Option Contracts

Version 9.0.0.1

October 20, 2025

(require racket/contract/option)
package: option-contract-1ib

This module introduces option contracts, a flavor of behavioral software contracts. With
option contracts developers control in a programmatic manner whether, when, and how often
contracts are checked. Using this flavor of contracts, Racketeers can mimic any compiler flag
system but also create run-time informed checking systems.

(option/c ¢

:with-contract with

:tester tester

:invariant invariant

:immutable immutable

:flat? flat?

:struct struct-id]) — contract?
c : contract?

with : boolean? = #f

,_,
H H OH H OH H

tester : (or/c (-> any boolean?) 'dont-care) = 'dont-care
invariant : (or/c (-> any boolean?) 'dont-care) = 'dont-care
immutable : (or/c #t #f 'dont-care) = 'dont-care

flat? : boolean? = #f

struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id. The
data structure must match ¢ and pass the tester.

When an option/c contract is attached to a value, first the contract ¢ is attached to the
value and then the result is checked against tester, if tester is a predicate. After that,
contract checking is disabled for the value, if with is #£f. If with is #t contract checking
for the value remains enabled for c.

If waive-option is applied to a value guarded by an option/c contract, then waive-


https://pkgs.racket-lang.org/package/option-contract-lib

option returns the value after removing the option/c guard. If exercise-option is
applied to a value guarded by an option/c contract, then exercise-option returns the
value with contract checking enabled for c. If the invariant argument is a predicate, then
exercise-option returns the value with contract checking enabled for (invariant/c c¢
invariant #:immutable immutable #:flat? flat? #:struct struct-id).

The arguments f1at?and immutable should be provided only if invariant is a predicate.
In any other case, the result is a contract error.

Examples:

> (module server(O racket
(require racket/contract/option)
(provide
(contract-out
[vec (option/c (vectorof number?))]))
(define vec (vector 1 2 3 4)))
> (require 'server0)
> (vector-set! vec 1 'foo)
> (vector-ref vec 1)
'foo
> (module serverl racket
(require racket/contract/option)
(provide
(contract-out
[vec (option/c (vectorof number?) #:with-contract #t)]))
(define vec (vector 1 2 3 4)))
> (require 'serverl)
> (vector-set! vec 1 'foo)
vec: contract violation
expected: number?
given: 'foo
in: an element of
the option of
(option/c
(vectorof number?)
#:with-contract
#t)
contract from: serverl
blaming: top-level
(assuming the contract is correct)
at: eval:6:0
> (module server2 racket
(require racket/contract/option)
(provide
(contract-out



[vec (option/c (vectorof number?) #:tester sorted?)]))
(define vec (vector 1 42 3 4))
(define (sorted? vec)
(for/and ([el vec]
[cel (vector-drop vec 1)])
(<= el cel))))
> (require 'server2)
vec: contract violation;

in: option contract tester #<procedure:sorted?> of
(option/c
(vectorof number?)
#:tester
#<procedure:sorted?>)
contract from: server2
blaming: server2
(assuming the contract is correct)
at: eval:9:0

(exercise-option x) — any/c
x : any/c

Returns x with contract checking enabled if an option/c guards x. In any other case it
returns x. The result of exercise-option loses the guard related to option/c, if it has
one to begin with, and thus its contract checking status cannot change further.

Examples:

> (module server3 racket
(require racket/contract/option)
(provide (contract-out [foo (option/c (-> number? symbol?))]))
(define foo (1 (x) x)))
> (require 'server3 racket/contract/option)
(define e-foo (exercise-option foo))
> (foo 42)
42
> (e-foo 'wrong)
foo: contract violation
expected: number?
given: 'wrong
in: the st argument of
the option of
(option/c (-> number? symbol?))
contract from: server3
blaming: top-level
(assuming the contract is correct)



at: eval:11:0
> ((exercise-option e-foo) 'wrong)
foo: contract violation
expected: number?
given: 'wrong
in: the st argument of
the option of
(option/c (-> number? symbol?))
contract from: server3
blaming: top-level
(assuming the contract is correct)
at: eval:11:0

transfer/c : contract?

A contract that accepts any value. If the value is guarded with an option/c contract, trans-
fer/c modifies the blame information for the option/c contract by adding the providing
module and its client to the positive and negative blame parties respectively. If the value is
not a value guarded with an option/c contract, then transfer/c is equivalent to any/c.

Examples:

> (module server4 racket
(require racket/contract/option)
(provide (contract-out [foo (option/c (-> number? symbol?))]))
(define foo (1 (x) x)))
> (module middleman racket
(require racket/contract/option 'server4)
(provide (contract-out [foo transfer/c])))
> (require 'middleman racket/contract/option)
(define e-foo (exercise-option foo))
> (e-foo 1)
foo: broke its own contract
promised: symbol?
produced: 1
in: the range of
the option of
(option/c (-> number? symbol?))
contract from: serverd
blaming multiple parties:
middleman
serverd
(assuming the contract is correct)
at: eval:17:0
> (module server5 racket
(require racket/contract/option)



(provide (contract-out [boo transfer/cl))
(define (boo x) x))

> (require 'server5)

> (boo 42)

42

(waive-option x) — any/c
x @ any/c

If an option/c guards x, then waive-option returns x without the option/c guard. In
any other case it returns x. The result of waive-option loses the guard related to op-
tion/c, if it had one to begin with, and thus its contract checking status cannot change
further.

Examples:

> (module server6 racket
(require racket/contract/option)
(provide (contract-out [bar (option/c (-> number? symbol?))]))
(define bar (1 (x) x)))

> (require 'server6 racket/contract/option)

(define e-bar (waive-option bar))

> (e-bar 'wrong)

'wrong

> ((waive-option e-bar) 'wrong)

'wrong

(tweak-option x) — any/c
x : any/c

If an option/c guards x and contract checking for x is enabled, then tweak-option re-
turns x with contract checking for x disabled. If an option/c guards x and contract check-
ing for x is disabled, then tweak-option returns x with contract checking for x enabled.
In any other case it returns x. The result of tweak-option retains the guard related to op-
tion/c if it has one to begin with and thus its contract checking status can change further
using tweak-option, exercise-option or waive-option.

Examples:

> (module server7 racket
(require racket/contract/option)
(provide (contract-out [bar (option/c (-> number? symbol?))]))
(define bar (1 (x) x)))

> (require 'server7 racket/contract/option)

(define t-bar (tweak-option bar))



> (t-bar 'wrong)
bar: contract violation
expected: number?
given: 'wrong
in: the 1st argument of
the option of
(option/c (-> number? symbol?))
contract from: server7
blaming: top-level
(assuming the contract is correct)

at: eval:30:0
> ((tweak-option t-bar) 'wrong)
'wrong
> ((waive-option t-bar) 'wrong)
'wrong

> ((exercise-option t-bar) 'wrong)
bar: contract violation
expected: number?
given: 'wrong
in: the Ist argument of
the option of
(option/c (-> number? symbol?))
contract from: server7
blaming: top-level
(assuming the contract is correct)
at: eval:30:0

(has-option? v) — boolean?
v : any/c

Returns #t if v has an option contract.

(has-option-with-contract? v) — boolean?
v : any/c

Returns #t if v has an option contract with contract checking enabled.

(invariant/c c¢

invariant
[#:immutable immutable
#:flat? flat?
#:struct struct-id]) — contract?

c : contract?

invariant : (-> any boolean?)

immutable : (or/c #t #f 'dont-care) = 'dont-care




flat? : boolean? = #f
struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id. The
data structure must match ¢ and satisfy the invariant argument.

If the f1at?argument is #t, then the resulting contract is a flat contract, and the ¢ arguments
must also be flat contracts. Such flat contracts will be unsound if applied to a mutable data
structure, as they will not check future operations on the vector.

If the immutable argument is #t and the ¢ arguments are flat contracts, the result will be a
flat contract. If the ¢ arguments are chaperone contracts, then the result will be a chaperone
contract.

Examples:

> (module server8 racket
(require racket/contract/option)
(provide
change
(contract-out
[vec (invariant/c
any/c
sorted?)]))
(define vec (vector 1 2 3 4 5))
(define (change) (vector-set! vec 2 42))
(define (sorted? vec)
(for/and ([el vec]
[cel (vector-drop vec 1)])
(<= el cel))))
> (require 'server8)
> (vector-set! vec 2 42)
vec: contract violation
expected vector that satisfies #<procedure:sorted?> given:
H#(124245)
in: (invariant/c any/c #<procedure:sorted?>)
contract from: server§
blaming: top-level
(assuming the contract is correct)
at: eval:37:0
> (change)
> (vector-ref vec 2)
vec: broke its own contract
expected vector that satisfies #<procedure:sorted?> given:
H#(124245)

in: (invariant/c any/c #<procedure:sorted?>)



contract from: server8
blaming: server8

(assuming the contract is correct)
at: eval:37:0



