Syntax Color: Utilities

Version 9.0.0.1
Scott Owens

October 20, 2025

The "syntax-color" collection provides the underlying data structures and some helpful
utilities for the color:text<%> class of framework.

Contents

11 Parenthesis Matching|

2 Lexer Contract and The Don’t-Stop Structure Type|

3 Racket Lexer|

7 Splay Tree for Tokenization|

|8 Interface for Clients of Syntax Color Output]

[9__Racket S-Expression Indentation and Navigation|

9.1 S-Expression Navigation|

9.2 S-Expression Indentation| L oL

11

12

15

17

19

22

1 Parenthesis Matching

(require syntax-color/paren-tree)
package: syntax-color-1ib

Parenthesis matching code built on top of token-tree}.

paren-treef : class?
superclass: object

(new paren-tree,
[matches matches]
...superclass-args. . .)
— (is-a?/c paren-tree,)
matches : (listof (list/c symbol? symbol?))

Creates a paren-tree}, object that treats (map car matches) as open parens
and (map cadr matches) as close parens, where each element of matches
is a matching pair of parens.

Each paren tree tracks a sequence of tokens (added with add-token) and can re-
spond to queries about the location of a paren that matches a paren at some spe-
cific location via match-forward and match-backward. The paren-tree’
also supports a notion of invisible parentheses that take up no space, where the
opens exist only at the start of a token and the closes exist only at the end of a
token.

Changed in version 1.6 of package syntax-color-1ib: Added support for invisible parens.

(send a-paren-tree add-token
type
length
[#:invisible-opens invisible-opens
#:invisible-closes invisible-closes])
— void?
type : (or/c #f symbol?)
length : natural?
invisible-opens : natural? = 0O
invisible-closes : natural? = 0

Adds one token to the end of the current tree. If type is a symbol, it is expected
to be one of the symbols in matches. If it is #f, then there are no visible paren-
these in this token. The invisible-opens and invsible-closes indicate
how many of each there are on this token (note that the invisible opens all exist
at the start of the token and the invisible closes all exist at the end of the token).

https://pkgs.racket-lang.org/package/syntax-color-lib

Changed in version 1.6 of package syntax-color-lib: Added #:invisible-opens and

#:invisible-closes arguments.

(send a-paren-tree match-forward pos
[#:invisible invisible])
— (or/c natural? #f)
(or/c natural? #f)
(or/c natural? #f)
pos : natural?
invisible : (or/c #f natural? 'all) = #f

Determines if there is a match for the paren at pos.

If invisible is #f, then the invisible parens are ignored and the match con-
siders only the parentheses that were explicit in the token argument to add-
token.

If invisible is a natural number, then the matching starts outside of that many
invisible parens. For example, if there are two invisible open parenthes on the
token at pos, then passing 1 as invisible will find the match to only the inner
invisible paren. If it is 2, it will find the match to the outer invisible paren. If
invisible is 'all, then it is the same as passing the total number of invisible
parens that are on the token at pos.

The first return is the starting position of the open paren The second return is
the position of the matching close paren. If the third return is #f, then the first
two returns represent a real match. If the third return is a number, it is the
maximum position in the tree that was searched. If the third result indicates
an error, the first two results give the starting and stopping positions for error
highlighting. If all three are #f, then there was no tree to search, or the position
did not immediately precede an open.

Changed in version 1.6 of package syntax-color-1ib: Added #:invisible argument.

(send a-paren-tree match-backward pos
[#:invisible invisible])
— (or/c natural? #f)
(or/c natural? #f)
(or/c natural? #f)
pos : natural?
invisible : (or/c #f natural? 'all) = #f

Like paren-tree), match-forward, except matches backwards from the
given paren.

The matching goes backwards from pos to the matching paren; accordingly,
the count of invisibles starts from the close parens and goes through the opens
(unlike paren-treey, match-forward which starts with the opens and goes
through the closes).

The results are, however, identical to paren-tree’, match-forward. So, if
the match is successful, the first result is the location of the open paren and the
second is the close.

Changed in version 1.6 of package syntax-color-1ib: Added #:invisible argument.

(send a-paren-tree split-tree pos) — void?
pos : natural?

Splits the tree at pos, which must not be in the middle of a token. Everything
following pos is marked as invalid.

(send a-paren-tree merge-tree num-to-keep) — void?
num-to-keep : natural?

Makes the num-to-keep last positions that have been marked invalid valid
again.

(send a-paren-tree truncate pos) — void?
pos : natural?

Removes the tokens after pos.

(send a-paren-tree is-open-pos? pos) — (or/c #f symbol?)
pos : natural?

Returns #£ if the position does not have a visible paren. Returns the correspond-
ing close if it does have an open.

(send a-paren-tree is-close-pos? pos) — (or/c #f symbol?)
pos : natural?

Returns #f if the position does not have a visible paren. Returns the correspond-
ing open if it does have a close.

(send a-paren-tree get-invisible-count pos) — natural? natural?
pos : natural?

Returns the number of invisible opens and invisible closes at pos.

Added in version 1.6 of package syntax-color-1ib.

2 Lexer Contract and The Don’t-Stop Structure Type

(require syntax-color/lexer-contract)
package: syntax-color-1ib

lexer/c : contract?

Checks to be sure a lexing function is well-behaved, constrained to functions where the
second return value is a symbol. For more details, see start-colorer in color:text<y>.

lexer*/c : contract?

Checks to be sure a lexing function is well-behaved. For more details, see start-colorer
in color:text<y>.

It also supplies a few random arguments to the lexer and checks the results, using op-
tion/c’s #:tester argument.

Added in version 1.2 of package syntax-color-1lib.

lexer*/c-without-random-testing : contract?

The same contract as lexer*/c, except without the random testing.

(struct dont-stop (val))
val : any/c

A structure type used to indicate to the lexer that it should not allow itself to be interrupted.
For more details, see start-colorer in color:text<)>.

(check-colorer-results-match-port-before-and-afters
who

type

pos-before

new-token-start

new-token-end

pos-after)

— void?

who : symbol?

type : any/c

pos-before : (or/c exact-positive-integer? #f)
new-token-start : (or/c exact-positive-integer? #f)
new-token-end : (or/c exact-positive-integer? #f)
pos-after : (or/c exact-positive-integer? #f)

https://pkgs.racket-lang.org/package/syntax-color-lib

Checks that the results of a colorer make sense with respect to the positions of the port,
before and after the lexer is called.

The pos-before argument is expected to be the third result of port-next-location be-
fore a lexer is called and the pos-after argument is expected to to be the third result of
port-next-location after the lexer is called. The type, token-start, and token-end
arguments should be the corresponding results from the colorer (c.f. start-colorer).

This function raises an error unless the following boolean expression is true:
(or (equal? type 'eof)
(and (= pos-before new-token-start)

(< new-token-start new-token-end)
(= new-token-end pos-after)))

but it checks the individual parts of the expression to raise a more meaningful error message
when some part is not true.

The who argument is used to start the error message.

Added in version 1.4 of package syntax-color-1ib.

3 Racket Lexer

(require syntax-color/racket-lexer)
package: syntax-color-1ib

(racket-lexer in) — (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
in : input-port?

A lexer for Racket, including reader extensions (§13.7 “Reader Extension”), built specifi-
cally for color:text<y>.

The racket-lexer function returns 5 values:

« Either a string containing the matching text or the eof object. Block comments and
specials currently return an empty string. This may change in the future to other string
or non-string data.

* A symbol in '(error comment sexp-comment white-space constant
string no-color parenthesis hash-colon-keyword symbol eof other).

e Asymbolin "CICI DI LI 111 [{l [}]) or#f.
* A number representing the starting position of the match (or #f if eof).

* A number representing the ending position of the match (or #f if eof).

(racket-lexer* in offset mode)
— (or/c string? eof-object?)
(or/c symbol?
(and/c (hash/c symbol? any/c) immutable?))
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c
in : input-port?
offset : exact-nonnegative-integer?
mode : any/c

Like racket-lexer, but uses the extended lexer protocol to track and report regions that
are commented out with #;. It also uses current-lexeme->semantic-type-guess to
potentially add 'semantic-type-guess to the second result.

https://pkgs.racket-lang.org/package/syntax-color-lib

Added in version 1.2 of package syntax-color-1ib.
Changed in version 1.7: Added use of current-lexeme->semantic-type-guess.

(racket-lexer/status in) — (or/c string? eof-object?)

symbol?

(or/c symbol? #f)

(or/c number? #f)

(or/c number? #f)

(or/c 'datum 'open 'close 'continue)

in : input-port?

Like racket-1lexer, but returns an extra value. The last return value indicates whether the
consumed token should count as a datum, an opening parenthesis (or similar starting token
to group other tokens), a closing parenthesis (or similar), or a prefix (such as whitespace) on

a datum.

(racket-lexer*/status in offset mode)

— (or/c
(or/c

(or/c
(or/c
(or/c

exact-

any/c
(or/c

string? eof-object?)

symbol?

(and/c (hash/c symbol? any/c) immutable?))
symbol? #f)

number? #f)

number? #f)

nonnegative-integer?

'"datum 'open 'close 'continue)

in : input-port?

offset

! exact-nonnegative-integer?

mode : any/c

Like racket-lexer/status, but with comment tracking and 'semantic-type-guess
addition like racket-lexer*

Added in version 1.2 of package syntax-color-1lib.

Changed in version 1.7: Added use of current-lexeme->semantic-type-guess.

(racket-nobar-lexer/status in)

— (or/c

string? eof-object?)

symbol?

(or/c
(or/c
(or/c
(or/c

symbol? #f)
number? #f)
number? #f)
'"datum 'open 'close 'continue)

in : input-port?

Like racket-lexer/status, except it treats | as a delimiter instead of quoting syntax for
a symbol. This function is used by scribble-lexer.

(racket-nobar-lexer*/status in offset mode)
— (or/c string? eof-object?)
(or/c symbol?
(and/c (hash/c symbol? any/c) immutable?))
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c
(or/c 'datum 'open 'close 'continue)
in : input-port?
offset . exact-nonnegative-integer?
mode : any/c

Like racket-nobar-lexer/status, but with comment tracking and 'semantic-type-
guess addition like racket-lexerx.

Added in version 1.2 of package syntax-color-1lib.

Changed in version 1.7: Added use of current-lexeme->semantic-type-guess.

(current-lexeme->semantic-type-guess)

— (string . -> . (or/c #f symbol?))

(current-lexeme->semantic-type-guess proc) — void?
proc : (string . -> . (or/c #f symbol?))

A parameter to determine when a 'semantic-type-guess attribute should be added to
a token result of type 'symbol by racket-lexer* and similar functions. An attribute is
added whenever the proc value of the parameter returns a symbol (instead of #f).

Added in version 1.7 of package syntax-color-1ib.

10

4 Default Lexer

(require syntax-color/default-lexer)
package: syntax-color-1ib

(default-lexer in) — (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)

in : input-port?
A lexer that only identifies (,), [, 1, {, and } built specifically for color:text<¥%>.
default-lexer returns 5 values:

« Either a string containing the matching text or the eof object. Block specials currently

return an empty string. This may change in the future to other string or non-string
data.

e A symbol in ' (comment white-space no-color eof).
e Asymbolin "CICl D LI [11 [{I [}I]) or#£f.
* A number representing the starting position of the match (or #f if eof).

* A number representing the ending position of the match (or #f if eof).

11

https://pkgs.racket-lang.org/package/syntax-color-lib

5 Module Lexer

(require syntax-color/module-lexer)
package: syntax-color-1ib

(module-lexer in offset mode)
— (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
(or/c #f
(-> input-port? any)
(cons/c (-> input-port? exact-nonnegative-integer?
any/c
any)
any/c)
(struct/c dont-stop
((cons/c (-> input-port?
exact-nonnegative-integer?
any/c
any)
any/c))))
in : input-port?
offset : exact-nonnegative-integer?
mode : (or/c #f
(-> input-port? exact-nonnegative-integer?any)
(cons/c (-> input-port?
exact-nonnegative-integer?
any/c
any)
any/c))

Like racket-lexer, but with several differences:

¢ The module-lexer function accepts an offset and lexer mode, instead of just an input

port.

¢ In addition to the results of racket-lexer, module-lexer returns a backup distance

and a new lexer mode.

e When mode is #£ (indicating the start of the stream), the lexer checks in for a #1lang

specification.

If a #1ang line is present but the specified language does not exist, the entire in input

is consumed and colored as 'error.

12

https://pkgs.racket-lang.org/package/syntax-color-lib

If the language exists and the language provides a get-info function, then it is called
with 'color-lexer. If the result is not #f, then it should be a lexer function for use
with color:text<%>. The result mode is the lexer—paired with #f if the lexer is a
procedure arity 3—so that future calls will dispatch to the language-supplied lexer.

If the language is specified but it provides no get-info or 'color-lexer result, then
racket-lexer is returned as the mode.

* When mode is a lexer procedure, the lexer is applied to in. The lexer’s results are
returned, plus the lexer again as the mode; if the lexer produces a hash-table attribute
result, however, the ' type value is extracted and returned in place of the hash table.

* When mode is a pair, then the lexer procedure in the car is applied to in, offset,
and the mode in the cdr. The lexer’s results are returned, except that its mode result
is paired back with the lexer procedure.

(module-lexerx in offset mode)
— (or/c string? eof-object?)
(or/c symbol?
(and/c (hash/c symbol? any/c) immutable?))
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
(or/c #f

(-> input-port? any)

(cons/c (-> input-port?
exact-nonnegative-integer?
any/c
any)

any/c)
(struct/c dont-stop
((cons/c (-> input-port?
exact-nonnegative-integer?
any/c
any)
any/c))))
in : input-port?
offset : exact-nonnegative-integer?
mode : (or/c #f

(-> input-port? any)

(cons/c (-> input-port?
exact-nonnegative-integer?
any/c
any)

any/c))

13

Like module-lexer, except that the attribute result propagated from a language-specific
lexer can be a hash table.

Added in version 1.2 of package syntax-color-1ib.

14

6 Scribble Lexer

(require syntax-color/scribble-lexer)
package: syntax-color-1ib

(scribble-lexer in offset mode)
— (or/c string? eof-object?)
(or/c symbol?
(and/c (hash/c symbol? any/c) immutable?))
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c
in : input-port?
offset : exact-nonnegative-integer?
mode : any/c

Like racket-lexer*, but for Racket extended with Scribble’s @ notation (see §2 “@ Syn-
tax”).

Changed in version 1.2 of package syntax-color-1lib: Changed to be like racket-lexer* instead of

racket-lexer.

(scribble-inside-lexer in offset mode)
— (or/c string? eof-object?)
(or/c symbol?
(and/c (hash/c symbol? any/c) immutable?))
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c
in : input-port?
offset : exact-nonnegative-integer?
mode : any/c

Like scribble-1lexer, but starting in “text” mode instead of Racket mode.

Changed in version 1.2 of package syntax-color-1ib: Changed to be like racket-lexerx* instead of

racket-lexer.

(make-scribble-lexer [#:command-char at]) — lexer/c
at : (and/c char? (not/c (or/c #\] #\[))) = #\@

Produces a lexer like scribble-lexer, but using at in place of @.

15

https://pkgs.racket-lang.org/package/syntax-color-lib

Added in version 1.1 of package syntax-color-1ib.
Changed in version 1.2: Changed like scribble-lexer.

(make-scribble-inside-lexer [#:command-char at]) — lexer/c
at : (and/c char? (mot/c (or/c #\] #\[))) = #\@

Produces a lexer function like scribble-inside-lexer, but using at in place of @.

Added in version 1.1 of package syntax-color-1ib.

Changed in version 1.2: Changed like scribble-lexer.

16

7 Splay Tree for Tokenization

(require syntax-color/token-tree)
package: syntax-color-1ib

token-tree}, : class?
superclass: object’

A splay-tree class specifically geared for the task of on-the-fly tokenization. Instead of
keying nodes on values, each node has a length, and they are found by finding a node that
follows a certain total length of preceding nodes.

FIXME: many methods are not yet documented.

(new token-tree), [len len] [data datal)

— (is-a?/c token-treel)
len : (or/c exact-nonnegative-integer? fasle/c)
data : any/c

Creates a token tree with a single element.

(send a-token-tree get-root) — (or/c node? #f)
Returns the root node in the tree.

(send a-token-tree search! key-position) — void?

key-position : natural-number/c

Splays, setting the root node to be the closest node to offset key-position
(i.e., making the total length of the left tree at least key-position, if possible).

(node? v) — boolean?

v : any/c

(node-token-length n) — natural-number/c
n : node?

(node-token-data n) — any/c
n : node?

(node-left-subtree-length n) — natural-number/c
n : node?

(node-left n) — (or/c node? #f)
n : node?

(node-right n) — (or/c node? #f)
n : node?

17

https://pkgs.racket-lang.org/package/syntax-color-lib

Functions for working with nodes in a token-tree/.

(insert-first! treel tree2) — void?
treel : (is-a?/c token-tree%)
tree2 : (is-a?/c token-treel)

Inserts treel into tree2 as the first thing, setting tree2’s root to #f.

(insert-last! treel tree2) — void?
treel : (is-a?/c token-treel)
tree2 : (is-a%?/c token-treel,)

Inserts treel into tree2 as the last thing, setting tree2’s root to #f.

(insert-last-spec! tree n v) — void?
tree : (is-a%7/c token-tree,)
n : natural-number/c
v : any/c

Same as

(insert-last! tree
(new token-tree,
[length n]
[data v]))

This optimization is important for the colorer.

18

8 Interface for Clients of Syntax Color Output

(require syntax-color/color-textoid)
package: syntax-color-1ib

Added in version 1.3 of package syntax-color-1lib.
color-textoid<%> : interface?

The color-textoid<%> interface matches a subset of the color:text<y> interface. It
specifies methods that indentation and expression-navigation functions can use so that they
work either on actual color:text<%> objects or in other environments that use the start-
colorer in color:text<y> protocol without racket/gui.

(send a-color-textoid get-text [start end]) — string?
start : exact-nonnegative-integer? = 0
end : (or/c exact-nonnegative-integer? 'eof) = 'eof

Like get-text in text,.

(send a-color-textoid get-character start) — char?
start : exact-nonnegative-integer?

Like get-character in text¥.

(send a-color-textoid last-position)
— exact-nonnegative-integer?

Like last-position in text¥.

(send a-color-textoid position-paragraph start
[at-eo0l?])
— exact-nonnegative-integer?
start : exact-nonnegative-integer?
at-eol? : any/c = #f

Like position-paragraph in text’.

(send a-color-textoid paragraph-start-position paragraph
[visible?])
— exact-nonnegative-integer?
paragraph : exact-nonnegative-integer?
visible? : any/c = #t

19

https://pkgs.racket-lang.org/package/syntax-color-lib

Like paragraph-start-position in text.

(send a-color-textoid paragraph-end-position paragraph
[visible?])
— exact-nonnegative-integer?
paragraph : exact-nonnegative-integer?
visible? : any/c = #t

Like paragraph-end-position in text’

(send a-color-textoid skip-whitespace position
direction
comments?)

— exact-nonnegative-integer?

position : exact-nonnegative-integer?
direction : (or/c 'forward 'backward)
comments? : boolean?

Like skip-whitespace in color:text<%>

(send a-color-textoid backward-match position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Like backward-match in color:text<¥%>.

(send a-color-textoid backward-containing-sexp position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Like backward-containing-sexp in color:text</>

(send a-color-textoid forward-match position
cutoff)
— (or/c exact-nonnegative-integer? #f)
position : exact-nonnegative-integer?
cutoff : exact-nonnegative-integer?

Like forward-match in color:text<¥%>.

(send a-color-textoid classify-position position)
— (or/c symbol? #f)
position : exact-nonnegative-integer?

20

Like classify-position in color:text<y>

(send a-color-textoid classify-position* position)
— (or/c (and/c (hash/c symbol? any/c) immutable?) #f)
position : exact-nonnegative-integer?
Like classify-position* in color:text<y>.

(send a-color-textoid get-token-range position)
— (or/c #f exact-nonnegative-integer?)
(or/c #f exact-nonnegative-integer?)
position : exact-nonnegative-integer?

Like get-token-range in color:text<%>

(send a-color-textoid get-backward-navigation-limit start)
— exact-integer?
start : exact-integer?

Like get-backward-navigation-limit in color:text<y>

(send a-color-textoid get-regions)
— (listof (list/c exact-nonnegative-integer? (or/c exact-nonnegative-integer? 'end)))

Like get-regions in color:text<y>

21

9 Racket S-Expression Indentation and Navigation

The "syntax-color" collection provides Racket indentation and navigation functions that
take advantage of the token categories and parenthesis information produced by a color-
ing lexer. They can work with any object that implements color-textoid<¥>, which is
extended by color:text<y>.

Added in version 1.3.

9.1 S-Expression Navigation

(require syntax-color/racket-navigation)
package: syntax-color-1ib

(racket-forward-sexp text pos)
— (or/c #f exact-nonnegative-integer?)
text : (is-a?/c color-textoid<%>)
pos : exact-nonnegative-integer?
(racket-backward-sexp text pos)
— (or/c #f exact-nonnegative-integer?)
text : (is-a?/c color-textoid<}>)
pos . exact-nonnegative-integer?
(racket-up-sexp text pos) — (or/c #f exact-nonnegative-integer?)
text : (is-a?/c color-textoid<}>)
pos : exact-nonnegative-integer?
(racket-down-sexp text pos)
— (or/c #f exact-nonnegative-integer?)
text : (is-a?/c color-textoid<}>)
pos : exact-nonnegative-integer?

Each of these functions takes a position pos within text and returns a position correspond-
ing to S-expression movement. The result is #f if no movement in the corresponding direc-
tion is possible.

(racket-stick-to-next-sexp? text pos) — boolean?
text : (is-a?/c color-textoid<’>)
pos : exact-nonnegative-integer?

Returns whether the content at pos in text corresponds to a token that should “stick” to
the following parenthesized sequence for navigation purposes. For example, the result is #t
when the token corresponds to ', ~, or #'.

22

https://pkgs.racket-lang.org/package/syntax-color-lib

9.2 S-Expression Indentation

(require syntax-color/racket-indentation)
package: syntax-color-1ib

(racket-amount-to-indent text
pos
[#:head-sexp-type head-sexp-type]
#:graphical-width graphical-width)
— (or/c #f exact-nonnegative-integer?)
text : (is-a?/c color-textoid<}>)
pos . exact-nonnegative-integer?
head-sexp-type : (string?
L=
(or/c #f 'lambda 'define 'begin 'for/fold 'other))
= (racket-tabify-table->head-sexp-type
racket-tabify-default-table)
graphical-width : (or/c #f (-> (is-a?/c color-textoid<%>)
exact-nonnegative-integer?
exact-nonnegative-integer?
(or/c #f exact-nonnegative-integer?)))

Returns an amount of indentation to use for the line in text that contains the position pos.
The result may be more or less than the current amount of indentation on the line.

The head-sexp-type function is used to map identifiers at the start of an S-expression
to the indentation rule that the identifier should use. See compute-racket-amount-to-
indent in racket: text<’> for more information.

The graphical-width function is used to get the graphical width (distance between the
“x” coordinates) of content in text between a start and end position. If graphical-width
returns #f, then characters in text are assumed to be all the same width. If graphical-

width is #£, it is treated the same as if it had been (1 (t start end) #f).

Changed in version 1.5 of package syntax-color-1lib: Allow graphical-width to return #f.

(racket-tabify-table->head-sexp-type spec)
— (string? . -> . (or/c #f 'lambda 'define 'begin 'for/fold 'other))
spec : (list/c (hash/c symbol? (or/c 'lambda 'define 'begin 'for/fold))
(or/c #f regexp?)
(or/c #f regexp?)
(or/c #f regexp?)
(or/c #f regexp?))

Converts a serializable representation spec of an indentation configuration to a function
suitable for use with racket-amount-to-indent

23

https://pkgs.racket-lang.org/package/syntax-color-lib

The first element of spec maps individual symbols to indentation styles. The remaining
elements provide patterns to recognize identifiers with the corresponding style, in the order
'lambda, 'define, 'begin, and 'for/fold

racket-tabify-default-table
(list/c (hash/c symbol? (or/c 'lambda 'define 'begin 'for/fold))
(or/c #f regexp?)
(or/c #f regexp?)
(or/c #f regexp?)
(or/c #f regexp?))

A default configuration suitable as an argument to racket-tabify-table->head-sexp-
type.

24

	1 Parenthesis Matching
	2 Lexer Contract and The Don't-Stop Structure Type
	3 Racket Lexer
	4 Default Lexer
	5 Module Lexer
	6 Scribble Lexer
	7 Splay Tree for Tokenization
	8 Interface for Clients of Syntax Color Output
	9 Racket S-Expression Indentation and Navigation
	9.1 S-Expression Navigation
	9.2 S-Expression Indentation

