RS5RS: Legacy Scheme

Version 9.0.0.1

October 20, 2025

The The Revised® Report on the Algorithmic Language Scheme defines a dialect of Scheme.

We use R°RS to refer to both the standard and the language defined by the standard. See §23 “Dialects
of Racket and

The default dialect of Lisp provided by racket and other Racket tools differs from RIRS in ~ Scheme”for
general information

many ways, but Racket includes tools and libraries for running R°RS programs. about different

dialects of Scheme
within Racket.

r5rs-std/index.html

Contents

[Running R°RS Programs|

3 R°RS Module Language|

[3.1 Non-R°RS Bindings from r5rs|

4 RRS Initialization Library|

1 Running R°RS Programs

Racket provides several layers of support for programs written according to RIRS:

e DrRacket provides an R5RS language, which can be selected via the
Language|Choose Language... menu item. See Choose Language... in the
DrRacket documentation for more information.

* The plt-rbrs executable runs an RIRS program or provides a read-eval-print loop
for evaluating RORS expressions and definitions. See [§2 “plt-r5rs”| (later in this
manual) for more information.

e The r5rs library implemented RORS procedures and syntactic forms. It can also be
used with #lang to create a module whose body is implemented in an RORS-like lan-
guage. See[§3 “R°RS Module Language”| (later in this manual) for more information.

* The r5rs/init library extends r5rs to set parameters (such as case-insensitive sym-
bol reading) for R°RS loading or an RORS read-eval-print loop. See|§4 “R’RS Initial-

ization Library”| (later in this manual) for more information.

2 plt-rbrs

The p1lt-r5rs executable runs an R°RS program from a file that is supplied on the command
line. If no program file is provided as a command-line argument, then a read-eval-print loop
is started.

Before starting a read-eval-print loop, an initialization file is loaded, if it exists. The file
is the same as the file reported by (find-system-path 'init-file), but with the char-
acters racket in the filename replaced by pltr5rs. For example, on Unix, the file is
"~/.pltrbrsrc".

By default, plt-r5rs departs from R?RS conformance in one crucial way: the names of
pre-defined functions cannot be redefined at the top level. This restriction enables better
run-time performance. Use the --no-prim command-line flag—before a file to load, if
any—to obtain the standard behavior for primitive bindings (at the cost of performance).

3 RIRS Module Language

#lang rbrs package: rbrs-1ib

As a library, r5rs provides the syntactic forms and procedures defined by R’RS. When used
as a language via #1lang, the program is read with the following parameterizations:

(read-case-sensitive #f)
(read-accept-infix-dot #f)
(read-curly-brace-as-paren #f)
(read-square-bracket-as-paren #f)

The r5rs bindings can be imported into a top-level environment, and then evaluation in that
top-level environment corresponds to R°RS. Use (namespace-require/copy 'r5rs)
with an empty namespace to maximize conformance with R°RS; Using (namespace-
require 'r5rs), in contrast, creates primitive bindings as imports, which is the same
as using plt-rbrs without the --no-prim flag. More simply, use (scheme-report-
environment 5). See also r5rs/init, which sets reader and printer parameters to in-
crease conformance.

Using rbrs via #lang creates a module whose body is implemented with an RRS-like
language. The main difference from RRS is that, as a module language, r5rs does not
allow redefinition of top-level bindings, and expressions evaluated through load and eval
cannot automatically access bindings defined within the module.

Changed in version 6.0.1.4 of package r5rs-1ib: When an identifier bound by letrec is referenced before it is

initialized, an exception is raised, instead of producing #<undefined>.

3.1 Non-R°RS Bindings from r5rs

In addition to the bindings defined by R3RS, the r5rs library provides the following bind-
ings from racket/base (which are not legal identifiers in R°RS syntax, so there is no
danger of collisions in RRS programs):

#lapp #V%datum #)top #/top-interaction #Jrequire #)provide

It also provides a #%module-begin binding as defined below.

Note that #%require can be used to import Racket libraries into an otherwise R°RS pro-
gram, and #%provide can be used to export from a module that is implemented in an RORS-
like language.

Changed in version 1.1 of package r5rs-1ib: Added an RSRS—speciﬁc #/module-begin, instead of reexporting

racket’s #)plain-module-begin.

https://pkgs.racket-lang.org/package/r5rs-lib

(#Jmodule-begin form ...)

Besides allowing definitions and other forms like racket’s #),plain-module-begin, de-
fines a configure-runtime submodule (see §18.1.5 “Language Run-Time Configuration™)
that runs rbrs/init.

3.2 Notes on R3RS Functions

The cons of r5rs corresponds to racket/base’s mcons. Similarly, cdr is mcdr, and map
is compatibility/mlist’s mmap, and so on.

An RRS environment is implemented as a racket/base namespace. Also, relative to
racket/base, the expr passed to eval is constructed using mutable pairs.

The scheme-report-environment function returns a namespace containing the bind-
ings of r5rs. Procedure values are installed into the namespace using namespace-
require/copy, so that they can be redefined.

The null-environment function returns a namespace containing the syntactic forms of
r5rs, not including #%module-begin (which is not useful outside of a module).

4 RARS Initialization Library

(require rbrs/init) package: rbrs-1ib
The r5rs/init module re-exports r5rs, and also sets parameters as follows:

(read-case-sensitive #f)
(read-accept-infix-dot #f)
(read-curly-brace-as-paren #f)
(read-square-bracket-as-paren #f)
(print-mpair-curly-braces #f)

The side-effect of setting these parameters is useful when the module is required before
loading an RRS program, so that the reader and printer behave more as specified in RORS.
In particular, the plt-r5rs executable initializes by importing r5rs/init.

https://pkgs.racket-lang.org/package/r5rs-lib

	1 Running R5RS Programs
	2 plt-r5rs
	3 R5RS Module Language
	3.1 Non-R5RS Bindings from r5rs
	3.2 Notes on R5RS Functions

	4 R5RS Initialization Library

