
Programming Languages: Application and
Interpretation

Version 9.0.0.1

October 20, 2025

This is the documentation for the software accompanying the textbook Programming Lan-
guages: Application and Interpretation (PLAI). The full book can be found on the Web
at:

http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/

This package contains the following languages:

1

http://www.cs.brown.edu/~sk/Publications/Books/ProgLangs/

1 PLAI Scheme

#lang plai package: plai-lib

PLAI Scheme is derived from the scheme language. In addition, it includes the define-
type and type-case forms and testing support. Also, modules written in plai export every
definition (unlike scheme).

1.1 Defining Types: define-type

(define-type type-id variant ...)
(define-type type-id #:immutable variant ...)

variant = (variant-id (field-id contract-expr) ...)

Defines the datatype type-id . A constructor variant-id is defined for each variant. Each
constructor takes an argument for each field of its variant.

The value of each field is checked by its associated contract-expr . A contract-expr
may be an arbitrary predicate or a contract.

If the #:immutable option is provided, the constructors create immutable structs. Other-
wise, they can be mutated.

In addition to the constructors, a define-type expression also defines:

• a predicate type-id? that returns true for instances of the datatype, and false for
any other value,

• for each variant, a predicate variant-id? that returns true when applied to a value
of the same variant and false for any other value,

• for each field of each variant, an accessor variant-id-field-id that returns the
value of the field, and

• unless the #:immutable option is provided, for each field of each variant, define-
type also defines a mutator set-variant-id-field-id! that sets the value of the
field.

1.2 Deconstructing Data Structures: type-case

(type-case datatype-id expr
branch ...)

2

https://pkgs.racket-lang.org/package/plai-lib

branch = (variant-id (field-id ...) result-expr ...)
| (else result-expr ...)

Branches on the datatype instance produced by expr , which must be an instance of
datatype-id (previously defined with define-type) Each branch extracts the values
of the fields, and binds them to field-id

If a branch is not specified for each variant, you may use an else branch to create a catch-all
branch. An else branch must be the last branch in the sequence of branches. type-case
signals a compile-time error if all variants are not covered and the else branch is missing.
Similarly, type-case signals a compile-time error if an else branch is unreachable because
a branch exists for all variants.

1.3 Testing Infrastructure

PLAI Scheme provides the following syntactic forms for testing.

(test result-expr expected-expr)

If result-expr and expected-expr evaluate to the same value result-value accord-
ing to equal~?, the test prints the following expression:

(good result-expr result-value expected-value location).

If they do not evaluate to the same value, the test prints

(bad result-expr result-value expected-value location).

If evaluating result-expr signals an error, the test prints

(exception result-expr exception-message <no-expected-value> loca-
tion)

If evaluating expected-expr signals an error, the test prints

(pred-exception result-expr exception-message <no-expected-value>
location)

If the printout begins with good, then it is printed to (current-output-port); otherwise
it is printed to (current-error-port).

(test/pred result-expr pred?)

Similar to test, but instead of supplying an expected value, the predicate pred? is applied
to result-expr .

3

If evaluating pred? signals an error, the test prints

(pred-exception result-expr exception-message <no-expected-value>
location)

The syntax of pred? is considered expected-value for the purposes of test reporting.

error : procedure?

Like scheme’s scheme:error, but generates exceptions that are caught by test/exn.

(test/exn result-expr error-message)

This test succeeds if the expression evaluates to a call to error. Moreover, the error message
contained in the exception must contain the string error-message . Note that test/exn
only succeeds if the exception was explicitly raised by the user.

For example, the following test succeeds:

(test/exn (error "/: division by zero") "by zero")

The error message is "/: division by zero", and "by zero" is a substring of the error
message. However, the following test fails:

(test/exn (/ 25 0) "by zero")

Although the expression raises an exception and the error string contains "by zero", since
the error was not explicitly raised by user-written code, the test fails.

The evaluation of error-message is considered expected-value for the purposes of test
reporting.

(test/regexp result-expr error-message-regexp)

This test is similar to test/exn,but the error message is matched against a regular expres-
sion instead.

The evaluation of error-message-regexp is considered expected-value for the pur-
poses of test reporting.

1.3.1 Test Equality

(equal~? v1 v2) Ñ boolean?
v1 : any/c
v2 : any/c

4

The same as equal?, except that if v1 and v2 are real numbers, and if either is inexact,
then the result is #t if the difference between the number is less than (test-inexact-
epsilon).

1.3.2 Test Flags

(abridged-test-output [abridge?]) Ñ void?
abridge? : boolean? = false

When this flag is set to true, the test forms never prints result-expr or location .

(plai-catch-test-exn [catch?]) Ñ void?
catch? : boolean? = true

When this flag is set to true, exceptions from tests will be caught. By default, exceptions
are caught.

(halt-on-errors [halt?]) Ñ void?
halt? : boolean? = true

This flag determines whether the program immediately halts when a test fails. By default,
programs do not halt on failures.

(print-only-errors [print?]) Ñ void?
print? : boolean? = true

When this flag is set to true, only tests that fail will be printed. By default, the results of all
tests are printed.

(test-inexact-epsilon epsilon) Ñ void?
epsilon : number?

When testing immediate inexact values for equality, test permits them to differ by ep-
silon . The default value of epsilon is 0.01.

(plai-ignore-exn-strings ignore?) Ñ void?
ignore? : boolean?

If this flag is set to true, when testing for exceptions with test/exn and test/regexp, the
message of the exception is ignored. By default, test/exn and test/regexp only succeed
when the message of the exception matches the supplied string or regular expression.

plai-all-test-results

This variable is the list of all tests that have been run so far, with the most recent test at the
head.

5

2 GC Collector Scheme

#lang plai/collector package: plai-lib

GC Collector Scheme is based on PLAI Scheme. It provides additional procedures and
syntax for writing garbage collectors.

2.1 Garbage Collector Interface

The GC Collector Scheme language provides the following functions that provide access to
the heap and root set:

(heap-size) Ñ exact-nonnegative-integer?

Returns the size of the heap. The size of the heap is specified by the mutator that uses the
garbage collector. See allocator-setup for more information.

(location? v) Ñ boolean?
v : any/c

Determines if v is an integer between 0 and (- (heap-size) 1) inclusive.

(root? v) Ñ boolean?
v : any/c

Determines if v is a root.

(heap-value? v) Ñ boolean?
v : any/c

A value that may be stored on the heap. Roughly corresponds to the contract (or/c
boolean? number? procedure? symbol? empty?).

(heap-set! loc val) Ñ void?
loc : location?
val : heap-value?

Sets the value at loc to val .

(heap-ref loc) Ñ heap-value?
loc : location?

Returns the value at loc .

6

https://pkgs.racket-lang.org/package/plai-lib

(get-root-set id ...)

Returns the current roots as a list. Local roots are created for the identifiers id as well.

(read-root root) Ñ location?
root : root?

Returns the location of root .

(set-root! root loc) Ñ void?
root : root?
loc : location?

Updates the root to reference the given location.

(procedure-roots proc) Ñ (listof root?)
proc : procedure?

Given a closure stored on the heap, returns a list of the roots reachable from the closure’s
environment. If proc is not reachable, the empty list is returned.

(with-heap heap-expr body-expr ...)

heap-expr : (vectorof heap-value?)

Evaluates each of the body-exprs in a context where the value of heap-expr is used as
the heap. Useful in tests:

(test (with-heap (make-vector 20)
(init-allocator)
(gc:deref (gc:alloc-flat 2)))

2)

current-heap : (parameter/c (vectorof heap-value?))

Bound to the current heap inside of with-heap.

(with-roots roots-expr expr1 expr2 ...)

roots-expr : (listof location?)

Evaluates each of expr1 and the expr2s in in a context with the result of roots-expr as
additional roots.

This function is intended to be used in test suites for collectors. Since your test suites are not
running in the

7

#lang plai/mutator

language, get-root-set returns a list consisting only of the roots it created, not all of the
other roots it normally would return. Use this function to note specific locations as roots and
set up better tests for your GC.

(test (with-heap (make-vector 4)
(define f1 (gc:alloc-flat 1))
(define c1 (gc:cons f1 f1))
(with-roots (list c1)

(gc:deref
(gc:first
(gc:cons f1 f1)))))

1)

2.2 Garbage Collector Exports

A garbage collector must define the following functions:

(init-allocator) Ñ void?

init-allocator is called before all other procedures by a mutator. Place any requisite
initialization code here.

(gc:deref loc) Ñ heap-value?
loc : location?

Given the location of a flat Scheme value, this procedure should return that value. If the
location does not hold a flat value, this function should signal an error.

(gc:alloc-flat val) Ñ location?
val : heap-value?

This procedure should allocate a flat Scheme value (number, symbol, boolean, closure or
empty list) on the heap, returning its location (a number). The value should occupy a single
heap cell, though you may use additional space to store a tag, etc. You are also welcome to
pre-allocate common constants (e.g., the empty list). This procedure may need to perform a
garbage-collection. If there is still insufficient space, it should signal an error.

Note that closures are flat values. The environment of a closure is internally managed, but
contains references to values on the heap. Therefore, during garbage collection, the environ-
ment of reachable closures must be updated. The language exposes the environment via the
procedure-roots function.

8

(gc:cons first rest) Ñ location?
first : location?
rest : location?

Given the location of the first and rest values, this procedure must allocate a cons cell
on the heap. If there is insufficient space to allocate the cons cell, it should signal an error.

(gc:first cons-cell) Ñ location?
cons-cell : location?

If the given location refers to a cons cell, this should return the first field. Otherwise, it
should signal an error.

(gc:rest cons-cell) Ñ location?
cons-cell : location?

If the given location refers to a cons cell, this should return the rest field. Otherwise, it should
signal an error.

(gc:set-first! cons-cell first-value) Ñ void?
cons-cell : location?
first-value : location?

If cons-cell refers to a cons cell, set the head of the cons cell to first-value . Otherwise,
signal an error.

(gc:set-rest! cons-cell rest-value) Ñ void?
cons-cell : location?
rest-value : location?

If cons-cell refers to a cons cell, set the tail of the cons cell to rest-value . Otherwise,
signal an error.

(gc:cons? loc) Ñ boolean?
loc : location?

Returns true if loc refers to a cons cell. This function should never signal an error.

(gc:flat? loc) Ñ boolean?
loc : location?

Returns true if loc refers to a flat value. This function should never signal an error.

9

3 GC Mutator Scheme

#lang plai/mutator package: plai-lib

The GC Mutator Scheme language is used to test garbage collectors written with the §2
“GC Collector Scheme” language. Since collectors support a subset of Scheme’s values,
the GC Mutator Scheme language supports a subset of procedures and syntax. In addition,
many procedures that can be written in the mutator are omitted as they make good test cases.
Therefore, the mutator language provides only primitive procedures, such as +, cons, etc.

3.1 Building Mutators

The first expression of a mutator must be:

(allocator-setup collector-module
heap-size)

heap-size = exact-nonnegative-integer

The collector-module form specifies the path to the garbage collector that the mutator
should use. The collector must be written in the GC Collector Scheme language.

The rest of a mutator module is a sequence of definitions, expressions and test cases. The GC
Mutator Scheme language transforms these definitions and statements to use the collector
specified in allocator-setup. In particular, many of the primitive forms, such as cons
map directly to procedures such as gc:cons, written in the collector.

3.2 Mutator API

The GC Mutator Scheme language supports the following procedures and syntactic forms:

if

Just like Racket’s if.

and

Just like Racket’s and.

or

10

https://pkgs.racket-lang.org/package/plai-lib

Just like Racket’s or.

cond

Just like Racket’s cond.

case

Just like Racket’s case.

define-values

Just like Racket’s define-values.

let

Just like Racket’s let.

let-values

Just like Racket’s let-values.

let*

Just like Racket’s let*.

set!

Just like Racket’s set!.

quote

Just like Racket’s quote.

begin

Just like Racket’s begin.

11

(define (id arg-id ...) body-expression ...+)

Just like Racket’s define, except restricted to the simpler form above.

(lambda (arg-id ...) body-expression ...+)
(𝜆 (arg-id ...) body-expression ...+)

Just like Racket’s lambda and 𝜆, except restricted to the simpler form above.

error : procedure?

Just like Racket’s error.

add1 : procedure?

Just like Racket’s add1.

sub1 : procedure?

Just like Racket’s sub1.

zero? : procedure?

Just like Racket’s zero?.

+ : procedure?

Just like Racket’s +.

- : procedure?

Just like Racket’s -.

* : procedure?

Just like Racket’s *.

12

/ : procedure?

Just like Racket’s /.

even? : procedure?

Just like Racket’s even?.

odd? : procedure?

Just like Racket’s odd?.

= : procedure?

Just like Racket’s =.

< : procedure?

Just like Racket’s <.

> : procedure?

Just like Racket’s >.

<= : procedure?

Just like Racket’s <=.

>= : procedure?

Just like Racket’s >=.

symbol? : procedure?

Just like Racket’s symbol?.

13

symbol=? : procedure?

Just like Racket’s symbol=?.

number? : procedure?

Just like Racket’s number?.

boolean? : procedure?

Just like Racket’s boolean?.

empty? : procedure?

Just like Racket’s empty?.

eq? : procedure?

Just like Racket’s eq?.

(cons hd tl) Ñ cons?
hd : any/c
tl : any/c

Constructs a (mutable) pair.

(cons? v) Ñ boolean?
v : any/c

Returns #t when given a value created by cons, #f otherwise.

(first c) Ñ any/c
c : cons?

Extracts the first component of c .

(rest c) Ñ any/c
c : cons?

14

Extracts the rest component of c .

(set-first! c v) Ñ void?
c : cons?
v : any/c

Sets the first of the cons cell c .

(set-rest! c v) Ñ void?
c : cons?
v : any/c

Sets the rest of the cons cell c .

empty

The identifier empty is defined to invoke (gc:alloc-flat '()) wherever it is used.

print-only-errors : procedure?

Behaves like PLAI’s print-only-errors.

halt-on-errors : procedure?

Behaves like PLAI’s halt-on-errors.

Other common procedures are left undefined as they can be defined in terms of the primitives
and may be used to test collectors.

Additional procedures from scheme may be imported with:

(import-primitives id ...)

Imports the procedures id ... from scheme. Each procedure is transformed to correctly
interface with the mutator. That is, its arguments are dereferenced from the mutator’s heap
and the result is allocated on the mutator’s heap. The arguments and result must be heap-
value?s, even if the imported procedure accepts or produces structured data.

For example, the GC Mutator Scheme language does not define modulo:

(import-primitives modulo)

(test/value=? (modulo 5 3) 2)

15

3.3 Testing Mutators

GC Mutator Scheme provides two forms for testing mutators:

(test/location=? mutator-expr1 mutator-expr2)

test/location=? succeeds if mutator-expr1 and mutator-expr2 reference the same
location on the heap.

(test/value=? mutator-expr scheme-datum/quoted)

test/value=? succeeds if mutator-expr and scheme-datum/expr are structurally
equal. scheme-datum/quoted is not allocated on the mutator’s heap. Futhermore, it must
either be a quoted value or a literal value.

(printf format mutator-expr ...)

format = literal-string

In GC Mutator Scheme, printf is a syntactic form and not a procedure. The format string,
format is not allocated on the mutator’s heap.

16

4 GC Collector Language, 2

#lang plai/gc2/collector package: plai-lib

GC Collector Scheme is based on PLAI. It provides additional procedures and syntax for
writing garbage collectors.

4.1 Garbage Collector Interface for GC2

The GC Collector Scheme language provides the following functions that provide access to
the heap and root set:

(heap-size) Ñ exact-nonnegative-integer?

Returns the size of the heap. The size of the heap is specified by the mutator that uses the
garbage collector. See allocator-setup for more information.

(location? v) Ñ boolean?
v : any/c

Determines if v is an integer between 0 and (- (heap-size) 1) inclusive.

(root? v) Ñ boolean?
v : any/c

Determines if v is a root.

(heap-value? v) Ñ boolean?
v : any/c

A value that may be stored on the heap. Roughly corresponds to the contract (or/c
boolean? number? symbol? empty?).

(heap-set! loc val) Ñ void?
loc : location?
val : heap-value?

Sets the value at loc to val .

(heap-ref loc) Ñ heap-value?
loc : location?

Returns the value at loc .

17

https://pkgs.racket-lang.org/package/plai-lib

(get-root-set)

Returns the current root?s as a list. This returns valid roots only when invoked via the
mutator language. Otherwise it returns only what has been set up with with-roots.

Note that if your collector is being invoked via gc:cons or gc:closure, then there may be
live data that is not reachable via the result of get-root-set, but that is reachable via the
roots passed as arguments to those functions.

(read-root root) Ñ location?
root : root?

Returns the location of root .

(set-root! root loc) Ñ void?
root : root?
loc : location?

Updates root to refer to loc .

(simple-root l) Ñ root?
l : location?

Makes a root that is initialized with l .

(make-root name get set) Ñ root?
name : symbol?
get : (-> location?)
set : (-> location? void?)

Creates a new root. When read-root is called, it invokes get and when set-root! is
called, it invokes set .

For example, this creates a root that uses the local variable x to hold its location:

(let ([x 1])
(make-root 'x

(𝜆 () x)
(𝜆 (new-x) (set! x new-x))))

(with-heap heap-expr body-expr ...)

heap-expr : (vectorof heap-value?)

18

Evaluates each of the body-exprs in a context where the value of heap-expr is used as
the heap. Useful in tests:

(test (with-heap (make-vector 20)
(init-allocator)
(gc:deref (gc:alloc-flat 2)))

2)

current-heap : (parameter/c (vectorof heap-value?))

Bound to the current heap inside of with-heap.

(with-roots (root-var ...) expr1 expr2 ...)

root-var : location?

Evaluates each of expr1 and the expr2s in in a context with additional roots, one for each of
the root-vars. The get-root-set function returns these additional roots. Calling read-
root on one of the newly created roots returns the value of the corresponding root-var
and calling set-root! mutates the corresponding variable.

This form is intended to be used in test suites for collectors. Since your test suites are not
running in the

#lang plai/gc2/mutator

language, get-root-set returns a list consisting only of the roots it created, not all of the
other roots it normally would return. Use with-roots to note specific locations as roots
and set up better tests for your GC.

(test (with-heap (make-vector 4)
(init-allocator)
(define f1 (gc:alloc-flat 1))
(define r1 (make-root 'f1

(𝜆 () f1)
(𝜆 (v) (set! f1 v))))

(define c1 (gc:cons r1 r1))
(with-roots (c1)

(gc:deref
(gc:first
(gc:cons r1 r1)))))

1)

4.2 Garbage Collector Exports for GC2

A garbage collector must define the following functions:

19

(init-allocator) Ñ void?

init-allocator is called before all other procedures by a mutator. Place any requisite
initialization code here.

(gc:deref loc) Ñ heap-value?
loc : location?

Given the location of a flat value, this procedure should return that value. If the location does
not hold a flat value, this function should signal an error.

(gc:alloc-flat val) Ñ location?
val : heap-value?

This procedure should allocate a flat value (number, symbol, boolean, or empty list) on the
heap, returning its location (a number). The value should occupy a single heap cell, though
you may use additional space to store a tag, etc. You are also welcome to pre-allocate
common constants (e.g., the empty list). This procedure may need to perform a garbage-
collection. If there is still insufficient space, it should signal an error.

(gc:cons first rest) Ñ location?
first : root?
rest : root?

Given two roots, one for the first and rest values, this procedure must allocate a cons
cell on the heap. If there is insufficient space to allocate the cons cell, it should signal an
error.

(gc:first cons-cell) Ñ location?
cons-cell : location?

If the given location refers to a cons cell, this should return the first field. Otherwise, it
should signal an error.

(gc:rest cons-cell) Ñ location?
cons-cell : location?

If the given location refers to a cons cell, this should return the rest field. Otherwise, it should
signal an error.

(gc:set-first! cons-cell first-value) Ñ void?
cons-cell : location?
first-value : location?

20

If cons-cell refers to a cons cell, set the head of the cons cell to first-value . Otherwise,
signal an error.

(gc:set-rest! cons-cell rest-value) Ñ void?
cons-cell : location?
rest-value : location?

If cons-cell refers to a cons cell, set the tail of the cons cell to rest-value . Otherwise,
signal an error.

(gc:cons? loc) Ñ boolean?
loc : location?

Returns #true if loc refers to a cons cell. This function should never signal an error.

(gc:flat? loc) Ñ boolean?
loc : location?

Returns #true if loc refers to a flat value. This function should never signal an error.

(gc:closure code-ptr free-vars) Ñ location?
code-ptr : heap-value?
free-vars : (listof root?)

Allocates a closure with code-ptr and the free variables in the list free-vars .

(gc:closure-code-ptr loc) Ñ heap-value?
loc : location?

Given a location returned from an earlier allocation check to see if it is a closure; if not signal
an error. If so, return the code-ptr for that closure.

(gc:closure-env-ref loc i) Ñ location?
loc : location?
i : exact-nonnegative-integer?

Given a location returned from an earlier allocation, check to see if it is a closure; if not
signal an error. If so, return the i th variable in the closure (counting from 0).

(gc:closure? loc) Ñ boolean?
loc : location?

Determine if a previously allocated location holds a closure. This function will be called
only with locations previous returned from an allocating function or passed to set-root!.
It should never signal an error.

21

5 GC Mutator Language, 2

#lang plai/gc2/mutator package: plai-lib

The GC Mutator Scheme language is used to test garbage collectors written with the §4
“GC Collector Language, 2” language. Since collectors support a subset of Racket’s values,
the GC Mutator Scheme language supports a subset of procedures and syntax. In addition,
many procedures that can be written in the mutator are omitted as they make good test cases.
Therefore, the mutator language provides only primitive procedures, such as +, cons, etc.

5.1 Building Mutators for GC2

The first expression of a mutator must be:

(allocator-setup collector-module
heap-size)

heap-size = exact-nonnegative-integer

collector-module specifies the path to the garbage collector that the mutator should use.
The collector must be written in the GC Collector Scheme language.

The rest of a mutator module is a sequence of definitions, expressions and test cases. The GC
Mutator Scheme language transforms these definitions and statements to use the collector
specified in allocator-setup. In particular, many of the primitive forms, such as cons
map directly to procedures such as gc:cons, written in the collector.

5.2 Mutator API for GC2

The GC Mutator Scheme language supports the following procedures and syntactic forms:

if

Just like Racket’s if.

and

Just like Racket’s and.

or

22

https://pkgs.racket-lang.org/package/plai-lib

Just like Racket’s or.

cond

Just like Racket’s cond.

case

Just like Racket’s case.

define-values

Just like Racket’s define-values.

let

Just like Racket’s let.

let-values

Just like Racket’s let-values.

let*

Just like Racket’s let*.

set!

Similar to Racket’s set!. Unlike Racket’s set!, this set! is syntactically allowed only in
positions that discard its result, e.g., at the top-level or in a begin expression (although not
as the last expression in a begin).

quote

Just like Racket’s quote.

begin

23

Just like Racket’s begin.

(define (id arg-id ...) body-expression ...+)

Just like Racket’s define, except restricted to the simpler form above.

(lambda (arg-id ...) body-expression ...+)
(𝜆 (arg-id ...) body-expression ...+)

Just like Racket’s lambda and 𝜆, except restricted to the simpler form above.

error : procedure?

Just like Racket’s error.

add1 : procedure?

Just like Racket’s add1.

sub1 : procedure?

Just like Racket’s sub1.

zero? : procedure?

Just like Racket’s zero?.

+ : procedure?

Just like Racket’s +.

- : procedure?

Just like Racket’s -.

* : procedure?

Just like Racket’s *.

24

/ : procedure?

Just like Racket’s /.

even? : procedure?

Just like Racket’s even?.

odd? : procedure?

Just like Racket’s odd?.

= : procedure?

Just like Racket’s =.

< : procedure?

Just like Racket’s <.

> : procedure?

Just like Racket’s >.

<= : procedure?

Just like Racket’s <=.

>= : procedure?

Just like Racket’s >=.

symbol? : procedure?

Just like Racket’s symbol?.

25

symbol=? : procedure?

Just like Racket’s symbol=?.

number? : procedure?

Just like Racket’s number?.

boolean? : procedure?

Just like Racket’s boolean?.

empty? : procedure?

Just like Racket’s empty?.

eq? : procedure?

Just like Racket’s eq?.

(cons hd tl) Ñ cons?
hd : any/c
tl : any/c

Constructs a (mutable) pair.

(cons? v) Ñ boolean?
v : any/c

Returns #t when given a value created by cons, #f otherwise.

(first c) Ñ any/c
c : cons?

Extracts the first component of c .

(rest c) Ñ any/c
c : cons?

26

Extracts the rest component of c .

(set-first! c v) Ñ void
c : cons?
v : any/c

Sets the first of the cons cell c .

Calls to this function are allowed only in syntactic positions that would discard its result,
e.g., at the top-level or inside a begin expression (but not in the last expression in a begin).
Also, this function appear only in the function position of an application expression.

So, in order to pass around a version of this function, you must write something like this (𝜆
(c v) (begin (set-first! c v) 42)), perhaps picking a different value than 42 as
the result.

(set-rest! c v) Ñ void
c : cons?
v : any/c

Sets the rest of the cons cell c , with the same syntactic restrictions as set-first!.

empty

The identifier empty is defined to invoke (gc:alloc-flat '()) wherever it is used.

print-only-errors

Behaves like PLAI’s print-only-errors.

halt-on-errors

Behaves like PLAI’s halt-on-errors.

Other common procedures are left undefined as they can be defined in terms of the primitives
and may be used to test collectors.

Additional procedures from scheme may be imported with:

(import-primitives id ...)

Imports the procedures id ... from scheme. Each procedure is transformed to correctly
interface with the mutator. That is, its arguments are dereferenced from the mutator’s heap
and the result is allocated on the mutator’s heap. The arguments and result must be heap-
value?s, even if the imported procedure accepts or produces structured data.

For example, the GC Mutator Scheme language does not define modulo:

27

(import-primitives modulo)

(test/value=? (modulo 5 3) 2)

5.3 Testing Mutators with GC2

GC Mutator Scheme provides two forms for testing mutators:

(test/location=? mutator-expr1 mutator-expr2)

test/location=? succeeds if mutator-expr1 and mutator-expr2 reference the same
location on the heap.

(test/value=? mutator-expr datum/quoted)

test/value=? succeeds if mutator-expr and datum/expr are structurally equal. da-
tum/quoted is not allocated on the mutator’s heap. Futhermore, it must either be a quoted
value or a literal value.

(printf format mutator-expr ...)

format = literal-string

In GC Mutator Scheme, printf is a syntactic form and not a procedure. The format string,
format is not allocated on the mutator’s heap.

28

6 Generating Random Mutators

(require plai/random-mutator) package: plai-lib

This PLAI library provides a facility for generating random mutators, in order to test your
garbage collection implementation.

(save-random-mutator file
collector-name

[#:heap-values heap-values
#:iterations iterations
#:program-size program-size
#:heap-size heap-size
#:gc2? gc2?]) Ñ void?

file : path-string?
collector-name : string?
heap-values : (cons heap-value? (listof heap-value?))

= (list 0 1 -1 'x 'y #f #t '())
iterations : exact-positive-integer? = 200
program-size : exact-positive-integer? = 10
heap-size : exact-positive-integer? = 100
gc2? : boolean? = #f

Creates a random mutator that uses the collector collector-name and saves it in file .

The mutator is created by first making a random graph whose nodes either have no outgoing
edges, two outgoing edges, or some random number of outgoing edges and then picking a
random path in the graph that ends at one of the nodes with no edges.

This graph and path are then turned into a PLAI program by creating a let expression that
binds one variable per node in the graph. If the node has no outgoing edges, it is bound to a
heap-value?. If the node has two outgoing edges, it is bound to a pair and the two edges
are put into the first and rest fields. Otherwise, the node is represented as a procedure that
accepts an integer index and returns the destination node of the corresponding edge.

Once the let expression has been created, the program creates a bunch of garbage and then
traverses the graph, according to the randomly created path. If the result of the path is the
expected heap value, the program does this again, up to iterations times. If the result of
the path is not the expected heap value, the program terminates with an error.

The keyword arguments control some aspects of the generation of random mutators:

• Elements from the heap-values argument are used as the base values when creating
nodes with no outgoing edges. See also find-heap-values.

29

https://pkgs.racket-lang.org/package/plai-lib

• The iterations argument controls how many times the graph is created (and tra-
versed).

• The program-size argument is a bound on how big the program it is; it limits the
number of nodes, the maximum number of edges, and the length of the path in the
graph.

• The heap-size argument controls the size of the heap in the generated mutator.

Example:

(save-random-mutator "tmp.rkt" "mygc.rkt" #:gc2? #t)

will write to "tmp.rkt" with a program like this one:

#lang plai/gc2/mutator
(allocator-setup "mygc.rkt" 200)
(define (build-one)

(let* ((x0 1)
(x1 (cons #f #f))
(x2
(lambda (x)

(if (= x 0)
x0
(if (= x 1) x0 (if (= x 2) x1 (if (= x 3) x1 x0))))))

(x3 1)
(x4 (cons x3 x3))
(x5 (lambda (x) (if (= x 0) x4 (if (= x 1) x1 x2)))))

(set-first! x1 x2)
(set-rest! x1 x3)
x5))

(define (traverse-one x5) (= 1 (first (x5 0))))
(define (trigger-gc n)

(if (zero? n) 0 (begin (cons n n) (trigger-gc (- n 1)))))
(define (loop i)

(if (zero? i)
'passed
(let ((obj (build-one)))

(trigger-gc 200)
(if (traverse-one obj) (loop (- i 1)) 'failed))))

(loop 200)

(find-heap-values input) Ñ (listof heap-value?)
input : (or/c path-string? input-port?)

30

Processes input looking for occurrences of heap-value?s in the source of the program and
returns them. This makes a good start for the heap-values argument to save-random-
mutator.

If input is a port, its contents are assumed to be a well-formed PLAI program. If input is
a file, the contents of the file are used.

31

7 Web Application Scheme

#lang plai/web package: plai-lib

The Web Application Scheme language allows you to write server-side Web applications for
the PLT Web Server.

For more information about writing Web applications, see: Web Applications in Racket.

When you click on the Run button in DrRacket, your Web application is launched in the
Web server.

The application is available at http://localhost:8000/servlets/standalone.rkt.

The Web Application Scheme language will automatically load this URL in your Web
browser.

You may use no-web-browser to prevent the browser from being launched and static-
files-path to serve additional static files.

7.1 Web Application Exports

A Web application must define a procedure start:

(start initial-request) Ñ response?
initial-request : request?

The initial request to a Web application is serviced by this procedure.

32

https://pkgs.racket-lang.org/package/plai-lib

	1 PLAI Scheme
	1.1 Defining Types: define-type
	1.2 Deconstructing Data Structures: type-case
	1.3 Testing Infrastructure
	1.3.1 Test Equality
	1.3.2 Test Flags

	2 GC Collector Scheme
	2.1 Garbage Collector Interface
	2.2 Garbage Collector Exports

	3 GC Mutator Scheme
	3.1 Building Mutators
	3.2 Mutator API
	3.3 Testing Mutators

	4 GC Collector Language, 2
	4.1 Garbage Collector Interface for GC2
	4.2 Garbage Collector Exports for GC2

	5 GC Mutator Language, 2
	5.1 Building Mutators for GC2
	5.2 Mutator API for GC2
	5.3 Testing Mutators with GC2

	6 Generating Random Mutators
	7 Web Application Scheme
	7.1 Web Application Exports

