panel, based on the percentages returned
from get-percentages. Also leaves a little gap between each pair of children.

(send a-panel:dragable container-size info)
— exact-integer? exact-integer?
info : (listof (list/c exact-integer? exact-integer? any/c any/c))

Overrides container-size in area-container<y%>.

Computes the minimum size the panel would have to be in order to have the
current percentages (see get-percentages).

panel:vertical-dragable-mixin : (class? . -> . class?)
argument extends/implements: panel:dragable<%>
result implements: panel:vertical-dragable<}>

This mixin merely overrides the get-vertical? method of the panel:dragable-mixin
to return #t.

(send a-panel:vertical-dragable get-vertical?) — boolean?

Overrides get-vertical? in panel:dragable<’>.
Returns #t.

181

panel:horizontal-dragable-mixin : (class? . -> . class?)
argument extends/implements: panel:dragable<)>
result implements: panel:vertical-dragable<}>

This mixin merely overrides the get-vertical? method of the panel:dragable-mixin
to return #£.

(send a-panel:horizontal-dragable get-vertical?) — boolean?

Overrides get-vertical? in panel:dragable<y>.

Returns #f£.

panel:vertical-dragable), : class?
superclass: (panel:vertical-dragable-mixin (panel:dragable-mixin panel,))

panel:horizontal-dragable’, : class?
superclass: (panel:horizontal-dragable-mixin (panel:dragable-mixin panel’,))

panel:splitter<)> : interface?

A panel that implements panel:splitter<)>. Children can be split horizonally or verti-
cally.

panel:splitter-mixin : (class? . -> . class?)
argument extends/implements: area-container<y>
panel:dragable<y>
result implements: panel:splitter<y>

This mixin allows panels to split their children either horizontally or vertically. Children that
are split can be further split independant of any other splitting.

182

(send a-panel:splitter split-vertical canvas
maker)
— (is-a?/c canvas<);>)
canvas : (is-a?/c canvas<},>)
maker : (-> (is-a?/c panel:splitter<y>)
(is-a?/c canvas<},>))

Splits the canvas vertically by creating a new instance using maker. This
splitter object is passed as the argument to maker and should be used as the
parent field of the newly created canvas.

(send a-panel:splitter split-horizontal canvas
maker)
— (is-a?/c canvas<),>)
canvas : (is-a?/c canvas<)>)
maker : (-> (is-a?/c panel:splitter<y>)
(is-a?/c canvas<¥>))

Similar to split-vertical but splits horizontally.

(send a-panel:splitter collapse canvas) — void
canvas : (is-a?/c canvas<},>)

Removes the given canvas from the splitter hierarchy and collapses any split
panes as necessary.

panel:discrete-sizes<y%> : interface?

Classes implementing this interface support children with multiple fixed sizes. As the panel
is resized, it calculates a set of sizes of its children that fills its available size and approtions
the space accordingly using only one of the fixed sizes.

The strategy it uses is to try to give the largest of the sizes to children that appear later in
the list of children (to the right horizontal and lower vertically). It does not try all possible
combinations.

Each child that supports minimum sizes is expected to implement the panel:discrete-
child<}> interface. Children that do not implement this interface are just treated like
horizontal-panel’, or vertical-panel), would treat them, with the exception of
switchable-buttony. In that case, the results of get-small-width and get-large-
width are treated as the two fixed sizes for instances of that class.

Also note that, the orientation of the panel determines whether or not it treats heights or
widths as described above. That is, when a panel is in vertical mode, it ignores the horizontal
discrete sizes, and vice-versa.

183

(send a-panel:discrete-sizes set-orientation horizontal?)
— void?
horizontal? : boolean?

Changes the orientation of the panel.

(send a-panel:discrete-sizes get-orientation) — boolean?

Returns the current orientation of the panel.

panel:discrete-child<’,> : interface?

Classes that implement this method collaborate with panel:discrete-sizes<y> to indi-
cate which fixed sizes they support.

(send a-panel:discrete-child get-discrete-widths)
— (listof exact-nonnegative-integer?)

Return a list of widths this class supports.

(send a-panel:discrete-child get-discrete-heights)
— (listof exact-nonnegative-integer?)

Return a list of heights this class supports.

panel:discrete-sizes-mixin : (class? . -> . class?)
argument extends/implements: panely,
result implements: panel:discrete-sizes<¥%>
panel:discrete-child<’,>

Provides an implementation of panel:discrete-sizes<}>.

It uses the sizes of its children to implement the panel :discrete-child<%> interface.

panel:horizontal-discrete-sizes), : class?
superclass: (panel:discrete-sizes-mixin panel,)

184

panel:vertical-discrete-sizes’ : class?
superclass: (panel:discrete-sizes-mixin panel,)

Calls set-orientation with #f during initialization.

(panel:dragable-container-size container-info
bar-thickness
vertical?) — real? real?
container-info : (listof (list/c real? real? boolean? boolean?))
bar-thickness : real?
vertical? : boolean?

Returns the minimum width and height for a panel:dragable<’> object where
container-info (see container-size for more details on that argument) is the children’s
info, and bar-thickness and vertical? indicate the properties of the panel.

This function is exported mostly for the test suite.

(panel:dragable-place-children container-info
width
height
percentages
bar-thickness
vertical?)
(listof (list/c (integer-in O 10000)
(integer-in 0 10000)
(integer-in 0 10000)
(integer-in 0 10000)))
(listof (list/c (integer-in 0 10000)
(integer-in 0 10000)))
container-info : (listof (list/c real? real? boolean? boolean?))
width : real?
height : real?
percentages : (listof (between/c 0 1))
bar-thickness : real?
vertical? : boolean?

Returns the geometry information for a dragable panel. The inputs are the container-info
(see place-children for more info), the width and height of the window, the percentages

185

for the spacing of the children, and a real and a boolean indicating the thickness of the bar
between the child panels and whether or not this is a vertical panel, respectively.

This function is exported mostly for the test suite.

186

25 Pasteboard

pasteboard:basic} : class?
superclass: (editor:basic-mixin pasteboardi)

pasteboard:standard-style-listy, : class?
superclass: (editor:standard-style-list-mixin pasteboard:basic)

pasteboard:keymap) : class?
superclass: (editor:keymap-mixin pasteboard:standard-style-list%)

pasteboard:file), : class?
superclass: (editor:file-mixin pasteboard:keymap’)

pasteboard:backup-autosavey : class?
superclass: (editor:backup-autosave-mixin pasteboard:file%)

pasteboard:info’, : class?
superclass: (editor:info-mixin pasteboard:backup-autosave,)

187

26 Path Utils

(path-utils:generate-autosave-name filename) — path?
filename : (or/c #f path-string? path-for-some-system?)

Generates a name for an autosave file from filename.

(path-utils:generate-backup-name filename) — path?
filename : path?

Generates a name for an backup file from filename.

188

27 Preferences

(preferences:put-preferences/gui name-list
val-list) — any
name-1list : (listof symbol?)
val-list : (listof any/c)

Like put-preferences, but has more sophisticated error handling. In particular, when it
fails to grab a lock, it

 waits for three consecutive failures before informing the user
* gives the user the opportunity to “steal” the lockfile after the third failure, and

* when lock failures occur, it remembers what its arguments were and if any preference
save eventually succeeds, all of the past failures are also written at that point.

In addition when an error is raised trying to save a preference to the preference file,
preferences:put-preferences/gui logs the error using log-warning, instead of rais-
ing an exception.

(preferences:get-preference/gui sym
[default]) — any/c
sym . symbol?
default : (-> void?)

= (1 OO (error 'get-preference/gui "unknown pref ~s"

sym))

Like get-preference, but has more sophisticated error handling. In particular, it passes a
#:timeout-lock-there argument that informs the user that the preferences file is locked
(and offers the alternative of not showing the message again).

(preferences:add-panel labels f) — void?
labels : (or/c string? (cons/c string? (listof string?)))
f : (->i ([parent (is-a?/c area-container-window<%>)])
O
[_ (parent)
(let ([old-children (send parent get-children)])
(and/c (is-a?/c area-container-window<}%>)
(4 (child)
(andmap eq?
(append old-children (list child))
(send parent get-children)))))])

189

preferences:add-preference-panel adds the result of £ with name labels to the
preferences dialog box.

The labels determine where this preference panel is placed in the dialog. If the list is just
one string, the preferences panel is placed at the top level of the dialog. If there are more
strings, a hierarchy of nested panels is created and the new panel is added at the end. If
multiple calls to preferences:add-preference-panel pass the same prefix of strings,
those panels are placed in the same children.

When the preference dialog is opened for the first time, the function £ is called with a panel,
and f is expected to add a new child panel to it and add whatever preferences configuration
controls it wants to that panel. Then, £’s should return the panel it added.

(preferences:add-editor-checkbox-panel) — void?

Adds a preferences panel for configuring options related to editing.

(preferences:add-general-checkbox-panel) — void?

Adds a catch-all preferences panel for options.

(preferences:add-warnings-checkbox-panel) — void?

Adds a preferences panel for configuring options relating to warnings.

(preferences:add-scheme-checkbox-panel) — void?

Adds a preferences panel for configuring options related to Racket.

(preferences:add-to-warnings-checkbox-panel proc) — void?
proc : ((is-a?/c vertical-panel’) . -> . void?)

Saves proc until the preferences panel is created, when it is called with the Misc. panel to
add new children to the panel.

(preferences:add-to-scheme-checkbox-panel proc) — void?
proc : ((is-a?/c vertical-panel’,) . -> . void?)

Saves proc until the preferences panel is created, when it is called with the Racket prefer-
ences panel to add new children to the panel.

190

(preferences:add-to-editor-checkbox-panel proc) — void?
proc : ((is-a?/c vertical-panel’,) . -> . void?)

Saves proc until the preferences panel is created, when it is called with the editor prefer-
ences panel to add new children to the panel.

(preferences:add-to-general-checkbox-panel proc) — void?
proc : ((is-a?/c vertical-panel’,) . -> . void?)

Saves proc until the preferences panel is created, when it is called with the general prefer-
ences panel to add new children to the panel.

(preferences:add-font-panel) — void?

Adds a font selection preferences panel to the preferences dialog.

(preferences:add-boolean-option-with-ask-me parent
label
optionl
option2
pref-key) — void?
parent : (or/c (is-a?/c area-container<y)>) #f)
label : string?
optionl : string?
option2 : string?
pref-key : symbol?

Adds a checkbox to parent with three options; the first two are given by optionl and

option2, and the third is "Ask me". The preference named bypref-key is updated based
on the selection in the checkbox.

(preferences:show-dialog) — void?
Shows the preferences dialog.

(preferences:show-tab-panel labels) — void
labels : (listof string?)

Shows the preferences dialog, making a particular panel visible. The strings in the 1abels
argument control which one is visible.

191

The strings in the 1abels argument correspond to the strings passed to preferences:add-
panel.

Added in version 1.76 of package gui-1ib.

(preferences:hide-dialog) — void?

Hides the preferences dialog.

(preferences:add-on-close-dialog-callback cb) — void?
cb : (-> void?)

Registers cb. Next time the user clicks the OK button the preferences dialog, all of the cb
functions are called, assuming that each of the callbacks passed to preferences:add-can-
close-dialog-callback succeed.

(preferences:add-can-close-dialog-callback cb) — void?
cb : (-> boolean?)

Registers cb. Next time the user clicks the OK button the preferences dialog, all of the cb
functions are called. If any of them return #£, the dialog is not closed.

See also preferences:add-on-close-dialog-callback.

(preferences:add-check parent
pref-key
label
[from-boolean
to-boolean]) — void?
parent : (is-a?/c area-container<y>)
pref-key : symbol?
label : string?
from-boolean : (-> boolean? any/c) = values
to-boolean : (-> any/c boolean?) = values

Adds a radio-box object (with l1abel as its label) to parent that, when checked adjusts
the preference with the key pref-key.

The to-boolean and from-boolean functions are used to convert from the preferences
value to a booleans when checking/unchecking the radio-box?, object. The defaults amount
to treating the preference as a boolean such that checking the radio-boxJ sets the prefer-
ence to #t and unchecking it sets the preference to #£.

192

28 Preferences, Textual

(require framework/preferences) package: |gui-1ib

(preferences:get sym) — any/c
sym : symbol?

Returns the value for the preference sym.

Raises an exception matching exn:unknown-preference? if the preference’s default has
not been set.

Use preference:set-default to set the default value of the preference before calling this
function.

(preferences:set sym val) — void?
sym : symbol?
val : any/c

Sets the preference sym to val. It should be called when the user requests a change to a
preference; preferences:set immediately writes the preference value to disk.

It raises an exception matching exn :unknown-preference? if the preference’s default has
not been set.

Use preference:set-default to set the default value of the preference before calling this
function.

(preferences:get/set pref)
— (case-> (-> any/c) (-> any/c void?))
pref . symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference named pref and when applied to one argument updates the preference named
pref.

Added in version 1.18 of package gui-1ib.
(preferences:add-callback p f [weak?]) — (-> void?)
p . symbol?

f : (-> symbol? any/c any)
weak? : boolean? = #f

193

https://pkgs.racket-lang.org/package/gui-lib

This function adds a callback which is called with a symbol naming a preference and its
value, when the preference changes. preferences:add-callback returns a thunk, which
when invoked, removes the callback from this preference.

If weak? is true, the preferences system will only hold on to the callback weakly.
The callbacks will be called in the order in which they were added.

If you are adding a callback for a preference that requires marshalling and unmarshalling,
you must set the marshalling and unmarshalling functions by calling preferences:set-
un/marshall before adding a callback.

The result thunk removes the callback from the same preferences layer that p was in when
preferences:add-callback was originally called.

This function raises an exception matching exn:unknown-preference? if the preference
default has not been set via preferences:set-default.

(preferences:set-default symbol
value
test
[#:aliases aliases
#:rewrite-aliases rewrite-aliases])
— void?
symbol : symbol?
value : any/c
test : (any/c . -> . any)
aliases : (listof symbol?) = 'Q)
rewrite-aliases : (listof (-> any/c any))
= (map (lambda (x) values) aliases)

This function must be called every time your application starts up, before any call to
preferences:get or preferences:set (for any given preference).
If you use preferences:set-un/marshall, you must call this function before calling it.

This sets the default value of the preference symbol to value. If the user has chosen a
different setting, (reflected via a call to preferences:set, possibly in a different run of
your program), the user’s setting will take precedence over the default value.

The test argument is used as a safeguard. That function is called to determine if a pref-
erence read in from a file is a valid preference. If test returns #t, then the preference is
treated as valid. If test returns #f then the default is used.

The aliases and rewrite-aliases arguments aids in renaming preferences. If aliases
is present, it is expected to be a list of symbols that correspond to old versions of the prefer-

194

ences. It defaults to ' (). If rewrite-aliases is present, it is used to adjust the old values
of the preferences when they are present in the saved file.

Changed in version 1.23 of package gui-1ib: Allow preferences:set-default to be called even after a
snapshot has been grabbed.

(preferences:default-set? pref) — boolean?
pref : symbol?

Returns #t if pref has been passed to preferences:set-default, #f otherwise

(preferences:set-un/marshall symbol
marshall
unmarshall) — void?
symbol : symbol?
marshall : (any/c . -> . printable/c)
unmarshall : (printable/c . -> . any/c)

preferences:set-un/marshall is used to specify marshalling and unmarshalling func-
tions for the preference symbol. marshall will be called when the users saves their pref-
erences to turn the preference value for symbol into a printable value. unmarshall will
be called when the user’s preferences are read from the file to transform the printable value
into its internal representation. If preferences:set-un/marshall is never called for a
particular preference, the values of that preference are assumed to be printable.

If the unmarshalling function returns a value that does not meet the guard passed to
preferences:set-default for this preference, the default value is used.

The marshall function might be called with any value returned from read and it must not
raise an error (although it can return arbitrary results if it gets bad input). This might happen
when the preferences file becomes corrupted, or is edited by hand.

preferences:set-un/marshall must be called before calling
preferences:get,preferences:set.

See also serialize and deserialize.

(preferences:restore-defaults) — void?

(preferences:restore-defaults) restores the users’ configuration to the default pref-
erences.

(preferences:register-save-callback callback) — symbol?
callback : (-> boolean? any)

195

Registers callback to run twice for each call to preferences: set—once before the pref-
erences file is written, with #t, and once after it is written, with #f. Registration returns a
key for use with preferences:unregister-save-callback. Caveats:

* The callback occurs on whichever thread happened to call preferences:set.

* Pre- and post-write notifications are not necessarily paired; unregistration may cancel
the post-write notification before it occurs.

(preferences:unregister-save-callback key) — void?
key : symbol?

Unregisters the save callback associated with key.

(exn:make-unknown-preference message
continuation-marks)
— exn:unknown-preference?
message : string?
continuation-marks : continuation-mark-set?

Creates an unknown preference exception.

(exn:unknown-preference? exn) — boolean?
exn : any/c

Determines if a value is an unknown preference exn.

exn:struct:unknown-preference : struct-type?

The struct type for the unknown preference exn.

(preferences:low-level-put-preferences)

— (-> (listof symbol?) (listof any/c) any)

(preferences:low-level-put-preferences put-preferences) — void?
put-preferences : (-> (listof symbol?) (listof any/c) any)

This parameter’s value is called to save preference the preferences file. Its interface should
be just like mzlib’s put-preferences.

The default value calls put-preferences and, if there is an error, then starts using a hash-
table to save the preferences instead. See also

196

(preferences:low-level-get-preference)

— (->* (symbol?) [(-> any)] any)

(preferences:low-level-get-preference get-preference) — void?
get-preference : (->x (symbol?) [(-> any)] any)

This parameter’s value is called to get a preference from the preferences file. Its interface
should be just like get-preference.

The default value calls get-preferences and, if there is an error, then starts using a hash-
table to save the preferences instead.

(preferences:snapshot? arg) — boolean?
arg : any/c
Determines if its argument is a preferences snapshot.

See also preferences:get-prefs-snapshot and preferences:restore-prefs-
snapshot.

(preferences:restore-prefs-snapshot snapshot) — void?
snapshot : preferences:snapshot?

Restores the preferences saved in snapshot, updating all of the preferences values to the
ones they had at the time that preferences:get-prefs-snapshot was called.

See also preferences:get-prefs-snapshot.

(preferences:get-prefs-snapshot) — preferences:snapshot?

Caches all of the current values of the known preferences and returns them. For any pref-
erence that has marshalling and unmarshalling set (see preferences:set-un/marshall),
the preference value is copied by passing it through the marshalling and unmarshalling pro-
cess. Other values are not copied, but references to them are instead saved.

See also preferences:restore-prefs-snapshot.

(preferences:new-layer previous-preferences-layer)
— preferences:layer?
previous-preferences-layer : (or/c #f preferences:layer?)

Creates a preferences layer that extends previous-preferences-layer.

197

Added in version 1.30 of package gui-1ib.

(preferences:layer? v) — boolean?
v : any/c

Determines if v is a preferences layer.

A preferences layer gives a form of scoping to preferences. When a new prefer-
ence is first registered with this library (via a call to preferences:set-default
or preferences:add-callback) it is put into the layer in preferences:current-
layer (and not into any of that layer’s previous layers). When preferences:get,
preferences:set, preferences:set-un/marshall are called, they consult and manip-
ulate only the layer where the preference was first installed. Accordingly, preference layers
give a way to discard some set of calls to preference:set-default and other preference
configuration and to start over with a new set. Note that this affects only the configuration of
the preferences for the library; the values are all stored centrally (see preferences:low-
level-put-preferences) and are unaffected by the layers.

Examples:

\

(define original-layer (preferences:current-layer))
(define layer2 (preferences:new-layer original-layer))
> (parameterize ([preferences:current-layer layer2])

; initialize 'a-pref in layer2
(preferences:set-default 'a-pref 5 real?)
(preferences:set 'a-pref 6)

(preferences:get 'a-pref))

\2

\2

(define layer3 (preferences:new-layer original-layer))

> (parameterize ([preferences:current-layer layer3])

; initialize 'a-pref again, this time in layer3

; without the new layer in place, this would be an error
(preferences:set-default 'a-pref 5 real?)

; the actual value of the preference remains

; from the previous call to preferences:set
(preferences:get 'a-pref))

Added in version 1.30 of package gui-1ib.

(preferences:current-layer) — preferences:layer?
(preferences:current-layer preferences-layer) — void?
preferences-layer : preferences:layer?

Determines the current preferences layer.

198

Added in version 1.30 of package gui-1ib.

199

29 Racket

racket:sexp-snip<},> : interface?

(send a-racket:sexp-snip get-saved-snips)
— (listof (is-a?/c snip%))

This returns the list of snips hidden by the sexp snip.

racket:sexp-snip) : class?
superclass: snip%
extends: racket:sexp-snip<j>
readable-snip<y>

(send a-racket:sexp-snip get-text offset
num
[flattened?]) — string?
offset : number?
num : number?
flattened? : boolean? = #f

Overrides get-text in snip¥%.

Returns the concatenation of the text for all of the hidden snips.

(send a-racket:sexp-snip copy) — (is-a?/c racket:sexp-
snip%)

Overrides copy in snip’.

Returns a copy of this snip that includes the hidden snips.

(send a-racket:sexp-snip write stream-out) — void?
stream-out : (is-a?/c editor-stream-out%)

Overrides write in snip%.

Saves the embedded snips

200

(send a-racket:sexp-snip draw dc

X
y
Ileft
top
right
bottom
dx
dy
draw-caret) — void?

dc : dc<h>

x : real?

y : real?

left : real?

top : real?

right : real?

bottom : real?

dx : real?

dy : real?

draw-caret : symbol?

Overrides draw in snip.

Draws brackets with a centered ellipses between them.

(send a-racket:sexp-snip get-extent dc
X
y
[w
h
descent
space
Ispace
rspace]) — void?
dc : (is-a?/c dc<%>)

x @ real?
y @ real?
w : (or/c (box/c (and/c real? (not/c negative?))) #f) = #f
h : (or/c (box/c (and/c real? (not/c negative?))) #f) = #f

descent : (or/c (box/c (and/c real? (not/c negative?))) #f)
= #£
space : (or/c (box/c (and/c real? (not/c negative?))) #f) = #f
lspace : (or/c (box/c (and/c real? (not/c negative?))) #f)
= #f
rspace : (or/c (box/c (and/c real? (not/c negative?))) #f)
#f

201

Overrides get-extent in snip¥.

Returns a size corresponding to what this snip draws.

racket:text<)> : interface?

implements: text:basic<}>
mode :host-text<)>

color:text<’)>

Texts matching this interface support Racket mode operations.

(send a-racket:text get-limit start) — exact-integer?
start : exact-integer?

Returns a limit for backward-matching parenthesis starting at position start.

(send a-racket:text get-backward-navigation-limit start)
— exact-integer?
start : exact-integer?

Overrides get-backward-navigation-limit in color:text<y>.
Calls get-limit.

(send a-racket:text balance-parens key-event) — void?
key-event : (is-a?/c key-event’)

This function is called when the user types a close parenthesis in the text?,.
If the close parenthesis that the user inserted does not match the correspond-
ing open parenthesis and the 'framework:fixup-parens preference is #t
(see preferences:get) the correct closing parenthesis is inserted. If the
'framework:paren-match preference is #t (see preferences:get) the
matching open parenthesis is flashed.

(send a-racket:text tabify-on-return?) — boolean?

The result of this method is used to determine if the return key automatically
tabs over to the correct position.

Override it to change its behavior.

(send a-racket:text tabify [start-pos]) — void?
start-pos : exact-integer? = (send this get-start-position)

Tabs the line containing by start-pos

202

(send a-racket:text tabify-selection [start
end]) — void?
start : exact-integer? = (send this get-start-position)
end : exact-integer? = (send this get-end-position)

Sets the tabbing for the lines containing positions start through end.

(send a-racket:text tabify-selection/reverse-choices [start
end])
— void?
start : exact-integer? = (send this get-start-position)
end : exact-integer? = (send this get-end-position)

Sets the tabbing for the lines containing positions start through end, but if
there are multiple valid tabbings to cycle through, this method should cycle
through the choices in reverse order. The default implementation calls tabify-
selection.

Added in version 1.77 of package gui-1ib.

(send a-racket:text tabify-all) — void?

Tabs all lines.

Indentation results depend on the graphical context associated with the object;
if there is not one, the indentation is based on the assumption that a fixed-width
font is used. If the object is viewed in an editor-canvas’, and top-level-
window<Y%>, the actual font information is used to determine the initial number
of spaces on a line.

(send a-racket:text compute-racket-amount-to-indent
pos
[get-head-sexp-type])
— exact-nonnegative-integer?
pos : exact-nonnegative-integer?
get-head-sexp-type : (-> string? (or/c #f 'lambda 'define 'begin 'for/fold 'other))
= (1 (x) #£)

This method is final, so it cannot be overridden.

Computes the amount of space to indent the line containing pos, using the
default s-expression indentation strategy.

The function get-head-sexp-type is consulted for each symbol/keyword that
follows an open parenthesis. If it returns #£f, then the user’s preferences (from
the Indenting panel of the Editing panel in the preferences dialog) are used.

Indentation results depend on the graphical context associated with the object;
if there is not one, the indentation is based on the assumption that a fixed-width

203

font is used. If the object is viewed in an editor-canvas’, and top-level-
window<¥%>, the actual font information is used to determine the initial number
of spaces on a line.

Added in version 1.9 of package gui-1ib.
Changed in version 1.26: Added the get-head-sexp-type argument.

(send a-racket:text compute-amount-to-indent pos)
— exact-nonnegative-integer?
pos : exact-nonnegative-integer?

Refine this method with augment.
Computes the amount of space to indent the line containing pos.

Defaults to using using the default s-expression indentation strategy via
compute-racket-amount-to-indent.

Added in version 1.9 of package gui-1ib.

(send a-racket:text insert-return) — void?

Inserts a newline into the buffer. If tabify-on-return? returns #t, this will
tabify the new line. Deletes any trailing whitespace from the old line.

(send a-racket:text box-comment-out-selection [start-pos
end-pos]) — #t
start-pos : (or/c 'start exact-integer?) = 'start
end-pos : (or/c 'end exact-integer?) = 'end

This method comments out a selection in the text by putting it into a comment
box.

Removes the region from start-pos to end-pos from the editor and inserts a
comment box with that region of text inserted into the box.

If start-pos is 'start, the starting point of the selection is used. If end-pos
is 'end, the ending point of the selection is used.

(send a-racket:text comment-out-selection [start-pos
end-pos
#:start start
#:padding padding])

— #t
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)

start : (and/c string? (nmot/c #rx"[\r\n]")) = ";"
padding : (and/c string? (not/c #rx"[\r\n]")) = ""

Comments the lines containing positions start-pos through end-pos by in-
serting a start followed by padding at the start of each paragraph.

204

(send a-racket:text region-comment-out-selection
[start-pos
end-pos
#:start start
#:end end
#:continue continue
#:padding padding])
— #t
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)
start : (and/c string? (not/c #rx"[\r\nl")) = "#|"
end : (and/c string? (not/c #rx"[\r\nl")) = "[#"
continue : (and/c string? (not/c #rx"[\r\n]")) = ""
padding : (and/c string? (not/c #rx"[\r\n]")) =" "
Comments the region between start-pos and end-pos by inserting a start
at start-pos, end at end-pos, and continue followed by padding at the
start of each paragraph between start-pos and end-pos.

(send a-racket:text uncomment-box/selection [#:start start
#:padding padding])
— #t
start : (and/c string? (mot/c #rx"[\r\n]l")) = ";"
padding : (and/c string? (not/c #rx"[\r\n]")) = ""

If the result of get-focus-snip is a comment snip, then removes the comment
snip. Otherwise, calls uncomment-selection with start and padding.

(send a-racket:text uncomment-selection [start-pos
end-pos
#:start start]) — void?
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)
start : string = ";"

Uncomments the paragraphs containing positions start-pos through end-
pos if it has line-based comments or a box comment.

Specifically, checks for a box comment and, if present removes it. If a box com-
ment is not present, then removes line-based comments (if any) on the para-
graphs between start-pos and end-pos.

(send a-racket:text uncomment-selection/box [start-pos
end-pos])
— boolean?
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)

205

Checks for a box comment and, if present removes it. Returns #t if it found
(and removed) a box comment, and #f if it did not find a box comment.

(send a-racket:text uncomment-selection/line
[start-pos
end-pos
#:start start
#:padding padding])
— #t
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)
start : (and/c string? (mot/c #rx"[\r\n]l")) = ";"
padding : (and/c string? (not/c #rx"[\r\n]")) = ""

Removes each occurrence of start that appears (potentially following whites-
pace) at the start of each paragraph that enclose the range between start-pos

and end-pos.

(send a-racket:text uncomment-selection/region
[start-pos
end-pos
#:start start
#:end end
#:continue continue
#:padding padding])
— #t
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)
start : (and/c string? (not/c #rx"[\r\nl")) = "#|"
end : (and/c string? (not/c #rx"[\r\n]")) = "[|#"
continue : (and/c string? (not/c #rx"[\r\n]")) = ""
padding : (and/c string? (not/c #rx"[\r\n]l")) ="

Removes the region comment on the paragraphs between start-pos and end-
pos.

(send a-racket:text commented-out/line? [start-pos
end-pos
#:start start
#:padding padding])
— boolean?
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)
start : (and/c string? (not/c #rx"[\r\n]")) = ";"
padding : (and/c string? (mot/c #rx"[\r\n]")) = ""

206

Considers each paragraph between start-pos and end-pos, returning #t if
any of them have the line comment start commenting any portion of them
out.

(send a-racket:text commented-out/region? [start-pos
end-pos
#:start start
#:end end
#:continue continue])
— boolean?
start-pos : exact-nonnegative-integer? = (get-start-position)
end-pos : exact-nonnegative-integer? = (get-end-position)
start : (and/c string? (mot/c #rx"[\r\n]")) = "#|"
end : (and/c string? (mot/c #rx"[\r\nl")) = "[#"
continue : (and/c string? (not/c #rx"[\r\n]")) = ""

Returns #t if the paragraphs at start-pos and end-pos have start and end
in them and the paragraphs in between start with continue.

(send a-racket:text get-forward-sexp start)
— (or/c #f exact-integer?)
start : exact-integer?

Returns the position of the end of next S-expression after position start, or #f
if there is no appropriate answer.

(send a-racket:text remove-sexp start) — void?
start : exact-integer?

Forward-deletes the S-expression starting after the position start.

(send a-racket:text forward-sexp start) — void?
start : exact-integer?

Moves forward over the S-expression starting at position start.

(send a-racket:text flash-forward-sexp start-pos) — void?
start-pos : exact-integer?

Flashes the parenthesis that closes the sexpression at start-pos.

(send a-racket:text get-backward-sexp start)
— (or/c exact-integer? #f)
start : exact-integer?

Returns the position of the start of the S-expression before or containing start,
or #£ if there is no appropriate answer.

207

(send a-racket:text flash-backward-sexp start-pos) — void?
start-pos : exact-integer?

Flashes the parenthesis that opens the sexpression at start-pos.

(send a-racket:text backward-sexp start-pos) — void?
start-pos : exact-integer?

Move the caret backwards one sexpression

Moves the caret to the beginning of the sexpression that ends at start-pos.

(send a-racket:text find-up-sexp start-pos)
— (or/c #f exact-integer?)
start-pos : exact-integer?

Returns the position of the beginning of the next sexpression outside the sex-
pression that contains start-pos. If there is no such sexpression, it returns
#E.

(send a-racket:text up-sexp start) — void?
start : exact-integer?

Moves backward out of the S-expression containing the position start.

(send a-racket:text find-down-sexp start-pos)
— (or/c #f exact-integer?)
start-pos : exact-integer?

Returns the position of the beginning of the next sexpression inside the sex-
pression that contains start-pos. If there is no such sexpression, it returns
#E.

(send a-racket:text down-sexp start) — void?
start : exact-integer?
Moves forward into the next S-expression after the position start.
(send a-racket:text remove-parens-forward start) — void?

start : exact-integer?

Removes the parentheses from the S-expression starting after the position
start.

(send a-racket:text select-forward-sexp) — void?

208

Selects the next S-expression, starting at the start of the current selection.

(send a-racket:text select-backward-sexp) — void?

Selects the previous S-expression, starting at the start of the current selection.

(send a-racket:text select-up-sexp) — void?

Selects the region to the enclosing S-expression, starting at the start of the cur-
rent selection.

(send a-racket:text select-down-sexp) — void?

Selects the region to the next contained S-expression, starting at the start of the
current selection.

(send a-racket:text transpose-sexp start) — void?
start : exact-integer?

Swaps the S-expression beginning before the position start with the next S-
expression following start.

(send a-racket:text mark-matching-parenthesis pos) — void?

pos : exact-positive-integer?

If the paren after pos is matched, this method highlights it and its matching
counterpart in dark green.

(send a-racket:text get-tab-size) — exact-integer?
This method returns the current size of the tabs for scheme mode. See also
set-tab-size.

(send a-racket:text set-tab-size new-size) — void?

new-size : exact-integer?

This method sets the tab size for this text.

(send a-racket:text introduce-let-ans start-pos) — void?
start-pos : exact-integer?

Adds a let around the current s-expression and a printf into the body of the let.

(send a-racket:text move-sexp-out start-pos) — void?
start-pos : exact-integer?

209

Replaces the sexpression surrounding the insertion point with the sexpression
following the insertion point.

racket:text-mixin : (class? . -> . class?)
argument extends/implements: text:basic<)>
mode :host-text<>
color:text<)>
text:autocomplete<y>
editor:keymap</>
result implements: racket:text<%>

This mixin adds functionality for editing Racket files.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send a-racket:text get-word-at pos) — string?
pos . exact-positive-integer?

Overrides get-word-at in text:autocomplete<y>.
Returns the word just before pos, which is then used as the prefix for auto-
completion.

(send a-racket:text get-start-of-line pos)
— exact-nonnegative-integer?
pos . exact-nonnegative-integer?

Overrides get-start-of-line in text:basic<¥>.

Returns the first non-whitespace character in the paragraph containing pos, un-
less the position is already there, in which case it returns the first position of the
paragraph.

racket:text-mode<%> : interface?

The result of racket : text-mode-mixin implements this interface.

racket:text-mode-mixin : (class? . -> . class?)
argument extends/implements: color:text-mode<’>
mode : surrogate-text<y>
result implements: racket:text-mode<y>

210

This mixin adds Racket mode functionality to the mode that it is mixed into. The resulting
mode assumes that it is only set to an editor that is the result of racket:text-mixin.

(new racket:text-mode-mixin [[include-paren-keymap? include-
paren-keymap?]])

— (is-a?/c racket:text-mode-mixin)

include-paren-keymap? : boolean? = #t

If include-paren-keymap? is #f only the result of racket:get-non-
paren-keymap is used by on-enable-surrogate; otherwise the result of
racket:get-keymap is used.

Added in version 1.64 of package gui-1ib.

(send a-racket:text-mode on-disable-surrogate) — void?

Overrides on-disable-surrogate in mode: surrogate-text<y>.

Removes the racket keymap (see also racket:get-keymap) and disables any
parenthesis highlighting in the host editor.

(send a-racket:text-mode on-enable-surrogate) — void?

Overrides on-enable-surrogate in mode: surrogate-text<y>.

Adds the racket keymap (see also racket:get-keymap) and enables a paren-
thesis highlighting in the host editor.

racket:set-mode-mixin : (class? . -> . class?)
argument extends/implements: racket:text<)>
mode:host-text<¥%>

This mixin creates a new instance of racket : text-mode and installs it, by calling its own
set-surrogate method with the object.

racket:text) : class?
superclass: (racket:set-mode-mixin (racket:text-mixin (text:autocomplete-mixin (mode:host-t

racket:text-mode}, : class?
superclass: (racket:text-mode-mixin color:text-mode%)

211

(racket:text-balanced? text [start end]) — boolean?
text : (is-a?/c text%)
start : number? = 0
end : (or/c false/c number?) = #f

Determines if the range in the editor from start to end in text has at least one complete
s-expression and there are no incomplete s-expressions. If end is #f£, it defaults to the last
position of the text. The designation “complete” is defined to be something that does not
cause read to raise a exn:fail:read:eof? exception, so there may be all kinds of strange
read-level (not to speak of parse level) errors in the expressions.

The implementation of this function creates a port with open-input-text-editor and
then uses read to parse the range of the buffer.

racket:default-paren-matches : (listof (list/c symbol? symbol?))

The default parentheses that are matched when using racket : text-mode-mixin.

Added in version 1.60 of package gui-1lib.

(racket:add-preferences-panel) — void?

Adds a tabbing preferences panel to the preferences dialog.

(racket:get-keymap) — (is-a?/c keymap%)

Returns a keymap with binding suitable for Racket; the keymap is created with
racket:setup-keymap where the paren-keymap is not #£ but a keymap, and that keymap
is added to the result of this function via chain-to-keymap. The paren-keymap argument is
also the result of racket : get-paren-keymap.

(racket:get-paren-keymap) — (is-a?/c keymap?)

Returns a keymap with binding suitable for the parentheses keystrokes in Racket; the keymap
is created and passed to racket : setup-keymap as the paren-keymap argument. See also
racket:get-keymap

Added in version 1.64 of package gui-1ib.

212

(racket:get-non-paren-keymap) — (is-a?/c keymap’)

Returns a keymap with all of the bindings in the keymap returned by racket : get-keymap
except those in the keymap returned by racket: get-paren-keymap

Added in version 1.64 of package gui-1ib.

(racket:add-pairs-keybinding-functions keymap) — void?
keymap : (is-a?/c keymap’%)

Adds keybindings that are intended to be bound to parenthesis characters to keymap. See
racket:setup-keymap for more information.

Added in version 1.64 of package gui-1ib.

(racket :map-pairs-keybinding-functions

keymap

open

close

[#:alt-as-meta-keymap alt-as-meta-keymap])
— void?

keymap : (is-a?/c keymap’%)

open : char?

close : char?

alt-as-meta-keymap : (or/c #f (is-a?/c keymap%)) = #f

Binds a number of parenthesis-related keystrokes:

* binds the keystroke of the character open to a function named (format "maybe-
insert-"a"a-pair" open close),unless open is #\ [, in which case it is mapped
to "maybe-insert- []-pair-maybe-fixup-[]",

* binds close to "balance-parens" unless open and close are the same character,

* binds open with the meta key modifier to (format "insert-"a~a-pair" open
close),

* binds close with the meta key modifier to to "balance-parens-forward" unless
the opening and closing characters are the same,

* binds close, but with the prefix "“g:c:" (e.g., "“g:c:)") to the keystroke with the
name (format "non-clever-"a" close), and

e if open is #\ [, binds "“g:c: [" to "non-clever-open-square-bracket".

213

If any of these functions are no present in keymap, they are also added to it.
The alt-as-meta-keymap argument is treated as keymap:setup-global treats it.

Added in version 1.64 of package gui-1lib.

(racket:add-coloring-preferences-panel) — any

Installs the “Racket” preferences panel in the “Syntax Coloring” section.

(racket:get-color-prefs-table)
— (listof (list/c symbol? (is-a?/c color’) string?))

Returns a table mapping from symbols (naming the categories that the online colorer uses
for Racket mode coloring) to their colors.

These symbols are suitable for input to racket:short-sym->pref-name and
racket:short-sym->style-name.

See also racket:get-white-on-black-color-prefs-table.

(racket:get-white-on-black-color-prefs-table)
— (listof (list/c symbol? (is-a?/c color’,) string?))

Returns a table mapping from symbols (naming the categories that the online colorer uses
for Racket mode coloring) to their colors when the user chooses the white-on-black mode in
the preferences dialog.

See also racket:get-color-prefs-table.

(racket:short-sym->pref-name short-sym) — symbol?
short-sym : symbol?

Builds the symbol naming the preference from one of the symbols in the table returned by
racket:get-color-prefs-table.

(racket:short-sym->style-name short-sym) — string?
short-sym : symbol?

Builds the symbol naming the editor style from one of the symbols in the table returned by
racket:get-color-prefs-table. This style is a named style in the style list returned by
editor:get-standard-style-list.

214

(racket:get-wordbreak-map) — (is-a?/c editor-wordbreak-map%)

This method returns a editor-wordbreak-map} that is suitable for Racket.

(racket:init-wordbreak-map key) — void?
key : (is-a?/c keymap%)

Initializes the workdbreak map for keymap.

(racket :setup-keymap

keymap

[#:alt-as-meta-keymap alt-as-meta-keymap

#:paren-keymap paren-keymap

#:paren-alt-as-meta-keymap paren-alt-as-meta-keymap])
— void?

keymap : (is-a?/c keymap%)

alt-as-meta-keymap : (or/c #f (is-a?/c keymap#%)) = #f
paren-keymap : (or/c #f (is-a?/c keymapk)) = #f
paren-alt-as-meta-keymap : (or/c #f (is-a?/c keymap%)) = #f

Initializes keymap with Racket-mode keybindings.

The alt-as-meta-keymap argument is treated the same as for keymap:setup-global.
The paren-alt-as-meta-keymap argument is similar, but matched up with paren-
keymap and used only when paren-keymap is not #£.

The paren-keymap is filled with the keybindings that are bound to parentheses in the default
racket keymap, which is done by calling racket :map-pairs-keybinding-functions
with the keymap and the characters #\ [and #\1, #\ (and #\), #\{ and #\3}, #\ | and #\ |,
and #\" and #\".

Changed in version 1.40 of package gui-1ib: Added the #:alt-as-meta-keymap argument.

Changed in version 1.64: Added the #:paren-keymap and paren-alt-as-meta-keymap arguments.

215

30 Srcloc Snips

srcloc-snip:snip}, : class?
superclass: editor-snip,

This snip implements clickable links to srcloc locations.

The snip is initialized with an appropriate editor, into which a representation for the link can
be inserted. When the reprenstation has been inserted, the activate-1ink method needs
to be called to activate the link.

(new srcloc-snip:snip% [srcloc srclocl)
— (is-a?/c srcloc-snip:snip%)
srcloc : srcloc?

The srcloc field specifies where the link points.

(send a-srcloc-snip:snip activate-link) — void?

This makes the content of the snip’s editor clickable, such that clicking high-
lights the position of the srcloc.

srcloc-snip:snipclass : (is-a?/c snip-class,)
The snip-class?, object used by srcloc-snip:snip¥.

(srcloc-snip:select-srcloc srcloc) — void?
srcloc : srcloc?

Finds the editor containing the specified srcloc and selects it.

216

31 Text

text:basic<%> : interface?
implements: editor:basic<y>
text),

Classes matching this interface are expected to implement the basic functionality needed by
the framework.

(send a-text:basic highlight-range
start
end
color
[caret-space
priority
style
#:adjust-on-insert/delete adjust-on-insert/delete
#:key key])
— (if adjust-on-insert/delete
void?
(-> void?))
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
color : (or/c string?
(is-a?/c color%)
color-prefs:color-scheme-color-name?)
caret-space : boolean? = #f
priority : (or/c 'high 'low) = 'low
style : (or/c 'rectangle 'ellipse 'hollow-ellipse 'dot)
= 'rectangle
adjust-on-insert/delete : boolean? = #f
key : any/c = #f

This function highlights a region of text in the buffer.

The range between start and end will be highlighted with the given color. If
the color is a color-prefs:color-scheme-color-name? then the color is
looked up each time the rectangle is drawn, so that changes to the color scheme
are reflected in the highlighted range.

If the style is 'rectangle (the default), then the highlighted region is drawn
as a rectangle, highlighting all of the text between the start and end. If the
style is 'ellipse, then an ellipse is drawn around the range in the editor, using
the color. If the style is 'hollow-ellipse, then the outline of an ellipse is

217

drawn around the range in the editor, using the color. If the style is 'single-
rectangle then a rectangle whose upper-left corner is the starting position of
the range and whose lower-right corner is the ending position of the range; this
may not highlight some of the text in the range, as the first and last position may
be in different paragraphs and the intermediate paragraphs may be wider than
the distance from the start to the end. If the style is 'dot, then start and end
must be the same, and a dot is drawn at the bottom of that position in the editor.

If caret-space? is not #f, the left edge of the range will be one pixel short, to
leave space for the caret. The caret does not interfere with the right hand side of
the range. Note that under some platforms, the caret is drawn with XOR, which
means almost anything can happen. So if the caret is in the middle of the range
it may be hard to see, or if it is on the left of the range and caret-space? is #f
it may also be hard to see.

The priority argument indicates the relative priority for drawing overlapping
regions. If two regions overlap and have different priorities, the region with
'high priority will be drawn second and only it will be visible in the overlap-
ping region.

If adjust-on-insert/delete? is #t, then insertions and deletions to the text
will adjust the start and end of the range. Insertions and deletions before
the range move the range forward and backward; insertions and deletions after
the range will be ignored. An insertion in the middle of the range will enlarge
the range and a deletion that overlaps the range adjusts the range to reflect the
deleted portion of the range and its new position.

The key argument can be used with unhighlight-ranges/key and
unhighlight-ranges to identify ranges whose start and end positions may
have changed. Symbols whose names begin with plt: are reserved for internal
use.

If this method returns a thunk, invoking the thunk will turn off the highlighting
from this range.

Note that if adjust-on-insert/delete is a true value, then the result is
not a thunk and instead unhighlight-range, unhighlight-ranges/key, or
unhighlight-ranges must be called directly to remove the highlighting.

Changed in version 1.68 of package gui-lib: Allow the color argument to be

color-prefs:color-scheme-color-name?

(send a-text:basic unhighlight-range start
end
color
[caret-space
style]) — void?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
color : (or/c string?
(is-a?/c color%)
color-prefs:color-scheme-color-name?)

218

caret-space : boolean? = #f
style : (or/c 'rectangle 'ellipse 'hollow-ellipse)
= 'rectangle

This method removes the highlight from a region of text in the buffer.

The region must match up to a region specified from an earlier call to
highlight-range.

This method does a linear scan over all of the regions currently set. If you
expect to call this method many times (when there are many ranges set) consider
instead calling unhighlight-ranges.

Changed in version 1.68 of package gui-lib: Allow the color argument to be

color-prefs:color-scheme-color-name?

(send a-text:basic unhighlight-ranges/key key) — void?
key : any/c

This method removes the highlight from regions in the buffer that have the key
key (as passed to highlight-range).

(send a-text:basic unhighlight-ranges pred?) — void?

pred? : (-> exact-nonnegative-integer?
exact-nonnegative-integer?
(is-a?/c color%)
boolean?
(or/c 'rectangle 'ellipse 'hollow-ellipse)
(or/c boolean? exact-nonnegative-integer?)
any/c
boolean?)

This method removes the highlight from regions in the buffer as selected by
pred?. The arguments to pred? are the same as the arguments to highlight-
range when it was originally called, unless the adjust-on-insert/delete
argument was a true value, in which case the first two arguments to the predicate
will reflect the current state of the bubble, if it is changed.

(send a-text:basic get-highlighted-ranges)
— (listof text:range?)

Returns a list of (opaque) values representing the active ranges in the editor.

(send a-text:basic get-styles-fixed) — boolean?

If the result of this function is #t, the styles in this text:basic<}> will be
fixed. This means that any text inserted to this editor has its style set to this
editor’s style-list?’s "Standard" style.

See also set-styles-fixed.

219

(send a-text:basic get-fixed-style) — (is-a?/c style<y>)

Returns the style used by set-styles-fixedwhen setting the styles.

(send a-text:basic set-styles-fixed fixed?) — void?
fixed? : boolean?

Sets the styles fixed parameter of this text. See also get-styles-fixed and
get-fixed-style.

(send a-text:basic move/copy-to-edit
dest-text
start
end
dest-pos
[#:try-to-move? try-to-move?])
— void?
dest-text : (is-a?/c textl)
start : natural?
end : (and/c natural? (>=/c start))
dest-pos : natural?
try-to-move? : boolean? = #t

This moves or copies text and snips to dest-text.

Moves or copies from this starting at start and ending at end. It puts the
copied text and snips in dest-text starting at location dest-pos. If start
and end are equal then nothing is moved or copied.

If try-to-move? is #t, then the snips are removed; and if it is #£, then they
are copied. If try-to-move?is #t and dest-pos is between start and end
then this is unchanged.

If a snip refuses to be moved, it will be copied and deleted from the editor,
otherwise it will be moved. A snip may refuse to be moved by returning #f
from release-from-owner.

(send a-text:basic move-to dest-text
start
end
dest-pos) — void?
dest-text : (is-a?/c texth)
start : natural?
end : (and/c natural? (>=/c start))
dest-pos : natural?

Like move/copy-to-edit when the #:try-to-move? argument is #t.

220

(send a-text:basic copy-to dest-text
start
end
dest-pos) — void?
dest-text : (is-a?/c text%)
start : natural?
end : (and/c natural? (>=/c start))
dest-pos : natural?

Like move/copy-to-edit when the #:try-to-move? argument is #f.

(send a-text:basic initial-autowrap-bitmap)
— (or/c #f (is-a?/c bitmap%))

The result of this method is used as the initial autowrap bitmap. Override this
method to change the initial bitmap’. See also set-autowrap-bitmap

Returns the result of icon:get-autowrap-bitmap by default.

(send a-text:basic get-port-name)
— (or/c path-string? symbol? #f)

The result of this method is a symbol that identifies this editor and that is used
as the port-name of a port that is read from this editor if this editor is used in
DrRacket. See also port-name-matches?.

(send a-text:basic port-name-matches? id) — boolean?
id : any/c

Indicates if id matches the port name of this file. If the file is saved, the port
name matches when the save file is the path as id. If the file has not been
saved, the port name matches if the symbol is the same as the result of get-
port-name.

This method calls normalize-path and thus can be very expensive on some
filesystems. If it is called many times in a loop, cache the results to avoid calling
it too often.

(send a-text:basic set-port-unsaved-name name) — void?
name : string?

When get-port-name returns a symbol, the printed representation of the sym-

bol will be the same as name.

(send a-text:basic after-set-port-unsaved-name) — any/c

221

This method is called after set-port-unsaved-name is called. Override it to
detect changes in what get-port-name returns.

(send a-text:basic get-edition-number)
— exact-nonnegative-integer?

Returns a number that increments every time something in the editor changes.
The number is updated in after-insert in text), and after-delete in
text.

(send a-text:basic get-start-of-line pos)
— exact-nonnegative-integer?
pos . exact-nonnegative-integer?

This method is used by keymap : setup-global to implement a keybinding for
the "home" key and for "c:a".

Its default implementation is (line-start-position (position-line

pos)).
text:basic-mixin : (class? . -> . class?)
argument extends/implements: editor:basic<}>

text
result implements: text:basic<y>

This mixin implements the basic functionality needed for text’ objects in the framework.

The class that this mixin produces uses the same initialization arguments as its input.

(send a-text:basic on-paint before?

dc
left
top
right
bottom
dx
dy
draw-caret) — void?

before? : any/c

dc : (is-a?/c dc<}%>)

left : real?

top : real?

right : real?

bottom : real?

222

dx : real?

dy . real?

draw-caret : (or/c 'mo-caret
'show-inactive-caret
'show-caret)

Overrides on-paint in editor<y>.
Draws the rectangles installed by highlight-range.
(send a-text:basic on-insert start end) — void?

start : exact-nonnegative-integer?
end : exact-nonnegative-integer?

Augments on-insert in text/.
See set-styles-fixed.
(send a-text:basic after-insert start len) — void?

start . exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-insert in text¥.
See set-styles-fixed.

(send a-text:basic put-file directory
default-name) — (or/c path? #f)
directory : (or/c path? #f)
default-name : string?

Overrides put-file in editor<y>.

Like put-file but uses finder:put-file instead of put-file.

text:indent-guides<y%> : interface?
implements: text%

Classes implementing this interface provide indent guides as thin vertical lines, showing
which columns where earlier lines started.

Added in version 1.69 of package gui-1ib.

(send a-text:indent-guides show-indent-guides! on?) — void?
on? : any/c

This method is final, so it cannot be overridden.

Enables or disables indent guides in this editor. Defaults to enabled.

223

(send a-text:indent-guides show-indent-guides?) — boolean?

This method is final, so it cannot be overridden.

Returns a boolean indicating if indent guides are shown in the current editor.

text:indent-guides-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:indent-guides<y>

text:inline-overview<%> : interface?
implements: text?

Classes implementing this interface provide an overview along the right-hand side of the
texty’s view, showing one pixel per character in the editor. Clicking on the editor moves
the insertion point to the corresponding place in the text? object.

This effect is similar to text :delegate<}>, but much more efficient.

Added in version 1.32 of package gui-1ib.

(send a-text:inline-overview get-inline-overview-enabled?)
— boolean?

This method is final, so it cannot be overridden.

Returns a boolean indicating if inline-overview mode is turned on for this text
object.

(send a-text:inline-overview set-inline-overview-

enabled? on?)
— void?
on? : any/c

This method is final, so it cannot be overridden.

Enables or disables inline-overview mode for this text, object.

text:inline-overview-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:inline-overview<},>

224

text:line-spacing<’,> : interface?
implements: text:basic<}>

Objects implementing this interface adjust their spacing based on the 'framework:line-
spacing-add-gap? preference.

text:line-spacing-mixin : (class? . -> . class?)
argument extends/implements: text:basic<)>
result implements: text:line-spacing<y>

Calls set-line-spacing to either O or 1 when an object is created, based on the
'framework:line-spacing-add-gap? preference.

Also registers a callback (via preferences:add-callback) to call set-line-spacing
when the ' framework:line-spacing-add-gap? preference changes.

text:ascii-art-enlarge-boxes<%> : interface?

(send a-text:ascii-art-enlarge-boxes set-ascii-art-
enlarge e?)

— void?

e? : any/c

Enables or disables the ascii art box enlarging mode based on e?’s true value.

(send a-text:ascii-art-enlarge-boxes get-ascii-art-enlarge)
— boolean?

Returns #t if ascii art box enlarging mode is enabled and #f otherwise.

text:ascii-art-enlarge-boxes-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:ascii-art-enlarge-boxes</%>

225

(send a-text:ascii-art-enlarge-boxes on-local-char event)
— void?
event : (is-a?/c key-event’,)

Overrides on-local-char in editor<%>.

When the get-key-code method of event returns either 'numpad-enter or
#\return and get-ascii-art-enlarge returns #t, this method handles the
return key by adding an additional line in the containing unicode ascii art box
and moving the insertion point to the first character on the new line that is in the
containing cell.

It does not call the super method (in that case).

(send a-text:ascii-art-enlarge-boxes on-default-char event)
— void?
event : (is-a?/c key-event,)

Overrides on-default-char in text¥.

When the get-key-code method of event returns either a character or sym-
bol that corresponds to the insertion of a single character get-ascii-art-
enlarge returns #t, this method first makes room in the box and then calls the
super method. If the get-overwrite-mode returns #£, then it always opens
up a column in the box. If get-overwrite-mode returns #t, then it opens up a
column only when the character to be inserted would overwrite one of the walls.

text:first-1line<),> : interface?
implements: text%

Objects implementing this interface, when highlight-first-1line is invoked with #t, al-
ways show their first line, even with scrolled (as long as first-line-currently-drawn-
specially? returns #t).

(send a-text:first-line highlight-first-line on?) — void?
on? : boolean?

This method is final, so it cannot be overridden.
Call this method to enable special treatment of the first line in the editor.
(send a-text:first-line first-line-currently-drawn-

specially?)
— boolean?

226

This method is final, so it cannot be overridden.

Returns #t if is-special-first-1line? returned #t for the current first line
and if the buffer is scrolled down so that the first line would not (ordinarily) be
visible.

(send a-text:first-line get-first-line-height) — number?

This method is final, so it cannot be overridden.

Returns the height, in pixels, of the first line.

(send a-text:first-line is-special-first-

line? line) — boolean?
line : string?

Override this method to control when the first line is always visible. The argu-
ment is the first line, as a string.

text:first-line-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:first-line<)>

Provides the implementation of text:first-line<’>. Does so by just painting the text of
the first line over top of what is already there and overriding scroll-editor-to to patch
up scrolling and on-event to patch up mouse handling.

(send a-text:first-line on-paint before?
dc
left
top
right
bottom
dx
dy
draw-caret) — void?
before? : any/c
dc : (is-a?/c dc<¥%>)
left : real?
top : real?
right : real?
bottom : real?
dx : real?
dy . real?
draw-caret : (one-of/c 'nmo-caret 'show-inactive-caret 'show-caret)

227

Overrides on-paint in editor<y>.

Based on the various return values of the methods in text:first-1line, draws
the first actual line of the editor over top of the first visible line in the editor.

(send a-text:first-line on-event event) — void?
event : (is-a?/c mouse-event%)

Overrides on-event in editor<y>.
Clicks in the first line cause the editor to scroll to the actual first line.

(send a-text:first-line scroll-editor-to localx
localy
width
height
refresh?
bias) — void?

localx : real?

localy : real?

width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
refresh? : any/c

bias : (one-of/c 'start 'end 'none)

Overrides scroll-editor-to in editor<¥%>.

Scrolls a little bit more, when a scroll would be requested that scrolls something
so that it is line underneath the first line.

text:foreground-color<%> : interface?
implements: text:basic<}>
editor:standard-style-list<}>

text:foreground-color-mixin : (class? . -> . class?)
argument extends/implements: text:basic<¥%>
editor:standard-style-list<y>

result implements: text:foreground-color<}>

This mixin changes the default text style to have the foreground color controlled by
editor:set-default-font-color.

(send a-text:foreground-color default-style-name) — string?

Overrides default-style-name in editor<y>.

Returns the result of editor:get-default-color-style-name.

228

(send a-text:foreground-color get-fixed-style)
— (is-a?/c style<)>)

Overrides get-fixed-style in text:basic<%>.

Returns the style named by editor:get-default-color-style-name.
text:hide-caret/selection<’,> : interface?
implements: text:basic<}>
This class hides the caret, except when the selection is active.

Instances of this class are useful for editors that used for displaying purposes, but still allow
users to copy their text.

text:hide-caret/selection-mixin : (class? . -> . class?)
argument extends/implements: text:basic<¥%>
result implements: text:hide-caret/selection<’>

(send a-text:hide-caret/selection after-set-
position) — void?

Augments after-set-position in text.

Calls hide-caret to hide the caret when there is only a caret and no selection.
text:nbsp->space<),> : interface?
implements: text%

Classes that implement this interface silently change non-breaking spaces, ie the character
(integer->char 160), to regular spaces when inserted into the editor.

text:nbsp->space-mixin : (class? . -> . class?)
argument extends/implements: text?
result implements: text:nbsp->space<),>

229

(send a-text:nbsp->space on-insert start
end) — void?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?

Augments on-insert in text/.
Starts an edit-sequence by calling begin-edit-sequence.
(send a-text:nbsp->space after-insert start
len) — void?

start . exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-insert in text¥.

Replaces all non-breaking space characters (integer->char 160) by
#\space characters.

Ends the edit sequence (by calling end-edit-sequence) started in on-
insert.

text:column-guide<%> : interface?
implements: text%

Classes that implement this interface show a vertical line at a specified column width (when

the content in the text has any lines wider than that column width).

The column width is determined by the 'framework:column-guide-width preference;
that preference is a list of length two where the first element is a boolean indicating if the
line should be visible at all, and the second is the width where the line would be visible (if

the first is #t).

The position of the line is determined by taking the width of the x character in the "Stan-
dard" style (or, if there is no "Standard" style, then the "Basic" style) and multiplying

that by the preference value.

text:column-guide-mixin : (class? . -> . class?)
argument extends/implements: text?
result implements: text:column-guide<y>

230

(send a-text:column-guide on-paint before?
dc
Ileft
top
right
bottom
dx
dy
draw-caret) — void?
before? : any/
dc : (is-a?/c dc<%>)
left : real?
top : real?
right : real?
bottom : real?
dx : real?
dy : real?
draw-caret : (or/c 'mo-caret 'show-inactive-caret 'show-caret
(cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))

Extends on-paint in editor<y>.

Draws the column guide (if appropriate; see text: column-guide<%>).

(send a-text:column-guide on-change) — void?

Augments on-change in editor<%>.

Checks to see if any of the state that would cause the line to draw in a different
place has changed (via calls to get-extent and get-padding; if so makes (up
to) two calls to invalidate-bitmap-cache with rectangles that cover the old
and new locations of the line.

text:normalize-paste<y> : interface?
implements: text:basic<}>

(send a-text:normalize-paste ask-normalize?) — boolean?

Prompts the user if the pasted text should be normalized (and updates various
preferences based on the response).

Override this method in the mixin to avoid all GUI and preferences interactions.

(send a-text:normalize-paste string-normalize s) — string?
s : string?

231

Normalizes s. Defaults to:

(regexp-replace*
#rx"\u200B"
(regexp-replace*
#rx"——"
(string-normalize-nfkc s)
"_ n)

n ll)

text:normalize-paste-mixin : (class? . -> . class?)
argument extends/implements: text:basic<¥%>
result implements: text:normalize-paste<y,>

(send a-text:normalize-paste do-paste start
time) — void?
start : exact-nonnegative-integer?
time : exact-integer?

Overrides do-paste in text/.
Overridden to detect when insertions are due to pasting. Sets some internal state
and calls the super.

(send a-text:normalize-paste on-insert start
len) — void?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments on-insert in text.
Calls begin-edit-sequence.

(send a-text:normalize-paste after-insert start
len) — void?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-insert in text¥.

Normalizes any next text and calls end-edit-sequence.

text:all-string-snips<%> : interface?

232

(send a-text:all-string-snips all-string-snips?) — boolean?

Returns #t if all of the snips in the text? object are string-snip¥s.

This method usually returns quickly, tracking changes to the editor to update
internal state. But if a non-string-snipJ, is deleted, then the next call to all-
string-snips? traverses the entire content to search to see if there are other
non-string-snips.

text:all-string-snips-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:all-string-snips<%>

(send a-text:all-string-snips on-insert start
len) — void?

start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments on-insert in text.

Checks to see if there were any non-string-snip%s inserted in the given range
and, if so, updates the internal state.

(send a-text:all-string-snips after-delete start
len) — void?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-delete in text¥.

Checks to see if there were any non-string-snips deleted in the given range
and, if so, updates the internal state.

text:searching<’> : interface?
implements: editor:keymap<y>
text:basic<y>

Any object matching this interface can be searched.

(send a-text:searching set-searching-state str
cs?
replace-mode?
notify-frame?)

233

— void?

str : (or/c #f non-empty-string?)
cs? : boolean?

replace-mode? : boolean?
notify-frame? : boolean?

If str is not #£, then this method initiates a search for every occurrence of str
in the editor. If str is #f, then it clears all of the search highlighting in the
buffer.

If cs?is #£, the search is case-insensitive, and otherwise it is case-sensitive.

The replace-mode? boolean determines if the resulting search should be track-
ing the next-to-replace search hit as the insertion point moves around in the
editor. Also, when replace-mode? is #f, then the bubbles are are uniform
medium purple color ("plum" in the-color-database) and otherwise they
are either a lighter purple or a darker purple, with every bubble except the one
just following the insertion the lighter color.

The search does not complete before set-searching-state returns. Accord-
ingly, get-search-hit-count may have out-of-date results for a while, until
the search process is finished. If notify-frame? is #t then search-hits-
changed is called when the search completes.

(send a-text:searching set-search-anchor position) — void?
position : (or/c #f number?)

Sets the anchor’s position in the editor. Only takes effect if the
'framework:anchored-search preference is on.

(send a-text:searching get-search-hit-count) — number? number?

Returns the number of hits for the search in the buffer before the insertion point
and the total number of hits. Both are based on the count found last time that a
search completed.

A search initiated by some earlier change to the editor or to the string to search
for may make the results of this method obsolete. To force those changes
to complete (and thus get an accurate result from this method) call finish-
pending-search-work.

(send a-text:searching get-replace-search-hit)
— (or/c number? #f)

Returns the position of the nearest search hit that comes after the insertion point.

A search initiated by some earlier change to the editor or to the string to search
for may make the results of this method obsolete. To force those changes
to complete (and thus get an accurate result from this method) call finish-
pending-search-work.

234

(send a-text:searching set-replace-start pos) — void?
pos : (or/c number? #f)

This method is ignored. (The next replacement start is now tracked via the
after-set-position method.)

(send a-text:searching finish-pending-search-work) — void?

Finishes any pending work in computing and drawing the search bubbles.

Call this method to ensure that the results from any of get-search-hit-
count, get-replace-search-hit, or get-search-bubbles are correct.

(send a-text:searching get-search-bubbles)
— (listof (list/c (cons/c number? number?)
(or/c 'mormal-search-color
'dark-search-color
'light-search-color)))

Returns information about the search bubbles in the editor. Each item in the
outermost list corresponds to a single bubble. The pair of numbers is the range
of the bubble and the symbol is the color of the bubble.

A search initiated by some earlier change to the editor or to the string to search
for may make the results of this method obsolete. To force those changes
to complete (and thus get an accurate result from this method) call finish-
pending-search-work.

This method is intended for use in test suites.

text:searching-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<%>
text:basic<¥>
result implements: text:searching<y>

This text% can be searched.

The result of this mixin uses the same initialization arguments as the mixin’s argument.

(send a-text:searching get-keymaps)
— (listof (is-a?/c keymap%))

Overrides get-keymaps in editor :keymap</%>.

This returns a list containing the super-class’s keymaps, plus the result of
keymap:get-search.

235

(send a-text:searching after-insert start
len) — void?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-insert in text¥.
Re-does any search now that the contents of the window have changed.
(send a-text:searching after-delete start
len) — void?

start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-delete in text¥.
Re-does any search now that the contents of the window have changed.

(send a-text:searching on-focus on?) — void?
on? : boolean?

Overrides on-focus in editor<’>.

Tells the frame containing the editor to search based on this editor via the set-
text-to-search method.

text:return<y,> : interface?
implements: text%

Objects supporting this interface were created by text:return-mixin.

text:return-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:return<y,>

Use this buffer to perform some special action when return is typed.

(new text:return-mixin [return return])
— (is-a?/c text:return-mixin)
return : (-> boolean?)

236

(send a-text:return on-local-char event) — void?
event : (is-a?/c key-event,)

Overrides on-local-char in editor<%>.

If key is either return or newline, only invoke the return thunk (initialization
argument) and do nothing else.

text:wide-snip<’> : interface?
implements: text:basic<¥%>

(send a-text:wide-snip add-wide-snip snip) — void?
snip : (is-a?/c snip%)

Registers a snip in this editor to be resized when its viewing area changes. En-
sures the snip is as wide as the viewing area.

This method should only be called by add-wide-snip in canvas:wide-
snip<y%>.

(send a-text:wide-snip add-tall-snip snip) — void?
snip : (is-a?/c snip%)

Registers a snip in this editor. It is resized when the viewing area of the editor

changes.
This method should only be called by add-tall-snip in canvas:wide-
snip<y%>.

text:wide-snip-mixin : (class? . -> . class?)

argument extends/implements: text:basic<%>
result implements: text:wide-snip<>

text:delegate<)> : interface?
implements: text:basic<}>

Implementations of this interface copy all of the changes to this editor to the result of

get-delegate except instead of regular string and tab snips, instead instances of text:1-
pixel-string-snip} and text:1-pixel-tab-snip} are created.

237

The contents of the two editor are kept in sync, as modifications to this object happen.

This effect is similar to that achieved by text:inline-overview<%>, but this implemen-
tation has significant performance overheads that affect interactivity. Use text:inline-
overview<}> instead.

(send a-text:delegate get-delegate)
— (or/c #f (is-a?/c texti))

The result of this method is the text object that the contents of this editor are
being delegated to, or #£, if there is none.

(send a-text:delegate set-delegate delegate) — void?
delegate : (or/c #f (is-a?/c textl))

This method sets the current delegate.

When it is set, all of the snips are copied from this object to delegate. Addi-
tionally, if this object implements racket: text<}> the tab settings of dele-
gate are updated to match this objects.

text:1l-pixel-string-snip), : class?
superclass: string-snip’,

This class re-uses the implementation of string-snip% to implement a string snip that just
draws a single pixel for each character in the string.

See also text:1-pixel-tab-snip for a similar extension to the tab-snip} class.

This snip is used in conjunction with the frame:delegate<’> and text:delegate<y>
interfaces.

(send a-text:1-pixel-string-snip split position
first
second) — void?
position : exact-nonnegative-integer?
first : (box/c (is-a?/c sniph))
second : (box/c (is-a?/c sniph))

Overrides split in snip%.

Fills the boxes with instance of text:1-pixel-string-snip¥s.

(send a-text:1-pixel-string-snip copy) — (is-a?/c snip%)

238

Overrides copy in snip.

Creates and returns an instance of text:1-pixel-string-snip’.

(send a-text:1-pixel-string-snip get-extent dc

X
y
[w
h
descent
space
Ispace
rspace]) — void?

dc : (is-a?/c dc<¥%>)

> real?
: real?
(or/c (box/c (and/c real? (not/c negative?))) #f) = #f
(or/c (box/c (and/c real? (not/c negative?))) #f) = #f

descent : (or/c (box/c (and/c real? (not/c negative?))) #f)

= #f

space : (or/c (box/c (and/c real? (not/c negative?))) #f) = #f
lspace : (or/c (box/c (and/c real? (not/c negative?))) #f)

= #f

rspace : (or/c (box/c (and/c real? (not/c negative?))) #f)

= #f

Overrides get-extent in snip¥.

Sets the descent, space, Ispace, and rspace to zero. Sets the height to 1. Sets the
width to the number of characters in the string.

(send a-text:1-pixel-string-snip insert s

S

len
[pos]) — void?
. string?

len : exact-nonnegative-integer?
pos : exact-nonnegative-integer? = 0

Overrides insert in string-snip.

(send a-text:1-pixel-string-snip draw dc

X
y

left

top

right

bottom

dx

dy

draw-caret) — void?

239

dc : (is-a?/c dc<%>)

X . real?

y . real?

left : real?

top : real?

right : real?

bottom : real?

dx : real?

dy :@ real?

draw-caret : (or/c 'mo-caret 'show-inactive-caret 'show-caret)

Overrides draw in snip.

Draws black pixels for non-whitespace characters and draws nothing for whites-
pace characters.

text:1-pixel-tab-snip}, : class?
superclass: tab-snip’

This class re-uses the implementation of tab-snip? to implement a string snip that is always
one pixel high.

See also text:1-pixel-string-snipy% for a similar extension to the string-snip%
class.

This snip is used in conjunction with the frame:delegate<)> and text:delegate<y>
interfaces.

(send a-text:1-pixel-tab-snip split position
first
second) — void?
position : exact-nonnegative-integer?
first : (box/c (is-a?/c sniph))
second : (box/c (is-a?/c snip%))

Overrides split in snip.

Fills the boxes with instance of text:1-pixel-tab-snip¥s.

(send a-text:1-pixel-tab-snip copy) — (is-a?/c snip%)

Overrides copy in snip.

Creates and returns an instance of text:1-pixel-tab-snip.

240

(send a-text:1-pixel-tab-snip get-extent dc

x

y

[w

h

descent

space

Ispace

rspace]) — void?
dc : (is-a?/c dc<%>)
x @ real?
y . real?
w : (or/c (box/c (and/c real? (not/c negative?)) #f)) = #f
h : (or/c (box/c (and/c real? (not/c negative?)) #f)) = #f
descent : (or/c (box/c (and/c real? (not/c negative?)) #f))

= #f
space : (or/c (box/c (and/c real? (not/c negative?)) #f)) = #f
l1space : (or/c (box/c (and/c real? (not/c negative?)) #f))
= #£f
rspace : (or/c (box/c (and/c real? (not/c negative?)) #f))
= #£f

Overrides get-extent in snip¥.

Sets the descent, space, Ispace, and rspace to zero. Sets the height to 1. Sets
the width to the width of tabs as returned in the tab-width parameter of the
get-tabs method

(send a-text:1-pixel-tab-snip draw dc

X
¥
Jleft
top
right
bottom
dx
dy
draw-caret) — void?

dc : (is-a?/c dc<¥%>)

x : real?

y . real?

left : real?

top : real?

right : real?

bottom : real?

dx : real?

241

dy : real?

draw-caret : (or/c 'no-caret 'show-inactive-caret 'show-caret)

Overrides draw in snip.

Draws nothing.

text:delegate-mixin : (class? . -> . class?)
argument extends/implements: text:basic<}>
result implements: text:delegate<)>

This mixin provides an implementation of the text :delegate<y> interface.

This effect is similar to that achieved by text:inline-overview-mixin, but this

implementation has significant performance overheads that affect interactivity.

text:inline-overview-mixin instead.

(send a-text:delegate highlight-range start
end
color
[caret-space
priority

style]) — (-> void?)

start : exact-integer?

end : exact-nonnegative-integer?

color : (or/c string? (is-a?/c color%))

caret-space : boolean? = #f

priority : (or/c 'high 'low) = 'low

style : (or/c 'rectangle 'ellipse 'hollow-ellipse 'dot)
= 'rectangle

Overrides highlight-range in text:basic<}>.

In addition to calling the super method, highlight-range, this method for-

wards the highlighting to the delegatee.

(send a-text:delegate unhighlight-range start
end
color
[caret-space
style]) — void?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
color : (or/c string? (is-a?/c color’))
caret-space : boolean? = #f
style : (or/c 'rectangle 'ellipse 'hollow-ellipse)
= 'rectangle

242

Use

Overrides unhighlight-range in text:basic<%>.

This method propagates the call to the delegate and calls the super method.

(send a-text:delegate on-paint before?
dc
left
top
right
bottom
dx
dy
draw-caret) — void?
before? : any/c
dc : (is-a?/c dc<¥>)
left : real?
top : real?
right : real?
bottom : real?
dx : real?
dy : real?
draw-caret : (one-of/c 'no-caret 'show-inactive-caret 'show-caret)

Overrides on-paint in editor<%>
Draws a blue region in the delegatee editor that shows where the visible region
of the delegate editor is.

(send a-text:delegate on-edit-sequence) — void?

Augments on-edit-sequence in editor<y>.

starts an edit sequence in the delegate.

(send a-text:delegate after-edit-sequence) — void?

Augments after-edit-sequence in editor<y>.
ends an edit sequence in the delegate.
(send a-text:delegate resized snip
redraw-now?) — void?

snip : (is-a?/c snip%)
redraw-now? . boolean?

Overrides resized in editor<y>.

Sends a message to the delegate to update the size of the copied snip, if there is
one.

243

(send a-text:delegate after-insert start
len) — void?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-insert in text¥.
forwards the change to the delegate
(send a-text:delegate after-delete start
len) — void?

start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-delete in text¥.
forwards the change to the delegate.
(send a-text:delegate after-change-style start
len) — void?

start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-change-style in text.
forwards the changed style to the delegate.
(send a-text:delegate on-load-file filename
format) — void?

filename : string?
format . symbol?

Augments on-load-file in editor<y>.

remembers the filename, for use in after-load-file.

(send a-text:delegate after-load-file success?) — void?
success? : boolean?

Augments after-load-file in editor<%>.

updates the delegate with the new contents of the text.

text:info<%> : interface?
implements: text:basic<}>

Objects supporting this interface are expected to send information about themselves to the
frame that is displaying them.

244

text:info-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<%>
text:basic<)>
result implements: text:info<y>

This mixin adds support for supplying information to objects created with frame:info-
mixin. When this editor:basic<¥> is displayed in a frame, that frame must have been
created with frame:info-mixin.

(send a-text:info set-anchor on?) — void?
on? : any/c

Overrides set-anchor in text.

Calls the anchor-status-changed method of the frame that is viewing this
object. It uses get-canvas to get the canvas for this frame, and uses that can-
vas’s top-level-window<’> as the frame.

(send a-text:info set-overwrite-mode on?) — void?
on? : any/c

Overrides set-overwrite-mode in textb.

Calls the overwrite-status-changedmethod of the frame that is viewing
this object. It uses get-canvas to get the canvas for this frame, and uses that
canvas’s top-level-window<%> as the frame.

(send a-text:info after-set-position) — void?

Augments after-set-position in text.

Calls the editor-position-changed method of the frame that is viewing
this object. It uses get-canvas to get the canvas for this frame, and uses that
canvas’s top-level-window<%> as the frame.

(send a-text:info after-insert start len) — void?
start . exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-insert in text¥.

Calls the editor-position-changed method of the frame that is viewing
this object. It uses get-canvas to get the canvas for this frame, and uses that
canvas’s top-level-window<%> as the frame.

245

(send a-text:info after-delete start len) — void?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments after-delete in text¥.

Calls the editor-position-changed method of the frame that is viewing
this object. It uses get-canvas to get the canvas for this frame, and uses that
canvas’s top-level-window<%> as the frame.

text:clever-file-format<%> : interface?
implements: text

Objects supporting this interface are expected to support a clever file format when saving.

text:clever-file-format-mixin : (class? . -> . class?)
argument extends/implements: texty
result implements: text:clever-file-format<}>

The result of this mixin uses the same initialization arguments as the mixin’s argument.

When files are saved from this text’, a check is made to see if there are any non-string-
snip’ objects in the text%. If so, it is saved using the file format 'std. (see set-file-
format for more information. If not, the file format passed to save-file is used.

(send a-text:clever-file-format on-save-file filename
format) — void?
filename : path?
format : (or/c 'guess 'standard 'text
'text-force-cr 'same 'copy)

Augments on-save-file in editor<y>.

If the method get-file-format returns 'standard and the text has only
string-snip¥s, the file format is set to 'text.

If the method get-file-format returns 'text and the text has some non
string-snip¥s, the file format is set to 'standard.

Depending on the user’s preferences, the user may also be queried.

Also, the changes to the file format only happen if the argument file-format
is 'copy or 'same.

246

text:crlf-line-endings<)> : interface?
implements: text%

Objects supporting this interface use use-file-text-mode to change the line ending style
under windows. See after-load-file for more information.

text:crlf-line-endings-mixin : (class? . -> . class?)
argument extends/implements: text,
result implements: text:crlf-line-endings<%>

(send a-text:crlf-line-endings after-load-file success?)
— void?
success? : any/c

Overrides after-load-file in editor<%>.

Checks to see if the newly loaded file has any lines terminated with "\n" (i.e.,
not "\r\n") or if the file is empty. If so, and if the system-type returns
'windows, then this method calls use-file-text-mode, passing #f.

Otherwise, calls use-file-text-mode with #t.

text:file<%> : interface?
implements: editor:file<y>
text:basic<¥%>

Mixins that implement this interface lock themselves when the file they are editing is read
only.
(send a-text:file get-read-write?) — boolean?
Indicates whether or not this editor is in read-write mode.
(send a-text:file while-unlocked thunk) — any/c

thunk : (-> any/c)

Unlocks the editor, calls the thunk, and then relocks the editor, all using a
dynamic-wind.

247

text:file-mixin : (class? . -> . class?)
argument extends/implements: editor:file<y>
text:basic<y>
result implements: text:file<y>

(send a-text:file can-insert? start len) — boolean?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments can-insert? in text.
Returns false if the result of get-read-write? is true, otherwise returns the
result of calling inner.

(send a-text:file can-delete? start len) — boolean?
start : exact-nonnegative-integer?
len : exact-nonnegative-integer?

Augments can-delete? in textl.
Returns false if the result of get-read-write? is true, otherwise returns the
result of calling inner.

(send a-text:file after-save-file) — void?

Augments after-save-file in editor<%>.

Checks if the newly saved file is write-only in the filesystem. If so, locks the
editor with the 1ock method. Otherwise unlocks the buffer

For each canvas returned from get-canvases it checks to see if the canvas’,’s
get-top-level-window matches the frame:editor<y> interface. If so, it
calls set-1label with the last part of the filename (ie, the name of the file, not
the directory the file is in).

(send a-text:file after-load-file) — void?

Augments after-load-file in editor<%>.

Checks if the newly loaded file is write-only in the filesystem. If so, locks the
editor with the 1ock method. Otherwise unlocks the buffer

For each canvas returned from get-canvases it checks to see if the canvasy,’s
get-top-level-window matches the frame:editor<’> interface. If so, it
calls set-1label with the last part of the filename (ie, the name of the file, not
the directory the file is in).

248

text:ports<)> : interface?

Classes implementing this interface (via the associated mixin) support input and output ports
that read from and to the editor.

There are two input ports: the normal input port just reads from the editor’s contents directly
and the box input port inserts an editor snip into this text and uses input typed into the box
as input into the port.

There are three output ports, designed to match stdout, stderr, and a special port for printing
values. The only difference between them is the output is rendered in different colors when
it comes in via the different ports.

They create three threads to mediate access to the input and output ports (one for each input
port and one for all of the output ports).

(send a-text:ports delete/io start end) — void?
start : exact-integer?
end : exact-integer?

Deletes the text between start and end without changing the behavior of the
ports (otherwise, deleting the text would break internal invariants of the port).

Both start and end must be less than get-insertion-point (or else it is
safe to delete them via delete, so you don’t need this method).

(send a-text:ports insert/io str pos) — void?
str . string?
pos : exact-integer?

Inserts str at the position start without changing the behavior of the ports
(otherwise, inserting the text would break internal invariants of the port).

The pos argument must be less than get-insertion-point (or else it is safe
to insert the string via insert, so you don’t need this method).

Added in version 1.2 of package gui-1ib.

(send a-text:ports do-submission) — void?
Triggers a submission to the input port with what is currently pending in the
editor.

(send a-text:ports get-insertion-point) — exact-integer?

Returns the position where characters put into the output port will appear.

249

(send a-text:ports set-insertion-point ip) — void?
ip : exact-integer?

Sets the position where the output port will insert characters. See also get-
insertion-point.

(send a-text:ports get-unread-start-point) — exact-integer?

Returns the position where input will be taken into the input port (after the next
time return is typed).

(send a-text:ports set-unread-start-point usp) — void?
usp : exact-integer?

Sets the position where input will be taken into the input port (after the next
time return is typed).

See also get-unread-start-point.

(send a-text:ports set-allow-edits allow-edits?) — void?
allow-edits? : boolean?

Enables or disables editing in the buffer. Be sure to update the unread
start point (via set-unread-start-point) and the insertion point (via set-
insertion-point) after making changes to the buffer.

(send a-text:ports get-allow-edits) — boolean?

Indicates if editing is allowed in the buffer at this point.

(send a-text:ports insert-between str) — void?
str : (or/c (is-a?/c snip%) string?)

Inserts some text between the unread start point and the insertion point (and
updates them properly). To insert before the two points, see insert-before.

See also set-unread-start-point and set-insertion-point.
(send a-text:ports insert-before str) — void?

str : (or/c (is-a?/c snip%) string?)

Inserts some text before the unread start point and updates it and the insertion
point properly. To insert between the two points, see insert-between.

See also set-unread-start-point and set-insertion-point.

250

(send a-text:ports submit-to-port? key) — boolean?
key : (is-a?/c key-event,)

Augment this method to help control when characters should be submitted to
the input port.

Return #t or the result of calling inner.

(send a-text:ports on-submit) — void?

This method is called when text is sent into the input port.

Does nothing.

(send a-text:ports send-eof-to-in-port) — void?

This method puts an eof into the input port.

(send a-text:ports send-eof-to-box-in-port) — void?

This method puts an eof into the box input port.

(send a-text:ports reset-input-box) — void?
This method removes the current input box from the editor (and all input in it is
lost).

(send a-text:ports clear-output-ports) — void?
Flushes all of the data in all of the output ports that hasn’t appeared in the editor
yet.

(send a-text:ports clear-input-port) — void?

Flushes all of the data in the input port that hasn’t yet been read. Reading will
now block.

(send a-text:ports clear-box-input-port) — void?

Flushes all of the data in the box input port that hasn’t yet been read. Reading
will now block.

(send a-text:ports get-out-style-delta)
— (or/c (is-a?/c style-delta’) string?)

251

The result of this method is the style that is used to color text submitted to the
result of get-out-port.

If the result is a string that is not mapped in the editor’s style list, the style
named "Standard" is used and if that isn’t mapped, the style named "Basic"
is used.

This method is called during the initialization of the class.
By default, returns "text :ports out" which is mapped to a blue style in the
style list returned by editor:get-standard-style-1list.

(send a-text:ports get-err-style-delta)
— (or/c (is-a?/c style-delta),) string?)

The result of this method is the style that is used to color text submitted to the
result of get-err-port.

If the result is a string that is not mapped in the editor’s style list, the style
named "Standard" is used and if that isn’t mapped, the style named "Basic"
is used.

This method is called during the initialization of the class.
By default, returns "text:ports err" which is mapped to a red italic style in

the style list returned by editor:get-standard-style-1list.

(send a-text:ports get-value-style-delta)
— (or/c (is-a?/c style-delta%) string?)

The result of this method is the style (or the name of the style) that is used to
color text submitted to the result of get-value-port.

If the result is a string that is not mapped in the editor’s style list, the style
named "Standard" is used and if that isn’t mapped, the style named "Basic"
is used.

This method is called during the initialization of the class.

By default, returns "text:ports value" which is mapped to a blue style in
the style list returned by editor:get-standard-style-list.

(send a-text:ports get-in-port) — input-port?

Returns the input port that data in this editor is sent to.

(send a-text:ports get-in-box-port) — input-port?

Returns the box input port that data in this editor is sent to.

(send a-text:ports get-out-port) — output-port?

252

Returns an output port that writes into this editor. The only difference between
this port and the ports returned by get-err-port and get-value-port is the
font style and color.

(send a-text:ports get-err-port) — output-port?

Returns an output port that writes into this editor. The only difference between
this port and the ports returned by get-err-port and get-out-port is the
font style and color.

(send a-text:ports get-value-port) — output-port?

Returns an output port that writes into this editor. The only difference between
this port and the ports returned by get-err-port and get-out-port is the
font style and color.

(send a-text:ports after-io-insertion) — void?

This method is called after an insertion due to IO occurs.

(send a-text:ports get-box-input-editor-snip%)
— (subclass?/c editor-snip%)

The result of this method is used as the class of editor snips that is inserted by
the box port in this editor.

The default result is a subclass of editor-snipy that calls use-style-
background with #t during initialization.

(send a-text:ports get-box-input-textl)
— (is-a?/c text:input-box<%>)

The result of this method is instantiated and placed inside the result of get-
box-input-editor-snipk.

text:ports-mixin : (class? . -> . class?)
argument extends/implements: text:wide-snip<%>
result implements: text:ports<y>

The ports from this mixin accepts as special values (see port-writes-special?) markup
from the simple-tree-text-markup/data module, and renders them with graphical
boxes and clickable srcloc links.

253

(send a-text:ports can-insert? start len) — boolean?
start : exact-integer?
len : exact-integer?

Augments can-insert? in textl.
Returns the results of the inner call, unless get-allow-edits returns #f.
(send a-text:ports can-delete? start len) — boolean?

start : exact-integer?
len : exact-integer?

Augments can-delete? in textl.
Returns the results of the inner call, unless get-allow-edits returns #f.

(send a-text:ports on-local-char event) — void?
event : (is-a?/c key-event,)

Overrides on-local-char in editor<%>.

Sends the data between the last position and the result of get-unread-start-
point to the input port, unless submit-to-port? returns #f.

Also calls on-submit.

(send a-text:ports on-display-size) — void?

Augments on-display-size in editor<¥>.

Adjusts the embedded editor-snip (used for reading input to the get-in-box-
port) to match the width of the editor.

text:input-box<)> : interface?
implements: text%

Classes that implement this interface are used as the editors for the box input port in
text:portsi.

text:input-box-mixin : (class? . -> . class?)
argument extends/implements: text?
result implements: text:input-box<}>

This mixin provides an implementation of text:input-box<> for use with
text:ports<y>.

254

(send a-text:input-box on-default-char event) — void?
event : (is-a?/c key-event,)

Overrides on-default-char in textb.

Notifies the text:ports<¥%> enclosing this editor that a new line of input has
been provided.

(send a-text:input-box default-style-name) — string?

Overrides default-style-name in editor<y>.

Returns (editor:get-default-color-style-name).

text:autocomplete<),> : interface?
implements: text

The mixin implementing this interface provides an unintrusive autocompletion menu when
a particular (configurable) keystroke is pressed.

(send a-text:autocomplete auto-complete) — void?

Starts a completion.

(send a-text:autocomplete get-autocomplete-border-color)
— (or/c string? (is-a?/c color’))

The border color for the autocomplete menu. Defaults to "black".

(send a-text:autocomplete get-autocomplete-background-color)
— (or/c string? (is-a?/c color%))

The background color for the non-selected menu items. Defaults to "laven-
der".

(send a-text:autocomplete get-autocomplete-selected-color)
— (or/c string? (is-a?/c color))

The background color for the selected menu item. Defaults to (make-object
colory 204 153 255).

(send a-text:autocomplete completion-mode-key-event? key-

event)
— boolean?

key-event : (is-a?/c key-event)

255

Returns true when the key event passed to it should initiate the completions
menu.

(send a-text:autocomplete get-all-words) — (listof string?)

Returns the list of the words that autocompletion should choose from.

(send a-text:autocomplete get-word-at pos) — string?
pos : exact-positive-integer?

Given an editor location, returns the prefix ending at that location that autocom-
pletion should try to complete.

text:autocomplete-mixin : (class? . -> . class?)
argument extends/implements: text?
result implements: text:autocomplete<y>

(send a-text:autocomplete on-paint) — void?

Overrides on-paint in editor<%>.

Draws the completion menu (when it is popped up).

(send a-text:autocomplete on-char) — void?

Overrides on-char in editor<y%>.

Takes over the handling of key events when the completions menu is visible.
Also, when the completions menu is not visible, it calls the completion-mode-
key-event? method to see if it should start completing.

(send a-text:autocomplete on-event) — void?

Overrides on-event in editor<y>.

This method is overridden to allow mouse access of the completions menu. It
only handles events when there is a menu open and the mouse is in the menu,
in which case it makes the menu trace the mouse.

The only time it does not call the super method is when the mouse is button is
pushed.

text:overwrite-disable<’> : interface?

Classes implementing this interface disable overwrite mode when the overwrite mode key-
bindings are turned off.

256

text:overwrite-disable-mixin : (class? . -> . class?)
argument extends/implements: text?
result implements: text:set-overwrite-mode<y>

This mixin adds a callback for 'framework:overwrite-mode-keybindings via
preferences:add-callback that calls set-overwrite-mode with #f when the pref-
erence is set to #£.

text:basic) : class?
superclass: (text:basic-mixin (editor:basic-mixin text%))

text:line-spacing}, : class?
superclass: (text:line-spacing-mixin text:basic¥)

text:hide-caret/selection), : class?
superclass: (text:hide-caret/selection-mixin text:line-spacing)

text:nbsp->space’ : class?
superclass: (text:nbsp->space-mixin text:line-spacing})

text:normalize-paste), : class?
superclass: (text:normalize-paste-mixin text:line-spacing)

257

text:delegate) : class?
superclass: (text:delegate-mixin text:line-spacing)

text:wide-snip) : class?
superclass: (text:wide-snip-mixin text:line-spacing)

text:standard-style-list), : class?
superclass: (editor:standard-style-list-mixin text:wide-snip%)

text:input-box} : class?
superclass: (text:input-box-mixin text:standard-style-list,)

text:keymap), : class?
superclass: (text:overwrite-disable-mixin (editor:keymap-mixin text:standard-style-list%))

text:returny, : class?
superclass: (text:return-mixin text:keymapi)

text:autowrap’% : class?
superclass: (editor:autowrap-mixin text:keymap%)

text:file), : class?
superclass: (text:file-mixin (editor:file-mixin text:autowrap}))

258

text:clever-file-formaty : class?
superclass: (text:clever-file-format-mixin text:file,)

text:backup-autosavey, : class?
superclass: (editor:backup-autosave-mixin text:clever-file-format?,)

text:searching}, : class?
superclass: (text:searching-mixin text:backup-autosave},)

text:info% : class?
superclass: (text:info-mixin (editor:info-mixin text:searching))

text:line-numbers<%> : interface?

(send a-text:line-numbers show-line-numbers! show) — void?
show : boolean?

Enables or disables line number drawing.

(send a-text:line-numbers show-line-numbers?) — boolean?

Returns whether or not line drawing is enabled.

(send a-text:line-numbers set-line-numbers-

color color) — void?
color : string?

Sets the color of the line numbers.

259

text:line-numbers-mixin : (class? . -> . class?)
argument extends/implements: text,
editor:standard-style-list<)>
result implements: text:line-numbers<y>

(send a-text:line-numbers on-paint) — void?

Overrides on-paint in editor<%>.
Draws the line numbers.
(send a-text:line-numbers show-line-numbers! show) — void?

show : boolean?

Enables or disables line number drawing.

(send a-text:line-numbers show-line-numbers?) — boolean?
Returns whether or not line drawing is enabled.

(send a-text:line-numbers set-line-numbers-

color color) — void?
color : string?

Sets the color of the line numbers.

(text:range? arg) — boolean?
arg : any/c

Determines if arg is an instance of the range struct.

(text:range-start range) — exact-nonnegative-integer?
range : text:range?

Returns the start position of the range.

(text:range-end range) — exact-nonnegative-integer?
range . text:range?

Returns the end position of the range.

260

(text:range-caret-space? range) — boolean?
range : text:range?

Returns a boolean indicating where the caret-space in the range goes. See also highlight-
range.

(text:range-style range)
— (or/c 'rectangle 'hollow-ellipse 'ellipse 'dot)
range . text:range?

Returns the style of the range. See also highlight-range.

(text:range-color range) — (or/c string? (is-a?/c color’))
range : text:range?

Returns the color of the highlighted range.

(text:autocomplete-append-after) — string?
(text:autocomplete-append-after suffix) — void?
suffix : string?

A string that is inserted after a completion is inserted by a text :autocomplete instance.

Defaults to "".

(text:autocomplete-1limit) — (and/c integer? exact? positive?)
(text:autocomplete-limit count) — void?
count : (and/c integer? exact? positive?)

Controls the number of completions visible at a time in the menu produced by
text:autocomplete instances.

Defaults to 15.

(text:get-completions/manuals manuals) — (listof string?)
manuals : (or/c false/c (listof symbol?))

Returns the list of keywords for the manuals from manuals by extracting all of the docu-
mented exports of the manuals. The symbols are meant to be module paths, e.g., the quoted
form of the argument to require.

If manuals is false, then all of the documented names are used.

261

(text:lookup-port-name manuals)
— (or/c (is-a?/c editor:basic<),>) false/c)
manuals : symbol?

Returns the editor instance whose port-name matches the given symbol. If no editor can be
found, then returns false.

(text:make-snip-special snip) — text:snip-special?
snip : (is-a?/c snip%)

Returns a snip-special to be used as a special with the ports in text : ports<y>.

When a snip is sent as a special, if it has a snip-class from a different eventspace, it may
not work properly in the text object connected to the ports in a text:port<y%> object.
This function, when it is called, constructs the bytes corresponding to the result of using the
snip’s write method and saves them in its result. Then, when the result is used as a special,
the snip will rebuild from the bytes, but now using the snip-class, from the eventspace
where the text :ports<y> operates.

(text:snip-special? v) — boolean?
v : any/c

Recognizes the result of text:make-snip-special.

(text:send-snip-to-port snip port) — void?
snip : (is-a?/c snip%)
port : output-port?

Sends snip to port by using text :make-snip-special, handling a few special cases for
performance and backwards compatibility reasons.

262

32 Splash

(require framework/splash) package: [gui-1ib
This module helps support applications with splash screens like the one in DrRacket.

When this module is invoked, it sets the current-1load parameter to a procedure that counts
how many files are loaded (until shutdown-splash is called) and uses that number to con-
trol the gauge along the bottom of the splash screen.

(start-splash draw-spec

splash-title

width-default

[#:allow-funny? allow-funny?

#:frame-icon frame-icon]) — void?

draw-spec : (or/c path-string?

(is-a?/c bitmap%)
(vector/c (or/c (-> (is-a?/c dc<%>) void?)

(-> (is-a?/c dc<)>)
exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?
void?))

exact-nonnegative-integer?
exact-nonnegative-integer?))
splash-title : string?
width-default : exact-nonnegative-integer?
allow-funny? . boolean? = #f
frame-icon : (or/c #f
(is-a?/c bitmap%)
(cons/c (is-a?/c bitmap%)
(is-a?/c bitmap%)))

#f

Starts a new splash screen. The splash screen is created in its own, new eventspace. The
progress gauge at the bottom of the window advances as files are loaded (monitored via the
current-load parameter).

The draw-spec determines what the splash window contains. The splash-title is used
as the title of the window and the width-default determines how many progress steps
the gauge in the splash screen should contain if there is no preference saved for the splash
screen width. The splash library uses get-preference and put-preferences to store
preferences, using

(string->symbol (format "plt:~a-splash-max-width" splash-title))

263

https://pkgs.racket-lang.org/package/gui-lib

as the key for the preference. Each time the app starts up, the maximum width is reset based
on the number of files that were loaded that time.

If the draw-spec is a path-string?, then the path is expected to be a file that contains a
bitmap that is drawn as the contents of the splash screen. If it is a bitmap, then that bitmap is
used directly. If draw-spec is a vector, then the vector’s first element is a procedure that is
called to draw the splash screen and the other two integers are the size of the splash screen,
width followed by height. If the procedure accepts only one argument, then it is called with
a dc<%> object where the drawing should occur. If it accepts 5 arguments, it is called with
the dc<%>, as well as (in order) the current value of the gauge, the maximum value of the
gauge, and the width and the height of the area to draw.

The allow-funny? argument determines if a special gauge is used on Christmas day.

The frame-icon is used just like the value of the parameter frame : current-icon is used,
but for the splash screen.

(shutdown-splash) — void?

Stops the splash window’s gauge from advancing. Call this after all of the files have been
loaded.

(close-splash) — void?

Closes the splash window. Call shutdown-splash first. You can leave some time between
these two if there is more initialization work to be done where you do not want to count
loaded files.
(add-splash-icon bmp x y) — void?
bmp : (is-a?/c bitmap%)
X : real?
y @ real?

Adds an icon to the splash screen. (DrRacket uses this function to show the tools as they are
loaded.)
(get-splash-bitmap) — (or/c #f (is-a?/c bitmap%))

Returns the splash bitmap unless one has not been set.

(set-splash-bitmap bmp) — void?
bmp : (is-a?/c bitmap%)

Sets the splash bitmap to bmp and triggers a redrawing of the splash screen. Don’t use this
to set the initial bitmap, use start-splash instead.

264

(get-splash-canvas) — (is-a?/c canvasy)

Returns the canvas where the splash screen bitmap is drawn (if there is a bitmap); see start-
splash for how the splash is drawn.

(get-splash-eventspace) — eventspace?

Returns the splash screen’s eventspace.

(get-splash-paint-callback) — (-> (is-a?/c dc<%>)
exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?
void?)

Returns the callback that is invoked when redrawing the splash screen.

(set-splash-paint-callback cb) — void?
cb : (-> (is-a?/c dc<h>)
exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?
void?)

Sets the callback that is invoked when redrawing the splash screen. See start-splash for
what the arguments are.

(set-splash-progress-bar?! b) — void?
b : boolean?

Calling this procedure with #f removes the progress bar from the splash screen. Useful in
conjunction with setting your own paint callback for the splash screen that measures progress
in its own way, during drawing. DrRacket uses this on King Kamehameha and Prince Kuhio
day.

(set-splash-char-observer obs) — void?
obs : (-> (is-a?/c key-event’,) any)

265

Sets a procedure that is called whenever a user types a key with the splash screen as the
focus.

(set-splash-event-callback obj) — void?
obj : (-> (is-7/c mouse-event}) any)

Sets a procedure that is called whenever a mouse event happens in the splash canvas.

(get-splash-event-callback) — (-> (is-7/c mouse-event’%) any)

Returns the last procedure passed to set-splash-event-callback or void, if set-
splash-event-callback has not been called.

(set-refresh-splash-on-gauge-change?! proc) — void?
proc : (-> exact-nonnegative-integer?
exact-nonnegative-integer?
any)

Sets a procedure that is called each time the splash gauge changes. If the procedure returns
a true value (i.e., not #f), then the splash screen is redrawn. The procedure is called with the
current value of the gauge and the maximum value.

The default function is (Lambda (curr tot) #f).

(get-splash-width) — exact-nonnegative-integer?

Returns the width of the splash drawing area / bitmap. See start-splash for the details of
the size and how things are drawn.

(get-splash-height) — exact-nonnegative-integer?

Returns the width of the splash drawing area / bitmap. See start-splash for the details of
the size and how things are drawn.

(refresh-splash) — void?

Triggers a refresh of the splash, handling the details of double buffering and doing the draw-
ing on the splash’s eventspace’s main thread.

266

33 Test

(require framework/test) package: [gui-1ib

The framework provides several new primitive functions that simulate user actions, which
may be used to test applications. You use these primitives and combine them just as regular
Racket functions. For example,

(test:keystroke #\A)
(test:menu-select "File" "Save")

sends a keystroke event to the window with the keyboard focus and invokes the callback
function for the “Save” menu item from the “File” menu. This has the same effect as if the
user typed the key “A”, pulled down the “File” menu and selected “Save”.

It is possible to load this portion of the framework without loading the rest of the framework.
Use (require framework/test).

Currently, the test engine has primitives for pushing buttons, setting check-boxes and
choices, sending keystrokes, selecting menu items and clicking the mouse. Many functions
that are also useful in application testing, such as traversing a tree of panels, getting the text
from a canvas, determining if a window is shown, and so on, exist in GRacket.

33.1 Actions and completeness

The actions associated with a testing primitive may not have finished when the primitive
returns to its caller. Some actions may yield control before they can complete. For example,
selecting “Save As...” from the “File” menu opens a dialog box and will not complete until
the “OK” or “Cancel” button is pushed.

However, all testing functions wait at least a minimum interval before returning to give the
action a chance to finish. This interval controls the speed at which the test suite runs, and
gives some slack time for events to complete. The default interval is 100 milliseconds. The
interval can be queried or set with test:run-interval.

A primitive action will not return until the run-interval has expired and the action has
finished, raised an error, or yielded. The number of incomplete actions is given by
test :number-pending-actions.

Note: Once a primitive action is started, it is not possible to undo it or kill its remaining
effect. Thus, it is not possible to write a utility that flushes the incomplete actions and resets
number-pending-actions to zero.

However, actions which do not complete right away often provide a way to cancel them-
selves. For example, many dialog boxes have a “Cancel” button which will terminate the

267

https://pkgs.racket-lang.org/package/gui-lib

action with no further effect. But this is accomplished by sending an additional action (the
button push), not by undoing the original action.

33.2 Errors

Errors in the primitive actions (which necessarily run in the handler thread) are caught and
reraised in the calling thread.

However, the primitive actions can only guarantee that the action has started, and they may
return before the action has completed. As a consequence, an action may raise an error long
after the function that started it has returned. In this case, the error is saved and reraised at
the first opportunity (the next primitive action).

The test engine keeps a buffer for one error, saving only the first error. Any subsequent errors
are discarded. Reraising an error empties the buffer, allowing the next error to be saved.

The function test:reraise-error reraises any pending errors.

33.3 Technical Issues

33.3.1 Active Frame

The Self Test primitive actions all implicitly apply to the top-most (active) frame.

33.3.2 Thread Issues

The code started by the primitive actions must run in the handler thread of the eventspace
where the event takes place. As a result, the test suite that invokes the primitive actions must
not run in that handler thread (or else some actions will deadlock). See make-eventspace
for more info.

33.3.3 Window Manager (Unix only)

In order for the Self Tester to work correctly, the window manager must set the keyboard
focus to follow the active frame. This is the default behavior in Microsoft Windows and
MacOS, but not in X windows.

In X windows, you must explicitly tell your window manager to set the keyboard focus to
the top-most frame, regardless of the position of the actual mouse.

268

33.4 Test Functions

(test:button-push button) — void?
button : (or/c (and/c string?
label-of-enabled/shown-button-in-top-level-window?)
(and/c (is-a?/c buttoni,)
enabled-shown-button?
button-in-top-level-focusd-window?))

Simulates pushing button. If a string is supplied, the primitive searches for a button labelled
with that string in the active frame. Otherwise, it pushes the button argument.

(test:set-radio-box! radio-box state) — void?
radio-box : (or/c string? regexp? (is-a?/c radio-box%))
state : (or/c string? number?)

Sets the radio-box to the label matching state. If state is a string, this function finds
the choice with that label. If it is a regexp, this function finds the first choice whose label
matches the regexp. If it is a number, it uses the number as an index into the state. If the
number is out of range or if the label isn’t in the radio box, an exception is raised.

If radio-box is a string, this function searches for a radio-box} object with a label match-
ing that string, otherwise it uses radio-box itself.

(test:set-radio-box-item! entry) — void?
entry : (or/c string? regexp?)

Finds a radio-boxJ that has a label matching entry and sets the radio-box to entry.

(test:set-check-box! check-box state) — void?
check-box : (or/c string? (is-a?/c check-box%))
state : boolean?

Clears the check-boxY item if state is #f, and sets it otherwise.
If check-box is a string, this function searches for a check-box% with a label matching

that string, otherwise it uses check-box itself.

(test:set-choice! choice str) — void?
choice : (or/c string? (is-a?/c choicel))
str : (or/c string? (and/c number? exact? integer? positive?))

269

Selects choice’sitem str. If choice is a string, this function searches for a choice}, with
a label matching that string, otherwise it uses choice itself.

(test:set-list-box! choice str/index) — void?
choice : (or/c string? (is-a?/c list-box’))
str/index : (or/c string? exact-nonnegative-integer?)

Selects list-box’s item str. If 1ist-box is a string, this function searches for a 1ist-
box% with a label matching that string, otherwise it uses 1ist-box itself.

The str/index field is used to control which entry in the list box is chosen.

(test:keystroke key [modifier-list]) — void?
key : (or/c char? symbol?)
modifier-1list : (listof (or/c 'alt 'control 'meta 'shift
'noalt 'nocontrol 'mometa 'noshift))
= null

This function simulates a user pressing a key. The argument, key, is just like the argument
to the get-key-code method of the key-event} class.
Note: To send the “Enter” key, use #\return, not #\newline.

The 'shift or 'noshift modifier is implicitly set from key, but is overridden by the
argument list. The 'shift modifier is set for any capitol alpha-numeric letters and any of
the following characters:

#\7 #\: #\7 #\\ #\|

N > #\{ #\F #\[#\] #\(#\)
#\1 #\Q #\# #\$ #\/ #\~ #\& #*x #_ #\+

If conflicting modifiers are provided, the ones later in the list are used.

(test:menu-select menu items ...) — void?
menu : string?
items : (listof string?)

Selects the menu-item named by the items in the menu named menu.

Note: The string for the menu item does not include its keyboard equivalent. For example,
to select “New” from the “File” menu, use “New”, not “New Ctrl+N”’.

270

(test:mouse-click button x y [modifiers]) — void?
button : (or/c 'left 'middle 'right)
x : (and/c exact? integer?)
y : (and/c exact? integer?)
modifiers : (listof (or/c 'alt 'control 'meta 'shift 'noalt
'nocontrol 'nometa 'noshift))
= null

Simulates a mouse click at the coordinate (x,y) in the currently focused window, assuming
that it supports the on-event method. Use test :button-push to click on a button.

Under Mac OS, 'right corresponds to holding down the command modifier key while
clicking and 'middle cannot be generated.

Under Windows, 'middle can only be generated if the user has a three button mouse.

The modifiers later in the list modifiers take precedence over ones that appear earlier.

(test:run-interval msec) — void?
msec : number?
(test:run-interval) — number?

See also|§33.1 “Actions and completeness’| The first case in the case-lambda sets the run
interval to msec milliseconds and the second returns the current setting.

(test:current-get-eventspaces) — (-> (listof eventspace?))
(test:current-get-eventspaces func) — void?
func : (-> (listof eventspace?))

This parameter that specifies which evenspaces (see also §1.6 “Event Dispatching and
Eventspaces”) are considered when finding the frontmost frame. The first case sets the pa-
rameter to func. The procedure func will be invoked with no arguments to determine the
eventspaces to consider when finding the frontmost frame for simulated user events. The
second case returns the current value of the parameter. This will be a procedure which,
when invoked, returns a list of eventspaces.

(test:new-window window) — void?
window : (is-a?/c window<%>)

Moves the keyboard focus to a new window within the currently active frame. Unfortunately,
neither this function nor any other function in the test engine can cause the focus to move
from the top-most (active) frame.

271

(test:close-top-level-window tlw) — void?
tlw : (is-a?/c top-level-window<}>)

Use this function to simulate clicking on the close box of a frame. Closes t1w with this
expression:

(when (send tlw can-close?)
(send tlw on-close)
(send tlw show #f))

(test:top-level-focus-window-has? test) — boolean?
test : (-> (is-a?/c area<),>) boolean?)

Calls test for each child of the test:get-active-top-level-window and returns #t if
test ever does, otherwise returns #£. If there is no top-level-focus-window, returns #f£.

(test:number-pending-actions) — number?

Returns the number of pending events (those that haven’t completed yet)

(test:reraise-error) — void?

See also

(test:run-one f) — void?
f : (-> void?)

Runs the function £ as if it was a simulated event.

(test:use-focus-table) — (or/c boolean? 'debug)
(test:use-focus-table use-focus-table?) — void?
use-focus-table? : (or/c boolean? 'debug)

If #t, then the test framework uses frame : Lookup-focus-table to determine which is the
focused frame. If #f, then it uses get-top-level-focus-window. If test:use-focus-
table’s value is 'debug, then it still uses frame:lookup-focus-table but it also prints
a message to the current-error-port when the two methods would give different results.

272

(test:get-active-top-level-window)
— (or/c (is-a?/c frame%) (is-a?/c dialogl) #f)

Returns the frontmost frame, based on test:use-focus-table.

(label-of-enabled/shown-button-in-top-level-window? label)
— boolean?
label : string?

Returns #t when label is the label of an enabled and shown button?’ instance that is in
the top-level window that currently has the focus, using test:top-level-focus-window-
has?.

(enabled-shown-button? button) — boolean?
button : (is-a?/c button})

Returns #t when button is both enabled and shown.

(button-in-top-level-focusd-window? button) — boolean?
button : (is-a?/c buttonj,)

Returns #t when button is in the top-level focused window.

273

34 Version

(version:add-spec spec revision) — void?
spec : any/c
revision : any/c

The two values are appended to the version string. write is used to transform them to
strings. For example:

(version:add-spec 's 1)

in version 205 will make the version string be 205s1. The symbols 'f and 'd were used
internally for framework and drscheme revisions in the past.

(version:version) — string?

This function returns a string describing the version of this application. See also
version:add-spec.

274

35 Backwards Compatibility

scheme:text<%>

An alias for racket : text<y>.

scheme:text-mixin

An alias for racket:text-mixin.

scheme:text

An alias for racket : text%.

scheme:text-mode<%>

An alias for racket : text-mode<’>.

scheme:text-mode-mixin

An alias for racket:text-mode-mixin.

scheme:text-modeY,

An alias for racket : text-mode},.

scheme:set-mode-mixin

An alias for racket : set-mode-mixin.

scheme: sexp-snip’

An alias for racket : sexp-snip.

scheme: sexp-snip<%>

An alias for racket : sexp-snip<%>.

275

scheme:get-wordbreak-map

An alias for racket : get-wordbreak-map.

scheme:init-wordbreak-map

An alias for racket:init-wordbreak-map.

scheme:get-keymap

An alias for racket : get-keymap.

scheme: setup-keymap

An alias for racket : setup-keymap.

scheme:add-preferences-panel

An alias for racket :add-preferences-panel.

scheme:add-coloring-preferences-panel

An alias for racket:add-coloring-preferences-panel.

scheme:get-color-prefs-table

An alias for racket:get-color-prefs-table.

scheme:get-white-on-black-color-prefs-table

An alias for racket :get-white-on-black-color-prefs-table.

scheme:short-sym->pref-name

An alias for racket : short-sym->pref-name.

276

scheme:short-sym->style-name

An alias for racket : short-sym->style-name.

scheme:text-balanced?

An alias for racket:text-balanced?.

277

36 Signatures

(require framework/framework-sig) package: [gui-1ib

framework~ : signature

Contains all of the names of the procedures in this manual, except those that
begin with test: or gui-utils:.

framework-class™ : signature

Contains all of the classes defined in this manual.

278

https://pkgs.racket-lang.org/package/gui-lib

37 Unit

(require framework/framework-unit) package: [gui-11ib

framework@ : unit?

Exports the signature framework™ and imports the mred~ signature.

279

https://pkgs.racket-lang.org/package/gui-lib

Index

‘framework:backup-files?, 7]

'framework:basic-canvas-background, 6]

Actions and completeness, [267]

activate-link (method of
srcloc-snip:sniph), m

Active Frame, 268]

active-child (method of panel:single<>),
77

add-line-number-menu-items (method of
frame:text-info<¥%>), @

add-splash-icon,[264]

add-tall-snip (method of
text:wide-snip<’>), m

add-tall-snip (method of
canvas:wide-snip<¥%>), @

add-wide-snip (method of
canvas:wide-snip<¥%>), @

add-wide-snip (method of

text:wide-snip<’>), @I

adjust-size-when-monitor-setup-
changes? (method of frame:size-pref<i>),
63]

after-change-style (method of
mode: surrogate-text¥), @
after-change-style (method of
mode:host-text-mixin), m
after-change-style (method of
text:delegate-mixin), @
after-change-style (method of

color:text-mixin), @

after-delete (method of text:info-mixin),
246)

after-delete (method of
mode: surrogate-texty), @

after-delete (method of
text:delegate-mixin), @

after-delete (method of
text:all-string-snips-mixin), @

after-delete (method of color:text-mixin),
130

after-delete (method of
text:searching-mixin), @

after-delete (method of
mode:host-text-mixin), m

after-edit-sequence
mode:host-text-mixin),

after-edit-sequence
text:delegate-mixin), @

(method of

(method of

after-edit-sequence (method of
color:text-mixin), @
after-edit-sequence (method of

mode: surrogate-texti), @
after-edit-sequence
editor:basic-mixin), @
after-insert (method of
text :nbsp->space-mixin), @

(method of

after-insert (method of
text:normalize-paste-mixin), @
after-insert (method of

mode:host-text-mixin), m
after-insert (method of

text:searching-mixin), m
after-insert (method of

mode: surrogate-texti), I@I
after-insert (method of text:basic-mixin),

223

after-insert (method of text:info-mixin),
245

after-insert (method of
text:delegate-mixin), @

after-insert (method of color:text-mixin),
29|

after-io-insertion (method of
text:ports<y>), @

after-load-file (method of
editor:autoload-mixin), @

after-load-file (method of
text:file-mixin), @

after-load-file (method of

text:crlf-line-endings-mixin), m
after-load-file (method of
text:delegate-mixin), IEI
after-load-file (method of
mode:host-text-mixin), m
after-load-file (method of
mode: surrogate-texty), @

280

after-load-file (method
editor:basic-mixin), @

after-new-child (method
frame:basic-mixin), I@

after-new-child (method

panel:dragable-mixin),
after-new-child (method
panel:single-mixin), m

after-percentage-change
panel:dragable<%>),m
after-save-file (method
editor:autoload-mixin), @
after-save-file (method
text:file-mixin),
after-save-file (method
mode:host-text-mixin), m
after-save-file (method
mode: surrogate-text%), @
after-save-file (method

editor:basic-mixin), @
after-set-port-unsaved-name

of text:basic<y>), @
after-set-position

mode:host-text-mixin), m
after-set-position

mode: surrogate-texti),
after-set-position

(method

(method

(method

text:hide-caret/selection-mixin), m

after-set-position (method
color:text—mixin),@
after-set-position (method

text:info-mixin),

after-set-size-constraint (method

mode:host-text-mixin), m

after-set-size-constraint (method

mode: surrogate-text¥),
all-string-snips? (method
text:all-string-snips<y%>), @

allow-close-with-no-filename?

(method of editor:file<%>), @
anchor-status-changed

frame:text-info<%>), m
Application, 3]

application:current-app-name, El

(method

(method

of

of

of

of

of

of

of

of

of

(method

of

of

of

of

ask-normalize? (method of
text:normalize-paste<y>), @

auto-complete (method of
text:autocomplete<y>), @

Autosave,

autosave:autosavable<%>,[]

autosave:current-toc-path, El

autosave:register, F_fl

autosave:restore-autosave-
files/gui,H]

autosave:toc-path,[]

autosave? (method of
editor:backup-autosave<y>), m

background color, [6]

backup? (method of
editor:backup-autosave<y}>), m

backward-containing-sexp
color:text<%>), @

backward-kill-word, [T47]

backward-match (method of color:text<%>),
260

backward-sexp (method of racket:text<%>),
208]

Backwards Compatibility, 275

balance-parens (method of racket : text<%>),

box-comment-out-selection (method of
racket:text<y%>), @

button-in-top-level-focusd-

window?,[273]

(method of

can-change-style? (method of
mode:host-text-mixin), @
can-change-style? (method of

mode: surrogate-texti), @
can-close-all? (method of group:%),[127]
can-close? (method of frame:editor-mixin),

1881
can-close? (method of editor:file-mixin),
can-close? (method of

frame:register-group-mixin), @
can-close? (method of editor:basic<%>),
can-delete? (method of text:file-mixin),

281

can-delete? (method of text:ports-mixin),
234

can-delete? (method of
mode : surrogate-text), @

can-delete? (method of
mode:host-text-mixin), @

can-do-edit-operation? (method ~ of
mode:host-text-mixin), @
can-do-edit-operation? (method of

mode: surrogate-text¥), @

can-exit? (method of frame:basic-mixin), @

can-insert? (method of text:ports-mixin),
k54

can-insert? (method of
mode: surrogate-texty), @

can-insert? (method of
mode:host-text-mixin), m

can-insert? (method of text:file-mixin),

can-load-file? (method of
mode:host-text-mixin), m

can-load-file? (method of
mode : surrogate-text), @

can-save-file? (method of
mode: surrogate-texty), @

can-save-file? (method of
mode:host-text-mixin), @

can-save-file? (method of
editor:basic-mixin), @

can-set-size-constraint? (method of
mode:host-text-mixin), @
can-set-size-constraint? (method of

mode: surrogate-text¥), @
Canvas, [6]
canvas:basic%,|§]
Canvas:basic—mixinw@
:basic<%>,[d
:color%,[8]
:color-mixin,[f]
:color<%>,[6]
:delegatel,[9]
:delegate-mixin,[f]

canvas
canvas
canvas
canvas
canvas
canvas

canvas:delegate<}>,[6
:info%,[0]
:info-mixin,[7]
:info<%>,[7]
:wide-snip¥,[9]
:wide-snip-mixin,[§
canvas:wide-snip<%>,
capitalize-word, [T47]
center-view-on-line, [T46]
chain-to-keymap (method of
keymap:aug-keymap-mixin), m

canvas
canvas
canvas
canvas
canvas

classify-position (method of
color:text<%>),@
classify-positionx* (method of

color:text<°/.>),@
clear (method of group:%), m
clear-box-input-port
text :ports<%>),m

(method of

clear-input-port (method of
text:ports<y>), |21'1'|
clear-output-ports (method of

text:ports<y>), @
close (method of frame:basic<%>),
close (method of editor:basic<}>),
close-splash,[264]
close-status-1line
frame:status-line<%>),
collapse (method of panel:splitter-mixin),
g3
collapse-newline, [T46]
collapse-space, [146]
Color,[20]
Color Model,
Color Prefs, [12]
:hsl->rgb, [I]]
:rgb->hs1, [I]]
:rgb—>xyz,Eq
:rgb—color—distance,Eﬂ
:xyz—>rgb,Eq
:xyz—x,Eﬂ
:xyz—y,E]
:xyz—z,Eﬂ
:xyz?,Eg

(method of

color-model
color-model
color-model
color-model
color-model
color-model
color-model
color-model
color-model

282

color-prefs:add-background- color:get-parenthesis-colors-

preferences-panel,[I]] table,[3]]
color-prefs:add-color-scheme- color:misspelled-text-color-
entry, [15] style-name,[3]]
color-prefs:add-color-scheme- color:text%,[30]
preferences—panel,lzl color:text-mixin,[29
color-prefs:add-to-preferences- color:text-mode%,[31]
panel,IEI color: text—mode—mixin,@
color-prefs:black-on-white, |E| color:text-mode<¥>,
color-prefs:build-color- color:text<%>,[20]
selection-panel,[T3| Comment Box, 57
color-prefs:color-scheme-color- comment-box: snip%,
name?, [I§] comment-box:snipclass,[33]
color-prefs:color-scheme-style- comment-out-selection (method of
na'me?’m racket :text<%>),@
color-prefs:get-color-scheme- commented-out/line? (method of
names,@ racket:text<%>),m
color-prefs:get-current-color- commented-out/region? (method of
SCheme_name’Iﬂl racket:text<‘7,>),
color-prefs:get-inverted-base- completion-mode-key-event? (method of
color-scheme, m text:autocomplete<%>),
color-prefs:known-color-scheme- compute-amount-to-indent (method of
name?’ racket:text<%>),@
color-prefs:lookup-in-color- compute-racket-amount-to-indent
SCheme,@ (method of racket:text<%>),|m
color-prefs:marshall-style-delta, container-size (method of
he! panel:dragable—mixin),@

color-prefs:normalize-color-
selection-button-widths,[T4]

color-prefs:register-color- container-size (method of
preference’ panel:single-mixin),m

C010r_prefs : regiSter_COJ‘or_ Ccopy (method of text:1-pixel-tab-snip%),
scheme-entry-change-callback, . . y

S Copy (method of text:1-pixel-string-snip%),

18] . . ORI

CO]'Or_prefs : reglster—lnfo—based— copy (method of editor-snip:decoratedi), @

color-schemes, o
@ copy (method of racket : sexp-snip%),
color-prefs:set-current-color- . .

copy-click-region, [T47]

container-size (method of
panel:single-window-mixin), m

scheme, [T7]
copy-clipboard,
color-prefs:set-default/color- Py-clip IEI
scheme copy-to (method of text:basic<%>), 22]]

cut-click-region, [T47]

color-prefs:unmarshall-style- Cut—Chpboard,.@l)
delta,[[4] Decorated Editor Snip,[34]

i -
color-prefs:white-on-black,[T4] decorated-editor-snip%,[34]

color-prefs:set-in-color-scheme,|[I§]

283

decorated-editor-snip-mixin,[34]
decorated-editor-snip<%>,[34]
decorated-editor-snipclass¥,[34]

default-style-name (method of
text:input-box-mixin), @
default-style-name (method of

text:foreground-color-mixin), @
delegate-moved (method of
frame:delegate<y>), m
delegated-text-shown?
frame:delegate<’,>), m
delete/io (method of text:ports<y>),249]
determine-width (method of frame:info<%>),
do-autosave (method of
autosave:autosavable<’>),
do-autosave (method of
editor:backup-autosave<y>), @
do-macro, [T47]
do-paste (method of
text:normalize-paste-mixin), @

(method of

do-submission (method of text:ports<¥%>),
249

down-sexp (method of racket : text<%>), 20§

downcase-word, [T47]

draw (method of text:1-pixel-tab-snip%), m

draw (method of text:1-pixel-string-snip%),

draw (method of racket : sexp-snip%), @

edit-menu:after-preferences (method
of frame: standard-menus<%>), m

edit-menu:between-clear-
and-select-all (method of

frame:standard-menus<%>), @
edit-menu:between-copy-and-paste
(method of frame: standard-menus<%>),
edit-menu:between-cut-and-copy
(method of frame: standard-menus<%>), @
edit-menu:between-find-
and-preferences (method of
frame:standard-menus<%>), m
edit-menu:between-paste-and-clear
(method of frame: standard-menus<%>), @

edit-menu:between-redo-and-cut
(method of frame: standard-menus<%>), M

edit-menu:between-select-all-and-
find (method of frame:standard-menus<¥%>),

edit-menu:between-select-all-and-
find (method of frame:editor-mixin),
13l

edit-menu:clear-callback
frame:standard-menus<%>), @

(method of

edit-menu:clear-help-string
of frame: standard-menus<y>), Iﬂ

(method

edit-menu:clear-on-demand (method of
frame:standard-menus<%>), @

edit-menu:clear-string (method of
frame:standard-menus<%>), @
edit-menu:copy-callback (method of

frame:standard-menus<%>), @
edit-menu:copy-help-string (method of

frame:standard-menus<%>),
edit-menu:copy-on-demand

frame: standard-menus<%>), @

(method of

edit-menu:copy-string
frame: standard-menus<%>),

edit-menu:create-clear?
frame:standard-menus<%>), @

edit-menu:create-copy?
frame:standard-menus<%>), @

(method of
(method of
(method of
edit-menu:create-cut?

frame: standard-menus<%>),
edit-menu:create-find-

(method of

case-sensitive? (method of
frame:searchable-mixin), m
edit-menu:create-find-
case-sensitive? (method of
frame: standard-menus<%>), m
edit-menu:create-find-
from-selection? (method of
frame:standard-menus<%>), @

edit-menu:create-find-next? (method
of frame: standard-menus<%>), m
edit-menu:create-find-next? (method

of frame:searchable-mixin), m
edit-menu:create-find-previous?

284

(method of frame:searchable-mixin), m
edit-menu:create-find-previous?
(method of frame: standard-menus<%>), @

edit-menu:create-find? (method of
frame: standard-menus<%>), IE

edit-menu:create-find? (method of
frame:searchable-mixin), m

edit-menu:create-paste? (method of

frame:standard-menus<%>),
edit-menu:create-preferences?

(method of frame: standard-menus<%>), @
edit-menu:create-redo?

frame:standard-menus<%>), @

(method of

edit-menu:create-replace-all?
(method of frame: standard-menus<%>), @
edit-menu:create-replace-all?
(method of frame:searchable-mixin), m
edit-menu:create-replace? (method of
frame:standard-menus<%>), m
edit-menu:create-select-all? (method
of frame: standard-menus<%>), @
edit-menu:create-show/hide-
replace? (method of
frame:standard-menus<%>), m

edit-menu:create-undo? (method of
frame: standard-menus<%>), @
edit-menu:cut-callback (method of

frame:standard-menus<%>),
edit-menu:cut-help-string (method of
frame: standard-menus<%>),

edit-menu:cut-on-demand (method of
frame: standard-menus<%>), @
edit-menu:cut-string (method of
frame: standard-menus<%>),
edit-menu:find-callback (method of
frame:searchable-mixin), m
edit-menu:find-callback (method of
frame:standard-menus<%>), @
edit-menu:find-case-
sensitive-callback (method of

frame:standard-menus<%>), m
edit-menu:find-case-

sensitive-callback

frame:searchable-mixin), m

(method of

edit-menu:find-case-sensitive-
help-string (method of
frame: standard-menus<%>), @
edit-menu:find-case-sensitive-on-
demand (method of frame: searchable-mixin),
1120
edit-menu:find-case-
sensitive-on-demand (method of
frame:standard-menus<%>), m
edit-menu:find-case-
sensitive-string (method of
frame: standard-menus<%>), @
edit-menu:find-from-
selection-callback
frame:standard-menus<%>), @
edit-menu:find-from-selection-
help-string (method of
frame: standard-menus<%>),
edit-menu:find-from-

(method of

selection-on-demand
frame:standard-menus<%>), @
edit-menu:find-from-
selection-string (method of
frame:standard-menus<%>), m

(method of

edit-menu:find-help-string (method of
frame: standard-menus<%>), I%I
edit-menu:find-next-callback (method
of frame: standard-menus<%>), m
edit-menu:find-next-callback (method
of frame: searchable-mixin), m
edit-menu:find-next-help-string
(method of frame: standard-menus<%>), @
edit-menu:find-next-on-demand
(method of frame: standard-menus<¥%>), @
edit-menu:find-next-string (method of
frame: standard-menus<%>), @
edit-menu:find-on-demand
frame:standard-menus<%>), @
edit-menu:find-previous-callback
(method of frame: standard-menus<%>), @
edit-menu:find-previous-callback
(method of frame: searchable-mixin), m
edit-menu:find-previous-
help-string (method of

(method of

285

frame:standard-menus<%>), m
edit-menu:find-previous-on-demand
(method of frame: standard-menus<y>), @
edit-menu:find-previous-string

(method of frame: standard-menus<%>), I@I
edit-menu:find-string (method of
frame: standard-menus<%>), @

edit-menu:get-clear-item (method of
frame:standard-menus<%>), @
edit-menu:get-copy-item (method of
frame:standard-menus<%>), @
edit-menu:get-cut-item (method of
frame: standard-menus<%>),
edit-menu:get-find-case-
sensitive-item (method of
frame:standard-menus<%>), m
edit-menu:get-find-from-
selection-item (method of
frame:standard-menus<%>), @
edit-menu:get-find-item (method of

frame: standard-menus<%>), @
edit-menu:get-find-next-item (method
of frame: standard-menus<%>), m
edit-menu:get-find-previous-item
(method of frame : standard-menus<%>), @
edit-menu:get-paste-item (method of
frame:standard-menus<%>),
edit-menu:get-preferences-item
(method of frame: standard-menus<%>), m
edit-menu:get-redo-item (method of
frame: standard-menus<%>), @
edit-menu:get-replace-all-item
(method of frame : standard-menus<%>), @
edit-menu:get-replace-item (method of
frame:standard-menus<%>), m
edit-menu:get-select-all-item
(method of frame: standard-menus<%>), @
edit-menu:get-show/hide-replace-
item (method of frame:standard-menus<%>),

edit-menu:get-undo-item (method of
frame: standard-menus<%>), @
edit-menu:paste-callback (method of

frame:standard-menus<%>), m

edit-menu:paste-help-string (method
of frame: standard-menus</,>), @
edit-menu:paste-on-demand (method of
frame: standard-menus<%>), Izrl
edit-menu:paste-string (method of
frame: standard-menus<%>), m
edit-menu:preferences-callback
(method of frame: standard-menus<%>), m
edit-menu:preferences-help-string
(method of frame: standard-menus<%>), m
edit-menu:preferences-on-demand
(method of frame: standard-menus<¥%>), m
edit-menu:preferences-string (method
of frame: standard-menus<%>), m
edit-menu:redo-callback (method of
frame:standard-menus<%>), @
edit-menu:redo-help-string (method of

frame:standard-menus<%>), M

edit-menu:redo-on-demand (method of
frame: standard-menus<%>), @
edit-menu:redo-string (method of

frame: standard-menus<%>),
edit-menu:replace-all-callback
(method of frame: standard-menus<%>), m
edit-menu:replace-all-callback
(method of frame:searchable-mixin), @
edit-menu:replace-all-help-string
(method of frame: standard-menus<%>), m
edit-menu:replace-all-on-demand
(method of frame:searchable-mixin), m
edit-menu:replace-all-on-demand
(method of frame: standard-menus<%>), @
edit-menu:replace-all-string (method
of frame: standard-menus<%>), m
edit-menu:replace-callback (method of
frame: standard-menus<%>), m
edit-menu:replace-help-string
(method of frame: standard-menus<%>), m

edit-menu:replace-on-demand (method
of frame: standard-menus<%>), Im
edit-menu:replace-string (method of

frame:standard-menus<%>), m
edit-menu:select-all-callback
(method of frame: standard-menus<%>), @

286

edit-menu:select-all-help-string
(method of frame : standard-menus<%>),
edit-menu:select-all-on-demand
(method of frame: standard-menus<%>),
edit-menu:select-all-string
of frame: standard-menus<%>),
edit-menu:show/hide-
replace-callback (method
frame:standard-menus<%>),
edit-menu:show/hide-replace-
help-string (method
frame: standard-menus<%>),
edit-menu:show/hide-
replace-on-demand (method
frame:standard-menus<%>),
edit-menu:show/hide-
replace-string (method
frame:standard-menus<%>),
edit-menu:undo-callback

frame:standard-menus<%>), @

(method

edit-menu:undo-help-string (method
frame:standard-menus<%>),
edit-menu:undo-on-demand
frame:standard-menus<%>), @
edit-menu:undo-string
frame:standard-menus<%>),
(method

(method
(method

editing-this-file?
frame:editor-mixin), m

editing-this-file?
frame:basic<%>), @

Editor, 38|

Editor Snip, 33

editor-position-changed
frame:text-info<¥%>), @

editor-snip:decorated’,[36

editor—snip:decorated—mixin,Eﬂ

editor-snip:decorated-snipclass,
37

editor-snip:decorated<%>,E§

editor:

(method

(method

add-after-user-keymap,EE
autoload-mixin, 48]
autoload<y>, |8
autowrap-mixin, 43|
autowrap<%>,[#4]

editor:
editor:
editor:
editor:

(method

of

of

of

editor:backup—autosave—mixin,E]
backup-autosave<y,>, 6]
basic-mixin, @]
basic<%>,[38|
:doing-autosave?,[5]]
file-mixin, 46
file<%>, A3
font-size-message,[50
editor:font-size-pref->current-
font-size,
editor:get-change-font-size-when-
monitors—change?,EE

editor:
editor:
editor:
editor
editor:
editor:
editor:

editor:get-current-preferred-
font-size,

editor:get-default-color-style-
name, 3]

editor:get-standard-style-list,Eﬂ

info-mixin, 50|

info<¥%>,

keymap-mixin, 44

keymap<%>, [#4]

set-change-font-size-when-

monitors—change?,Eﬂ

editor:
editor:
editor:
editor:
editor:

editor:set-current-preferred-
font-size,5]]
editor:set-default-font-color,[33]
editor:set-standard-style-list-
delta,3|
editor:set-standard-style-list-
pref-callbacks,Eﬁ
editor:silent-cancel-on-save-
file-out-of-date?,[3]]
editor:standard-style-list-mixin,
ZK]
editor:standard-style-list<%>,
enabled-shown-button?,[273
end-macro, [T47]
erase-underscores (method
menu:can-restore-underscore<}>),

Errors, 268

Exit, 53]
exit:can-exit?,[3)
exit:exit,[d)]

of

287

exit:exiting?,[53
exit:insert-can?-callback,[3)]
exit:insert-on-callback,[5)
exit:on-exit,[))
exit:set-exiting,[5)
exit:user-oks-exit,[36|
exn:make-unknown-preference, @
exn:struct:unknown-preference, @
exn:unknown-preference?, @

file-menu:after-quit (method of

frame: standard-menus<%>), @
file-menu:between-close-and-quit
(method of frame : standard-menus<%>), @
file-menu:between-new-and-open
(method of frame: standard-menus<%>), @
file-menu:between-open-and-revert
(method of frame : standard-menus<%>), m
file-menu:between-print-and-close
(method of frame: standard-menus<%>), I@
file-menu:between-revert-and-save
(method of frame: standard-menus<%>), m
file-menu:between-save-as-and-

print (method of frame:standard-menus<%>),

BT

file-menu:between-save-as-and-

print (method of frame:editor-mixin),

13

file-menu:close-callback (method of

frame:standard-menus<%>),

file-menu:close-help-string (method

of frame: standard-menus<%>), m

file-menu:close-on-demand (method of

frame:standard-menus<%>), @

file-menu:close-string (method of

frame:standard-menus<%>), @
file-menu:create-close? (method
frame:standard-menus<%>),
file-menu:create-new? (method
frame: standard-menus<%>), @
file-menu:create-open-recent?
(method of frame: standard-menus<%>), m

file-menu:create-open? (method of

frame:standard-menus<%>), @

file-menu:create-print? (method
frame:editor-mixin), m
file-menu:create-print? (method
frame: standard-menus<%>), IE
file-menu:create-quit? (method
frame: standard-menus<%>), @
file-menu:create-revert? (method
frame:editor-mixin), m
file-menu:create-revert? (method
frame:standard-menus<%>), m
file-menu:create-save-as? (method
frame: standard-menus<%>),
file-menu:create-save-as? (method
frame:editor-mixin), @
file-menu:create-save? (method
frame:standard-menus<%>), @
file-menu:create-save? (method
frame:editor-mixin), m
file-menu:get-close-item (method
frame:standard-menus<%>), @
file-menu:get-new-item (method
frame: standard-menus<%>),
file-menu:get-open-item (method
frame: standard-menus<%>), @
file-menu:get-open-recent-item
(method of frame : standard-menus<%>), m
file-menu:get-print-item (method
frame:standard-menus<%>), @
file-menu:get-quit-item (method
frame: standard-menus<%>), @
file-menu:get-revert-item (method
frame: standard-menus<%>), |7_7|
file-menu:get-save-as-item (method
frame:standard-menus<%>), m

file-menu:get-save-item (method

of frame:standard-menus<%>), @

file-menu:new-callback (method

of frame:standard-menus<%>), @

file-menu:new-help-string (method
frame:standard-menus<%>),

file-menu:new-on-demand (method
frame: standard-menus<%>), m

file-menu:new-string (method
frame: standard-menus<%>), @

288

of

of

of

of

of

of

of

of

of

file-menu:open-callback (method of
frame: standard-menus<%>), [79]
file-menu:open-callback (method of

frame:editor-mixin), Iml
file-menu:open-help-string (method of
frame:standard-menus<%>), m
file-menu:open-on-demand
frame: standard-menus<%>), @
file-menu:open-recent-callback
(method of frame: standard-menus<%>), m
file-menu:open-recent-help-string
(method of frame: standard-menus<%>), m
file-menu:open-recent-on-demand
(method of frame: standard-menus<%>), m

(method of

file-menu:open-recent-string (method
of frame: standard-menus<%>), m
file-menu:open-string (method of

frame:standard-menus<%>), m

file-menu:print-callback (method of
frame:standard-menus<%>), [§1]
file-menu:print-callback (method of

frame:editor-mixin), m
file-menu:print-help-string
of frame: standard-menus<%>),
file-menu:print-on-demand (method of

frame: standard-menus<%>), @

(method

file-menu:print-string (method of
frame:standard-menus<%>), @
file-menu:quit-callback (method of

frame: standard-menus<%>),
file-menu:quit-help-string (method of
frame: standard-menus<%>), @
file-menu:quit-on-demand
frame:standard-menus<%>),
file-menu:quit-string
frame:standard-menus<%>),
file-menu:revert-callback (method of
frame:editor-mixin), m
file-menu:revert-callback (method of

frame:standard-menus<%>), m

(method of

(method of

file-menu:revert-help-string (method
of frame: standard-menus<%>), m

file-menu:revert-on-demand (method of
frame:editor-mixin), @

file-menu:revert-on-demand (method of
frame:standard-menus<%>), @
file-menu:revert-string
frame: standard-menus<%>),
file-menu:save-as-callback (method of
frame:editor-mixin), @
file-menu:save-as-callback (method of
frame: standard-menus<%>),
file-menu:save-as-help-string
(method of frame: standard-menus<%>),

(method of

file-menu:save-as-on-demand (method
of frame: standard-menus<%>),
file-menu:save-as-string (method of
frame:standard-menus<%>),
file-menu:save-callback (method of
frame:standard-menus<%>), m
file-menu:save-callback (method of

frame:editor-mixin), m
file-menu:save-help-string (method of
frame:standard-menus<¥%>),[79|

file-menu:save-on-demand (method of
frame: standard-menus<%>),
file-menu:save-string (method of

frame: standard-menus<%>), m
find-down-sexp (method of racket: text<%>),
208]
find-editor (method of frame:editor<%>),
find-string, [T46]
find-string-replace, [T46|
find-string-reverse, [146]
find-up-sexp (method of racket:text<>),
208]
Finder,
finder:common-get-file, |5_§|
finder:common-put-file, |5_7|
:default-extension,[57]
:default-filters,[57]
:dialog-parent-parameter, |517|
finder:get-file, |3_§|
finder:open-file, [T46]
finder:put-file, |’5_§|
finder:put-file, [T46]

finder
finder
finder

289

finder:put-file, [T46]
finder:std-get-file,[59
finder:std-put-file,
finish-pending-search-work (method of
text: searching<%>),@
first-line-currently-

drawn-specially? (method of

text:first-line<%>), m
flash-backward-sexp (method of

racket:text<%>), m
flash-forward-sexp (method of

racket:text<¥%>), M
for-each-frame (method of group:%), m
force-stop-colorer (method of

color:text<}>), @
forward-match (method of color:text<%>),

27

forward-sexp (method of racket:text<i>),
207/

Frame, [6]]
frame-label-changed (method of group:%),
126
frame-shown/hidden (method of group:%),
126
frame:add-snip-menu-items, @
:basic¥,[122]
:basic-mixin,[63]
:basic<%>,[6]]
:current-icon,[124]
:delegate, [123]
:delegate—mixin,@
:delegate<y>,[T13]
:editor%,
:editor-mixin, @
editor<%>,[107]
:focus-table-mixin,[63
:focus-table<>,[64]
:info%,[122]
:info-mixin, [71]
frame:info<%>,[69
:lookup-focus-table,[I23]
:pasteboard’,[123]

:pasteboard-info},[122]

frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame
frame

frame
frame
frame

frame
frame
frame
frame
frame
frame
frame
frame

frame:

frame
frame

frame:

frame
frame
frame
frame

frame:

frame
frame

frame:

frame
frame
frame
frame
frame
frame
frame
frame
frame

:pasteboard-info-mixin,
:pasteboard-info<%>,
:pasteboard-mixin, [TT3]

: pasteboard<%>,[T14]
:register-group-mixin,[67]
:register-group<%>,
:remove-empty-menus,[124]
:reorder-menus, @

searchable’, [123]

:searchable-mixin, [T1§]
:searchable-text-mixin,[12]]

searchable-text<%>,[121]

:searchable<>,
:setup-size-pref,[123
:size-prefy,[122]

:size-pref-mixin, |6_6|

size-pref<y>,

:standard-menus’,

:standard-menus-mixin,[107]

standard-menus<%>,

:status-1lineY,
:status-line-mixin, [6§]
:status-line<%>,
text, [123]
:text-infoY,
:text-info-mixin,[72]
:text-info<¥>,[7]]
;text-mixin,[T14]
ttext<y>, [114]

framework,]|

Framework Libraries Overview, 2]
framework-class~,[278]
:Eramework/decorated—editor—snip,@
framework/framework-sig,
framework/framework-unit, 279
framework/gui-utils, @
framework/notify,[T70]
framework/preferences,@
framework/splash, 263
framework/test,

Framework:

Racket GUI Application

Framework, [T]

290

framework:color-schemes, [13]

frameworka, 279

framework™, 27§

freeze-colorer (method of color:text<%>),
24

get (method of notify:notify-box%),

get-active-frame (method of group:%),[127]

get-all-open-files (method of
frame:editor-mixin), m

get-all-open-files (method of
frame:basic<%>),@

get-all-words (method of

text:autocomplete<y>), @

get-allow-edits (method of text:ports<i>),
250)

get-area-container (method of
frame:basic<%>), @
get-area-containery (method of

frame:basic<%>), @
get-ascii-art-enlarge (method of
text:ascii-art-enlarge-boxes<y>), @
get-autocomplete-background-color
(method of text:autocomplete<’>), @
get-autocomplete-border-color
(method of text:autocomplete<y>), @
get-autocomplete-selected-color
(method of text:autocomplete<y>), m
get-backward-navigation-limit
(method of color:text<%>), @
get-backward-navigation-limit
(method of racket :text<%>), m
get-backward-sexp (method of
racket:text<%>), m
get-box-input-editor-snip¥% (method of
text:ports<iy>), @
get-box-input-text
text:ports<y>), m
get-can-close-parent
editor:file<y>), 3]
get-canvas (method of frame:editor<%>),[109]
get-canvas), (method of frame:editor<%>),
108

get-canvas<y,> (method of frame:editor<%>),
108]

(method of

(method of

get-case-sensitive-search? (method of
frame:searchable<’>), m

get-chained-keymaps
keymap: aug-keymap<%>), IEI

(method of

get-checkable-menu-item/ (method of
frame: standard-menus<%>), @

get-color (method of
editor-snip:decorated<’>), @

get-color (method of
editor-snip:decorated-mixin), m

get-corner-bitmap (method of
editor-snip:decorated-mixin), @

get-corner-bitmap (method of
comment-box:snip),

get-corner-bitmap (method of
editor-snip:decorated<’,>), @

get-default-percentages (method of

panel:dragable<’>), m
get-delegate (method of text:delegate<y>),

238

get-delegated-text (method of
frame:delegate<’,>), m
get-discrete-heights (method of

panel:discrete-child<’%>), @
get-discrete-widths (method of
panel:discrete-child<’%>), @
get-edit-menu (method of
frame:standard-menus<%>), @
get-edition-number
text:basic<y>),
get-editor (method of frame:editor<%>),[109]
get-editory, (method of
frame:delegate-mixin), m
get-editory (method of
frame:searchable-text-mixin), m

get-editory (method of frame:editor<%>),
108

(method of

get-editor<y> (method of
frame:text-mixin), m
get-editor<y> (method of

frame:delegate-mixin), m
get-editor<y> (method of

frame:pasteboard-mixin), m
get-editor<y> (method of

291

frame:searchable-text-mixin), m
get-editor<y,> (method of frame:editor<%>),

103
get-entire-label

frame:editor<y>),

get-err-port (method of text:ports<j>),

233

(method of

get-err-style-delta (method of
text:ports<y>), m
get-extent (method of

text:1-pixel-string-snip%), @
get-extent (method of racket:sexp-snipk),
201
get-extent (method of
text:1-pixel-tab-snip¥), @
get-file (method of editor:basic-mixin), @
get-file-menu (method of
frame:standard-menus<%>), @
get-filename (method of
frame:editor-mixin), m
get-filename (method of frame:basic<%>),
get-filename/untitled-name (method of
editor:basic<’>),
get-first-line-height
text:first-line<%>), m
get-fixed-style (method of text:basic<¥>),
get-fixed-style (method of
text:foreground-color-mixin), @
get-forward-sexp (method of
racket:text<%>), IZ_T7I
get-frames (method of group:%),[126|
get-help-menu (method of
frame: standard-menus<%>), @

(method of

get-highlighted-ranges (method of
text :basic<°/,>),m

get-in-box-port (method of text:ports<i>),
257

get-in-port (method of text :ports<i>),

get-info-canvas (method of frame:info<%>),

get-info-editor (method of frame:info<y>),
70

get-info-panel (method of frame:info<%>),

get-inline-overview-enabled? (method
of text:inline-overview<y>), @

get-insertion-point (method of
text:ports<y>), IEI

get-keymaps (method of
text:searching-mixin),

get-keymaps (method of editor:keymap<%>),

get-keymaps (method of editor:file-mixin),
460

get-label (method of frame:editor-mixin),
[I1n

get-label-prefix
frame:editor<y>), m

get-1limit (method of racket:text<%>), @

(method of

(method of

get-map-function-table
keymap: aug-keymap<%>), m

get-map-function-table/ht (method of
keymap: aug-keymap<%>), m

get-matching-paren-string (method of
color:text<)>), m

get-mdi-parent (method of group:%),[126]

get-menu (method of
editor-snip:decorated<’,>), @

get-menu (method of comment-box:snip¥), @

get-menu (method of
editor-snip:decorated-mixin), @
get-menu’, (method of

frame:standard-menus<%>), @
get-menu-bary, (method of frame:basic<%>),
61
get-menu-itemy, (method of
frame:standard-menus<%>),
get-orientation (method of
panel:discrete-sizes<y>), @
get-out-port

(method of text:ports<¥%>),

get-out-style-delta (method of
text:ports<y>), m
get-percentages (method of

panel:dragable<}>),
get-port-name (method of text:basic<¥>),

2211

292

get-pos/text (method of editor:basic<%>),
40

get-pos/text-dc-location (method of
editor:basic<¥%>),

get-position (method of
comment-box:snip),

get-position (method of
editor-snip:decorated-mixin), @

get-position (method of

editor—snip:decorated<%>),@
get-read-write? (method of text:file<i>),

247

get-regions (method of color:text<%>),[23

get-replace-search-hit (method of
text:searching<y>), @

get-saved-snips (method of
racket:sexp-snip<}>),

get-search-bubbles (method of

text: searching<%>),m
get-search-hit-count
text: searching<%>),@

(method of

get-spell-check-strings (method of
color:text<y>), @

get-spell-check-text (method of
color:text<}>), @

get-spell-current-dict (method ~ of

color:text<%>),@
get-spell-suggestions

color:text<°/,>),@
get-splash-bitmap,[264]
get-splash-canvas, 263
get-splash-event-callback, @
get-splash-eventspace, @
get-splash-height, [266]
get-splash-paint-callback, @
get-splash-width, [266]

(method of

get-start-of-line (method of
racket:text-mixin),

get-start-of-line (method of
text:basic<)>), @

get-styles-fixed (method of
text:basic<)>), m

get-surrogate (method of

mode :host-text<%>), @
get-tab-size (method of racket:text<y>),
get-text (method of racket:sexp-snip%),
get-text (method of comment-box:snip%), @

get-text-to-search (method of
frame:searchab1e<%>),m
get-text-to-search (method of

frame:searchable-text-mixin), m
get-token-range (method of color:text<}>),
28]
get-top-level-window
editor:basic<}>), @
get-unread-start-point
text:ports<y>),
get-value-port (method of text:ports<y>),

(method of

(method of

get-value-style-delta (method of
text:ports<y>),
get-vertical? (method of

panel:horizontal-dragable-mixin), @

get-vertical? (method of
panel:dragable<}>),
get-vertical? (method of

panel:vertical-dragable-mixin), @
get-word-at (method of
text:autocomplete<y>),
get-word-at (method of racket:text-mixin),

goto-line, [T47]

goto-position, [T47]

Group, [126]

group: %,[126]
group:add-to-windows-menu, @
group:can-close-check, @
group:create-windows-menu, ﬂzgl
group:get-the-frame-group, ﬂzgl
group:on-close-action, ﬂzgl

GUI Utilities, [129]
gui-utils:cancel-on-right?, @
gui-utils:cursor-delay,
gui-utils:delay-action,[[3]]
gui-utils:format-literal-label, @

293

gui-utils:get-choice,[I32]
gui-utils:get-clickback-delta,[T34]
gui-utils:get-clicked-clickback-
delta,[133
gui-utils:local-busy-cursor, m
gui-utils:next-untitled-name,
gui-utils:ok/cancel-buttons,
gui-utils:quote-literal-label, @
gui-utils:show-busy-cursor, m
gui-utils:trim-string,[129
gui-utils:unsaved-warning, @
Handler, [T33)]
handler:add-to-recent,[I3§]
handler:current-create-new-window,

137
handler:
handler:
handler:

136

handler:

edit-file,[136]
find-format-handler,[136]
find-named-format-handler,

handler-extension,[133)]
handler:handler-handler, m
handler:handler-name,[I33]
handler:handler?,[133]

handler:insert-format-handler,[133]
handler:install-recent-items,
handler:open-file,[T37]

handler:set-recent-items-frame-

superclass,@l
handler:set-recent-position, ﬂl-gl

handler:size-recently-opened-

files,[13§

handler:update-currently-open-

files,[139

has-focus? (method of editor:basic<%>), 38|

help-menu:about-callback (method of
frame: standard-menus<%>), @
help-menu:about-callback (method of

frame:editor-mixin), m
help-menu:about-help-string

of frame: standard-menus<%>), m
help-menu:about-on-demand (method of

frame:standard-menus<%>), m
help-menu:about-string

(method

(method of

frame:standard-menus<%>), m

help-menu:about-string (method of
frame:editor-mixin), m
help-menu:after-about (method of

frame: standard-menus<%>),
help-menu:before-about

frame:standard-menus<%>), m
help-menu:create-about?

frame:standard-menus<%>), m

(method of

(method of

help-menu:create-about? (method of
frame:editor-mixin), m
help-menu:get-about-item (method of

frame:standard-menus<%>), m
hide-delegated-text (method of
frame:delegate<%>), m
hide-info (method of frame:info<¥>), m
hide-search (method of
frame:searchable<’>), m
highlight-first-line
text:first-line<’>), m
highlight-range
text:delegate-mixin), m
highlight-range (method of text:basic<%>),

Icon, [T39]
icon:get-anchor-bitmap, @
:get-autowrap-bitmap, @
get-eof-bitmap, @
get-gc-off-bitmap,
get-gc-on-bitmap,
icon:get-left/right-cursor,[139
:get-lock-bitmap, 139
icon:get-paren-highlight-bitmap,
139
icon:get-unlock-bitmap,[T39
icon:get-up/down-cursor,

(method of

(method of

icon
icon:
icon:

icon:

icon

initial-autowrap-bitmap (method of
text:basic<%>), m
insert (method of

text:1-pixel-string-snip¥), @
insert-before (method of text:ports<i>),

insert-between (method of text:ports<i>),

294

insert-close-paren
color:text<}>), m

insert-frame (method of group:%), m

insert-return (method of racket:text<%>),
204

insert/io (method of text:ports<%>), @

(method of

(method of

introduce-let-ans
racket :text<%>),@

is-frozen? (method of color:text<%>),[24]

is-info-hidden? (method of frame:info<¥%>),
/0

is-lexer-valid? (method of color:text<%>),
29

is-special-first-line?
text:first-line<)>),

is-stopped? (method of color:text<%>), @

Keymap, [T41]

keymap:add-to-right-button-menu,
143

keymap:add-to-right-button-
menu/before, [143]

keymap:add-user-keybindings-file,
142

keymap : aug-keymap%,[142]

keymap : aug-keymap-mixin, [[4]]

keymap : aug-keymap<Y%>, [I4]]

keymap:call/text-keymap-
initializer,[143]

keymap:canonicalize-keybinding-
string,@

keymap: get-editor,[T44]

keymap:get-file,[144]

keymap: get-global,[T44]

keymap: get-search,[T44]

keymap: get-user, [[44]

keymap:make-meta-pref ix—list,l@

keymap:region-click,[I3]]

keymap:remove-chained-keymap, @

keymap:remove-user-keybindings-
file,[142]

keymap:send-map-function-meta, @

(method of

keymap: set-chained-keymaps, [I5]]

keymap: setup-editor,[T43]

keymap: setup-file,[T46]

keymap: setup-global,[T46]

keymap:setup-search, rllTl

kill-word, [T47]

label-of-enabled/shown-button-in-
top-level-window?,

listen (method of notify:notify-box¥),

load-file, [146]

load-file/gui-error
editor:basic<’>), @

local-edit-sequence?
editor:basic<y>), @

locate-file (method of group:%), @I

lock (method of editor:info-mixin),

lock (method of color:text-mixin), |2;9|

lock-status-changed (method of
frame:info<y>), @

make-editor (method of comment-box:snip¥),
32

make-editor (method of frame:editor<%>),
108]

make-editor (method of
editor-snip:decoratedy), @

(method of

(method of

make-root-area-container (method of
frame:searchable-mixin), m

make-root-area-container (method of
frame:basic<%>), @

make-root-area-container (method of
frame:status-line-mixin), @

make-root-area-container (method of
frame:delegate-mixin), m

make-root-area-container (method of
frame:info-mixin), m

make-snip (method of
editor-snip:decorated-snipclassi),
37

make-snip (method of comment-box:snip%),

make-snip (method of

editor-snip:decorated¥),
make-visible (method of frame:basic<%>),[63]
map-function (method of

keymap:aug-keymap-mixin), @

295

mark-matching-parenthesis (method of
racket :text<%>),@

Menu, [T52]

menu:can-restore-checkable-menu-
item%, 153

menu:can-restore-menu-itemy, m

menu:can-restore-mixin,

menu:can-restore-underscore-menu,

133

menu:can-restore-underscore-mixin,
153

menu:can-restore-underscore<y>,

menu:can-restore<y),>,

Meta, [T43]

Mode, [154]

mode :host-text-mixin,[T63]

mode : host-text<%>,[163|

mode: surrogate—text%, @

mode: surrogate—text<%>, @

move-sexp-out (method of racket:text<y>),

move-to (method of text:basic<y>),

move/copy-to-edit (method of
text :basic<%>),m

Notify-boxes,

notify:check-box/notify-box,

choice/notify-box,[I73]

notify:define-notify,[I7]]

notify:menu-group/notify-box,[I73]

notify:menu-option/notify-box,

notify:notify-box¥,[[70]

notify:notify-box/pref,[I7]]

Number Snip, [T74]

number snip, [I73]

number-snip:get-number, [[76

number-snip: is—number-snip?,m

number-snip: make-fraction-snip,m

notify:

number-snip:make-pretty-print-
size,[T73]

number-snip:make-repeating-
decimal-snip, m

number-snip:number->string/snip,

174

number-snip:remove-decimal-
looking-number-snips-on-
insertion-mixin,
number-snip:snip-class,
on-activate (method of
frame:register-group-mixin), @
on-change (method of mode : surrogate-text%),
on-change (method of mode :host-text-mixin),

63l

on-change (method of
editor:backup-autosave-mixin),
on-change (method of

text:column-guide-mixin), m

on-change-style (method of
mode: surrogate-texty), @

on-change-style (method of
mode:host-text-mixin), @

on-char (method of mode:host-text-mixin),
163

on-char (method of text:autocomplete-mixin),

on-char (method of mode:surrogate-text}),
154

on-close (method of editor:autoload-mixin),

on-close (method of
frame:standard-menus<%>), @

on-close (method of frame:info-mixin), m

on-close (method of
frame:standard-menus-mixin),
on-close (method of

editor:backup-autosave-mixin),
on-close (method of editor:basic<%>), m

on-close (method of frame:editor-mixin),

[

on-close (method of
frame:focus-table-mixin), @

on-close (method of
frame:register-group-mixin), m

on-close (method of

frame:searchable-mixin), m

on-close (method of frame:text-info-mixin),

/2

296

on-close-all (method of group:%),[127]
on-default-char (method of
mode: surrogate—text%), m

on-default-char (method of
text:ascii-art-enlarge-boxes-mixin),
on-default-char (method of

mode:host-text-mixin), @
on-default-char (method of

text:input-box-mixin), @
on-default-event

mode: surrogate—text%), @
on-default-event

mode:host-text-mixin), @

(method of
(method of

on-delete (method of mode:host-text-mixin),
on-delete (method of mode:surrogate-text¥),
1158]
on-disable-surrogate
racket:text-mode-mixin), m
on-disable-surrogate
mode : surrogate-text<y>), @

(method of

(method of

on-disable-surrogate (method of
color:text-mode-mixin), @
on-display-size (method of
text:ports-mixin), @
on-display-size (method of
mode : surrogate-texty), @
on-display-size (method of
mode:host-text-mixin), m
on-drop-file (method of
frame:basic-mixin), @
on-edit-sequence (method of
text:delegate-mixin), @
on-edit-sequence (method of
mode:host-text-mixin), @
on-edit-sequence (method of
mode : surrogate-text), @
on-edit-sequence (method of
editor:basic-mixin),[42]
on-enable-surrogate (method of
color:text-mode-mixin), @
on-enable-surrogate (method of

mode: surrogate-text<¥%>), @

on-enable-surrogate (method of
racket:text-mode-mixin), m

on-event (method of mode:host-text-mixin),
1164]

on-event (method of
text:autocomplete-mixin), @

on-event (method of text:first-line-mixin),
228]

on-event (method of mode:surrogate-texty),

on-exit (method of frame:basic-mixin), @
on-focus (method of text:searching-mixin),

™
o
o

on-focus (method of editor:basic-mixin), @
on-focus (method of mode:host-text-mixin),
on-focus (method of mode:surrogate-text¥),
153l
on-focus (method of color:text-mixin), @
on-focus (method of canvas:info-mixin), m
(method of
text:normalize-paste-mixin), @
on-insert (method of text:basic-mixin), m
on-insert (method of
text:all-string-snips-mixin), @

on-insert

on-insert (method of mode:host-text-mixin),
1166)

on-insert (method of
text :nbsp->space-mixin), @

on-insert (method of mode: surrogate-text¥),
138

on-lexer-valid (method of color:text<}>),

on-load-file (method of
editor:autoload-mixin), @
on-load-file (method of

text:delegate-mixin), @
on-load-file (method of
mode:host-text-mixin), @
on-load-file (method of
mode: surrogate-texti), m
on-local-char (method of
mode: surrogate—text%), @

on-local-char (method of

297

mode:host-text-mixin), @
on-local-char (method of

text:ascii-art-enlarge-boxes-mixin),

226

on-local-char (method of
text:return-mixin), m

on-local-char (method of
text:ports-mixin), @

on-local-event (method of

mode : surrogate-texty), @

on-local-event (method of
mode:host-text-mixin), @

on-move (method of frame:size-pref-mixin),
66

on-new-box (method of
mode: surrogate-texty), m

on-new-box (method of editor:basic-mixin),
42|

on-new-box (method of
mode:host-text-mixin), @

on-new-image-snip (method of
editor:basic-mixin),[42]
on-new-image-snip (method of

mode: surrogate-texty), m
on-new-image-snip
mode:host-text-mixin), @

(method of

on-new-string-snip (method of
mode : surrogate-texty), @
on-new-string-snip (method of
mode:host-text-mixin), m
on-new-tab-snip (method of
mode: surrogate-texty), @
on-new-tab-snip (method of

mode:host-text-mixin), @

on-paint (method of mode:host-text-mixin),
163

on-paint (method of mode:surrogate-text%),

on-paint (method of
text:line-numbers-mixin), I@I

on-paint (method of text:first-line-mixin),

on-paint (method of
text:column-guide-mixin), m

on-paint (method of text:basic-mixin), @

on-paint (method of
text:autocomplete-mixin), @

on-paint (method of text:delegate-mixin),
243]

on-save-file (method of
text:clever-file-format-mixin), m

on-save-file (method of
mode:host-text-mixin), @

on-save-file (method of
mode: surrogate-texti), m

on-save-file (method of
editor:autoload-mixin), @

on-save-file (method of
editor:backup-autosave-mixin), M
on-set-size-constraint (method of
mode: surrogate-texty), @
on-set-size-constraint (method of
color:text-mixin), @
on-set-size-constraint (method of

mode:host-text-mixin), @
on-size (method of canvas:wide-snip-mixin),
&l
on-size (method of frame:size-pref-mixin),
on-snip-modified
mode: surrogate-text¥), @
on-snip-modified
mode:host-text-mixin), @
on-submit (method of text:ports<%>),[251]
(method of

(method of

(method of

on-subwindow-event
panel:dragable-mixin), m
on-superwindow-show (method of

canvas:delegate-mixin), |ZI

on-superwindow-show (method of
frame:basic-mixin), @

open-line, [T46]

open-status-line (method of

frame:status-line<)>), @
overwrite-status-changed

frame:text-info<%>), m
Panel,
panel:discrete-child<%>, @
panel:discrete-sizes-mixin, @

(method of

298

panel:discrete-sizes<}>,[183] text:basic<%>), 221]
panel:dragable-container-size,[I83 Preferences, [I89

panel:dragable-mixin, [T80] preferences layer,[198]
panel:dragable-place-children,[I83] Preferences, Textual,[T93]
panel:dragable<y>, preferences:add-boolean-option-
panel:horizontal-discrete-sizes’, with-ask-me, [I9]]

184 preferences:add-callback,[193
panel:horizontal-dragablel, preferences:add-can-close-dialog-
panel:horizontal-dragable-mixin, callback,[192]

preferences: add—check,
panel:horizontal-dragable<y>, preferences:add-editor-checkbox-
panel: single%, panel,
panel:single-mixin, m preferences:add-font-panel, @
panel:single-panep, preferences:add-general-checkbox-
panel:single-window-mixin,[T78] panel, [T90]
panel:single-window<%>, preferences:add-on-close-dialog-
panel:single<’%>, callback,[192]
panel:splitter-mixin, @ preferences:add-panel, @
panel :splitter<%>,[182 preferences:add-scheme-checkbox-
panel:vertical—diszte—sizes%, panel, [T90)
panel :vertical-dragableY, preferences:add-to-editor-

checkbox-panel,[I9]]
preferences:add-to-general-
checkbox-panel,[T9]]

panel:vertical-dragable-mixin,[I8]]
panel:vertical-dragable<%>,

aste-click-region, [T47]
paste-cli boa;gd |E| preferences:add-to-scheme-
g o Pd m checkbox-panel, [[90]
asteboard,

preferences:add-to-warnings-

. _ [Q
pasteboard:backup-autosave, [187] checkbox-panel, [[90]
pasteboard:basic%,[187] i)

o 1o preferences:add-warnings-
pasteboard:file%,[187] checkbox-panel, [[00]
pasteboard: infoY, 187 preferences:current-layer,[T9§]
pasteboard:keymap?, [T87 preferences:default-set?,[T93]
pasteboard:standard-style-listy,

preferences:get,[193
preferences:get-preference/gui,
preferences:get-prefs-snapshot,[197]

preferences:get/set,[193]

187
Path Utils, [T88|

path-utils:generate-autosave-name,

0z) preferences:hide-dialog,[192]
path-utils:generate-backup-name,
I8 preferences:layer?,[19
place-children (method preferences:low-level-get-
reference,
pa.nel:dragable—mixin),@ P @
place-children (method preferences:low-level-put-
references,
panel:single-mixin), m P £ @1 @I
references:new-layer,
port-name-matches? (method of ¥ Y

299

preferences:put-preferences/gui,
preferences:register-save-
callback,[193]
preferences:restore-defaults, @
preferences:restore-prefs-

snapshot, @

preferences: set,@

preferences:set-default,[I94]
preferences:set-un/marshall,[I93
preferences:show-dialog, [I9]]

preferences: show—tab—panel,@
preferences: snapshot?,@
preferences:unregister-save-
callback,[196]
put-file (method of mode:surrogate-texty),
[re3l
put-file (method of editor:basic-mixin), @
put-file (method of text:basic-mixin), @
put-file (method of mode:host-text-mixin),
169
Racket, 200]
racket:add-coloring-preferences-
panel,[2T4]
racket:add-pairs-keybinding-
functions, 213
racket:add-preferences-panel, @
:default—paren-matches,@
:get—color-prefs—table,@
:get-keymap,
:get-non-paren-keymap, 213
:get-paren-keymap,[212]
racket:get-white-on-black-color-
prefs—table,@l
racket:get-wordbreak-map, |7_13|
racket:init-wordbreak-map, |T_B|
racket:map-pairs-keybinding-
functions, 213

racket
racket
racket
racket
racket

racket:set-mode-mixin, 2T1]
racket:setup-keymap,
racket:sexp-snip,[200]
racket:sexp-snip<%>,
racket:short-sym->pref-name, @

racket:short-sym->style-name, m
text%, 211
:text-balanced?, 212
‘text-mixin,[210]
:text-mode%, 211]
:text-mode-mixin,[210)
:text-mode<’>,210]

racket
racket
racket
racket
racket
racket

racket :text<%>,202]

read (method of number-snip:snip-class%),
174

read (method of
editor-snip:decorated-snipclass?),
37

recalc-snips (method of

canvas:wide-snip<%>), m
refresh-splash, [266]
region-comment-out-selection (method

of racket:text<)>), @
remove-all-listeners

notify:notify-boxi), m
remove-autosave (method of

editor:backup-autosave<y>), M
remove-chained-keymap (method of

keymap:aug-keymap-mixin), @
remove-frame (method of group:%),[127]

(method of

remove-listener (method of
notify:notify-boxi), m
remove-parens-forward (method of

racket:text<%>), @
remove-sexp (method of racket : text<y%>), @l
remove-space, [146]
replace-all (method of
frame:searchable<}>), m
reset-input-box (method of text :ports<y>),
2511
reset-min-sizes (method of
editor-snip:decorated<%>), @
reset-region (method of color:text<%>), 24
reset-regions (method of color:text<%>),
4]
resized (method of text:delegate-mixin), @
restore-keybinding (method of

menu: can—restore<‘7,>),

300

restore-underscores

(method

menu:can-restore-underscore<%>), m

revert (method of frame:editor<y>), m

revert/gui-error (method
editor:basic<%>),[39

right-click-in-gap (method

panel:

dragable<}>), m

ring-bell, [T46]

run-after-edit-sequence

(method

editor:basic<y>), @
save (method of frame:editor<)>), @
save-as (method of frame:editor<%>), @

save-file, [146]
save-file-as, [146]

save-file-out-of-date? (method
editor:basic<}>), @
save-file/gui-error (method

editor:basic<’>), @

scheme

radd-coloring-preferences-

panel,[276]

scheme
scheme
scheme
scheme

:add-preferences-panel, 276]
:get-color-prefs-table, 276

:get-keymap, 276
:get-white-on-black-color-

prefs-table,[276

scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scheme
scroll

-editor-to

:get-wordbreak-map, 276
:init-wordbreak-map, 276
:set-mode-mixin, 273

: setup-keymap, 276]
:sexp-snipl,
:sexp-snip<’>,
:short-sym->pref-name,
:short-sym->style-name,
1texti,
:text-balanced?,
:text-mixin,
:text-mode’, 273
:text-mode-mixin, 273
:text-mode<y,>, m
ttext<%>, 273

(method

text:first-line-mixin), m
search (method of frame:searchable<%>), m

of

of

of

of

search-hidden? (method of
frame:searchable<’%>), m

search-hits-changed (method of
frame:searchable<%>), m

search-replace (method of
frame:searchable<%>), m

select-backward-sexp (method of
racket:text<%>), @

select-click-line, [T47]

select-click-word, [T47]

select-down-sexp (method of
racket:text<%>), @

select-forward-sexp (method of

racket:text<%>), @
select-up-sexp (method of racket : text<)>),

send-eof-to-box-in-port (method of
text:ports<y>), m
send-eof-to-in-port (method of

text :ports<i>), m
set (method of notify:notify-box¥), m
set-active-frame (method of group:%),[127]
set-allow-edits (method of text:ports<i>),
250
set-anchor (method of text: info-mixin), 247
set-ascii-art-enlarge (method of
text:ascii-art-enlarge-boxes<}>), m
set-delegate (method of text:delegate<%>),
238]
set-delegated-text
frame:delegate<’>), m
set-editor (method of canvas:info-mixin), |Z|

(method of

set-filename (method of
editor:file-mixin), @

set-filename (method of
editor:autoload-mixin), @

set-get-token (method of

color:text-mode<’>), m
set-info-canvas (method of frame:info<¥>),
set-inline-overview-enabled? (method

of text:inline-overview<y>), m
set-insertion-point

text:ports<y>), @

(method of

301

set-label (method of frame:editor-mixin),

set-label-prefix
frame:editor<y>), @

set-line-numbers-color
text:line-numbers-mixin), [200)

(method of

(method of

set-line-numbers-color (method of
text:line-numbers<y>), @
set-macro-recording (method of

frame:text-info<¥%>), m
set-matches (method of color:text-mode<’>),
30
set-message (method of
editor:font-size-message%), @
set-modified (method of
editor:backup-autosave-mixin),

set-orientation (method of
panel:dragable<y>),
set-orientation (method of

panel:discrete-sizes<y>), @

set-overwrite-mode (method of
text:info-mixin), @

set-percentages (method of
panel:dragable<%>), m

set-port-unsaved-name (method of

text:basic<%>), m
set-refresh-splash-on-gauge-

change?!,[266]

set-replace-start (method of
text:searching<y>), m

set-search-anchor (method of
text:searching<y>), @

set-searching-state (method of

text:searching<y>), m
set-spell-check-strings
color:text<%>), @
set-spell-check-text
color:text<}>), @
set-spell-current-dict
color:text<y>), @
set-splash-bitmap,[264]
set—splash—char—observer,E§ﬂ
set—splash—event—callback,EEQ
set—splash—paint—callback,EEE

(method of

(method of

(method of

set—splash—progress—bar?!,EEE

set-styles-fixed (method of
text:basic<}>),
set-surrogate (method of

mode :host-text<%>), m
set-tab-size (method of racket:text<)>),

set-text-to-search (method of
frame:searchable<%>), m
set-unread-start-point (method of

text:ports<y>),
show (method of frame:basic-mixin), @
show (method of frame:focus-table-mixin),
show-delegated-text (method of
frame:delegate<’,>), m
show-indent-guides!
text:indent-guides<%>), m
show-indent-guides?
text:indent-guides<%>), @
show-info (method of frame: info<%>), m
show-line-numbers! (method of
text:line-numbers-mixin), @

(method of

(method of

show-line-numbers! (method of
text:line-numbers<}>), @

show-line-numbers? (method of
text:line-numbers<y>),

show-line-numbers? (method of

text:line-numbers-mixin), @
shutdown-splash,264]

Signatures, 278
skip-whitespace (method of color:text<%>),

Splash, 263

split (method of text:1-pixel-tab-snip%),
240

split (method of text:1-pixel-string-snip}),

split-horizontal
panel:splitter-mixin), @

split-vertical (method of
panel:splitter-mixin), m

Srcloc Snips, 216]

srcloc-snip:select—srcloc,@Iﬂ

(method of

302

srcloc-snip:snip%,[216]

srcloc-snip: snipclass,|ﬂ_3|

start-colorer (method of color:text<%>),
20

start-macro, [147]

start-splash,[263]

stop-colorer (method of color:text<%>), 23]

string-normalize (method of
text:normalize-paste<¥%>), m

submit-to-port? (method of text:ports<%>),
2511

tabify (method of racket:text<i>),

tabify-all (method of racket :text<%>), @

tabify-on-return? (method of
racket:text<%>), m
tabify-selection (method of

racket :text<%>),m
tabify-selection/reverse-choices
(method of racket: text<%>), m
Technical Issues, 268
Test, 267]
Test Functions, 269]
test :button—push,@
test:close-top-level-window,[272]
test: current—get—eventspaces,

test:get-active-top-level-window,
2’73
test:keystroke, 270
test:menu-select,[270)]
test:mouse-click,[27]]
test:new-window, 271]
test :number—pending—actions,m
test:reraise-error,[272]
test:run-interval,[27]]
test:run-one,[272]
test:set-check-box!,269]
test:set-choice!,[269
test:set-list-box!,[270]
test:set-radio-box!,269]
test:set-radio-box-item!,[269]
test:top-level-focus-window-has?,

test:use-focus-table,[272]

Text, 217]
text:1-pixel-string-snip/,[238|
text:1-pixel-tab-snip¥,
text:all-string-snips-mixin, 233
text:all-string-snips<%>,[232]
text:ascii-art-enlarge-boxes-
mixin, 223
text:ascii-art —enlarge—boxes<%>,

text: autocomplete—append—after,@
text:autocomplete-limit, @
text:autocomplete-mixin, @
text:autocomplete<y,>,
text :autowraph,
text :backup-autosave}, 259
text:basich,257]
text:basic-mixin, 227
text:basic<%>,217]
text:clever-file-format%, 259
text:clever-file-format-mixin,[246|
text:clever-file-format<%>,[246
text:column-guide-mixin, 230]
text: column-guide<%>,@
text:crlf-line-endings-mixin, 247
text:crlf-line-endings<%>,[247]
text:delegatel, [258]
text:delegate-mixin,[247]
text: delegate<%>,
text:file%, 258
text:file-mixin,[24§]
text:file<%>,247]
text:first-line-mixin,[227)
text:first-line<%>,[226
text:foreground-color-mixin, @l
text: foreground—color<%>,@
text:get-completions/manuals, @
text:hide-caret/selection%,[257]
text:hide-caret/selection-mixin,
220

text:hide-caret/selection<’>,
text:indent-guides-mixin,[224]
text:indent-guides<%>,[223|

303

text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:
text:

info¥%,[259]

info-mixin, 243
info<%>,[244]
inline-overview-mixin, 224
inline-overview<%>, 224
input-boxJ, 258]
input-box-mixin, 254
input-box<%>,E§§
keymap¥, 258§
line-numbers-mixin, 260
line-numbers<%>,[259
line-spacing,
line-spacing-mixin, 225
line-spacing<%>,[223]
lookup—port—name,EEZ
make-snip-special,
nbsp->spacel, 257
nbsp—>space—mixin,EZﬂ
nbsp->space<’>,
normalize-paste%,[257]
normalize-paste-mixin,
normalize-paste<y>,
overwrite-disable-mixin,
overwrite-disable<)>,
ports-mixin, 253
ports<%>,[249
range-caret-space?, 26]]
range-color,26]]
range-end, 260]
range-start,[260]
range-style,[26]]

range?, [260]

return’, 258
return-mixin,[236
return<’>, 236
searching},[259]
searching-mixin,[235]
searching<y,>,[233
send-snip-to-port,[262]
snip-special?,[262]
standard-style-list%,[25§|
wide-snip%,[25§|

text:wide-snip-mixin,[237]
text:wide-snip<%>,

thaw-colorer (method of color:text<%>),
Thread Issues, 268

toggle-anchor,

toggle-overwrite, [T47]

transpose-chars, [T47]

transpose-sexp (method of racket:text<%>),
transpose-words,

uncomment-box/selection (method of
racket:text<%>), m
uncomment-selection (method of
racket:text<%>), m
uncomment-selection/box (method of
racket:text<}%>), @
uncomment-selection/line (method of

racket:text<}%>), @
uncomment-selection/region (method of
racket:text<y%>), m
unhide-search (method of
frame:searchable<}>), m
unhide-search-and-toggle-focus
(method of frame:searchable<%>), m

unhighlight-range (method of
text:basic<>), m

unhighlight-range (method of
text:delegate-mixin),

unhighlight-ranges (method of

text:basic<%>), m
unhighlight-ranges/key
text:basic<)>), m
Unit, 279]
up-sexp (method of racket : text<%>), @
upcase-word, [147]
update-frame-filename
editor:file<y>), d3]
update-info (method of frame: info<%>),[69
update-info (method of
frame:text-info-mixin), @
update-shal? (method of
editor:autoload-mixin), m
update-status-line

(method of

(method of

(method of

304

frame:status-line<%>),
user-saves-or-not-modified? (method
of editor:file<¥%>), 3]
Version, [274]
version:add-spec,[274]
version:version,

while-unlocked (method of text:file<%>),

247
Window Manager (Unix only), 268]
Windows menu,
write (method of racket:sexp-snip%),

305

	1 Framework Libraries Overview
	2 Application
	3 Autosave
	4 Canvas
	5 Color Model
	6 Color Prefs
	7 Color
	8 Comment Box
	9 Decorated Editor Snip
	10 Editor Snip
	11 Editor
	12 Exit
	13 Finder
	14 Frame
	15 Group
	16 GUI Utilities
	17 Handler
	18 Icon
	19 Keymap
	20 Menu
	21 Mode
	22 Notify-boxes
	23 Number Snip
	24 Panel
	25 Pasteboard
	26 Path Utils
	27 Preferences
	28 Preferences, Textual
	29 Racket
	30 Srcloc Snips
	31 Text
	32 Splash
	33 Test
	33.1 Actions and completeness
	33.2 Errors
	33.3 Technical Issues
	33.3.1 Active Frame
	33.3.2 Thread Issues
	33.3.3 Window Manager (Unix only)

	33.4 Test Functions

	34 Version
	35 Backwards Compatibility
	36 Signatures
	37 Unit
	Index
	Index

