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Teaching languages are small subsets of a full programming language. While such restric-
tions simplify error diagnosis and the construction of tools, they also make it impossible
(or at least difficult) to write some interesting programs. To circumvent this restriction, it is
possible to import teachpacks into programs written in a teaching language.

In principle, a teachpack is just a library written in the full language, not the teaching subset.
Like any other library, it may export values, functions, etc. In contrast to an ordinary library,
however, a teachpack must enforce the contracts of the “lowest” teaching language into
which it is imported and signal errors in a way with which students are familiar at that level.

This chapter covers the teachpacks for How to Design Programs.
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1 HtDP Teachpacks

1.1 Manipulating Images: "image.rkt"

(require htdp/image) package: htdp-lib

NOTE: This library is deprecated; use 2htdp/image, instead. For the foresee-
able time, we will continue to support the teachpack for your existing programs.

The teachpack provides functions for constructing and manipulating images. Basic, colored
images are created as outlines or solid shapes. Additional functions allow for the composi-
tion of images.

1.1.1 Images

(image? x) Ñ boolean?
x : any/c

Is x an image?

(image=? x y) Ñ boolean?
x : image?
y : image?

Are x and y the same image?

1.1.2 Modes and Colors

Mode (one-of/c 'solid 'outline "solid" "outline")

A Mode is used to specify whether painting a shape fills or outlines the form.

(struct color (red green blue)
#:extra-constructor-name make-color)

red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))

RGB color?
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A RGB describes a color via a shade of red, blue, and green colors (e.g., (make-color 100
200 30)).

Color (or/c symbol? string? color?)

A Color is a color-symbol (e.g., 'blue) or a color-string (e.g., "blue") or an RGB structure.

(image-color? x) Ñ boolean?
x : any

Determines if the input is a valid image Color.

1.1.3 Creating Basic Shapes

In DrRacket, you can insert images from your file system. Use PNG images whenever
possible. In addition, you can create basic shapes with the following functions.

(rectangle w h m c) Ñ image?
w : (and/c number? (or/c zero? positive?))
h : (and/c number? (or/c zero? positive?))
m : Mode
c : Color

Creates a w by h rectangle, filled in according to m and painted in color c

(circle r m c) Ñ image?
r : (and/c number? (or/c zero? positive?))
m : Mode
c : Color

Creates a circle or disk of radius r , filled in according to m and painted in color c

(ellipse w h m c) Ñ image?
w : (and/c number? (or/c zero? positive?))
h : (and/c number? (or/c zero? positive?))
m : Mode
c : Color

Creates a w by h ellipse, filled in according to m and painted in color c

(triangle s m c) Ñ image?
s : number?
m : Mode
c : Color
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Creates an upward pointing equilateral triangle whose side is s pixels long, filled in accord-
ing to m and painted in color c

(star n outer inner m c) Ñ image?
n : (and/c number? (>=/c 2))
outer : (and/c number? (>=/c 1))
inner : (and/c number? (>=/c 1))
m : Mode
c : Color

Creates a multi-pointed star with n points, an outer radius for the max distance of the
points to the center, and an inner radius for the min distance to the center.

(regular-polygon s r m c [angle ]) Ñ image?
s : side
r : number?
m : Mode
c : Color
angle : real? = 0

Creates a regular polygon with s sides inscribed in a circle of radius r , using mode m and
color c . If an angle is specified, the polygon is rotated by that angle.

(line x y c) Ñ image?
x : number?
y : number?
c : Color

Creates a line colored c from (0,0) to (x ,y). See add-line below.

(text s f c) Ñ Image
s : string?
f : (and/c number? positive?)
c : Color

Creates an image of the text s at point size f and painted in color c .

1.1.4 Basic Image Properties

To understand how images are manipulated, you need to understand the basic properties of
images.

(image-width i) Ñ integer?
i : image?
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Obtain i ’s width in pixels

(image-height i) Ñ integer?
i : image?

Obtain i ’s height in pixels

For the composition of images, you must know about pinholes. Every image come with a
pinhole. For images created with the above functions, the pinhole is at the center of the
shape except for those created from line and text. The text function puts the pinhole
at the upper left corner of the image, and line puts the pinhole at the beginning of the
line (meaning that if the first two arguments to line are positive, the pinhole is also in the
upper left corner). The pinhole can be moved, of course, and compositions locate pinholes
according to their own rules. When in doubt you can always find out where the pinhole is
and place it where convenient.

(pinhole-x i) Ñ integer?
i : image?

Determines the x coordinate of the pinhole, measuring from the left of the image.

(pinhole-y i) Ñ integer?
i : image?

Determines the y coordinate of the pinhole, measuring from the top (down) of the image.

(put-pinhole i x y) Ñ image?
i : image?
x : number?
y : number?

Creates a new image with the pinhole in the location specified by x and y , counting from
the left and top (down), respectively.

(move-pinhole i delta-x delta-y) Ñ image?
i : image?
delta-x : number?
delta-y : number?

Creates a new image with the pinhole moved down and right by delta-x and delta-y
with respect to its current location. Use negative numbers to move it up or left.

1.1.5 Composing Images

Images can be composed, and images can be found within compositions.
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(add-line i x1 y1 x2 y2 c) Ñ image?
i : image?
x1 : number?
y1 : number?
x2 : number?
y2 : number?
c : Color

Creates an image by adding a line (colored c ) from (x1 ,y1 ) to (x2 ,y2 ) to image i .

(overlay img img2 img* ...) Ñ image?
img : image?
img2 : image?
img* : image?

Creates an image by overlaying all images on their pinholes. The pinhole of the resulting
image is the same place as the pinhole in the first image.

(overlay/xy img delta-x delta-y other) Ñ image?
img : image?
delta-x : number?
delta-y : number?
other : image?

Creates an image by adding the pixels of other to img .

Instead of lining the two images up on their pinholes, other ’s pinhole is lined up on the
point:

(make-posn (+ (pinhole-x img) delta-x)
(+ (pinhole-y img) delta-y))

The pinhole of the resulting image is the same place as the pinhole in the first image.

The same effect can be had by combining move-pinhole and overlay,

(overlay img
(move-pinhole other

(- delta-x)
(- delta-y)))

(image-inside? img other) Ñ boolean?
img : image?
other : image?
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Determines whether the pixels of the second image appear in the first.

Be careful when using this function with jpeg images. If you use an image-editing program
to crop a jpeg image and then save it, image-inside? does not recognize the cropped
image, due to standard compression applied to JPEG images.

(find-image img other) Ñ posn?
img : image?
other : image?

Determines where the pixels of the second image appear in the first, with respect to the pin-
hole of the first image. If (image-inside? img other) isn’t true, find-image signals
an error.

1.1.6 Manipulating Images

Images can also be shrunk. These “shrink” functions trim an image by eliminating extrane-
ous pixels.

(shrink-tl img width height) Ñ image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the top-left corner. The
pinhole of the resulting image is in the center of the image.

(shrink-tr img width height) Ñ image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the top-right corner. The
pinhole of the resulting image is in the center of the image.

(shrink-bl img width height) Ñ image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the bottom-left corner. The
pinhole of the resulting image is in the center of the image.
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(shrink-br img width height) Ñ image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the bottom-right corner. The
pinhole of the resulting image is in the center of the image.

(shrink img left above right below) Ñ image?
img : image?
left : number?
above : number?
right : number?
below : number?

Shrinks an image around its pinhole. The numbers are the pixels to save to left, above, to the
right, and below the pinhole, respectively. The pixel directly on the pinhole is always saved.

1.1.7 Scenes

A scene is an image, but with the pinhole in the upper-left corner, i.e. an image where
pinhole-x and pinhole-y both return 0.

Scenes are particularly useful with the 2htdp/universe and htdp/world teachpacks,
since it displays only scenes in its canvas.

(scene? x) Ñ boolean?
x : any/c

Is x an scene?

(empty-scene width height) Ñ scene?
width : natural-number/c
height : natural-number/c

creates a plain white, width x height scene.

(place-image img x y s) Ñ scene?
img : image?
x : number?
y : number?
s : scene?
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creates a scene by placing img at (x , y ) into s ; (x , y ) are computer graphics coordinates,
i.e., they count right and down from the upper-left corner.

(nw:rectangle width
height
solid-or-outline
c) Ñ image?

width : natural-number/c
height : natural-number/c
solid-or-outline : Mode
c : Color

creates a width by height rectangle, solid or outlined as specified by solid-or-outline
and colored according to c , with a pinhole at the upper left corner.

(scene+line s x0 y0 x1 y1 c) Ñ scene?
s : scene?
x0 : number?
y0 : number?
x1 : number?
y1 : number?
c : Color

creates a scene by placing a line of color c from (x0 , y0 ) to (x1 , y1 ) using computer
graphics coordinates. In contrast to the add-line function, scene+line cuts off those
portions of the line that go beyond the boundaries of the given s .

1.1.8 Miscellaneous Image Manipulation and Creation

The last group of functions extracts the constituent colors from an image and converts a list
of colors into an image.

List-of-color : list?

is one of:

; – empty
; – (cons Color List-of-color)
; Interpretation: represents a list of colors.

(image->color-list img) Ñ List-of-color
img : image?

Converts an image to a list of colors.
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(color-list->image l width height x y) Ñ image?
l : List-of-color
width : natural-number/c
height : natural-number/c
x : natural-number/c
y : natural-number/c

Converts a list of colors l to an image with the given width and height and pinhole (x ,y )
coordinates, specified with respect to the top-left of the image.

The remaining functions provide alpha-channel information as well. Alpha channels are a
measure of transparency; 0 indicates fully opaque and 255 indicates fully transparent.

(struct alpha-color (alpha red green blue)
#:extra-constructor-name make-alpha-color)

alpha : (and/c natural-number/c (<=/c 255))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))

A structure representing an alpha color.

(image->alpha-color-list img) Ñ (list-of alpha-color?)
img : image?

to convert an image to a list of alpha colors

(alpha-color-list->image l width height x y) Ñ image?
l : (list-of alpha-color?)
width : integer?
height : integer?
x : integer?
y : integer?

Converts a list of alpha-colors l to an image with the given width and height and
pinhole (x ,y ) coordinates, specified with respect to the top-left of the image.

1.2 Simulations and Animations: "world.rkt"

(require htdp/world) package: htdp-lib

NOTE: This library is deprecated; use 2htdp/universe, instead. For guid-
ance on how to convert your htdp/world programs to use 2htdp/universe,
see §2.9 “Porting World Programs to Universe”
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Note: For a quick and educational introduction to the teachpack, see How to Design Pro-
grams, Second Edition: Prologue. As of August 2008, we also have a series of projects
available as a small booklet on How to Design Worlds.

The purpose of this documentation is to give experienced Racketers a concise overview for
using the library and for incorporating it elsewhere. The last section presents §1.2.3 “A First
Example” for an extremely simple domain and is suited for a novice who knows how to
design conditional functions for symbols.

The teachpack provides two sets of tools. The first allows students to create and display a
series of animated scenes, i.e., a simulation. The second one generalizes the first by adding
interactive GUI features.

1.2.1 Simple Simulations

(run-movie r m) Ñ true
r : (and/c real? positive?)
m : [Listof image?]

run-movie displays the list of images m at the rate of r images per second.

(run-simulation w h r create-image) Ñ true
w : natural-number/c
h : natural-number/c
r : number?
create-image : (-> natural-number/c scene)

creates and shows a canvas of width w and height h , starts a clock, making it tick every r
(usually fractional) seconds. Every time the clock ticks, run-simulation applies create-
image to the number of ticks passed since this function call. The results of these applications
are displayed in the canvas.

Example:

(define (create-UFO-scene height)
(place-image UFO 50 height (empty-scene 100 100)))

(define UFO
(overlay (circle 10 'solid 'green)

(rectangle 40 4 'solid 'green)))

(run-simulation 100 100 (/ 1 28) create-UFO-scene)
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1.2.2 Interactions

An animation starts from a given “world” and generates new ones in response to events on
the computer. This teachpack keeps track of the “current world” and recognizes three kinds
of events: clock ticks; keyboard presses and releases; and mouse movements, mouse clicks,
etc.

Your program may deal with such events via the installation of handlers. The teachpack
provides for the installation of three event handlers: on-tick-event, on-key-event, and
on-mouse-event. In addition, it provides for the installation of a draw handler, which is
called every time your program should visualize the current world.

The following picture provides an intuitive overview of the workings of "world".
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The big-bang function installs World_0 as the initial world; the callbacks tock, react, and
click transform one world into another one; done checks each time whether the world is final;
and draw renders each world as a scene.

World any/c

For animated worlds and games, using the teachpack requires that you provide a data defi-
nition for World. In principle, there are no constraints on this data definition. You can even
keep it implicit, even if this violates the Design Recipe.

(big-bang width height r world0) Ñ true
width : natural-number/c
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height : natural-number/c
r : number?
world0 : World

(big-bang width height r world0 animated-gif?) Ñ true
width : natural-number/c
height : natural-number/c
r : number?
world0 : World
animated-gif? : boolean?

Creates and displays a width x height canvas, starts the clock, makes it tick every r sec-
onds, and makes world0 the current world. If it is called with five instead of four arguments
and the last one (animated-gif?) is true, the teachpack allows the generation of images
from the animation, including an animated GIF image.

(on-tick-event tock) Ñ true
tock : (-> World World)

Tells big-bang to call tock on the current world every time the clock ticks. The result of
the call becomes the current world.

KeyEvent (or/c char? symbol?)

A KeyEvent represents key board events, e.g., keys pressed or released, by the computer’s
user. A char? KeyEvent is used to signal that the user has hit an alphanumeric key. Symbols
such as 'left, 'right, 'up, 'down, 'release denote arrow keys or special events, such
as releasing the key on the keypad.

(key-event? x) Ñ boolean?
x : any

is x a KeyEvent

(key=? x y) Ñ boolean?
x : key-event?
y : key-event?

compares two KeyEvent for equality

(on-key-event change) Ñ true
change : (-> World key-event? World)

Tells big-bang to call change on the current world and a KeyEvent for every keystroke the
user of the computer makes. The result of the call becomes the current world.

Here is a typical key-event handler:
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(define (change w a-key-event)
(cond

[(key=? a-key-event 'left) (world-go w -DELTA)]
[(key=? a-key-event 'right) (world-go w +DELTA)]
[(char? a-key-event) w] ; to demonstrate order-free checking
[(key=? a-key-event 'up) (world-go w -DELTA)]
[(key=? a-key-event 'down) (world-go w +DELTA)]
[else w]))

MouseEvent (one-of/c 'button-down 'button-up 'drag 'move 'enter 'leave)

A MouseEvent represents mouse events, e.g., mouse movements or mouse clicks, by the
computer’s user.

(on-mouse-event clack) Ñ true
clack : (-> World natural-number/c natural-number/c MouseEvent World)

Tells big-bang to call clack on the current world, the current x and y coordinates of the
mouse, and a MouseEvent for every action of the mouse by the user of the computer. The
result of the call becomes the current world.

(on-redraw to-scene) Ñ true
to-scene : (-> World Scene)

Tells big-bang to call to-scene whenever the canvas must be redrawn. The canvas is
usually re-drawn after a tick event, a keyboard event, or a mouse event has occurred. The
generated scene is displayed in the world’s canvas.

(stop-when last-world?) Ñ true
last-world? : (-> World boolean?)

Tells big-bang to call last-world? whenever the canvas is drawn. If this call produces
true, the clock is stopped; no more tick events, KeyEvents, or MouseEvents are forwarded
to the respective handlers. As a result, the canvas isn’t updated either.

Example: The following examples shows that (run-simulation 100 100 (/ 1 28)
create-UFO-scene) is a short-hand for three lines of code:

(define (create-UFO-scene height)
(place-image UFO 50 height (empty-scene 100 100)))

(define UFO
(overlay (circle 10 'solid 'green)

(rectangle 40 4 'solid 'green)))
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(big-bang 100 100 (/1 28) 0)
(on-tick-event add1)
(on-redraw create-UFO-scene)

Exercise: Add a condition for stopping the flight of the UFO when it reaches the bottom.

1.2.3 A First Example

Understanding a Door

Say we want to represent a door with an automatic door closer. If this kind of door is locked,
you can unlock it. While this doesn’t open the door per se, it is now possible to do so.
That is, an unlocked door is closed and pushing at the door opens it. Once you have passed
through the door and you let go, the automatic door closer takes over and closes the door
again. Of course, at this point you could lock it again.

Here is a picture that translates our words into a graphical representation:

The picture displays a so-called "state machine". The three circled words are the states that
our informal description of the door identified: locked, closed (and unlocked), and open.
The arrows specify how the door can go from one state into another. For example, when
the door is open, the automatic door closer shuts the door as time passes. This transition
is indicated by the arrow labeled "time passes." The other arrows represent transitions in a
similar manner:

• "push" means a person pushes the door open (and let’s go);
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• "lock" refers to the act of inserting a key into the lock and turning it to the locked
position; and

• "unlock" is the opposite of "lock".

Simulations of the World

Simulating any dynamic behavior via a program demands two different activities. First, we
must tease out those portions of our "world" that change over time or in reaction to actions,
and we must develop a data representation D for this information. Keep in mind that a good
data definition makes it easy for readers to map data to information in the real world and
vice versa. For all others aspects of the world, we use global constants, including graphical
or visual constants that are used in conjunction with the rendering functions.

Second, we must translate the "world" actions—the arrows in the above diagram—into inter-
actions with the computer that the world teachpack can deal with. Once we have decided to
use the passing of time for one aspect and mouse movements for another, we must develop
functions that map the current state of the world—represented as data—into the next state of
the world. Since the data definition D describes the class of data that represents the world,
these functions have the following general contract and purpose statements:

; tick : D -> D
; deal with the passing of time
(define (tick w) ...)

; click : D Number Number MouseEvent -> D
; deal with a mouse click at (x,y) of kind me
; in the current world w
(define (click w x y me) ...)

; control : D KeyEvent -> D
; deal with a key event (symbol, char) ke
; in the current world w
(define (control w ke) ...)

That is, the contracts of the various hooks dictate what the contracts of these functions are
once we have defined how to represent the world in data.

A typical program does not use all three of these actions and functions but often just one or
two. Furthermore, the design of these functions provides only the top-level, initial design
goal. It often demands the design of many auxiliary functions.

Simulating a Door: Data

Our first and immediate goal is to represent the world as data. In this specific example, the
world consists of our door and what changes about the door is whether it is locked, unlocked
but closed, or open. We use three symbols to represent the three states:
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SD

; DATA DEF.
; The state of the door (SD) is one of:
; – 'locked
; – 'closed
; – 'open

Symbols are particularly well-suited here because they directly express the state of the door.

Now that we have a data definition, we must also decide which computer actions and in-
teractions should model the various actions on the door. Our pictorial representation of the
door’s states and transitions, specifically the arrow from "open" to "closed" suggests the use
of a function that simulates time. For the other three arrows, we could use either keyboard
events or mouse clicks or both. Our solution uses three keystrokes: #\u for unlocking the
door, #\l for locking it, and #\space for pushing it open. We can express these choices
graphically by translating the above "state machine" from the world of information into the
world of data:

Simulating a Door: Functions

Our analysis and data definition leaves us with three functions to design:

• automatic-closer, which closes the door during one tick;

• door-actions, which manipulates the door in response to pressing a key; and

• render, which translates the current state of the door into a visible scene.
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Let’s start with automatic-closer. We know its contract and it is easy to refine the pur-
pose statement, too:

; automatic-closer : SD -> SD
; closes an open door over the period of one tick
(define (automatic-closer state-of-door) ...)

Making up examples is trivial when the world can only be in one of three states:

given state desired state
’locked ’locked
’closed ’closed
’open ’closed

; automatic-closer : SD -> SD
; closes an open door over the period of one tick

(check-expect (automatic-closer 'locked) 'locked)
(check-expect (automatic-closer 'closed) 'closed)
(check-expect (automatic-closer 'open) 'closed)

(define (automatic-closer state-of-door) ...)

The template step demands a conditional with three clauses:

(define (automatic-closer state-of-door)
(cond

[(symbol=? 'locked state-of-door) ...]
[(symbol=? 'closed state-of-door) ...]
[(symbol=? 'open state-of-door) ...]))

The examples basically dictate what the outcomes of the three cases must be:

(define (automatic-closer state-of-door)
(cond

[(symbol=? 'locked state-of-door) 'locked]
[(symbol=? 'closed state-of-door) 'closed]
[(symbol=? 'open state-of-door) 'closed]))

Don’t forget to run the example-tests.

For the remaining three arrows of the diagram, we design a function that reacts to the three
chosen keyboard events. As mentioned, functions that deal with keyboard events consume
both a world and a keyevent:
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; door-actions : SD Keyevent -> SD
; key events simulate actions on the door
(define (door-actions s k) ...)

given state given keyevent desired state
’locked #zu ’closed
’closed #zl ’locked
’closed #zspace ’open
’open — ’open

The examples combine what the above picture shows and the choices we made about map-
ping actions to keyboard events.

From here, it is straightforward to turn this into a complete design:

(define (door-actions s k)
(cond

[(and (symbol=? 'locked s) (key=? #\u k)) 'closed]
[(and (symbol=? 'closed s) (key=? #\l k)) 'locked]
[(and (symbol=? 'closed s) (key=? #\space k)) 'open]
[else s]))

(check-expect (door-actions 'locked #\u) 'closed)
(check-expect (door-actions 'closed #\l) 'locked)
(check-expect (door-actions 'closed #\space) 'open)
(check-expect (door-actions 'open 'any) 'open)
(check-expect (door-actions 'closed 'any) 'closed)

Last but not least we need a function that renders the current state of the world as a scene.
For simplicity, let’s just use a large enough text for this purpose:

; render : SD -> Scene
; translate the current state of the door into a large text
(define (render s)

(text (symbol->string s) 40 'red))

(check-expect (render 'closed) (text "closed" 40 'red))

The function symbol->string translates a symbol into a string, which is needed because
text can deal only with the latter, not the former. A look into the language documentation
revealed that this conversion function exists, and so we use it.

Once everything is properly designed, it is time to run the program. In the case of the world
teachpack, this means we must specify which function takes care of tick events, key events,
and redraws:
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(big-bang 100 100 1 'locked)
(on-tick-event automatic-closer)
(on-key-event door-actions)
(on-redraw render)

Now it’s time for you to collect the pieces and run them in big-bang to see whether it all
works.

1.3 Converting Temperatures: "convert.rkt"

(require htdp/convert) package: htdp-lib

The teachpack convert.rkt provides three functions for converting Fahrenheit tempera-
tures to Celsius. It is useful for a single exercise in HtDP. Its purpose is to demonstrate the
independence of “form” (user interface) and “function” (also known as “model”).

(convert-gui convert) Ñ true
convert : (-> number? number?)

Consumes a conversion function from Fahrenheit to Celsius and creates a graphical user
interface with two rulers, which users can use to convert temperatures according to the given
temperature conversion function.

(convert-repl convert) Ñ true
convert : (-> number? number?)

Consumes a conversion function from Fahrenheit to Celsius and then starts a read-evaluate-
print loop. The loop prompts users to enter a number and then converts the number according
to the given temperature conversion function. A user can exit the loop by entering “x.”

(convert-file in convert out) Ñ true
in : string?
convert : (-> number? number?)
out : string?

Consumes a file name in , a conversion function from Fahrenheit to Celsius, and a string
out . The program then reads all the number from in , converts them according to convert ,
and prints the results to the newly created file out .

Warning: If out already exists, it is deleted.

Example: Create a file with name "in.dat" with some numbers in it, using your favorite
text editor on your computer. Define a function f2c in the Definitions window and set
teachpack to "convert.rkt" and click Run. Then evaluate
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(convert-gui f2c)
; and
(convert-file "in.dat" f2c "out.dat")
; and
(convert-repl f2c)

Finally inspect the file "out.dat" and use the repl to check the answers.

1.4 Guessing Numbers: "guess.rkt"

(require htdp/guess) package: htdp-lib

The teachpack provides functions to play a guess-the-number game. Each function display a
GUI in which a player can choose specific values for some number of digits and then check
the guess. The more advanced functions ask students to implement more of the game.

(guess-with-gui check-guess) Ñ true
check-guess : (-> number? number? symbol?)

The check-guess function consumes two numbers: guess, which is the user’s guess, and
target, which is the randomly chosen number-to-be-guessed. The result is a symbol that
reflects the relationship of the player’s guess to the target.

(guess-with-gui-3 check-guess) Ñ true
check-guess : (-> digit? digit? digit? number? symbol?)

The check-guess function consumes three digits (digit0, digit1, digit2) and one
number (target). The latter is the randomly chosen number-to-be-guessed; the three digits
are the current guess. The result is a symbol that reflects the relationship of the player’s
guess (the digits converted to a number) to the target.

Note: digit0 is the least significant digit that the user chose and digit2 is the most signif-
icant one.

(guess-with-gui-list check-guess) Ñ true
check-guess : (-> (list-of digit?) number? symbol?)

The check-guess function consumes a list of digits (digits) and a number (target). The
former is a list that makes up the user’s guess, and the latter is the randomly chosen number-
to-be-guessed. The result is a symbol that reflects the relationship of the player’s guess (the
digits converted to a number) to the target.

Note: the first item on digits is the least significant digit that the user chose, and the last
one is the most significant digit.
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1.5 MasterMinding: "master.rkt"

(require htdp/master) package: htdp-lib

The teachpack implements GUI for playing a simple master mind-like game, based on a
function designed by a student. The player clicks on two colors and the program responds
with an answer that indicates how many colors and places were correct.

(master check-guess) Ñ symbol?
check-guess : (-> symbol? symbol? symbol? symbol? boolean?)

Chooses two “secret” colors and then opens a graphical user interface for playing Master-
Mind. The player is prompted to choose two colors, via a choice tablet and mouse clicks.
Once chosen, master uses check-guess to compare them.

If the two guesses completely match the two secret colors, check-guess must return 'Per-
fectGuess; otherwise it must return a different, informative symbol.

1.6 Playing MasterMind: "master-play.rkt"

(require htdp/master-play) package: htdp-lib

The teachpack implements the MasterMind game so that students can play the game and get
an understanding of what we expect from them.

(go name) Ñ true
name : symbol?

chooses a “secret” three-letter word, opens a canvas and a menu, and asks the player to guess
the word.

1.7 Simple Drawing: "draw.rkt"

(require htdp/draw) package: htdp-lib

The teachpack provides two sets of functions: one for drawing into a canvas and one for
reacting to canvas events.

NOTE: This library is deprecated; use 2htdp/image (probably in conjunc-
tion with 2htdp/universe), instead. You may continue to use the library for
solving exercises from How To Design Programs, First Edition but do consider
switching to How To Design Programs, Second Edition instead.
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1.7.1 Drawing on a Canvas

DrawColor: (and/c symbol? (one-of/c 'white 'yellow 'red 'blue 'green
'black)) These six colors are definitely provided. If you want other colors, guess! For
example, 'orange works, but 'mauve doesn’t. If you apply the function to a symbol that it
doesn’t recognize as a color, it raises an error.

(start width height) Ñ true
width : number?
height : number?

Opens a width x height canvas.

(start/cartesian-plane width height) Ñ true
width : number?
height : number?

Opens a width x height canvas and draws a Cartesian plane.

(stop) Ñ true

Closes the canvas.

(draw-circle p r c) Ñ true
p : posn?
r : number?
c : DrawColor

Draws a c circle at p with radius r .

(draw-solid-disk p r c) Ñ true
p : posn?
r : number?
c : DrawColor

Draws a c disk at p with radius r .

(draw-solid-rect ul width height c) Ñ true
ul : posn?
width : number?
height : number?
c : DrawColor

Draws a width x height , c rectangle with the upper-left corner at ul .
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(draw-solid-line strt end c) Ñ true
strt : posn?
end : posn?
c : DrawColor

Draws a c line from strt to end .

(draw-solid-string p s) Ñ true
p : posn?
s : string?

Draws s at p .

(sleep-for-a-while s) Ñ true
s : number?

Suspends evaluation for s seconds.

The teachpack also provides clear- functions for each draw- function:

(clear-circle p r c) Ñ true
p : posn?
r : number?
c : DrawColor

clears a c circle at p with radius r .

(clear-solid-disk p r c) Ñ true
p : posn?
r : number?
c : DrawColor

clears a c disk at p with radius r .

(clear-solid-rect ul width height c) Ñ true
ul : posn?
width : number?
height : number?
c : DrawColor

clears a width x height , c rectangle with the upper-left corner at ul .

(clear-solid-line strt end c) Ñ true
strt : posn?
end : posn?
c : DrawColor

29



clears a c line from strt to end .

(clear-solid-string p s) Ñ true
p : posn?
s : string?

clears s at p .

(clear-all) Ñ true

clears the entire screen.

1.7.2 Interactions with Canvas

(wait-for-mouse-click) Ñ posn?

Waits for the user to click on the mouse, within the canvas.

DrawKeyEvent: (or/c char? symbol?) A DrawKeyEvent represents keyboard events:

• char?, if the user pressed an alphanumeric key;

• symbol?, if the user pressed, for example, an arror key: 'up 'down 'left 'right

(get-key-event) Ñ (or/c false DrawKeyEvent)

Checks whether the user has pressed a key within the window; false if not.

DrawWorld: For proper interactions, using the teachpack requires that you provide a data
definition for DrawWorld . In principle, there are no constraints on this data definition. You
can even keep it implicit, even if this violates the Design Recipe.

The following functions allow programs to react to events from the canvas.

(big-bang n w) Ñ true
n : number?
w : DrawWorld

Starts the clock, one tick every n (fractal) seconds; w becomes the first “current” world.

(on-key-event change) Ñ true
change : (-> DrawKeyEvent DrawWorld DrawWorld)
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Adds change to the world. The function reacts to keyboard events and creates a new Draw-
World.

(on-tick-event tock) Ñ true
tock : (-> DrawWorld DrawWorld)

Adds tock to the world. The function reacts to clock tick events, creating a new current
world.

(end-of-time) Ñ DrawWorld

Stops the world; returns the current world.

1.8 Hangman: "hangman.rkt"

(require htdp/hangman) package: htdp-lib

The teachpack implements the callback functions for playing a Hangman game, based on a
function designed by a student. The player guesses a letter and the program responds with
an answer that indicates how many times, if at all, the letter occurs in the secret word.

(hangman make-word reveal draw-next-part) Ñ true
make-word : (-> symbol? symbol? symbol? word?)
reveal : (-> word? word? word?)
draw-next-part : (-> symbol? true)

Chooses a “secret” three-letter word and uses the given functions to manage the Hangman
game.

(hangman-list reveal-for-list
draw-next-part) Ñ true

reveal-for-list : (-> symbol? (list-of symbol?) (list-of symbol?)
(list-of symbol?))

draw-next-part : (-> symbol? true)

Chooses a “secret” word—a list of symbolic letters—and uses the given functions to man-
age the Hangman game: reveal-for-list determines how many times the chosen letter
occurs in the secret word; draw-next-part is given the symbolic name of a body part and
draws it on a separately managed canvas.

In addition, the teachpack re-exports the entire functionality of the drawing library; see §1.7
“Simple Drawing: "draw.rkt"” for documentation.
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1.9 Playing Hangman: "hangman-play.rkt"

(require htdp/hangman-play) package: htdp-lib

The teachpack implements the Hangman game so that students can play the game and get an
understanding of what we expect from them.

(go name) Ñ true
name : symbol?

chooses a “secret” three-letter word, opens a canvas and a menu, and asks the player to guess
the word.

1.10 Managing Control Arrows: "arrow.rkt"

(require htdp/arrow) package: htdp-lib

The teachpack implements a controller for moving shapes across a canvass.

(control-left-right shape n move draw) Ñ true
shape : Shape
n : number?
move : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape n pixels left (negative) or right (positive).

(control-up-down shape n move draw) Ñ true
shape : Shape
n : number?
move : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape n pixels up (negative) or down (positive).

(control shape n move-lr move-ud draw) Ñ true
shape : Shape
n : number?
move-lr : (-> number? Shape Shape)
move-ud : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape N pixels left or right and up or down, respectively.

The teachpack also provides four images:
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LEFT-ARROW : image?

an arrow pointing left.

RIGHT-ARROW : image?

an arrow pointing right.

UP-ARROW : image?

an arrow pointing up.

DOWN-ARROW : image?

an arrow pointing down.

Example:

; A shape is a structure:
; (make-posn num num)

; RAD : the radius of the simple disk moving across a canvas
(define RAD 10)

; move : number shape -> shape or false
; to move a shape by delta according to translate
; effect: to redraw it
(define (move delta sh)

(cond
[(and (clear-solid-disk sh RAD)

(draw-solid-disk (translate sh delta) RAD))
(translate sh delta)]

[else false]))

; translate : shape number -> shape
; to translate a shape by delta in the x direction
(define (translate sh delta)

(make-posn (+ (posn-x sh) delta) (posn-y sh)))

; draw-it : shape -> true
; to draw a shape on the canvas: a disk with radius
(define (draw-it sh)
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(draw-solid-disk sh RAD))

; Run:

; this creates the canvas
(start 100 50)

; this creates the controller GUI
(control-left-right (make-posn 10 20) 10 move draw-it)

1.11 Manipulating Simple HTML Documents: "docs.rkt"

(require htdp/docs) package: htdp-lib

The teachpack provides three functions for creating simple “HTML” documents:

Annotation An Annotation is a symbol that starts with “ă” and ends in “ą”. An end anno-
tation is one that starts with “ă/”.

(atom? x) Ñ boolean?
x : any/c

Determines whether or not a value is a number, a symbol, or a string.

(annotation? x) Ñ boolean?
x : any/c

Determines whether or not a symbol is a document annotation.

(end-annotation x) Ñ Annotation
x : Annotation

Consumes an annotation and produces a matching ending annotation.

(write-file l) Ñ true
l : (list-of atom)

Consumes a list of symbols and annotations and prints them out as a "file".

Sample session: set teachpack to "docs.rkt" and click Run:

> (annotation? 0)
false
> (annotation? '<bold>)
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true
> (end-annotation 0)
end-annotation: not an annotation: 0
> (write-file (list 'a 'b))
a b

1.12 Working with Files and Directories: "dir.rkt"

(require htdp/dir) package: htdp-lib

The teachpack provides structures and functions for working with files and directories:

(struct dir (name dirs files)
#:extra-constructor-name make-dir)

name : (or/c string? symbol?)
dirs : (listof dir?)
files : (listof file?)

Represents directories (file folders) in the teaching languages.

(struct file (name size date content)
#:extra-constructor-name make-file)

name : (or/c string? symbol?)
size : integer?
date : (or/c 0 date?)
content : any/c

Represents files in the teaching languages. The struct’s date field is optional for clients.
Calling make-field with three arguments fills the time field with 0.

(create-dir path) Ñ dir?
path : string?

Turns the directory found at path on your computer into an instance of dir.

(struct date (year month day hours minutes seconds)
#:extra-constructor-name make-date)

year : natural-number/c
month : natural-number/c
day : natural-number/c
hours : natural-number/c
minutes : natural-number/c
seconds : natural-number/c
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Represents dates for file construction.

Sample: Set teachpack to "dir.rkt" or add (require htdp/dir) to the definitions area.
Clicking on Run and asking for the content of the current directory will produce something
like this:

> (create-dir ".")
(make-dir

"."
'()
(cons (make-file "arrow.scrbl" 1897 (make-

date 15 1 15 11 22 21) "")
(cons (make-file "convert.scrbl" 2071 (make-

date 15 1 15 11 22 21) "")
(cons (make-file "dir.scrbl" 1587 (make-

date 8 7 8 9 23 52) "")
(cons (make-file "docs.scrbl" 1259 (make-

date 15 1 15 11 22 21) "")
(cons (make-file "draw.scrbl" 5220 (make-

date 15 1 15 11 22 21) "")
(cons (make-file "elevator.scrbl" 1110 (make-

date 15 1 15 11 22 21) ""))))))))

Using "." usually means the directory in which your program is located. In this case, the
directory contains no sub-directories and six files.

Note The library generates file names as strings, but the constructors accept symbols for
backwards compatibility.

Note Soft links are always treated as if they were empty files.

Changed in version 1.0 of package htdp-lib: built in 1996 for HtDP/1e
Changed in version 1.4: Fri Jul 8 13:09:13 EDT 2016 added optional date field to file representation, added strings
as representations of file names

1.13 Graphing Functions: "graphing.rkt"

(require htdp/graphing) package: htdp-lib

The teachpack provides two functions for graphing functions in the regular (upper right)
quadrant of the Cartesian plane (between 0 and 10 in both directions):

(graph-fun f color) Ñ true
f : (-> number? number?)
color : symbol?
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Draws the graph of f with the given color .

(graph-line line color) Ñ true
line : (-> number? number?)
color : symbol?

Draws line , a function representing a straight line, with a given color.

For color symbols, see §1.7 “Simple Drawing: "draw.rkt"”.

In addition, the teachpack re-exports the entire functionality of the drawing library; see §1.7
“Simple Drawing: "draw.rkt"” for documentation.

1.14 Simple Graphical User Interfaces: "gui.rkt"

(require htdp/gui) package: htdp-lib

The teachpack provides functions for creating and manipulating graphical user interfaces.
We recommend using 2htdp/universe instead.

Window A Window is a data representation of a visible window on your computer screen.

GUI-ITEM A GUI-Item is a data representation of an active component of a window on your
computer screen.

(create-window g) Ñ Window
g : (listof (listof GUI-ITEM))

Creates a window from the “matrix” of gui items g .

(window? x) Ñ boolean?
x : any/c

Is the given value a window?

(show-window w) Ñ true
w : Window

Shows w .

(hide-window w) Ñ true
w : window

Hides w .
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(make-button label callback) Ñ GUI-ITEM
label : string>
callback : (-> event% boolean)

Creates a button with label and callback function. The latter receives an argument that
it may safely ignore.

(make-message msg) Ñ GUI-ITEM
msg : string?

Creates a message item from msg .

(draw-message g m) Ñ true
g : GUI-ITEM
m : string?

Displays m in message item g and erases the current message.

(make-text txt) Ñ GUI-ITEM
txt : string?

Creates an text editor (with label txt ) that allows users to enter text.

(text-contents g) Ñ string?
g : GUI-ITEM

Determines the current contents of a text GUI-ITEM.

(make-choice choices) Ñ GUI-ITEM
choices : (listof string?)

Creates a choice menu from choices that permits users to choose from some alternatives.

(choice-index g) Ñ natural-number/c
g : GUI-ITEM

Determines the choice that is currently selected in a choice GUI-ITEM; the result is the
0-based index in the choice menu

Example 1:

> (define w
(create-window
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(list (list (make-button "QUIT" (lambda (e) (hide-
window w)))))))
; A button appears on the screen.
; Click on the button and it will disappear.
> (show-window w)
; The window disappears.

Example 2:

; text1 : GUI-ITEM
(define text1

(make-text "Please enter your name"))

; msg1 : GUI-ITEM
(define msg1

(make-message (string-append "Hello, World" (make-
string 33 #\space))))

; Event -> true
; draws the current contents of text1 into msg1, prepended with
"Hello, "
(define (respond e)

(draw-message msg1 (string-append "Hello, " (text-
contents text1))))

; set up window with three "lines":
; a text field, a message, and two buttons
; fill in text and click OKAY
(define w

(create-window
(list
(list text1)
(list msg1)
(list (make-button "OKAY" respond)

(make-button "QUIT" (lambda (e) (hide-window w)))))))

1.15 An Arrow GUI: "arrow-gui.rkt"

(require htdp/arrow-gui) package: htdp-lib

The teachpack provides functions for creating and manipulating an arrow GUI. We recom-
mend using 2htdp/universe instead.

modelT (-> button% event% true)
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A modelT is a function that accepts and ignores two arguments.

(control) Ñ symbol?

Reads out the current state of the message field.

(view s) Ñ true
s : (or/c string? symbol?)

Displays s in the message field.

(connect l r u d) Ñ true
l : modelT
r : modelT
u : modelT
d : modelT

Connects four controllers with the four directions in the arrow window.

Example:

; Advanced
(define (make-model dir)

(lambda (b e)
(begin

(view dir)
(printf "~a ~n" (control)))))

(connect (make-model "left")
(make-model "right")
(make-model "up")
(make-model "down"))

Now click on the four arrows. The message field contains the current direction, the print-out
the prior contents of the message field.

1.16 Controlling an Elevator: "elevator.rkt"

(require htdp/elevator) package: htdp-lib

The teachpack implements an elevator simulator.

It displays an eight-floor elevator and accepts mouse clicks from the user, which are trans-
lated into service demands for the elevator.
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(run NextFloor) Ñ any/c
NextFloor : number?

Creates an elevator simulator that is controlled by NextFloor . This function consumes the
current floor, the direction in which the elevator is moving, and the current demands. From
that, it computes where to send the elevator next.

Example: Define a function that consumes the current state of the elevator (three arguments)
and returns a number between 1 and 8. Here is a non-sensical definition:

(define (controller x y z) 7)

It moves the elevator once, to the 7th floor.

Second, set the teachpack to "elevator.rkt", click Run, and evaluate

(run controller)

1.17 Lookup GUI: "lkup-gui.rkt"

(require htdp/lkup-gui) package: htdp-lib

The teachpack provides three functions:

(control index) Ñ symbol?
index : natural-number?

reads out the index th guess choice, starting with 0

(view msg) Ñ true/c
msg : (or/c string? symbol?)

displays its msg argument in the message panel

(connect event-handler) Ñ true/c
event-handler : (-> button% event% true/c)

connects a controller (handler) with the Check button displays frame

Example:

(connect
(lambda (e b)

(view (control))))

This example simply mirrors what the user types in to the message field.

41

https://pkgs.racket-lang.org/package/htdp-lib


1.18 Guess GUI: "guess-gui.rkt"

(require htdp/guess-gui) package: htdp-lib

The teachpack provides three functions:

(control index) Ñ symbol?
index : natural-number?

reads out the index th guess choice, starting with 0

(view msg) Ñ true/c
msg : (or/c string? symbol?)

displays its msg argument in the message panel

(connect handler) Ñ true/c
handler : (-> button% event% true/c)

connects a controller (handler ) with the Check button displays frame

Example:

(connect (lambda (e b)
(begin

(printf "0th digit: ~s~n" (control 0))
(view (control 0)))))

1.19 Queens: "show-queen.rkt"

(require htdp/show-queen) package: htdp-lib

The teachpack provides the function show-queen, which implements a GUI for exploring
the n-queens problem.

(show-queen board) Ñ true
board : (list-of (list-of boolean?))

The function show-queen consumes a list of lists of booleans that describes a board . Each
of the inner lists must have the same length as the outer list. The trues correspond to
positions where queens are, and the falses correspond to empty squares. The function
returns nothing.

In the GUI window that show-queen opens, the red and orange dots show where the queens
are. The green dot shows where the mouse cursor is. Each queen that threatens the green
spot is shown in red, and the queens that do not threaten the green spot are shown in orange.
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1.20 Matrix Functions: "matrix.rkt"

(require htdp/matrix) package: htdp-lib

The experimental teachpack supports matrices and matrix functions. A matrix is just a rect-
angle of ’objects’. It is displayed as an image, just like the images from §1.1 “Manipulating
Images: "image.rkt"”. Matrices are images and, indeed, scenes in the sense of the §1.2
“Simulations and Animations: "world.rkt"”.

No educational materials involving matrices exist.

The functions access a matrix in the usual (school-mathematics) manner: row first, column
second.

The functions aren’t tuned for efficiency so don’t expect to build programs that process lots
of data.

Rectangle A Rectangle (of X) is a non-empty list of lists containing X where all elements of
the list are lists of equal (non-zero) length.

(matrix? o) Ñ boolean?
o : any/c

determines whether the given object is a matrix?

(matrix-rows m) Ñ natural-number/c
m : matrix?

determines how many rows this matrix m has

(matrix-cols m) Ñ natural-number/c
m : matrix?

determines ow many columns this matrix m has

(rectangle->matrix r) Ñ matrix?
r : Rectangle

creates a matrix from the given Rectangle

(matrix->rectangle m) Ñ Rectangle
m : matrix?

creates a rectangle from this matrix m
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(make-matrix n m l) Ñ matrix?
n : natural-number/c
m : natural-number/c
l : (Listof X)

creates an n by m matrix from l

NOTE: make-matrix would consume an optional number of entries, if it were like make-
vector

(build-matrix n m f) Ñ matrix?
n : natural-number/c
m : natural-number/c
f : (-> (and/c natural-number/c (</c m))

(and/c natural-number/c (</c n))
any/c)

creates an n by m matrix by applying f to (0 ,0), (0 ,1), ..., ((sub1 m) ,(sub1 n))

(matrix-ref m i j) Ñ any/c
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))

retrieve the item at (i ,j ) in matrix m

(matrix-set m i j x) Ñ matrix?
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))
x : any/c

creates a new matrix with x at (i ,j ) and all other places the same as in m

(matrix-where? m pred?) Ñ (listof posn?)
m : matrix?
pred? : (-> any/c boolean?)

(matrix-where? M P) produces a list of (make-posn i j) such that (P (matrix-ref
M i j)) holds

(matrix-render m) Ñ Rectangle
m : matrix?

renders this matrix m as a rectangle of strings
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(matrix-minor m i j) Ñ matrix?
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))

creates a matrix minor from m at (i ,j )

1.20.1 Matrix Snip

The htdp/matrix teachpack exports the snip-class object to support saving and reading
matrix snips.

snip-class : (instance/of matrix-snip-class%)

An object to support 2D matrix rendering.
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2 HtDP/2e Teachpacks

2.1 Batch Input/Output: "batch-io.rkt"

(require 2htdp/batch-io) package: htdp-lib

The batch-io teachpack introduces several functions and a form for reading content from
files and one function for writing to a file.

2.1.1 IO Functions

All functions that read a file consume the name of a file and possibly additional arguments.
They assume that the specified file exists in the same folder as the program; if not they signal
an error:

•
(read-file f) Ñ string?

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a string, including newlines.

Example:

> (read-file "data.txt")
"hello world \n good bye \n\ni, for 1, am done "

assuming the file named "data.txt" has this shape:

hello world
good bye

i, for 1, am done

Note how the leading space in the second line translates into the space between the
newline indicator and the word "good" in the result.

•
(read-1strings f) Ñ (listof 1string?)

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a list of one-char strings, one per character.

Example:
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> (read-1strings "data.txt")
'("h"

"e"
"l"
"l"
"o"
" "
"w"
"o"
"r"
"l"
"d"
" "
"\n"
" "
"g"
"o"
"o"
"d"
" "
"b"
"y"
"e"
" "
"\n"
"\n"
"i"
","
" "
"f"
"o"
"r"
" "
"1"
","
" "
"a"
"m"
" "
"d"
"o"
"n"
"e"
" ")

Note how this function reproduces all parts of the file faithfully, including spaces and
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newlines.

•
(read-lines f) Ñ (listof string?)

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a list of strings, one per line.

Example:

> (read-lines "data.txt")
'("hello world " " good bye " "" "i, for 1, am done ")

when "data.txt" is the name of the same file as in the preceding item. And again,
the leading space of the second line shows up in the second string in the list.

If the last line is not terminated by a newline, the functions acts as if there were one.

•
(read-words f) Ñ (listof string?)

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a list of strings, one per white-space separated token in the file.

Example:

> (read-words "data.txt")
'("hello" "world" "good" "bye" "i," "for" "1," "am" "done")

This time, however, the extra leading space of the second line of "data.txt" has
disappeared in the result. The space is considered a part of the separator that surrounds
the word "good".

•
(read-words/line f) Ñ (listof (listof string?))

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a list of lists, one per line; each line is represented as a list of strings.

Example:

> (read-words/line "data.txt")
'(("hello" "world") ("good" "bye") () ("i," "for" "1," "am"
"done"))
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The results is similar to the one that read-words produces,

except that the organization of the file into lines is preserved. In particular, the empty
third line is represented as an empty list of words.

If the last line is not terminated by a newline, the functions acts as if there were one.

•
(read-words-and-numbers/line f) Ñ (listof (or number? string?))

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a list of lists, one per line; each line is represented as a list of strings and numbers.

Example:

> (read-words-and-numbers/line "data.txt")
'(("hello" "world") ("good" "bye") () ("i," "for" "1," "am"
"done"))

The results is like the one that read-words/line produces, except strings that can
be parsed as numbers are represented as numbers.

If the last line is not terminated by a newline, the functions acts as if there were one.

•
(read-csv-file f) Ñ (listof (listof any/c))

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as a list of lists of comma-separated values.

Example:

> (read-csv-file "data.csv")
'(("hello" "world") ("good" "bye") ("i" "am" "done"))

where the file named "data.csv" has this shape:

hello, world
good, bye

i, am, done

It is important to understand that the rows don’t have to have the same length. Here
the third line of the file turns into a row of three elements.

•
(read-csv-file/rows f s) Ñ (listof X?)

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))
s : (-> (listof any/c) X?)
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reads the standard input device (until closed) or the content of file f and produces it
as reads the content of file f and produces it as list of rows, each constructed via s .

Examples:

> (read-csv-file/rows "data.csv" (lambda (x) x))
'(("hello" "world") ("good" "bye") ("i" "am" "done"))
> (read-csv-file/rows "data.csv" length)
'(2 2 3)

The first example shows how read-csv-file is just a short form for read-csv-
file/rows; the second one simply counts the number of separated tokens and the
result is just a list of numbers. In many cases, the function argument is used to con-
struct a structure from a row.

•
(read-xexpr f) Ñ xexpr?

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as an X-expression, including whitespace such as tabs and newlines.

Assumption: the file f or the selected input device contains an XML element. It
assumes the file contains HTML-like text and reads it as XML.

Example:

> (read-xexpr "data.xml")
'(pre () "\nhello world\ngood bye\n\ni, for 1, am done\n")

assuming the file named "data.xml" has this shape:

<pre>
hello world
good bye

i, for 1, am done
</pre>

Note how the result includes "\\n" for the newlines.

•
(read-plain-xexpr f) Ñ xexpr?

f : (or/c 'standard-in 'stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file f and produces it
as an X-expression, without whitespace.

Assumption: the file f or the selected input device contains an XML element and the
content of this element are other XML elements and whitespace. In particular, the
XML element does not contain any strings as elements other than whitespace.

Example:
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> (read-plain-xexpr "data-plain.xml")
'(pre

()
(line ((text "hello world")))
(line ((text "good bye")))
(line ())
(line ((text "i, for 1, am done"))))

assuming the file named "data-plain.xml" has this shape:

<pre>
<line text="hello world" />
<line text="good bye" />
<line />
<line text="i, for 1, am done" />
</pre>

Compare this result with the one for read-xexpr.

There is only one writer function at the moment:

•
(write-file f cntnt) Ñ string?

f : (or/c 'standard-out 'stdout string?)
cntnt : string?

sends cntnt to the standard output device or turns cntnt into the content of file
f , located in the same folder (directory) as the program. If the write succeeds, the
function produces the name of the file (f ); otherwise it signals an error.

Example:

> (if (string=? (write-file "output.txt" "good
bye") "output.txt")

(write-file "output.txt" "cruel world")
(write-file "output.txt" "cruel world"))

"output.txt"

After evaluating this examples, the file named "output.txt" looks like this: cruel
world Explain why.

(file-exists? f) Ñ boolean?
f : string?
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determines whether a file with the given name exists in the current directory.

Warning: The file IO functions in this teachpack are platform dependent. That is, as long as
your programs and your files live on the same platform, you should not have any problems
reading the files that programs wrote and vice versa. If, however, one of your programs
writes a file on a Windows operating system and if you then copy this output file to a Mac,
reading the copied text file may produce extraneous “return” characters. Note that this de-
scribes only one example of possible malfunction; there are other cases when trans-platform
actions may cause this teachpack to fail.

2.1.2 Web Functions

All functions that read a web-based XML consume a URL and possibly additional argu-
ments. They assume that the computer is connected to specified part of the web, though they
tolerate non-existent web pages (404 errors)

•
(read-xexpr/web u) Ñ xexpr?

u : string?

reads the content of URL u and produces the first XML element as an xexpr? in-
cluding whitespace such as tabs and newlines. If possible, the function interprets the
HTML at the specified URL as XML. The function returns #f if the web page does
not exist (404)

•
(read-plain-xexpr/web u) Ñ xexpr?

u : string?

reads the content of URL u and produces the first XML element as an xexpr? without
whitespace. If possible, the function interprets the HTML at the specified URL as
XML. The function returns #f if the web page does not exist (404)

•
(url-exists? u) Ñ boolean?

u : string?

ensures that the specified URL u does not produce a 404 error.

•
(xexpr? u) Ñ boolean?

u : any?

checks that the given value is an X-expression in the following sense:
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; Xexpr is one of:
; – symbol?
; – string?
; – number?
; – (cons symbol? (cons [List-of Attribute] [List-of Xexpr]))
; – (cons symbol? [List-of Xexpr])
;
; Attribute is:
; (list symbol? string?)
; (list 'a "some text") is called an a-Attribute
; and "some text" is a's value.

Note that full Racket uses a wider notion of X-expression.

•
(xexpr-as-string x) Ñ string?

x : xexpr?

renders the given X-expression as a string.

•
(url-html-neighbors u) Ñ (listof string?)

u : string?

retrieves the content of URL u and produces the list of all URLs that refer to .html
pages via an <a> tag.

2.1.3 Testing

(simulate-file process str ...)

simulates a file system for the function process , which reads a file and may produce one.
Note: this form is under development and will be documented in a precise manner after it is
finalized and useful for a wide audience.

2.2 Image Guide

This section introduces the 2htdp/image library through a series of increasingly complex
image constructions and discusses some subtle details of cropping and outline images.

53



2.2.1 Overlaying, Above, and Beside: A House

To build a simple-looking house, we can place a triangle above a rectangle.

> (above (triangle 40 "solid" "red")
(rectangle 40 30 "solid" "black"))

We can give the house two roofs by putting two triangles next to each other.

> (above (beside (triangle 40 "solid" "red")
(triangle 40 "solid" "red"))

(rectangle 80 40 "solid" "black"))

But if we want the new roof to be a little smaller, then they do not line up properly.

> (above (beside (triangle 40 "solid" "red")
(triangle 30 "solid" "red"))

(rectangle 70 40 "solid" "black"))

Instead, we can use beside/align to line up the two triangles along their bottoms instead
of along the middles (which is what beside does).

> (define victorian
(above (beside/align "bottom"

(triangle 40 "solid" "red")
(triangle 30 "solid" "red"))

(rectangle 70 40 "solid" "black")))
> victorian
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To add a door to the house, we can overlay a brown rectangle, aligning it with the center
bottom of the rest of the house.

> (define door (rectangle 15 25 "solid" "brown"))
> (overlay/align "center" "bottom" door victorian)

We can use a similar technique to put a doorknob on the door, but instead of overlaying the
doorknob on the entire house, we can overlay it just on the door.

> (define door-with-knob
(overlay/align "right" "center" (circle 3 "solid" "yellow") door))

> (overlay/align "center" "bottom" door-with-knob victorian)

2.2.2 Rotating and Overlaying: A Rotary Phone Dial

A rotary phone dial can be built by from a black disk and 10 little white ones by placing the
white disks, one at a time, at the top of the black disk and then rotating the entire black disk.
To get started, lets define a function to make little white disks with numbers on them:

> (define (a-number digit)
(overlay
(text (number->string digit) 12 "black")
(circle 10 "solid" "white")))

We’ll use place-and-turn to put the numbers onto the disk:
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> (define (place-and-turn digit dial)
(rotate 30

(overlay/align "center" "top"
(a-number digit)
dial)))

For example:

> (place-and-turn
0
(circle 60 "solid" "black"))

0

> (place-and-turn
8
(place-and-turn
9
(place-and-turn
0
(circle 60 "solid" "black"))))

0
9

8

We can write a single function to put all of the numbers together into the dial:

> (define (place-all-numbers dial)
(place-and-turn
1
(place-and-turn
2
(place-and-turn
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3
(place-and-turn
4
(place-and-turn
5
(place-and-turn
6
(place-and-turn
7
(place-and-turn
8
(place-and-turn
9
(place-and-turn
0
dial)))))))))))

> (place-all-numbers (circle 60 "solid" "black"))

0
9

8

7
65

4
3

2

1

That definition is long and tedious to write. We can shorten it using foldl:

> (define (place-all-numbers dial)
(foldl place-and-turn

dial
'(0 9 8 7 6 5 4 3 2 1)))

> (place-all-numbers (circle 60 "solid" "black"))

0
9

8

7
65

4
3

2

1

To finish off the dial, we need to rotate it a little bit to its natural position and put a white
disk in the center of it. Here’s the inner dial:
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> (define inner-dial
(overlay
(text "555-1234" 9 "black")
(circle 30 "solid" "white")))

and here’s a function to build the entire rotary dial, with an argument that scales the dial:

> (define (rotary-dial f)
(scale
f
(overlay
inner-dial
(rotate
-90
(place-all-numbers (circle 60 "solid" "black"))))))

> (rotary-dial 2)
0

98

7
6

5

4
3 2

1

4321-555

Looking at the image, it feels like the numbers are too close to the edge of the dial. So
we can adjust the place-and-turn function to put a little black rectangle on top of each
number. The rectangle is invisible because it ends up on top of the black dial, but it does
serve to push the digits down a little.

> (define (place-and-turn digit dial)
(rotate 30

(overlay/align "center" "top"
(above
(rectangle 1 5 "solid" "black")
(a-number digit))

dial)))
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> (rotary-dial 2)

0
98

7
6

5
4

3 2

1

4321-555

2.2.3 Alpha Blending

With shapes that have opaque colors like "red" and "blue", overlaying one on top com-
pletely blots out the one one the bottom.

For example, the green rectangle here completely covers the blue one where the two rectan-
gles overlap.

> (overlay
(rectangle 60 100 "solid" (color 127 255 127))
(rectangle 100 60 "solid" (color 127 127 255)))

But 2htdp/image also supports colors that are not completely opaque, via the (optional)
fourth argument to color.

> (overlay
(rectangle 60 100 "solid" (color 0 255 0 127))
(rectangle 100 60 "solid" (color 0 0 255 127)))
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In this example, the color (color 0 255 0 127) looks just like the color (color 127
255 127) when the background is white. Since white is (color 255 255 255), we end
up getting 1/2 of 255 for the red and blue components and 255 for the green one.

We can also use alpha blending to make some interesting effects. For example, the function
spin-alot takes an image argument and repeatedly places it on top of itself, rotating it each
time by 1 degree.

> (define (spin-alot t)
(local [(define (spin-more i 𝜃)

(cond
[(= 𝜃 360) i]
[else
(spin-more (overlay i (rotate 𝜃 t))

(+ 𝜃 1))]))]
(spin-more t 0)))

Here are some uses of spin-alot, first showing the original shape and then the spun shape.

> (rectangle 12 120 "solid" (color 0 0 255))

> (spin-alot (rectangle 12 120 "solid" (color 0 0 255 1)))
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> (triangle 120 "solid" (color 0 0 255))

> (spin-alot (triangle 120 "solid" (color 0 0 255 1)))

> (isosceles-triangle 120 30 "solid" (color 0 0 255))

> (spin-alot (isosceles-triangle 120 30 "solid" (color 0 0 255 1)))

2.2.4 Recursive Image Functions

It is also possible to make interesting looking shapes with little recursive functions. For
example, this function repeatedly puts white circles that grow, evenly spaced around the
edge of the given shape:

> (define (swoosh image s)
(cond
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[(zero? s) image]
[else (swoosh

(overlay/align "center" "top"
(circle (* s 1/2) "solid" "white")
(rotate 4 image))

(- s 1))]))

> (swoosh (circle 100 "solid" "black")
94)

More conventional fractal shapes can also be written using the image library, e.g.:

> (define (sierpinski-carpet n)
(cond

[(zero? n) (square 1 "solid" "black")]
[else
(local [(define c (sierpinski-carpet (- n 1)))

(define i (square (image-width c) "solid" "white"))]
(above (beside c c c)

(beside c i c)
(beside c c c)))]))

> (sierpinski-carpet 5)
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We can adjust the carpet to add a little color:

> (define (colored-carpet colors)
(cond

[(empty? (rest colors))
(square 1 "solid" (first colors))]

[else
(local [(define c (colored-carpet (rest colors)))

(define i (square (image-width c) "solid" (car colors)))]
(above (beside c c c)

(beside c i c)
(beside c c c)))]))

> (colored-carpet
(list (color 51 0 255)

(color 102 0 255)
(color 153 0 255)
(color 204 0 255)
(color 255 0 255)
(color 255 204 0)))
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The Koch curve can be constructed by simply placing four curves next to each other, rotated
appropriately:

> (define (koch-curve n)
(cond

[(zero? n) (square 1 "solid" "black")]
[else
(local [(define smaller (koch-curve (- n 1)))]

(beside/align "bottom"
smaller
(rotate 60 smaller)
(rotate -60 smaller)
smaller))]))

> (koch-curve 5)

And then put three of them together to form the Koch snowflake.

> (above
(beside
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(rotate 60 (koch-curve 5))
(rotate -60 (koch-curve 5)))

(flip-vertical (koch-curve 5)))

2.2.5 Rotating and Image Centers

When rotating an image, some times the image looks best when it rotates around a point that
is not the center of the image. The rotate function, however, just rotates the image as a
whole, effectively rotating it around the center of its bounding box.
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For example, imagine a game where the hero is represented as a triangle:

> (define (hero 𝛼)
(triangle 30 "solid" (color 255 0 0 𝛼)))

> (hero 255)

rotating the hero at the prompt looks reasonable:

> (rotate 10 (hero 255))

> (rotate 20 (hero 255))

> (rotate 30 (hero 255))

but if the hero has to appear to spin in place, then it will not look right, as you can kind of
see if we use 𝛼-blending to represent old positions of the hero:

> (overlay (rotate 0 (hero 255))
(rotate 10 (hero 125))
(rotate 20 (hero 100))
(rotate 30 (hero 75))
(rotate 40 (hero 50))
(rotate 50 (hero 25)))

What we’d really want is for the hero to appear to rotate around the centroid of the triangle.
To achieve this effect, we can put the hero onto a transparent circle such that the center of
the whole image lines up with the centroid of the triangle:

> (define (hero-on-blank 𝛼)
(define the-hero (hero 𝛼))
(define w (image-width the-hero))
(define h (image-height the-hero))
(define d (max w h))
(define dx (/ w 2)) ; centroid x offset
(define dy (* 2/3 h)) ; centroid y offset
(define blank (circle d "solid" (color 255 255 255 0)))
(place-image/align the-hero (- d dx) (- d dy) "left" "top" blank))
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and now the rotating hero looks reasonable:

> (overlay (rotate 0 (hero-on-blank 255))
(rotate 10 (hero-on-blank 125))
(rotate 20 (hero-on-blank 100))
(rotate 30 (hero-on-blank 75))
(rotate 40 (hero-on-blank 50))
(rotate 50 (hero-on-blank 25)))

2.2.6 Image Interoperability

Images can connect to other libraries. Specifically:

• images are snip% objects, so can be inserted into text% and pasteboard% objects

• they implement the convert protocol for 'png-bytes

• they implement the pict-convert protocol, and

• there is a low-level interface for drawing directly into a dc<%> object: render-image.

2.2.7 The Nitty Gritty of Pixels, Pens, and Lines

The image library treats coordinates as if they are in the upper-left corner of each pixel, and
infinitesimally small (unlike pixels, which have some area).

Thus, when drawing a solid square of whose side-length is 10, the image library colors in
all of the pixels enclosed by the square starting at the upper left corner of (0,0) and going
down to the upper left corner of (10,10), so the pixel whose upper left at (9,9) is colored
in, but the pixel at (10,10) is not. All told, 100 pixels get colored in, just as expected for a
square with a side length of 10.

When drawing lines, however, things get a bit more complex. Specifically, imagine drawing
the outline of that rectangle. Since the border is between the pixels, there really isn’t a natural
pixel to draw to indicate the border. Accordingly, when drawing an outline square (without
a pen specification, but just a color as the last argument), the image library uses a pen whose
width is 1 pixel, but draws a line centered at the point (0.5,0.5) that goes down and around to
the point (10.5,10.5). This means that the outline slightly exceeds the bounding box of the
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shape. Specifically, the upper and left-hand lines around the square are within the bounding
box, but the lower and right-hand lines are just outside. If you are reading

along with this
section using
DrRacket, note that
DrRacket clips
images to their
bounding boxes
when rendering
them in the
interactions
window; read on for
the ramifications
but know for now
that what you see in
the example results
here will not be
exactly the same as
what you see in the
interactions window
for that reason.

This kind of rectangle is useful when putting rectangles next to each other and avoiding extra
thick lines on the interior. For example, consider building a grid like this:

> (define s1 (square 20 'outline 'black))
> (define r1 (beside s1 s1 s1 s1 s1 s1))
> (above r1 r1 r1 r1 r1 r1)

The reason interior lines in this grid are the same thickness as the lines around the edge is
because the rectangles overlap with each other. That is, the upper-left rectangle’s right edge
is right on top of the next rectangle’s left edge.

The special case of adding 0.5 to each coordinate when drawing the square applies to all
outline polygon-based shapes that just pass color, but does not apply when a pen is passed
as the last argument to create the shape. For example, if using a pen of thickness 2 to draw
a rectangle, we get a shape that has a border drawing the row of pixels just inside and just
outside the shape. One might imagine that a pen of thickness 1 would draw an outline around
the shape with a 1 pixel thick line, but this would require 1/2 of each pixel to be illuminated,
something that is not possible. Instead, the same pixels are lit up as with the 2 pixel wide
pen, but with only 1/2 of the intensity of the color. So a 1 pixel wide black pen object draws
a 2 pixel wide outline, but in gray.

> (define p1 (make-pen "black" 1 "solid" "round" "round"))

> (rectangle 20 20 "outline" p1)

When combining pens and cropping, we can make a rectangle that has a line that is one
pixel wide, but where the line is drawn entirely within the rectangle. This rectangle has a
two-pixel wide black pen, but we can crop out the outer portion of the pen.

> (define p2 (make-pen "black" 2 "solid" "round" "round"))
> (define s2 (crop 0 0 20 20 (rectangle 20 20 "outline" p2)))
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> s2

Using that we can build a grid now too, but this grid has doubled lines on the interior.

> (define r2 (beside s2 s2 s2 s2 s2 s2))
> (above r2 r2 r2 r2 r2 r2)

While this kind of rectangle is not useful for building grids, it is important to be able to
build rectangles whose drawing does not exceed its bounding box. Specifically, this kind of
drawing is used by frame and empty-scene so that the extra drawn pixels are not lost if the
image is later clipped to its bounding box.

When using image->color-list with outline shapes, the results can be surprising for the
same reasons. For example, a 2x2 black, outline rectangle consists of nine black pixels, as
discussed above, but since image->color-list only returns the pixels that are within the
bounding box, we see only three black pixels and one white one.

> (image->color-list
(rectangle 2 2 "outline" "black"))

(list
(color 0 0 0 255)
(color 0 0 0 255)
(color 0 0 0 255)
(color 255 255 255 0))

The black pixels are (most of) the upper and left edge of the outline shape, and the one white
pixel is the pixel in the middle of the shape.

2.2.8 The Nitty Gritty of Alpha Blending

Alpha blending can cause imprecision in color comparisons resulting in shapes that appear
equal? even though they were created with different colors. This section explains how that
happens.
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To start, consider the color (make-color 1 1 1 50). This color is nearly the darkest
shade of black, but with lots of transparency, so it renders a light gray color on a white
background, e.g.:

> (rectangle 100 100 "solid" (make-color 1 1 1 50))

If the background had been green, the same rectangle would look like a darker shade of
green:

> (overlay
(rectangle 100 100 "solid" (make-color 1 1 1 50))
(rectangle 200 200 "solid" "green"))

Surprisingly, this shape is equal to one that (apparently) has a different color in it:

> (equal?
(rectangle 100 100 'solid (make-color 1 1 1 50))
(rectangle 100 100 'solid (make-color 2 2 2 50)))

#t

To understand why, we must look more carefully at how alpha blending and image equality
work. Image equality’s definition is straightforward: two images are equal if they are both
drawn the same. That is, image equality is defined by simply drawing the two shapes on
a white background and then comparing all of the pixels for the two drawings (it is imple-
mented more efficiently in some cases, however).
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So, for those shapes to be equal, they must be drawn with the same colors. To see what
colors were actually drawn, we can use image->color-list. Since these images use the
same color in every pixel, we can examine just the first one:

> (first
(image->color-list
(rectangle 100 100 'solid (make-color 1 1 1 50))))

(color 0 0 0 50)
> (first

(image->color-list
(rectangle 100 100 'solid (make-color 2 2 2 50))))

(color 0 0 0 50)

As expected from the equal? test, the two colors are the same, but why should they be the
same? This is where a subtle aspect of alpha blending and drawing comes up. In general,
alpha blending works by taking the color of any shapes below the one being drawn and
then combining that color with the new color. The precise amount of the combination is
controlled by the alpha value. So, if a shape has an alpha value of 𝛼, then the drawing
library multiplies the new shapes color by (/ 𝛼 255) and the existing shape’s color by (-
1 (/ 𝛼 255)) and then adds the results to get the final color. (It does this for each of the
red, green, and blue components separately.)

Going back to the two example rectangles, the drawing library multiplies 50/255 by 1 for
the first shape and multiplies 50/255 by 2 for the second shape (since they are both drawn
on a white background). Then it rounds them to integers, which results in 0 for both colors,
making the images the same.

2.3 Images: "image.rkt"

(require 2htdp/image) package: htdp-lib

The image teachpack provides a number of basic image construction functions, along with
combinators for building more complex images out of existing images. Basic images include
various polygons, ellipses and circles, and text, as well as bitmaps. Existing images can be In the context of

this documentation,
a bitmap denotes a
special form of
image?, namely a
collection of pixels
associated with an
image. It does not
refer to the
bitmap% class.
Typically such
image-bitmaps
come about via the
Insert Image...
menu item in
DrRacket

rotated, scaled, flipped, and overlaid on top of each other.

In some situations images are rendered into bitmaps (e.g. when being shown in the DrRacket
Interactions window). In order to avoid bad performance penalties, the rendering process
limits the area of the images to about 25,000,000 pixels (which requires about 100 MB of
storage).

2.3.1 Basic Images
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(circle radius mode color) Ñ image?
radius : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(circle radius outline-mode pen-or-color) Ñ image?
radius : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a circle with the given radius, mode, and color.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (circle 30 "outline" "red")

> (circle 20 "solid" "blue")

> (circle 20 100 "blue")

(ellipse width height mode color) Ñ image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(ellipse width height mode pen-or-color) Ñ image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
mode : (or/c 'outline "outline")
pen-or-color : (or/c image-color? pen?)
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Constructs an ellipse with the given width, height, mode, and color.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (ellipse 60 30 "outline" "black")

> (ellipse 30 60 "solid" "blue")

> (ellipse 30 60 100 "blue")

(wedge radius angle mode color) Ñ image?
radius : (and/c real? positive?)
angle : angle?
mode : mode?
color : image-color?

(wedge radius angle mode pen-or-color) Ñ image?
radius : (and/c real? positive?)
angle : angle?
mode : (or/c 'outline "outline")
pen-or-color : (or/c image-color? pen?)

Constructs a wedge of a circle with the given radius, angle, mode, and color. The angle must
be between 0 and 360 (but not equal to either 0 or 360).

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.
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If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (wedge 60 60 "outline" "purple")

> (rotate 30 (wedge 30 300 "solid" "gold"))

(line x1 y1 pen-or-color) Ñ image?
x1 : real?
y1 : real?
pen-or-color : (or/c pen? image-color?)

Constructs an image representing a line segment that connects the points (0,0) to (x1,y1).

Examples:

> (line 30 30 "black")

> (line -30 20 "red")

> (line 30 -20 "red")

(add-line image x1 y1 x2 y2 pen-or-color) Ñ image?
image : image?
x1 : real?
y1 : real?
x2 : real?
y2 : real?
pen-or-color : (or/c pen? image-color?)

Adds a line to the image image , starting from the point (x1 ,y1 ) and going to the point
(x2 ,y2 ). Unlike scene+line, if the line passes outside of image , the image gets larger to
accommodate the line.
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Examples:

> (add-line (ellipse 40 40 "outline" "maroon")
0 40 40 0 "maroon")

> (add-line (rectangle 40 40 "solid" "gray")
-10 50 50 -10 "maroon")

> (add-line
(rectangle 100 100 "solid" "darkolivegreen")
25 25 75 75
(make-pen "goldenrod" 30 "solid" "round" "round"))

(add-curve image
x1
y1
angle1
pull1
x2
y2
angle2
pull2
pen-or-color) Ñ image?

image : image?
x1 : real?
y1 : real?
angle1 : angle?
pull1 : real?
x2 : real?
y2 : real?
angle2 : angle?
pull2 : real?
pen-or-color : (or/c pen? image-color?)
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Adds a curve to image , starting at the point (x1 ,y1 ), and ending at the point (x2 ,y2 ).

The angle1 and angle2 arguments specify the angle that the curve has as it leaves the
initial point and as it reaches the final point, respectively.

The pull1 and pull2 arguments control how long the curve tries to stay with that angle.
Larger numbers mean that the curve stays with the angle longer.

Unlike scene+curve, if the line passes outside of image , the image gets larger to accom-
modate the curve.

Examples:

> (add-curve (rectangle 100 100 "solid" "black")
20 20 0 1/3
80 80 0 1/3
"white")

> (add-curve (rectangle 100 100 "solid" "black")
20 20 0 1
80 80 0 1
"white")

> (add-curve
(add-curve
(rectangle 40 100 "solid" "black")
20 10 180 1/2
20 90 180 1/2
(make-pen "white" 4 "solid" "round" "round"))

20 10 0 1/2
20 90 0 1/2
(make-pen "white" 4 "solid" "round" "round"))
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> (add-curve (rectangle 100 100 "solid" "black")
-20 -20 0 1
120 120 0 1
"red")

(add-solid-curve image
x1
y1
angle1
pull1
x2
y2
angle2
pull2
color) Ñ image?

image : image?
x1 : real?
y1 : real?
angle1 : angle?
pull1 : real?
x2 : real?
y2 : real?
angle2 : angle?
pull2 : real?
color : image-color?

Adds a curve to image like add-curve, except it fills in the region inside the curve.

Examples:
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> (add-solid-curve (rectangle 100 100 "solid" "black")
20 20 0 1
80 80 0 1
"white")

> (add-solid-curve
(add-solid-curve
(rectangle 100 100 "solid" "black")
50 20 180 1/10
50 80 0 1
"white")

50 20 0 1/10
50 80 180 1
"white")

> (add-solid-curve
(add-solid-curve
(rectangle 100 100 "solid" "black")
51 20 180 1/10
50 80 0 1
"white")

49 20 0 1/10
50 80 180 1
"white")

> (add-solid-curve (rectangle 100 100 "solid" "black")
-20 -20 0 1
120 120 0 1
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"red")

Added in version 1.2 of package htdp-lib.

(text string font-size color) Ñ image?
string : string?
font-size : (and/c integer? (<=/c 1 255))
color : image-color?

Constructs an image that draws the given string, using the font size and color.

Examples:

> (text "Hello" 24 "olive")

olleH
> (text "Goodbye" 36 "indigo")

eybdooG

If the string contains newlines, the result image will have multiple lines.

Example:

> (text "Hello and\nGoodbye" 24 "orange")

eybdooG
dna olleH

The text size is measured in pixels, not points, so passing 24 to text should result in an
image whose height is 24 (which might not be the case if the size were measured in points).

Example:
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> (image-height (text "Hello" 24 "olive"))
24

Changed in version 1.7 of package htdp-lib: When called with strings that have newlines, text returns multiple-
line images.

(text/font string
font-size
color
face
family
style
weight
underline?) Ñ image?

string : string?
font-size : (and/c integer? (<=/c 1 255))
color : image-color?
face : (or/c string? #f)
family : (or/c "default" "decorative" "roman" "script"

"swiss" "modern" "symbol" "system"
'default 'decorative 'roman 'script
'swiss 'modern 'symbol 'system)

style : (or/c "normal" "italic" "slant"
'normal 'italic 'slant)

weight : (or/c "normal" "bold" "light"
'normal 'bold 'light)

underline? : any/c

Constructs an image that draws the given string, using a complete font specification.

The face and the family combine to give the complete typeface. If face is available on
the system, it is used, but if not then a default typeface based on the family is chosen. The
style controls if the face is italic or not (on Windows and Mac OS, 'slant and 'italic
are the same), the weight controls if it is boldface (or light), and underline? determines
if the face is underlined. For more details on these arguments, see font%, which ultimately
is what this code uses to draw the font.

Examples:

> (text/font "Hello" 24 "olive"
"Gill Sans" 'swiss 'normal 'bold #f)

olleH
> (text/font "Goodbye" 18 "indigo"

#f 'modern 'italic 'normal #f)
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eybdooG
> (text/font "not really a link" 18 "blue"

#f 'roman 'normal 'normal #t)
knil a yllaer ton

empty-image : image?

The empty image. Its width and height are both zero and it does not draw at all.

Examples:

> (image-width empty-image)
0
> (equal? (above empty-image

(rectangle 10 10 "solid" "red"))
(beside empty-image

(rectangle 10 10 "solid" "red")))
#t

Combining an image with empty-image produces the original image (as shown in the above
example).

2.3.2 Polygons

(triangle side-length mode color) Ñ image?
side-length : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(triangle side-length
outline-mode
pen-or-color) Ñ image?

side-length : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a upward-pointing equilateral triangle. The side-length argument determines
the length of the side of the triangle.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

81



If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Example:

> (triangle 40 "solid" "tan")

(right-triangle side-length1
side-length2
mode
color) Ñ image?

side-length1 : (and/c real? (not/c negative?))
side-length2 : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(right-triangle side-length1
side-length2
outline-mode
pen-or-color) Ñ image?

side-length1 : (and/c real? (not/c negative?))
side-length2 : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a triangle with a right angle where the two sides adjacent to the right angle have
lengths side-length1 and side-length2 .

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Example:

> (right-triangle 36 48 "solid" "black")
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(isosceles-triangle side-length
angle
mode
color) Ñ image?

side-length : (and/c real? (not/c negative?))
angle : angle?
mode : mode?
color : image-color?

(isosceles-triangle side-length
angle
outline-mode
pen-or-color) Ñ image?

side-length : (and/c real? (not/c negative?))
angle : angle?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle with two equal-length sides, of length side-length where the angle
between those sides is angle . The third leg is straight, horizontally. If the angle is less than
180, then the triangle will point up and if the angle is more, then the triangle will point
down.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (isosceles-triangle 200 170 "solid" "seagreen")

> (isosceles-triangle 60 30 "solid" "aquamarine")

> (isosceles-triangle 60 330 "solid" "lightseagreen")
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To create a triangle given known sides and angles, the following family of functions are
useful:

• triangle/sss, if all three sides are known

• triangle/ass, triangle/sas, or triangle/ssa, if two sides and their included
angle are known

• triangle/aas, triangle/asa, or triangle/saa, if two angles and their shared
side are known.

They all construct a triangle oriented as follows:

(triangle/sss side-length-a
side-length-b
side-length-c
mode
color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(triangle/sss side-length-a
side-length-b
side-length-c
outline-mode
pen-or-color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
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side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side lengths a, b, and, c are given by side-length-a , side-
length-b , and, side-length-c respectively.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/sss 40 60 80 "solid" "seagreen")

> (triangle/sss 80 40 60 "solid" "aquamarine")

> (triangle/sss 80 80 40 "solid" "lightseagreen")

(triangle/ass angle-a
side-length-b
side-length-c
mode
color) Ñ image?

angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?
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(triangle/ass angle-a
side-length-b
side-length-c
outline-mode
pen-or-color) Ñ image?

angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the angle A and side length a and b, are given by angle-a , side-
length-b , and, side-length-c respectively. See above for a diagram showing where
which sides and which angles are which.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/ass 10 60 100 "solid" "seagreen")

> (triangle/ass 90 60 100 "solid" "aquamarine")

> (triangle/ass 130 60 100 "solid" "lightseagreen")

(triangle/sas side-length-a
angle-b
side-length-c
mode
color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
angle-b : angle?
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side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(triangle/sas side-length-a
angle-b
side-length-c
outline-mode
pen-or-color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
angle-b : angle?
side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side length a, angle B, and, side length c given by side-
length-a , angle-b , and, side-length-c respectively. See above for a diagram showing
where which sides and which angles are which.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/sas 60 10 100 "solid" "seagreen")

> (triangle/sas 60 90 100 "solid" "aquamarine")

> (triangle/sas 60 130 100 "solid" "lightseagreen")

(triangle/ssa side-length-a
side-length-b
angle-c
mode
color) Ñ image?
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side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
mode : mode?
color : image-color?

(triangle/ssa side-length-a
side-length-b
angle-c
outline-mode
pen-or-color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side length a, side length b, and, angle c given by side-
length-a , side-length-b , and, angle-c respectively. See above for a diagram showing
where which sides and which angles are which.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/ssa 60 100 10 "solid" "seagreen")

> (triangle/ssa 60 100 90 "solid" "aquamarine")

> (triangle/ssa 60 100 130 "solid" "lightseagreen")
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(triangle/aas angle-a
angle-b
side-length-c
mode
color) Ñ image?

angle-a : angle?
angle-b : angle?
side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(triangle/aas angle-a
angle-b
side-length-c
outline-mode
pen-or-color) Ñ image?

angle-a : angle?
angle-b : angle?
side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the angle A, angle B, and, side length c given by angle-a , angle-
b , and, side-length-c respectively. See above for a diagram showing where which sides
and which angles are which.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/aas 10 40 200 "solid" "seagreen")

> (triangle/aas 90 40 200 "solid" "aquamarine")
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> (triangle/aas 130 40 40 "solid" "lightseagreen")

(triangle/asa angle-a
side-length-b
angle-c
mode
color) Ñ image?

angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
mode : mode?
color : image-color?

(triangle/asa angle-a
side-length-b
angle-c
outline-mode
pen-or-color) Ñ image?

angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the angle A, side length b, and, angle C given by angle-a , side-
length-b , and, angle-c respectively. See above for a diagram showing where which sides
and which angles are which.
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Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/asa 10 200 40 "solid" "seagreen")

> (triangle/asa 90 200 40 "solid" "aquamarine")

> (triangle/asa 130 40 40 "solid" "lightseagreen")

(triangle/saa side-length-a
angle-b
angle-c
mode
color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
angle-b : angle?
angle-c : angle?
mode : mode?
color : image-color?
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(triangle/saa side-length-a
angle-b
angle-c
outline-mode
pen-or-color) Ñ image?

side-length-a : (and/c real? (not/c negative?))
angle-b : angle?
angle-c : angle?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side length a, angle B, and, angle C given by side-length-a ,
angle-b , and, angle-c respectively. See above for a diagram showing where which sides
and which angles are which.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/saa 200 10 40 "solid" "seagreen")

> (triangle/saa 200 90 40 "solid" "aquamarine")

> (triangle/saa 40 130 40 "solid" "lightseagreen")
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(square side-len mode color) Ñ image?
side-len : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(square side-len outline-mode pen-or-color) Ñ image?
side-len : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a square.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (square 40 "solid" "slateblue")

> (square 50 "outline" "darkmagenta")

(rectangle width height mode color) Ñ image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(rectangle width
height
outline-mode
pen-or-color) Ñ image?

width : (and/c real? (not/c negative?))
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height : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a rectangle with the given width, height, mode, and color.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (rectangle 40 20 "outline" "black")

> (rectangle 20 40 "solid" "blue")

(rhombus side-length angle mode color) Ñ image?
side-length : (and/c real? (not/c negative?))
angle : angle?
mode : mode?
color : image-color?

(rhombus side-length
angle
outline-mode
pen-or-color) Ñ image?

side-length : (and/c real? (not/c negative?))
angle : angle?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a four sided polygon with all equal sides and thus where opposite angles are equal
to each other. The top and bottom pair of angles is angle and the left and right are (- 180
angle).

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
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“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (rhombus 40 45 "solid" "magenta")

> (rhombus 80 150 "solid" "mediumpurple")

(star side-length mode color) Ñ image?
side-length : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(star side-length outline-mode color) Ñ image?
side-length : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
color : (or/c pen? image-color?)

Constructs a star with five points. The side-length argument determines the side length
of the enclosing pentagon.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Example:

> (star 40 "solid" "gray")
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(star-polygon side-length
side-count
step-count
mode
color) Ñ image?

side-length : (and/c real? (not/c negative?))
side-count : side-count?
step-count : step-count?
mode : mode?
color : image-color?

(star-polygon side-length
side-count
step-count
outline-mode
pen-or-color) Ñ image?

side-length : (and/c real? (not/c negative?))
side-count : side-count?
step-count : step-count?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs an arbitrary regular star polygon (a generalization of the regular polygons). The
polygon is enclosed by a regular polygon with side-count sides each side-length long.
The polygon is actually constructed by going from vertex to vertex around the regular poly-
gon, but connecting every step-count -th vertex (i.e., skipping every (- step-count 1)
vertices).

For example, if side-count is 5 and step-count is 2, then this function produces a shape
just like star.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:
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> (star-polygon 40 5 2 "solid" "seagreen")

> (star-polygon 40 7 3 "outline" "darkred")

> (star-polygon 20 10 3 "solid" "cornflowerblue")

(radial-star point-count
inner-radius
outer-radius
mode
color) Ñ image?

point-count : (and/c integer? (>=/c 2))
inner-radius : (and/c real? (not/c negative?))
outer-radius : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(radial-star point-count
inner-radius
outer-radius
outline-mode
pen-or-color) Ñ image?

point-count : (and/c integer? (>=/c 2))
inner-radius : (and/c real? (not/c negative?))
outer-radius : (and/c real? (not/c negative?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a star-like polygon where the star is specified by two radii and a number of points.
The first radius determines where the points begin, the second determines where they end,
and the point-count argument determines how many points the star has.

Examples:
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> (radial-star 8 8 64 "solid" "darkslategray")

> (radial-star 32 30 40 "outline" "black")

(regular-polygon side-length
side-count
mode
color) Ñ image?

side-length : (and/c real? (not/c negative?))
side-count : side-count?
mode : mode?
color : image-color?

(regular-polygon side-length
side-count
outline-mode
pen-or-color) Ñ image?

side-length : (and/c real? (not/c negative?))
side-count : side-count?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a regular polygon with side-count sides.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:
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> (regular-polygon 50 3 "outline" "red")

> (regular-polygon 40 4 "outline" "blue")

> (regular-polygon 20 8 "solid" "red")

(pulled-regular-polygon side-length
side-count
pull
angle
mode
color) Ñ image?

side-length : (and/c real? (not/c negative?))
side-count : side-count?
pull : (and/c real? (not/c negative?))
angle : angle?
mode : mode?
color : image-color?

(pulled-regular-polygon side-length
side-count
pull
angle
outline-mode
pen-or-color) Ñ image?

side-length : (and/c real? (not/c negative?))
side-count : side-count?
pull : (and/c real? (not/c negative?))
angle : angle?
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a regular polygon with side-count sides where each side is curved according
to the pull and angle arguments. The angle argument controls the angle at which the
curved version of polygon edge makes with the original edge of the polygon. Larger the
pull arguments mean that the angle is preserved more at each vertex.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
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“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (pulled-regular-polygon 60 4 1/3 30 "solid" "blue")

> (pulled-regular-polygon 50 5 1/2 -10 "solid" "red")

> (pulled-regular-polygon 50 5 1 140 "solid" "purple")

> (pulled-regular-polygon 50 5 1.1 140 "solid" "purple")

> (pulled-regular-polygon 100 3 1.8 30 "solid" "blue")

Added in version 1.3 of package htdp-lib.

(polygon vertices mode color) Ñ image?
vertices : (listof (or/c real-valued-posn? pulled-point?))
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mode : mode?
color : image-color?

(polygon vertices outline-mode pen-or-color) Ñ image?
vertices : (listof (or/c real-valued-posn? pulled-point?))
outline-mode : (or/c 'outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a polygon connecting the given vertices.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (polygon (list (make-posn 0 0)
(make-posn -10 20)
(make-posn 60 0)
(make-posn -10 -20))

"solid"
"burlywood")

> (polygon (list (make-pulled-point 1/2 20 0 0 1/2 -20)
(make-posn -10 20)
(make-pulled-point 1/2 -20 60 0 1/2 20)
(make-posn -10 -20))

"solid"
"burlywood")

> (polygon (list (make-posn 0 0)
(make-posn 0 40)
(make-posn 20 40)
(make-posn 20 60)
(make-posn 40 60)
(make-posn 40 20)
(make-posn 20 20)
(make-posn 20 0))
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"solid"
"plum")

> (underlay
(rectangle 80 80 "solid" "mediumseagreen")
(polygon
(list (make-posn 0 0)

(make-posn 50 0)
(make-posn 0 50)
(make-posn 50 50))

"outline"
(make-pen "darkslategray" 10 "solid" "round" "round")))

> (underlay
(rectangle 90 80 "solid" "mediumseagreen")
(polygon
(list (make-posn 0 0)

(make-posn 50 0)
(make-posn 0 50)
(make-posn 50 50))

"outline"
(make-pen "darkslategray" 10 "solid" "projecting" "miter")))

Changed in version 1.3 of package htdp-lib: Accepts pulled-points.

(add-polygon image posns mode color) Ñ image?
image : image?
posns : (listof posn?)
mode : mode?
color : image-color?

Adds a closed polygon to the image image , with vertices as specified in posns (relative
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to the top-left corner of image ). Unlike scene+polygon, if the polygon goes outside the
bounds of image , the result is enlarged to accommodate both.

Note that when the mode is 'outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” (in the §2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is 'outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is 'solid or "solid", then the last argument must
be an image-color?.

Examples:

> (add-polygon (square 65 "solid" "light blue")
(list (make-posn 30 -20)

(make-posn 50 50)
(make-posn -20 30))

"solid" "forest green")

> (add-polygon (square 65 "solid" "light blue")
(list (make-posn 30 -20)

(make-pulled-point 1/2 30 50 50 1/2 -30)
(make-posn -20 30))

"solid" "forest green")

> (add-polygon (square 180 "solid" "yellow")
(list (make-posn 109 160)

(make-posn 26 148)
(make-posn 46 36)
(make-posn 93 44)
(make-posn 89 68)
(make-posn 122 72))

"outline" "dark blue")
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> (add-polygon (square 50 "solid" "light blue")
(list (make-posn 25 -10)

(make-posn 60 25)
(make-posn 25 60)
(make-posn -10 25))

"solid" "pink")

Changed in version 1.3 of package htdp-lib: Accepts pulled-points.

(scene+polygon image posns mode color) Ñ image?
image : image?
posns : (listof posn?)
mode : mode?
color : image-color?

Adds a closed polygon to the image image , with vertices as specified in posns (relative to
the top-left corner of image ). Unlike add-polygon, if the polygon goes outside the bounds
of image , the result is clipped to image .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (scene+polygon (square 65 "solid" "light blue")
(list (make-posn 30 -20)
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(make-posn 50 50)
(make-posn -20 30))

"solid" "forest green")

> (scene+polygon (square 65 "solid" "light blue")
(list (make-posn 30 -20)

(make-pulled-point 1/2 -30 50 50 1/2 30)
(make-posn -20 30))

"solid" "forest green")

> (scene+polygon (square 180 "solid" "yellow")
(list (make-posn 109 160)

(make-posn 26 148)
(make-posn 46 36)
(make-posn 93 44)
(make-posn 89 68)
(make-posn 122 72))

"outline" "dark blue")

> (scene+polygon (square 50 "solid" "light blue")
(list (make-posn 25 -10)

(make-posn 60 25)
(make-posn 25 60)
(make-posn -10 25))

"solid" "pink")
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Changed in version 1.3 of package htdp-lib: Accepts pulled-points.

2.3.3 Overlaying Images

(overlay i1 i2 is ...) Ñ image?
i1 : image?
i2 : image?
is : image?

Overlays all of its arguments building a single image. The first argument goes on top of the
second argument, which goes on top of the third argument, etc. The images are all lined up
on their centers.

Examples:

> (overlay (rectangle 30 60 "solid" "orange")
(ellipse 60 30 "solid" "purple"))

> (overlay (ellipse 10 10 "solid" "red")
(ellipse 20 20 "solid" "black")
(ellipse 30 30 "solid" "red")
(ellipse 40 40 "solid" "black")
(ellipse 50 50 "solid" "red")
(ellipse 60 60 "solid" "black"))

> (overlay (regular-polygon 20 5 "solid" (make-color 50 50 255))
(regular-polygon 26 5 "solid" (make-color 100 100 255))
(regular-polygon 32 5 "solid" (make-color 150 150 255))
(regular-polygon 38 5 "solid" (make-color 200 200 255))
(regular-polygon 44 5 "solid" (make-

color 250 250 255)))
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(overlay/align x-place y-place i1 i2 is ...) Ñ image?
x-place : x-place?
y-place : y-place?
i1 : image?
i2 : image?
is : image?

Overlays all of its image arguments, much like the overlay function, but using x-place
and y-place to determine where the images are lined up. For example, if x-place and
y-place are both "middle", then the images are lined up on their centers.

Examples:

> (overlay/align "left" "middle"
(rectangle 30 60 "solid" "orange")
(ellipse 60 30 "solid" "purple"))

> (overlay/align "right" "bottom"
(rectangle 20 20 "solid" "silver")
(rectangle 30 30 "solid" "seagreen")
(rectangle 40 40 "solid" "silver")
(rectangle 50 50 "solid" "seagreen"))

(overlay/offset i1 x y i2) Ñ image?
i1 : image?
x : real?
y : real?
i2 : image?

Just like overlay, this function lines up its image arguments on top of each other. Unlike
overlay, it moves i2 by x pixels to the right and y down before overlaying them.

Examples:
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> (overlay/offset (circle 40 "solid" "red")
10 10
(circle 40 "solid" "blue"))

> (overlay/offset (overlay/offset (rectangle 60 20 "solid" "black")
-50 0
(circle 20 "solid" "darkorange"))

70 0
(circle 20 "solid" "darkorange"))

> (overlay/offset
(overlay/offset (circle 30 'solid (color 0 150 0 127))

26 0
(circle 30 'solid (color 0 0 255 127)))

0 26
(circle 30 'solid (color 200 0 0 127)))

(overlay/align/offset x-place
y-place
i1
x
y
i2) Ñ image?

x-place : x-place?
y-place : y-place?
i1 : image?
x : real?
y : real?
i2 : image?

Overlays image i1 on top of i2 , using x-place and y-place as the starting points for the
overlaying, and then adjusts i2 by x to the right and y pixels down.
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This function combines the capabilities of overlay/align and overlay/offset.

Examples:

> (overlay/align/offset
"right" "bottom"
(star-polygon 20 20 3 "solid" "navy")
10 10
(circle 30 "solid" "cornflowerblue"))

> (overlay/align/offset
"left" "bottom"
(star-polygon 20 20 3 "solid" "navy")
-10 10
(circle 30 "solid" "cornflowerblue"))

(overlay/xy i1 x y i2) Ñ image?
i1 : image?
x : real?
y : real?
i2 : image?

Constructs an image by overlaying i1 on top of i2 . The images are initially lined up on
their upper-left corners and then i2 is shifted to the right by x pixels and down by y pixels.

This is the same as (underlay/xy i2 (- x) (- y) i1).

See also overlay/offset and underlay/offset.
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Examples:

> (overlay/xy (rectangle 20 20 "outline" "black")
20 0
(rectangle 20 20 "outline" "black"))

> (overlay/xy (rectangle 20 20 "solid" "red")
10 10
(rectangle 20 20 "solid" "black"))

> (overlay/xy (rectangle 20 20 "solid" "red")
-10 -10
(rectangle 20 20 "solid" "black"))

> (overlay/xy
(overlay/xy (ellipse 40 40 "outline" "black")

10
15
(ellipse 10 10 "solid" "forestgreen"))

20
15
(ellipse 10 10 "solid" "forestgreen"))

(underlay i1 i2 is ...) Ñ image?
i1 : image?
i2 : image?
is : image?

Underlays all of its arguments building a single image.

It behaves like overlay, but with the arguments in the reverse order. That is, the first argu-
ment goes underneath of the second argument, which goes underneath the third argument,
etc. The images are all lined up on their centers.

Examples:

> (underlay (rectangle 30 60 "solid" "orange")
(ellipse 60 30 "solid" "purple"))
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> (underlay (ellipse 10 60 "solid" "red")
(ellipse 20 50 "solid" "black")
(ellipse 30 40 "solid" "red")
(ellipse 40 30 "solid" "black")
(ellipse 50 20 "solid" "red")
(ellipse 60 10 "solid" "black"))

> (underlay (ellipse 10 60 40 "red")
(ellipse 20 50 40 "red")
(ellipse 30 40 40 "red")
(ellipse 40 30 40 "red")
(ellipse 50 20 40 "red")
(ellipse 60 10 40 "red"))

(underlay/align x-place y-place i1 i2 is ...) Ñ image?
x-place : x-place?
y-place : y-place?
i1 : image?
i2 : image?
is : image?

Underlays all of its image arguments, much like the underlay function, but using x-place
and y-place to determine where the images are lined up. For example, if x-place and
y-place are both "middle", then the images are lined up on their centers.

Examples:

> (underlay/align "left" "middle"
(rectangle 30 60 "solid" "orange")
(ellipse 60 30 "solid" "purple"))
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> (underlay/align "right" "top"
(rectangle 50 50 "solid" "seagreen")
(rectangle 40 40 "solid" "silver")
(rectangle 30 30 "solid" "seagreen")
(rectangle 20 20 "solid" "silver"))

> (underlay/align "left" "middle"
(rectangle 50 50 50 "seagreen")
(rectangle 40 40 50 "seagreen")
(rectangle 30 30 50 "seagreen")
(rectangle 20 20 50 "seagreen"))

(underlay/offset i1 x y i2) Ñ image?
i1 : image?
x : real?
y : real?
i2 : image?

Just like underlay, this function lines up its first image argument underneath the second.
Unlike underlay, it moves i2 by x pixels to the right and y down before underlaying them.

Examples:

> (underlay/offset (circle 40 "solid" "red")
10 10
(circle 40 "solid" "blue"))

> (underlay/offset (circle 40 "solid" "gray")
0 -10
(underlay/offset (circle 10 "solid" "navy")

-30 0
(circle 10 "solid" "navy")))
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(underlay/align/offset x-place
y-place
i1
x
y
i2) Ñ image?

x-place : x-place?
y-place : y-place?
i1 : image?
x : real?
y : real?
i2 : image?

Underlays image i1 underneath i2 , using x-place and y-place as the starting points for
the combination, and then adjusts i2 by x to the right and y pixels down.

This function combines the capabilities of underlay/align and underlay/offset.

Examples:

> (underlay/align/offset
"right" "bottom"
(star-polygon 20 20 3 "solid" "navy")
10 10
(circle 30 "solid" "cornflowerblue"))

> (underlay/align/offset
"right" "bottom"
(underlay/align/offset
"left" "bottom"
(underlay/align/offset
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"right" "top"
(underlay/align/offset
"left" "top"
(rhombus 120 90 "solid" "navy")
16 16
(star-polygon 20 11 3 "solid" "cornflowerblue"))

-16 16
(star-polygon 20 11 3 "solid" "cornflowerblue"))

16 -16
(star-polygon 20 11 3 "solid" "cornflowerblue"))

-16 -16
(star-polygon 20 11 3 "solid" "cornflowerblue"))

(underlay/xy i1 x y i2) Ñ image?
i1 : image?
x : real?
y : real?
i2 : image?

Constructs an image by underlaying i1 underneath i2 . The images are initially lined up
on their upper-left corners and then i2 is shifted to the right by x pixels to and down by y
pixels.

This is the same as (overlay/xy i2 (- x) (- y) i1).

See also underlay/offset and overlay/offset.

Examples:

> (underlay/xy (rectangle 20 20 "outline" "black")
20 0
(rectangle 20 20 "outline" "black"))
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> (underlay/xy (rectangle 20 20 "solid" "red")
10 10
(rectangle 20 20 "solid" "black"))

> (underlay/xy (rectangle 20 20 "solid" "red")
-10 -10
(rectangle 20 20 "solid" "black"))

> (underlay/xy
(underlay/xy (ellipse 40 40 "solid" "gray")

10
15
(ellipse 10 10 "solid" "forestgreen"))

20
15
(ellipse 10 10 "solid" "forestgreen"))

(beside i1 i2 is ...) Ñ image?
i1 : image?
i2 : image?
is : image?

Constructs an image by placing all of the argument images in a horizontal row, aligned along
their centers.

Example:

> (beside (ellipse 20 70 "solid" "gray")
(ellipse 20 50 "solid" "darkgray")
(ellipse 20 30 "solid" "dimgray")
(ellipse 20 10 "solid" "black"))

(beside/align y-place i1 i2 is ...) Ñ image?
y-place : y-place?
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i1 : image?
i2 : image?
is : image?

Constructs an image by placing all of the argument images in a horizontal row, lined up
as indicated by the y-place argument. For example, if y-place is "middle", then the
images are placed side by side with their centers lined up with each other.

Examples:

> (beside/align "bottom"
(ellipse 20 70 "solid" "lightsteelblue")
(ellipse 20 50 "solid" "mediumslateblue")
(ellipse 20 30 "solid" "slateblue")
(ellipse 20 10 "solid" "navy"))

> (beside/align "top"
(ellipse 20 70 "solid" "mediumorchid")
(ellipse 20 50 "solid" "darkorchid")
(ellipse 20 30 "solid" "purple")
(ellipse 20 10 "solid" "indigo"))

> (beside/align "baseline"
(text "ijy" 18 "black")
(text "ijy" 24 "black"))

yjiyji

(above i1 i2 is ...) Ñ image?
i1 : image?
i2 : image?
is : image?

Constructs an image by placing all of the argument images in a vertical row, aligned along
their centers.

Example:
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> (above (ellipse 70 20 "solid" "gray")
(ellipse 50 20 "solid" "darkgray")
(ellipse 30 20 "solid" "dimgray")
(ellipse 10 20 "solid" "black"))

(above/align x-place i1 i2 is ...) Ñ image?
x-place : x-place?
i1 : image?
i2 : image?
is : image?

Constructs an image by placing all of the argument images in a vertical row, lined up as
indicated by the x-place argument. For example, if x-place is "middle", then the images
are placed above each other with their centers lined up.

Examples:

> (above/align "right"
(ellipse 70 20 "solid" "gold")
(ellipse 50 20 "solid" "goldenrod")
(ellipse 30 20 "solid" "darkgoldenrod")
(ellipse 10 20 "solid" "sienna"))

> (above/align "left"
(ellipse 70 20 "solid" "yellowgreen")
(ellipse 50 20 "solid" "olivedrab")
(ellipse 30 20 "solid" "darkolivegreen")
(ellipse 10 20 "solid" "darkgreen"))
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2.3.4 Placing Images & Scenes

Placing images into scenes is particularly useful when building worlds and universes using
2htdp/universe.

(empty-scene width height) Ñ image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))

(empty-scene width height color) Ñ image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
color : image-color?

Creates an empty scene, i.e., a white rectangle with a black outline.

Example:

> (empty-scene 160 90)

The three-argument version creates a rectangle of the specified color with a black outline.

(place-image image x y scene) Ñ image?
image : image?
x : real?
y : real?
scene : image?

Places image onto scene with its center at the coordinates (x ,y ) and crops the resulting
image so that it has the same size as scene . The coordinates are relative to the top-left of
scene .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (place-image
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(triangle 32 "solid" "red")
24 24
(rectangle 48 48 "solid" "gray"))

> (place-image
(triangle 64 "solid" "red")
24 24
(rectangle 48 48 "solid" "gray"))

> (place-image
(circle 4 "solid" "white")
18 20
(place-image
(circle 4 "solid" "white")
0 6
(place-image
(circle 4 "solid" "white")
14 2
(place-image
(circle 4 "solid" "white")
8 14
(rectangle 24 24 "solid" "goldenrod")))))

(place-image/align image
x
y
x-place
y-place
scene) Ñ image?

image : image?
x : real?
y : real?
x-place : x-place?
y-place : y-place?
scene : image?

Like place-image, but uses image ’s x-place and y-place to anchor the image. Also,
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like place-image, place-image/align crops the resulting image so that it has the same
size as scene .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (place-image/align (triangle 48 "solid" "yellowgreen")
64 64 "right" "bottom"
(rectangle 64 64 "solid" "mediumgoldenrod"))

> (beside
(place-image/align (circle 8 "solid" "tomato")

0 0 "center" "center"
(rectangle 32 32 "outline" "black"))

(place-image/align (circle 8 "solid" "tomato")
8 8 "center" "center"
(rectangle 32 32 "outline" "black"))

(place-image/align (circle 8 "solid" "tomato")
16 16 "center" "center"
(rectangle 32 32 "outline" "black"))

(place-image/align (circle 8 "solid" "tomato")
24 24 "center" "center"
(rectangle 32 32 "outline" "black"))

(place-image/align (circle 8 "solid" "tomato")
32 32 "center" "center"
(rectangle 32 32 "outline" "black")))

(place-images images posns scene) Ñ image?
images : (listof image?)
posns : (listof posn?)
scene : image?

Places each of images into scene like place-image would, using the coordinates in
posns as the x and y arguments to place-image.

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
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lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Example:

> (place-images
(list (circle 4 "solid" "white")

(circle 4 "solid" "white")
(circle 4 "solid" "white")
(circle 4 "solid" "white"))

(list (make-posn 18 20)
(make-posn 0 6)
(make-posn 14 2)
(make-posn 8 14))

(rectangle 24 24 "solid" "goldenrod"))

(place-images/align images
posns
x-place
y-place
scene) Ñ image?

images : (listof image?)
posns : (listof posn?)
x-place : x-place?
y-place : y-place?
scene : image?

Like place-images, except that it places the images with respect to x-place and y-
place .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Example:

> (place-images/align
(list (triangle 48 "solid" "yellowgreen")

(triangle 48 "solid" "yellowgreen")
(triangle 48 "solid" "yellowgreen")
(triangle 48 "solid" "yellowgreen"))

(list (make-posn 64 64)
(make-posn 64 48)
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(make-posn 64 32)
(make-posn 64 16))

"right" "bottom"
(rectangle 64 64 "solid" "mediumgoldenrod"))

(put-image image x y scene) Ñ image?
image : image?
x : real?
y : real?
scene : image?

Places image onto scene with its center at the coordinates (x ,y ) and crops the resulting
image so that it has the same size as scene . The coordinates are relative to the bottom-left
of scene and y increasing goes upwards, not downwards.

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (put-image
(ellipse 20 30 "solid" "red")
40 15
(rectangle 50 50 "solid" "gray"))

> (place-image
(ellipse 20 30 "solid" "red")
40 15
(rectangle 50 50 "solid" "gray"))

(scene+line scene x1 y1 x2 y2 pen-or-color) Ñ image?
scene : image?
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x1 : real?
y1 : real?
x2 : real?
y2 : real?
pen-or-color : (or/c pen? image-color?)

Adds a line to the image scene , starting from the point (x1 ,y1 ) and going to the point
(x2 ,y2 ); unlike add-line, this function crops the resulting image to the size of scene .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (scene+line (ellipse 40 40 "outline" "maroon")
0 40 40 0 "maroon")

> (scene+line (rectangle 40 40 "solid" "gray")
-10 50 50 -10 "maroon")

> (scene+line
(rectangle 100 100 "solid" "darkolivegreen")
25 25 100 100
(make-pen "goldenrod" 30 "solid" "round" "round"))
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(scene+curve scene
x1
y1
angle1
pull1
x2
y2
angle2
pull2
color) Ñ image?

scene : image?
x1 : real?
y1 : real?
angle1 : angle?
pull1 : real?
x2 : real?
y2 : real?
angle2 : angle?
pull2 : real?
color : (or/c pen? image-color?)

Adds a curve to scene , starting at the point (x1 ,y1 ), and ending at the point (x2 ,y2 ).

The angle1 and angle2 arguments specify the angle that the curve has as it leaves the
initial point and as it reaches the final point, respectively.

The pull1 and pull2 arguments control how long the curve tries to stay with that angle.
Larger numbers mean that the curve stays with the angle longer.

Unlike add-curve, this function crops the curve, only showing the parts that fit onto scene .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (scene+curve (rectangle 100 100 "solid" "black")
20 20 0 1/3
80 80 0 1/3
"white")
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> (scene+curve (rectangle 100 100 "solid" "black")
20 20 0 1
80 80 0 1
"white")

> (scene+curve
(add-curve
(rectangle 40 100 "solid" "black")
20 10 180 1/2
20 90 180 1/2
"white")

20 10 0 1/2
20 90 0 1/2
"white")

> (scene+curve (rectangle 100 100 "solid" "black")
-20 -20 0 1
120 120 0 1
"red")
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2.3.5 Rotating, Scaling, Flipping, Cropping, and Framing Images

(rotate angle image) Ñ image?
angle : angle?
image : image?

Rotates image by angle degrees in a counter-clockwise direction.

Examples:

> (rotate 45 (ellipse 60 20 "solid" "olivedrab"))

> (rotate 5 (rectangle 50 50 "outline" "black"))

> (rotate 45
(beside/align
"center"
(rectangle 40 20 "solid" "darkseagreen")
(rectangle 20 100 "solid" "darkseagreen")))

See also §2.2.5 “Rotating and Image Centers”.

(scale factor image) Ñ image?
factor : (and/c real? positive?)
image : image?

Scales image by factor .

The pen sizes are also scaled and thus draw thicker (or thinner) lines than the original image,
unless the pen was size 0. That pen size is treated specially to mean “the smallest available
line” and thus it always draws a one-pixel wide line; this is also the case for 'outline and
"outline" shapes that are drawn with an image-color? instead of a pen.

Examples:
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> (scale 2 (ellipse 20 30 "solid" "blue"))

> (ellipse 40 60 "solid" "blue")

(scale/xy x-factor y-factor image) Ñ image?
x-factor : (and/c real? positive?)
y-factor : (and/c real? positive?)
image : image?

Scales image by x-factor horizontally and by y-factor vertically.

Examples:

> (scale/xy 3
2
(ellipse 20 30 "solid" "blue"))

> (ellipse 60 60 "solid" "blue")

(flip-horizontal image) Ñ image?
image : image?

Flips image left to right.

Flipping images with text is not supported (so passing flip-horizontal an image that
contains a text or text/font image inside somewhere signals an error).

Example:

> (beside
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(rotate 30 (square 50 "solid" "red"))
(flip-horizontal
(rotate 30 (square 50 "solid" "blue"))))

(flip-vertical image) Ñ image?
image : image?

Flips image top to bottom.

Flipping images with text is not supported (so passing flip-vertical an image that con-
tains a text or text/font image inside somewhere signals an error).

Example:

> (above
(star 40 "solid" "firebrick")
(scale/xy 1 1/2 (flip-vertical (star 40 "solid" "gray"))))

(crop x y width height image) Ñ image?
x : real?
y : real?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
image : image?

Crops image to the rectangle with the upper left at the point (x ,y ) and with width and
height .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:
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> (crop 0 0 40 40 (circle 40 "solid" "chocolate"))

> (crop 40 60 40 60 (ellipse 80 120 "solid" "dodgerblue"))

> (above
(beside (crop 40 40 40 40 (circle 40 "solid" "palevioletred"))

(crop 0 40 40 40 (circle 40 "solid" "lightcoral")))
(beside (crop 40 0 40 40 (circle 40 "solid" "lightcoral"))

(crop 0 0 40 40 (circle 40 "solid" "palevioletred"))))

(crop/align x-place
y-place
width
height
image) Ñ image?

x-place : x-place?
y-place : y-place?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
image : image?

Crops image to a rectangle whose size is width and height and is positioned based on
x-place and y-place .

Some shapes (notably those with 'outline or "outline" as the mode argument) draw
outside of their bounding boxes and thus cropping them may remove part of them (often the
lower-left and lower-right edges). See §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”
(in the §2.2 “Image Guide”) for a more careful discussion of this issue.

Examples:

> (crop/align "left" "top" 40 40 (circle 40 "solid" "chocolate"))
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> (crop/align "right" "bottom" 40 60 (ellipse 80 120 "solid" "dodgerblue"))

> (crop/align "center" "center" 50 30 (circle 25 "solid" "mediumslateblue"))

> (above
(beside (crop/align "right" "bottom" 40 40 (circle 40 "solid" "palevioletred"))

(crop/align "left" "bottom" 40 40 (circle 40 "solid" "lightcoral")))
(beside (crop/align "right" "top" 40 40 (circle 40 "solid" "lightcoral"))

(crop/align "left" "top" 40 40 (circle 40 "solid" "palevioletred"))))

Added in version 1.1 of package htdp-lib.

(frame image) Ñ image?
image : image?

Returns an image just like image , except with a black, single pixel frame drawn around the
bounding box of the image.

Example:

> (frame (ellipse 40 40 "solid" "gray"))

Generally speaking, this function is useful to debug image constructions, i.e., to see where
certain sub-images appear within some larger image.

Example:

> (beside
(ellipse 20 70 "solid" "lightsteelblue")
(frame (ellipse 20 50 "solid" "mediumslateblue"))
(ellipse 20 30 "solid" "slateblue")
(ellipse 20 10 "solid" "navy"))
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(color-frame color image) Ñ image?
color : (or/c pen? image-color?)
image : image?

Like frame, except with the given color .

Added in version 1.1 of package htdp-lib.

2.3.6 Bitmaps

DrRacket’s Insert Image ... menu item allows you to insert images into your program text,
and those images are treated as images for this library.

Unlike all of the other images in this library, those images (and the other images created by
functions in this section of the documentation) are represented as bitmaps, i.e., an array of
colors (that can be quite large in some cases). This means that scaling and rotating them
loses fidelity in the image and is significantly more expensive than with the other shapes.

See also the 2htdp/planetcute library.

(bitmap bitmap-spec)

bitmap-spec = rel-string
| id

Loads the bitmap specified by bitmap-spec . If bitmap-spec is a string, it is treated as a
relative path. If it is an identifier, it is treated like a require spec and used to refer to a file in
a collection.

Examples:

> (bitmap icons/stop-16x16.png)

> (bitmap icons/b-run.png)

(bitmap/url url) Ñ image?
url : string?
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Goes out on the web and downloads the image at url .

Downloading the image happens each time this function is called, so you may find it simpler
to download the image once with a browser and then paste it into your program or download
it and use bitmap.

(bitmap/file ps) Ñ image?
ps : path-string?

Loads the image from ps .

If ps is a relative path, the file is relative to the current directory. (When running in DrRacket,
the current directory is set to the place where the definitions window is saved, but in general
this can be an arbitrary directory.)

(image->color-list image) Ñ (listof color?)
image : image?

Returns a list of colors that correspond to the colors in the image, reading from left to right,
top to bottom.

The list of colors is obtained by drawing the image on a white background and then reading
off the colors of the pixels that were drawn.

Examples:

> (image->color-list (rectangle 2 2 "solid" "black"))
(list (color 0 0 0 255) (color 0 0 0 255) (color 0 0 0 255) (color
0 0 0 255))
> (image->color-list

(above (beside (rectangle 1 1 "solid" (make-color 1 1 1))
(rectangle 1 1 "solid" (make-color 2 2 2)))

(beside (rectangle 1 1 "solid" (make-color 3 3 3))
(rectangle 1 1 "solid" (make-color 4 4 4)))))

(list (color 1 1 1 255) (color 2 2 2 255) (color 3 3 3 255) (color
4 4 4 255))

(color-list->bitmap colors width height) Ñ image?
colors : (listof image-color?)
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))

Constructs a bitmap from the given colors , with the given width and height .

Example:
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> (scale
40
(color-list->bitmap
(list "red" "green" "blue")
3 1))

(freeze image) Ñ image?
image : image?

(freeze width height image) Ñ image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
image : image?

(freeze x y width height image) Ñ image?
x : real?
y : real?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
image : image?

Freezing an image internally builds a bitmap, crops the image, draws the cropped image into
the bitmap and then uses the bitmap to draw that image afterwards. Typically this is used
as a performance hint. When an image both contains many sub-images and is going to be
drawn many times (but not scaled or rotated), using freeze on the image can substantially
improve performance without changing how the image draws (assuming it draws only inside
its bounding box; see also §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”).

If freeze is passed only the image argument, then it crops the image to its bounding box.
If it is given three arguments, the two numbers are used as the width and height and the five
argument version fully specifies where to crop the image.

2.3.7 Image Properties

(image-width i) Ñ (and/c integer? (not/c negative?) exact?)
i : image?

Returns the width of i .

Examples:

> (image-width (ellipse 30 40 "solid" "orange"))
30
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> (image-width (circle 30 "solid" "orange"))
60
> (image-width (beside (circle 20 "solid" "orange")

(circle 20 "solid" "purple")))
80
> (image-width (rectangle 0 10 "solid" "purple"))
0

(image-height i) Ñ (and/c integer? (not/c negative?) exact?)
i : image?

Returns the height of i .

Examples:

> (image-height (ellipse 30 40 "solid" "orange"))
40
> (image-height (circle 30 "solid" "orange"))
60
> (image-height (overlay (circle 20 "solid" "orange")

(circle 30 "solid" "purple")))
60
> (image-height (rectangle 10 0 "solid" "purple"))
0

(image-baseline i) Ñ (and/c integer? (not/c negative?) exact?)
i : image?

Returns the distance from the top of the image to its baseline. The baseline of an image is
the place where the bottoms any letters line up, but without counting the descenders, e.g. the
tail on “y” or “g” or “j”.

Unless the image was constructed with text, text/font or, in some cases, crop, this will
be the same as its height.

Examples:

> (image-baseline (text "Hello" 24 "black"))
18
> (image-height (text "Hello" 24 "black"))
24
> (image-baseline (rectangle 100 100 "solid" "black"))
100
> (image-height (rectangle 100 100 "solid" "black"))
100
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A cropped image’s baseline is the same as the image’s baseline, if the cropping stays within
the original image’s bounding box. But if the cropping actually enlarges the image, then the
baseline can end up being smaller.

Examples:

> (image-height (rectangle 20 20 "solid" "black"))
20
> (image-baseline (rectangle 20 20 "solid" "black"))
20
> (image-height (crop 10 10 5 5 (rectangle 20 20 "solid" "black")))
5
> (image-baseline (crop 10 10 5 5 (rectangle 20 20 "solid" "black")))
5
> (image-height (crop 10 10 30 30 (rectangle 20 20 "solid" "black")))
30
> (image-baseline (crop 10 10 30 30 (rectangle 20 20 "solid" "black")))
20

2.3.8 Image Predicates

This section lists predicates for the basic structures provided by the image library.

(image? x) Ñ boolean?
x : any/c

Determines if x is an image. Images are returned by functions like ellipse and rectangle
and accepted by functions like overlay and beside.

Additionally, images inserted into a DrRacket window are treated as bitmap images, as are
instances of image-snip% and bitmap%.

(mode? x) Ñ boolean?
x : any/c

Determines if x is a mode suitable for constructing images.

It can be one of 'solid, "solid", 'outline, or "outline", indicating if the shape is
filled in or not.

It can also be an integer between 0 and 255 (inclusive) indicating the transparency of the
image. The integer 255 is fully opaque, and is the same as "solid" (or 'solid). The
integer 0 means fully transparent.

(image-color? x) Ñ boolean?
x : any/c
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Determines if x represents a color. Strings, symbols, and color structs are allowed as
colors.

For example, "magenta", "black", 'orange, and 'purple are allowed. Colors are not
case-sensitive, so "Magenta", "Black", 'Orange, and 'Purple are also allowed, and are
the same colors as in the previous sentence. Additionally, spaces are not considered, so
"light orange" is the same color as "lightorange".

The complete list of colors is the same as the colors allowed in color-database<%>, plus
the color "transparent", a transparent color, as well as the following variants of the colors:
Brown, Cyan, Goldenrod, Gray, Green, Orange, Pink, Purple, Red, Turquoise, and Yellow.

Light Brown

Medium Brown

Dark Brown

Medium Cyan

Light Goldenrod

Medium Gray

Medium Green

Light Orange

Medium Orange

Medium Pink

Dark Pink

Light Purple

Dark Purple

Light Red

Medium Red

Light Turquoise

Medium Yellow
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Dark Yellow

(struct color (red green blue alpha)
#:extra-constructor-name make-color)

red : (integer-in 0 255)
green : (integer-in 0 255)
blue : (integer-in 0 255)
alpha : (integer-in 0 255)

The color struct defines a color with red, green, blue, and alpha components that range
from 0 to 255.

The red, green, and blue fields combine to make a color, with the higher values meaning
more of the given color. For example, (make-color 255 0 0) makes a bright red color
and (make-color 255 0 255) makes a bright purple.

The alpha field controls the transparency of the color. A value of 255 means that the color
is opaque and 0 means the color is fully transparent.

The constructor, make-color, also accepts only three arguments, in which case the three
arguments are used for the red, green, and blue fields, and the alpha field defaults to 255.

(struct pulled-point (lpull langle x y rpull rangle)
#:extra-constructor-name make-pulled-point)

lpull : real?
langle : angle?
x : real?
y : real?
rpull : real?
rangle : angle?

The pulled-point struct defines a point with x and y coordinates, but also with two angles
(langle and rangle) and two pulls (lpull and rpull).

These points are used with the polygon function and control how the edges can be curved.

The first two pull and angle arguments indicate how an edge coming into this point should
be curved. The angle argument indicates the angle as the edge reaches (x,y) and a larger
pull argument means that the edge should hold the angle longer. The last two are the same,
except they apply to the edge leaving the point.

Added in version 1.3 of package htdp-lib.

(y-place? x) Ñ boolean?
x : any/c
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Determines if x is a placement option for the vertical direction. It can be one of "top", 'top,
"bottom", 'bottom, "middle", 'middle, "center", 'center, "baseline", 'base-
line, "pinhole", or 'pinhole.

Using "pinhole" or 'pinhole is only allowed when all of the image arguments have pin-
holes.

See also image-baseline for more discussion of baselines.

(x-place? x) Ñ boolean?
x : any/c

Determines if x is a placement option for the horizontal direction. It can be one of "left",
'left, "right", 'right, "middle", 'middle, "center", 'center, "pinhole", or
'pinhole.

Using "pinhole" or 'pinhole is only allowed when all of the image arguments have pin-
holes.

(angle? x) Ñ boolean?
x : any/c

Determines if x is an angle, namely a real number (except not +inf.0, -inf.0 or +nan.0).

Angles are in degrees, so 0 is the same as 360, 90 means rotating one quarter of the way
around a circle, and 180 is halfway around a circle.

(side-count? x) Ñ boolean?
x : any/c

Determines if x is an integer greater than or equal to 3.

(step-count? x) Ñ boolean?
x : any/c

Determines if x is an integer greater than or equal to 1.

(real-valued-posn? x) Ñ boolean?
x : any/c

Determines if x is a posn whose x and y fields are both real? numbers.

(struct pen (color width style cap join)
#:extra-constructor-name make-pen)

color : image-color?
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width : (and/c real? (<=/c 0 255))
style : pen-style?
cap : pen-cap?
join : pen-join?

The pen struct specifies how the drawing library draws lines.

A good default for style is "solid", and good default values for the cap and join fields
are "round".

Using 0 as a width is special; it means to always draw the smallest possible, but visible, pen.
This means that the pen will always be one pixel in size, no matter how the image is scaled.

The cap determines how the ends of a curve is drawn.

The join determines how two lines are joined.

Examples:

> (line 400 100 (pen "red" 10 "long-dash" "round" "bevel"))

> (line 400 100 (pen "red" 10 "short-dash" "round" "bevel"))

> (line 400 100 (pen "red" 10 "long-dash" "butt" "bevel"))

> (line 400 100 (pen "red" 10 "dot-dash" "butt" "bevel"))
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> (line 400 100 (pen "red" 30 "dot-dash" "butt" "bevel"))

(pen-style? x) Ñ boolean?
x : any/c

Determines if x is a valid pen style. It can be one of "solid", 'solid, "dot", 'dot,
"long-dash", 'long-dash, "short-dash", 'short-dash, "dot-dash", or 'dot-dash.

(pen-cap? x) Ñ boolean?
x : any/c

Determines if x is a valid pen cap. It can be one of "round", 'round, "projecting",
'projecting, "butt", or 'butt.

(pen-join? x) Ñ boolean?
x : any/c

Determines if x is a valid pen join. It can be one of "round", 'round, "bevel", 'bevel,
"miter", or 'miter.

2.3.9 Equality Testing of Images

Two images are equal? if they draw exactly the same way at their current size (not neces-
sarily at all sizes) and, if there are pinholes, the pinholes are in the same place.

This can lead to some counter-intuitive results. For example, two completely different shapes
that are the same size and are drawn with the transparent color are equal:

Example:
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> (equal? (circle 30 "solid" "transparent")
(square 60 "solid" "transparent"))

#t

See also §2.2.8 “The Nitty Gritty of Alpha Blending”.

2.3.10 Pinholes

A pinhole is an optional property of an image that identifies a point somewhere in the image.
The pinhole can then be used to facilitate overlaying images by lining them up on their
pinholes.

When an image has a pinhole, the pinhole is drawn with crosshairs on the image. The
crosshairs are drawn with two one-pixel wide black lines (one horizontal and one vertical)
and two one-pixel wide white lines, where the black lines is drawn .5 pixels to the left and
above the pinhole, and the white lines are drawn .5 pixels to the right and below the pinhole.
Accordingly, when the pixel is on an integral coordinate, then black and white lines all take
up a single pixel and in the center of their intersections is the actual pinholes. See §2.2.7
“The Nitty Gritty of Pixels, Pens, and Lines” for more details about pixels.

When images are overlay’d, underlay’d (or the variants of those functions), placed be-
side, or above each other, the pinhole of the resulting image is the pinhole of the first image
argument passed to the combining operation. When images are combined with place-
image (or the variants of place-image), then the scene argument’s pinhole is preserved.

(center-pinhole image) Ñ image?
image : image?

Creates a pinhole in image at its center.

Examples:

> (center-pinhole (rectangle 40 20 "solid" "red"))

> (rotate 30 (center-pinhole (rectangle 40 20 "solid" "orange")))

(put-pinhole x y image) Ñ image?
x : integer?
y : integer?
image : image?
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Creates a pinhole in image at the point (x ,y ).

Example:

> (put-pinhole 2 18 (rectangle 40 20 "solid" "forestgreen"))

(pinhole-x image) Ñ (or/c integer? #f)
image : image?

Returns the x coordinate of image ’s pinhole.

Example:

> (pinhole-x (center-pinhole (rectangle 10 10 "solid" "red")))
5

(pinhole-y image) Ñ (or/c integer? #f)
image : image?

Returns the y coordinate of image ’s pinhole.

Example:

> (pinhole-y (center-pinhole (rectangle 10 10 "solid" "red")))
5

(clear-pinhole image) Ñ image?
image : image?

Removes a pinhole from image (if the image has a pinhole).

(overlay/pinhole i1 i2 is ...) Ñ image?
i1 : image?
i2 : image?
is : image?

Overlays all of the image arguments on their pinholes. If any of the arguments do not have
pinholes, then the center of the image is used instead.

Examples:
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> (overlay/pinhole
(put-pinhole 25 10 (ellipse 100 50 "solid" "red"))
(put-pinhole 75 40 (ellipse 100 50 "solid" "blue")))

> (let ([petal (put-pinhole
20 20
(ellipse 100 40 "solid" "purple"))])

(clear-pinhole
(overlay/pinhole
(circle 30 "solid" "yellow")
(rotate (* 60 0) petal)
(rotate (* 60 1) petal)
(rotate (* 60 2) petal)
(rotate (* 60 3) petal)
(rotate (* 60 4) petal)
(rotate (* 60 5) petal))))

(underlay/pinhole i1 i2 is ...) Ñ image?
i1 : image?
i2 : image?
is : image?

Underlays all of the image arguments on their pinholes. If any of the arguments do not have
pinholes, then the center of the image is used instead.

Examples:

> (underlay/pinhole
(put-pinhole 25 10 (ellipse 100 50 "solid" "red"))
(put-pinhole 75 40 (ellipse 100 50 "solid" "blue")))
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> (let* ([t (triangle 40 "solid" "orange")]
[w (image-width t)]
[h (image-height t)])

(clear-pinhole
(overlay/pinhole
(put-pinhole (/ w 2) 0 t)
(put-pinhole w h t)
(put-pinhole 0 h t))))

2.3.11 Exporting Images to Disk

In order to use an image as an input to another program (e.g., Photoshop or a web browser),
it is necessary to represent it in a format that these programs can understand.

The save-image function provides this functionality, writing an image to disk using the PNG
format. Since this format represents an image using a set of pixel values, an image written
to disk generally contains less information than the image that was written, and cannot be
scaled or manipulated as cleanly (by any image program).

The save-svg-image function writes an SVG file format representation of the file to the
disk that, unlike save-image produces an image that can still be scaled arbitrarily look as
good as scaling the image directly via scale.

(save-image image filename [width height ]) Ñ boolean?
image : image?
filename : path-string?
width : (and/c real? (not/c negative?)) = (image-width image)
height : (and/c real? (not/c negative?))

= (image-height image)

Writes an image to the path specified by filename , using the PNG format.

The last two arguments are optional. If present, they determine the width and height of the
save image file. If absent, the width and height of the image is used.
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(save-svg-image image filename [width height ]) Ñ void?
image : image?
filename : path-string?
width : (and/c real? (not/c negative?)) = (image-width image)
height : (and/c real? (not/c negative?))

= (image-height image)

Writes an image to the path specified by filename , using the SVG format.

The last two arguments are optional. If present, they determine the width and height of the
save image file. If absent, the width and height of the image is used.

2.4 Worlds and the Universe: "universe.rkt"

(require 2htdp/universe) package: htdp-lib

The universe.rkt teachpack implements and provides the functionality for creating inter-
active, graphical programs that consist of plain mathematical functions. We refer to such
programs as world programs. In addition, world programs can also become a part of a uni-
verse, a collection of worlds that can exchange messages.

The purpose of this documentation is to give experienced Racketeers and HtDP teachers
a concise overview for using the library. The first part of the documentation focuses on
world programs. Section §2.4.4 “A First Sample World” presents an illustration of how
to design such programs for a simple domain; it is suited for a novice who knows how to
design conditional functions for enumerations, intervals, and unions. The second half of the
documentation focuses on "universe" programs: how it is managed via a server, how world
programs register with the server, etc. The last two sections show how to design a simple
universe of two communicating worlds.

Note: For a quick and educational introduction to just worlds, see How to Design Programs,
Second Edition: Prologue. As of August 2008, we also have a series of projects available as
a small booklet on How to Design Worlds.

2.4.1 Background

The universe teachpack assumes working knowledge of the basic image manipulation oper-
ations, either htdp/image or 2htdp/image. As far as this extended reference is concerned,
the major difference between the two image teachpacks is the assumption that

htdp/image programs render their state as scenes, i.e., images that satisfy the
scene? predicate.
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Recall that htdp/image defines a scene to be an image whose pinhole is at (0,0). If your
program uses the operations of 2htdp/image, all images are also scenes.

While the operations of this teachpack work with both image teachpacks, we hope to elim-
inate htdp/image in the not-too-distant future. All example programs are already written
using 2htdp/image operations. We urge programmers to use 2htdp/image when they
design new “world” and “universe” programs and to rewrite their existing htdp/image pro-
grams to use 2htdp/image.

2.4.2 Simple Simulations

The simplest kind of animated world program is a time-based simulation, which is a series
of images. The programmer’s task is to supply a function that creates an image for each
natural number. Handing this function to the teachpack displays the simulation.

(animate create-image) Ñ natural-number/c
create-image : (-> natural-number/c scene?)

opens a canvas and starts a clock that ticks 28 times per second. Every time the clock ticks, See §2.4.1
“Background” for
scene?.

DrRacket applies create-image to the number of ticks passed since this function call. The
results of these function calls are displayed in the canvas. The simulation runs until you
click the Stop button in DrRacket or close the window. At that point, animate returns the
number of ticks that have passed.

Example:

(define (create-UFO-scene height)
(underlay/xy (rectangle 100 100 "solid" "white") 50 height UFO))

(define UFO
(underlay/align "center"

"center"
(circle 10 "solid" "green")
(rectangle 40 4 "solid" "green")))

(animate create-UFO-scene)

(run-simulation create-image) Ñ natural-number/c
create-image : (-> natural-number/c scene?)

animatewas originally called run-simulation, and this binding is retained for backwards See §2.4.1
“Background” for
scene?.

compatibility

(run-movie r m) Ñ [Listof image?]
r : (and/c real? positive?)
m : [Listof image?]
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run-movie displays the list of images m , spending r seconds per image. When the anima-
tion is stopped, a list of the remaining, undisplayed images are returned.

2.4.3 Interactions

The step from simulations to interactive programs is relatively small. Roughly speaking,
a simulation designates one function, create-image , as a handler for one kind of event:
clock ticks. In addition to clock ticks, world programs can also deal with two other kinds of
events: keyboard events and mouse events. A keyboard event is triggered when a computer
user presses a key on the keyboard. Similarly, a mouse event is the movement of the mouse,
a click on a mouse button, the crossing of a boundary by a mouse movement, etc.

Your program may deal with such events via the designation of handler functions. Specifi-
cally, the teachpack provides for the installation of four event handlers: on-tick, on-key,
on-mouse, and on-pad. In addition, a world program must specify a render function,
which is called every time your program should visualize the current world, and a done
predicate, which is used to determine when the world program should shut down.

Each handler function consumes the current state of the world and optionally a data repre-
sentation of the event. It produces a new state of the world.

The following picture provides an intuitive overview of the workings of a world program in
the form of a state transition diagram.

147



The big-bang form installs World_0 as the initial WorldState. The handlers tock, react,
and click transform one world into another one; each time an event is handled, done is
used to check whether the world is final, in which case the program is shut down; and finally,
render renders each world as an image, which is then displayed on an external canvas.

WorldState : any/c

The design of a world program demands that you come up with a data definition of all
possible states. We use WorldState to refer to this collection of data, using a capital W to
distinguish it from the program. In principle, there are no constraints on this data definition
though it mustn’t be an instance of the Package structure (see below). You can even keep it
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implicit, even if this violates the Design Recipe.

(big-bang state-expr clause ...)

clause = (on-tick tick-expr)
| (on-tick tick-expr rate-expr)
| (on-tick tick-expr rate-expr limit-expr)
| (on-key key-expr)
| (on-pad pad-expr)
| (on-release release-expr)
| (on-mouse mouse-expr)
| (to-draw draw-expr)
| (to-draw draw-expr width-expr height-expr)
| (stop-when stop-expr)
| (stop-when stop-expr last-scene-expr)
| (check-with world?-expr)
| (record? r-expr)
| (close-on-stop cos-expr)
| (display-mode d-expr)
| (state expr)
| (on-receive rec-expr)
| (register IP-expr)
| (port Port-expr)
| (name name-expr)

starts a world program in the initial state specified with state-expr , which must of course
evaluate to an element of WorldState. Its behavior is specified via the handler functions
designated in the optional clauses, especially how the world program deals with clock ticks,
with key events, with mouse events, and eventually with messages from the universe; how
it renders itself as an image; when the program must shut down; where to register the world
with a universe; and whether to record the stream of events. A world specification may not
contain more than one on-tick, to-draw, or register clause. A big-bang expression re-
turns the last world when the stop condition is satisfied (see below) or when the programmer
clicks on the Stop button or closes the canvas.

The only mandatory clause of a big-bang description is to-draw (or on-draw for back-
wards compatibility):

•
(to-draw render-expr)

render-expr : (-> WorldState scene?)

tells DrRacket to call the function render-expr whenever the canvas must be drawn. See §2.4.1
“Background” for
scene?.
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The external canvas is usually re-drawn after DrRacket has dealt with an event. Its size
is determined by the size of the first generated image.

(to-draw render-expr width-expr height-expr)

render-expr : (-> WorldState scene?)

width-expr : natural-number/c

height-expr : natural-number/c

tells DrRacket to use a width-expr by height-expr canvas instead of one deter- See §2.4.1
“Background” for
scene?.

mined by the first generated image.

For compatibility reasons, the teachpack also supports the keyword on-draw in lieu
of to-draw but the latter is preferred now.

All remaining clauses are optional. To introduce them, we need one more data definition:

HandlerResult : is a synonym for WorldState until §2.4.5 “The World is not Enough”

•
(on-tick tick-expr)

tick-expr : (-> WorldState HandlerResult)

tells DrRacket to call the tick-expr function on the current world every time the
clock ticks. The result of the call becomes the current world. The clock ticks at the
rate of 28 times per second.

•
(on-tick tick-expr rate-expr)

tick-expr : (-> WorldState HandlerResult)

rate-expr : (and/c real? positive?)

tells DrRacket to call the tick-expr function on the current world every time the
clock ticks. The result of the call becomes the current world. The clock ticks every
rate-expr seconds.

•
(on-tick tick-expr rate-expr limit-expr)

tick-expr : (-> WorldState HandlerResult)

rate-expr : (and/c real? positive?)

limit-expr : (and/c integer? positive?)
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tells DrRacket to call the tick-expr function on the current world every time the
clock ticks. The result of the call becomes the current world. The clock ticks every
rate-expr seconds. The world ends when the clock has ticked more than limit-
expr times.

• A KeyEvent represents key board events.

KeyEvent : string?

For simplicity, we represent key events with strings, but not all strings are key events.
The representation of key events comes in distinct classes. First, a single-character
string is used to signal that the user has hit a "regular" key, such as

– "q" stands for the q key;

– "w" stands for the w key;

– "e" stands for the e key;

– "r" stands for the r key; and so on.

Some of these one-character strings look somewhat unusual:

– " " stands for the space bar (#\space);

– "\r" stands for the return and enter key (#\return);

– "\t" stands for the tab key (#\tab); and

– "\b" stands for the backspace key (#\backspace).

Here is "proof" that these strings really have length 1:

> (string-length "\t")
1

On rare occasions your programs may also encounter "\u007F", which is the string
representing the delete key (aka rubout).

Second, some keys have multiple-character string representations. Strings with more
than one character denote arrow keys or other special events, starting with the four
most important ones:

– "left" is the left arrow;

– "right" is the right arrow;

– "up" is the up arrow;

– "down" is the down arrow;

Here are some others that you may encounter:

– "start"

– "cancel"
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– "clear"

– "shift"

– "rshift"

– "control"

– "rcontrol"

– "menu"

– "pause"

– "capital"

– "prior"

– "next"

– "end"

– "home"

– "escape"

– "select"

– "print"

– "execute"

– "snapshot"

– "insert"

– "help"

– function keys: "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10",
"f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20",
"f21", "f22", "f23", "f24"

– "numlock"

– "scroll"

The following four count as keyevents even though they are triggered by physical
events on some form of mouse:

– "wheel-up"

– "wheel-down"

– "wheel-left"

– "wheel-right"

The preceding enumeration is neither complete in covering all the events that this
library deals with nor does it specify which events the library ignores. If you wish to
design a program that relies on specific keys on your keyboard, you should first write a
small test program to find out whether the chosen keystrokes are caught by the library
and, if so, which string representations are used for these events.
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(key-event? x) Ñ boolean?
x : any

determines whether x is a KeyEvent

(key=? x y) Ñ boolean?
x : key-event?
y : key-event?

compares two KeyEvent for equality

(on-key key-expr)

key-expr : (-> WorldState key-event? HandlerResult)

tells DrRacket to call the key-expr function on the current world and a KeyEvent for
every keystroke the user of the computer makes. The result of the call becomes the
current world.

Here is a typical key-event handler:

(define (change w a-key)
(cond

[(key=? a-key "left") (world-go w -DELTA)]
[(key=? a-key "right") (world-go w +DELTA)]
[(= (string-length a-key) 1) w] ; order-free checking
[(key=? a-key "up") (world-go w -DELTA)]
[(key=? a-key "down") (world-go w +DELTA)]
[else w]))

The omitted, auxiliary function world-go is supposed to consume a world and a num-
ber and produces a world.

(on-release release-expr)

release-expr : (-> WorldState key-event? HandlerResult)

tells DrRacket to call the release-expr function on the current world and a
KeyEvent for every release event on the keyboard. A release event occurs when a
user presses the key and then releases it. The second argument indicates which key
has been released. The result of the function call becomes the current world.

• A PadEvent is a KeyEvent for a game-pad simulation via big-bang. The presence of
an on-pad clause superimposes the game-pad image onto the current image, suitably
scaled to its size:
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PadEvent : key-event?

It is one of the following:

– "left" is the left arrow;

– "right" is the right arrow;

– "up" is the up arrow;

– "down" is the down arrow;

– "w" to be interpreted as up arrow;

– "s" to be interpreted as down arrow;

– "a" to be interpreted as left arrow;

– "d" to be interpreted as right arrow;

– " " is the space bar;

– "shift" is the left shift key;

– "rshift" is the right shift key;

(pad-event? x) Ñ boolean?
x : any

determines whether x is a PadEvent

(pad=? x y) Ñ boolean?
x : pad-event?
y : pad-event?

compares two PadEvent for equality

(on-pad pad-expr)

pad-expr : (-> WorldState pad-event? HandlerResult)

tells DrRacket to call the pad-expr function on the current world and the KeyEvent
for every keystroke that is also a PadEvent. The result of the call becomes the current
world.

Here is a typical PadEvent handler:

154



; ComplexNumber PadEvent -> ComplexNumber
(define (handle-pad-events x k)

(case (string->symbol k)
[(up w) (- x 0+10i)]
[(down s) (+ x 0+10i)]
[(left a) (- x 10)]
[(right d) (+ x 10)]
[(| |) x0]
[(shift) (conjugate x)]
[(rshift) (stop-with (conjugate x))]))

When a big-bang expression specifies an on-pad clause, all PadEvents are sent to
the on-pad handler. All other key events are discarded, unless an on-key and/or
an on-release clause are specified, in which case all remaining KeyEvents are sent
there.

To facilitate the definition of on-pad handlers, the library provides the pad-handler
form.

(pad-handler clause ...)

clause = (up up-expr)
| (down down-expr)
| (left left-expr)
| (right right-expr)
| (space space-expr)
| (shift shift-expr)

Creates a function that deals with PadEvents. Each (optional) clause contributes one
function that consumes a World and produces a world. The name of the clause deter-
mines for which kind of PadEvent the function is called.

Using the form is entirely optional and not required to use on-pad. Indeed, pad-
handler could be used to define a plain KeyEvent handler—if we could guarantee
that players never hit keys other than PadEvent keys.

All clauses in a pad-handler form are optional:

–
(up up-expr)

tick-expr : (-> WorldState HandlerResult)

Creates a handler for "up" and "w" events.

–
(down down-expr)

tick-expr : (-> WorldState HandlerResult)

Creates a handler for "down" and "s" events.
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–
(left left-expr)

tick-expr : (-> WorldState HandlerResult)

Creates a handler for "left" and "a" events.

–
(right right-expr)

tick-expr : (-> WorldState HandlerResult)

Creates a handler for "right" and "d" events.

–
(space space-expr)

tick-expr : (-> WorldState HandlerResult)

Creates a handler for space-bar events (" ").

–
(shift shift-expr)

tick-expr : (-> WorldState HandlerResult)

Creates a handler for "shift" and "rshift" events.

If a clause is omitted, pad-handler installs a default function that maps the existing
world to itself.

Here is a PadEvent handler defined with pad-handler:

; ComplexNumber -> ComplexNumber
(define (i-sub1 x) (- x 0+1i))

; ComplexNumber -> ComplexNumber
(define (i-add1 x) (+ x 0+1i))

; ComplexNumber -> ComplexNumber
; deal with all PadEvents
(define handler

(pad-handler (left sub1) (right add1)
(up i-sub1) (down i-add1)
(shift (lambda (w) 0))
(space stop-with)))

; some tests:
(check-expect (handler 9 "left") 8)
(check-expect (handler 8 "up") 8-1i)
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• A MouseEvent represents mouse events, e.g., mouse movements or mouse clicks, by
the computer’s user.

MouseEvent : (one-of/c "button-down" "button-up" "drag" "move" "en-
ter" "leave")

All MouseEvents are represented via strings:

– "button-down" signals that the computer user has pushed a mouse button
down;

– "button-up" signals that the computer user has let go of a mouse button;

– "drag" signals that the computer user is dragging the mouse. A dragging event
occurs when the mouse moves while a mouse button is pressed.

– "move" signals that the computer user has moved the mouse;

– "enter" signals that the computer user has moved the mouse into the canvas
area; and

– "leave" signals that the computer user has moved the mouse out of the canvas
area.

(mouse-event? x) Ñ boolean?
x : any

determines whether x is a MouseEvent

(mouse=? x y) Ñ boolean?
x : mouse-event?
y : mouse-event?

compares two MouseEvents for equality

(on-mouse mouse-expr)

mouse-expr :
(-> WorldState

integer? integer? MouseEvent
HandlerResult)

tells DrRacket to call mouse-expr on the current world, the current x and y coordi-
nates of the mouse, and a MouseEvent for every (noticeable) action of the mouse by
the computer user. The result of the call becomes the current world.

For "leave" and "enter" events, the coordinates of the mouse click may be outside
of the (implicit) rectangle. That is, the coordinates may be negative or larger than the
(implicitly) specified width and height.

Note 1: the operating system doesn’t really notice every single movement of the
mouse (across the mouse pad). Instead it samples the movements and signals most
of them.
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Note 2: while mouse events are usually reported in the expected manner, the operat-
ing system doesn’t necessarily report them in the expected order. For example, the
Windows operating system insists on signaling a "move" event immediately after a
"button-up" event is discovered. Programmers must design the on-mouse handler
to handle any possible mouse event at any moment.

•
(stop-when last-world?)

last-world? : (-> WorldState boolean?)

tells DrRacket to call the last-world? function at the start of the world program and
after any other world-producing callback. If this call produces #true, the world pro-
gram is shut down. Specifically, the clock is stopped; no more tick events, KeyEvents,
or MouseEvents are forwarded to the respective handlers. The big-bang expression
returns this last world.

(stop-when last-world? last-picture)

last-world? : (-> WorldState boolean?)

last-picture : (-> WorldState scene?)

tells DrRacket to call the last-world? function at the start of the world program See §2.4.1
“Background” for
scene?.

and after any other world-producing callback. If this call produces #true, the world
program is shut down after displaying the world one last time, this time using the
image rendered with last-picture . Specifically, the clock is stopped; no more tick
events, KeyEvents, or MouseEvents are forwarded to the respective handlers. The
big-bang expression returns this last world.

•
(struct stop-with (w))

w : HandlerResult

signals to DrRacket that the world program should shut down. That is, any handler
may return (stop-with w) provided w is a HandlerResult. If it does, the state of
the world becomes w and big-bang will close down all event handling. Similarly, if
the initial state of the world is (stop-with w), event handling is immediately closed
down.

•
(check-with world-expr?)

world-expr? : (-> Any boolean?)

tells DrRacket to call the world-expr? function on the result of every world handler
call. If this call produces #true, the result is considered a world; otherwise the world
program signals an error.
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•
(record? r-expr)

r-expr : any/c

tells DrRacket to enable a visual replay of the interaction, unless #f. The replay ac-
tion generates one png image per image and an animated gif for the entire sequence
in the directory of the user’s choice. If r-expr evaluates to the name of an exist-
ing directory/folder (in the local directory/folder), the directory is used to deposit the
images.

•
(close-on-stop cos-expr)

cos-expr : (or/c boolean? natural-number/c)

tells DrRacket whether to close the big-bang window after the expression is eval-
uated. If cos-expr is #false, which is the default, the window remains open. If
cos-expr is #true, the window closes immediately. Finally, if cos-expr is a natu-
ral number, the window closes cos-expr seconds after the end of the evaluation.

•
(display-mode d-expr)

d-expr : (or/c 'fullscreen 'normal)

informs DrRacket to choose one of two display modes: 'normal or 'fullscreen.
The 'normal mode is the default and uses the size specifications from the to-draw
clause. If the 'fullscreen mode is specified, big-bang takes over the full screen.

(display-mode d-expr resize-expr)

d-expr : (or/c 'fullscreen 'normal)

resize-expr : (-> WorldState number? number? WorldState)

informs DrRacket to choose one of two display modes: 'normal or 'fullscreen.
The 'normal mode is the default and uses the size specifications from the to-draw
clause. If the 'fullscreen mode is specified, big-bang takes over the full screen.

The optional resize-expr is applied to the current world and the sizes (width and
height) of the display once, when the world is initialized. This gives the program a
chance to draw shapes of a size relative to the display size in a portable manner.

•
(state expr)

if not #f, DrRacket opens two separate windows:
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– one shows the current state each time it is updated.

– another that displays the events and the related event data.

This is useful for beginners who wish to see how their world evolves and why—
without having to design a rendering function.

•
(name name-expr)

name-expr : (or/c symbol? string?)

provide a name (namer-expr) to this world, which is used as the title of the canvas.

The following example shows that (run-simulation create-UFO-scene) is a short-
hand for three lines of code:

(define (create-UFO-scene height)
(underlay/xy (rectangle 100 100 "solid" "white") 50 height UFO))

(define UFO
(underlay/align "center"

"center"
(circle 10 "solid" "green")
(rectangle 40 4 "solid" "green")))

(big-bang 0
(on-tick add1)
(to-draw create-UFO-scene))

Exercise Add a condition for stopping the flight of the UFO when it reaches the bottom.

2.4.4 A First Sample World

This section uses a simple example to explain the design of worlds. The first subsection
introduces the sample domain, a door that closes automatically. The second subsection
is about the design of world programs in general, the remaining subsections implement a
simulation of the door.

Understanding a Door

Say we wish to design a world program that simulates the working of a door with an auto-
matic door closer. If this kind of door is locked, you can unlock it with a key. While this
doesn’t open the door per se, it is now possible to do so. That is, an unlocked door is closed
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and pushing at the door opens it. Once you have passed through the door and you let go, the
automatic door closer takes over and closes the door again. When a door is closed, you can
lock it again.

Here is a diagram that translates our words into a graphical representation:

Like the picture of the general workings of a world program, this diagram displays a so-
called “state machine.” The three circled words are the states that our informal description
of the door identified: locked, closed (and unlocked), and open. The arrows specify how the
door can go from one state into another. For example, when the door is open, the automatic
door closer shuts the door as time passes. This transition is indicated by the arrow labeled
“time.” The other arrows represent transitions in a similar manner:

• “push” means a person pushes the door open (and let’s go);

• “lock” refers to the act of inserting a key into the lock and turning it to the locked
position; and

• “unlock” is the opposite of “lock.”

Hints on Designing Worlds

Simulating any dynamic behavior via a world program demands two different activities.
First, we must tease out those portions of our domain that change over time or in reaction to
actions, and we must develop a data representation for this information. This is what we call
WorldState. Keep in mind that a good data definition makes it easy for readers to map data
to information in the real world and vice versa. For all others aspects of the world, we use
global constants, including graphical or visual constants that are used in conjunction with
the rendering operations.
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Second, we must translate the actions in our domain—the arrows in the above diagram—
into interactions with the computer that the universe teachpack can deal with. Once we
have decided to use the passing of time for one aspect, key presses for another, and mouse
movements for a third, we must develop functions that map the current state of the world—
represented as data from WorldState—into the next state of the world. Put differently, we
have just created a wish list with three handler functions that have the following general
contract and purpose statements:

; tick : WorldState -> HandlerResult
; deal with the passing of time
(define (tick w) ...)

; click : WorldState Number Number MouseEvent -> HandlerResult
; deal with a mouse click at (x,y) of kind me
; in the current world w
(define (click w x y me) ...)

; control : WorldState KeyEvent -> HandlerResult
; deal with a key event ke
; in the current world w
(define (control w ke) ...)

That is, the contracts of the various handler designations dictate what the contracts of our
functions are, once we have defined how to represent the domain with data in our chosen
language.

A typical program does not use all three of these functions. Furthermore, the design of these
functions provides only the top-level, initial design goal. It often demands the design of
many auxiliary functions. The collection of all these functions is your world program.

An extended example is available in How to Design Programs/2e.

2.4.5 The World is not Enough

The library facilities covered so far are about designing individual programs with interactive
graphical user interfaces (simulations, animations, games, etc.). In this section, we introduce
capabilities for designing a distributed program, which is really a number of programs that
coordinate their actions in some fashion. Each of the individual programs may run on any
computer in the world (as in our planet and the spacecrafts that we sent out), as long as it is
on the internet and as long as the computer allows the program to send and receive messages
(via TCP). We call this arrangement a universe and the program that coordinates it all a
universe server or just server.

This section explains what messages are, how to send them from a world program, how to
receive them, and how to connect a world program to a universe.
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Messages

After a world program has become a part of a universe, it may send messages and receive
them. In terms of data, a message is just an S-expression.

S-expression An S-expression is roughly a nested list of basic data; to be precise, an S-
expression is one of:

• a string,

• a symbol,

• a number,

• a boolean,

• a char, or

• a list of S-expressions,

• a prefab struct of S-expressions, or

• a byte string.

Note the list clause includes empty of course.

(sexp? x) Ñ boolean?
x : any/c

determines whether x is an S-expression.

Sending Messages

Each world-producing callback in a world program—those for handling clock tick events,
keyboard events, and mouse events—may produce a Package in addition to just a World-
State:

HandlerResult is one of the following:

• WorldState

• Package

where Package represents a pair consisting of a WorldState and a message from a world
program to the server. Because programs only send messages via Package, the teachpack
does not provide the selectors for the structure, only the constructor and a predicate.
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(package? x) Ñ boolean?
x : any/c

determine whether x is a Package.

(make-package w m) Ñ package?
w : any/c
m : sexp?

create a Package from a WorldState and an S-expression.

Recall that event handlers return a HandlerResult, and we have just refined this data defini-
tion. Hence, each handler may return either a WorldState or a Package. If an event handler
produces a Package, the content of the world field becomes the next world and the message
field specifies what the world sends to the universe. This distinction also explains why the
data definition for WorldState may not include a Package.

Connecting with the Universe

Messages are sent to the universe program, which runs on some computer in the world. The
next section is about constructs for creating such a universe server. For now, we just need to
know that it exists and that it is the recipient of messages.

IP string?

Before a world program can send messages, it must register with the server. Registration
must specify the internet address of the computer on which the server runs, also known as an
IP address or a host. Here a IP address is a string of the right shape, e.g., "192.168.1.1"
or "www.google.com".

LOCALHOST : string?

the IP of your computer. Use it while you are developing a distributed program, especially
while you are investigating whether the participating world programs collaborate in an ap-
propriate manner. This is called integration testing and differs from unit testing quite a bit.

A big-bang description of a world program that wishes to communicate with other pro-
grams must contain a register clause of one of the following shapes:

•
(register ip-expr)

ip-expr : string?

connect this world to a universe server at the specified ip-expr address and set up
capabilities for sending and receiving messages. If the world description includes a
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name specification of the form (name SomeString) or (name SomeSymbol), the
name of the world is sent along to the server.

•
(port port-expr)

port-expr : natural-number/c

specifies port on which a world wishes to receive and send messages. A port number
is an integer between 0 and 65536.

When a world program registers with a universe program and the universe program stops
working, the world program stops working, too.

Receiving Messages

Finally, the receipt of a message from the server is an event, just like tick events, keyboard
events, and mouse events. Dealing with the receipt of a message works exactly like dealing
with any other event. DrRacket applies the event handler that the world program specifies;
if there is no clause, the message is discarded.

The on-receive clause of a big-bang specifies the event handler for message receipts.

(on-receive receive-expr)

receive-expr : (-> WorldState sexp? HandlerResult)

tells DrRacket to call receive-expr for every message receipt, on the current WorldState
and the received message. The result of the call becomes the current WorldState.

Because receive-expr is (or evaluates to) a world-transforming function, it too can pro-
duce a Package instead of just a WorldState. If the result is a Package, its message content
is sent to the server.

The diagram below summarizes the extensions of this section in graphical form.
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A registered world program may send a message to the universe server at any time by re-
turning a Package from an event handler. The message is transmitted to the server, which
may forward it to some other world program as given or in some massaged form. The arrival
of a message is just another event that a world program must deal with. Like all other event
handlers receive accepts a WorldState and some auxiliary arguments (a message in this case)
and produces a WorldState or a Package.

When messages are sent from any of the worlds to the universe or vice versa, there is no need
for the sender and receiver to synchronize. Indeed, a sender may dispatch as many messages
as needed without regard to whether the receiver has processed them yet. The messages
simply wait in queue until the receiving server or world program takes care of them.
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2.4.6 The Universe Server

A server is the central control program of a universe and deals with receiving and sending of
messages between the world programs that participate in the universe. Like a world program,
a server is a program that reacts to events, though to different events than worlds. The two
primary kinds of events are the appearance of a new world program in the universe and the
receipt of a message from a world program.

The teachpack provides a mechanism for designating event handlers for servers that is quite
similar to the mechanism for describing world programs. Depending on the designated event
handlers, the server takes on distinct roles:

• A server may be a “pass through” channel between two worlds, in which case it has
no other function than to communicate whatever message it receives from one world
to the other, without any interference.

• A server may enforce a “back and forth” protocol, i.e., it may force two (or more)
worlds to engage in a civilized tit-for-tat exchange. Each world is given a chance to
send a message and must then wait to get a reply before it sends anything again.

• A server may play the role of a special-purpose arbiter, e.g., the referee or administra-
tor of a game. It may check that each world “plays” by the rules, and it administrates
the resources of the game.

As a matter of fact, a pass-through server can become basically invisible, making it appear
as if all communication goes from peer world to peer in a universe.

This section first introduces some basic forms of data that the server uses to represent worlds
and other matters. Second, it explains how to describe a server program.

Worlds and Messages

Understanding the server’s event handling functions demands several data representations:
that of (a connection to) a world program and that of a response of a handler to an event.

• The server and its event handlers must agree on a data representation of the worlds
that participate in the universe.

(iworld? x) Ñ boolean?
x : any/c

determines whether x is an iworld. Because the universe server represents worlds via
structures that collect essential information about the connections, the teachpack does
not export any constructor or selector functions on worlds.

(iworld=? u v) Ñ boolean?
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u : iworld?
v : iworld?

compares two iworlds for equality.

(iworld-name w) Ñ (or/c symbol? string?)
w : iworld?

extracts the name from a iworld structure.

iworld1 : iworld?

an iworld for testing your programs

iworld2 : iworld?

another iworld for testing your programs

iworld3 : iworld?

and a third one

The three sample iworlds are provided so that you can test your functions for universe
programs. For example:

(check-expect (iworld=? iworld1 iworld2) #false)
(check-expect (iworld=? iworld2 iworld2) #true)

• Each event handler produces a state of the universe or a bundle, which is a structure
that contains the server’s state, a list of mails to other worlds, and the list of iworlds
that are to be disconnected.

(bundle? x) Ñ boolean?
x : any/c

determines whether x is a bundle.

(make-bundle state mails low-to-remove) Ñ bundle?
state : any/c
mails : (listof mail?)
low-to-remove : (listof iworld?)

creates a bundle from a piece of data that represents a server state, a list of mails, and
a list of iworlds.

The list of iworlds in the third field of the bundle are removed from the list of partici-
pants from which to expect messages.

If disconnecting from these worlds results in an empty list of participants, the universe
server is restarted in the initial state.

A mail represents a message from an event handler to a world. The teachpack provides
only a predicate and a constructor for these structures:
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(mail? x) Ñ boolean?
x : any/c

determines whether x is a mail.

(make-mail to content) Ñ mail?
to : iworld?
content : sexp?

creates a mail from a iworld and an S-expression.

Universe Descriptions

A server keeps track of information about the universe that it manages. One kind of tracked
information is obviously the collection of participating world programs, but in general the
kind of information that a server tracks and how the information is represented depends on
the situation and the programmer, just as with world programs.

UniverseState : any/c

The design of a universe server demands that you come up with a data definition for all
possible server states. For running universes, the teachpack demands that you come up with
a data definition for (your state of the) server. Any piece of data can represent the state. We
just assume that you introduce a data definition for the possible states and that your event
handlers are designed according to the design recipe for this data definition.

The server itself is created with a description that includes the first state and a number of
clauses that specify functions for dealing with universe events.

(universe state-expr clause ...)

clause = (on-new new-expr)
| (on-msg msg-expr)
| (on-tick tick-expr)
| (on-tick tick-expr rate-expr)
| (on-tick tick-expr rate-expr limit-expr)
| (on-disconnect dis-expr)
| (state expr)
| (to-string render-expr)
| (port port-expr)
| (check-with universe?-expr)

creates a server with a given state, state-expr . The behavior is specified via handler
functions through mandatory and optional clauses. These functions govern how the server
deals with the registration of new worlds, how it disconnects worlds, how it sends messages
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from one world to the rest of the registered worlds, and how it renders its current state as a
string.

Evaluating a universe expression starts a server. Visually it opens a console window on
which you can see that worlds join, which messages are received from which world, and
which messages are sent to which world. Messages that are too long are truncated before
they are displayed.

For convenience, the console also has two buttons: one for shutting down a universe and an-
other one for re-starting it. The latter functionality is especially useful during the integration
of the various pieces of a distributed program.

The mandatory clauses of a universe server description are on-new and on-msg:

•
(on-new new-expr)

new-expr : (-> UniverseState iworld? (or/c UniverseState bundle?))

tells DrRacket to call the function new-expr every time another world joins the uni-
verse. The event handler is called with the current state and the joining iworld, which
isn’t on the list yet. In particular, the handler may reject a world program from partic-
ipating in a universe, by simply returning the given state or by immediately including
the new world in the third field of the resulting bundle structure.

Changed in version 1.1 of package htdp-lib: allow universe handlers to return a plain universe state

•
(on-msg msg-expr)

msg-expr : (-> UniverseState iworld? sexp? (or/c UniverseState bundle?))

tells DrRacket to apply msg-expr to the current state of the universe, the world w that
sent the message, and the message itself.

Changed in version 1.1 of package htdp-lib: allow universe handlers to return a plain universe state

All proper event handlers produce a state of the universe or a bundle. The state of the universe
is safe-guarded by the server until the next event, and the mails are broadcast as specified.
The list of iworlds in the third field of the bundle are removed from the list of participants
from which to expect messages.

The following picture provides a graphical overview of the server’s workings.
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In addition to the mandatory handlers, a program may wish to add some optional handlers:

•
(on-tick tick-expr)

tick-expr : (-> UniverseState (or/c UniverseState bundle?))

tells DrRacket to apply tick-expr to the current state of the universe.

Changed in version 1.1 of package htdp-lib: allow universe handlers to return a plain universe state

(on-tick tick-expr rate-expr)
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tick-expr : (-> UniverseState (or/c UniverseState bundle?))

rate-expr : (and/c real? positive?)

tells DrRacket to apply tick-expr as above; the clock ticks every rate-expr sec-
onds.

Changed in version 1.1 of package htdp-lib: allow universe handlers to return a plain universe state

(on-tick tick-expr rate-expr limit-expr)

tick-expr : (-> UniverseState (or/c UniverseState bundle?))

rate-expr : (and/c real? positive?)

limit-expr : (and/c integer? positive?)

tells DrRacket to apply tick-expr as above; the clock ticks every rate-expr sec-
onds. The universe stops when the clock has ticked more than limit-expr times.

Changed in version 1.1 of package htdp-lib: allow universe handlers to return a plain universe state

•
(on-disconnect dis-expr)

dis-expr : (-> UniverseState iworld? (or/c UniverseState bundle?))

tells DrRacket to invoke dis-expr every time a participating world drops its con-
nection to the server. The first argument is the current state of the universe server,
while the second argument is the (representation of the) world that got disconnected.
The resulting bundle usually includes this second argument in the third field, telling
DrRacket not to wait for messages from this world anymore.

Changed in version 1.1 of package htdp-lib: allow universe handlers to return a plain universe state

•
(port port-expr)

port-expr : natural-number/c

specifies port on which a universe wishes to receive and send messages. A port number
is an integer between 0 and 65536.

•
(to-string render-expr)

render-expr : (-> UniverseState string?)

tells DrRacket to render the state of the universe after each event and to display this
string in the universe console.
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•
(check-with universe?-expr)

universe?-expr : (-> Any boolean?)

ensure that what the event handlers produce is really an element of UniverseState.

•
(state expr)

if not #f, DrRacket opens a separate window that shows the current state and the
messages received from and sent to the registered worlds. This is mostly useful for
debugging server programs.

Exploring a Universe

In order to explore the workings of a universe, it is necessary to launch a server and several
world programs on one and the same computer. We recommend launching one server out of
one DrRacket tab and as many worlds as necessary out of a second tab. For the latter, the
teachpack provides a special form.

(launch-many-worlds expression ...)

evaluates all sub-expressions in parallel. Typically each sub-expression is an application
of a function that evaluates a big-bang expression. When all worlds have stopped, the
expression returns all final worlds in order.

Once you have designed a world program, add a function definition concerning big-bang
to the end of the tab:

; String -> World
(define (main n)

(big-bang ... (name n) ...))

Then in DrRacket’s Interactions area, use launch-many-worlds to create several distinc-
tively named worlds:

> (launch-many-worlds (main "matthew")
(main "kathi")
(main "h3"))

10
25
33

The three worlds can then interact via a server. When all of them have stopped, they produce
the final states, here 10, 25, and 33.
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For advanced programmers, the library also provides a programmatic interface for launching
many worlds in parallel.

(launch-many-worlds/proc thunk-that-runs-a-world
...) Ñ any ...

thunk-that-runs-a-world : (-> any/c)

invokes all given thunk-that-runs-a-world in parallel. Typically each argument is a
function of no argument that evaluates a big-bang expression. When all worlds have
stopped, the function expression returns all final worlds in order.

It is thus possible to decide at run time how many and which worlds to run in parallel:

> (apply launch-many-worlds/proc
(build-list (random 10)

(lambda (i)
(lambda ()

(main (number->string i))))))
0
9
1
2
3
6
5
4
8
7

2.4.7 A First Sample Universe

This section uses a simple example to explain the design of a universe, especially its server The code assumes
the "Intermediate
with Lambda"
language.

and some participating worlds. The first subsection explains the example, the second in-
troduces the general design plan for such universes. The remaining sections present the
full-fledged solution.

Two Ball Tossing Worlds

Say we want to represent a universe that consists of a number of worlds and that gives each
world a “turn” in a round-robin fashion. If a world is given its turn, it displays a ball that
ascends from the bottom of a canvas to the top. It relinquishes its turn at that point and the
server gives the next world a turn.

Here is an image that illustrates how this universe would work if two worlds participated:
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The two world programs could be located on two distinct computers or on just one. A server
mediates between the two worlds, including the initial start-up.

Hints on Designing Universes

The first step in designing a universe is to understand the coordination of the worlds from a
global perspective. To some extent, it is all about knowledge and the distribution of knowl-
edge throughout a system. We know that the universe doesn’t exist until the server starts and
the worlds are joining. Because of the nature of computers and networks, however, we may
assume little else. Our network connections ensure that if some world or the server sends
two messages to the same place in some order, they arrive in the same order (if they arrive at
all). In contrast, if two distinct world programs send one message each, the network does not
guarantee the order of arrival at the server; similarly, if the server is asked to send some mes-
sages to several distinct world programs, they may arrive at those worlds in the order sent
or in the some other order. In the same vein, it is impossible to ensure that one world joins
before another. Worst, when someone removes the connection (cable, wireless) between a
computer that runs a world program and the rest of the network or if some network cable is
cut, messages don’t go anywhere. Due to this vagaries, it is therefore the designer’s task to
establish a protocol that enforces a certain order onto a universe and this activity is called
protocol design.

From the perspective of the universe, the design of a protocol is about the design of data
representations for tracking universe information in the server and the participating worlds
and the design of a data representation for messages. As for the latter, we know that they
must be S-expressions, but usually world programs don’t send all kinds of S-expressions.
The data definitions for messages must therefore select a subset of suitable S-expressions.
As for the state of the server and the worlds, they must reflect how they currently relate to
the universe. Later, when we design their “local” behavior, we may add more components
to their state space.

In summary, the first step of a protocol design is to introduce:

• a data definition for the information about the universe that the server tracks, call it
UniverseState;

• a data definition for the world(s) about their current relationship to the universe;

• data definitions for the messages that are sent from the server to the worlds and vice
versa. Let’s call them S2W for messages from the server to the worlds and W2S for
the other direction; in the most general case you may need one pair per world.

If all the worlds exhibit the same behavior over time, a single data definition suffices for step
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2. If they play different roles, we may need one data definition per world.

Of course, as you define these collections of data always keep in mind what the pieces of
data mean, what they represent from the universe’s perspective.

The second step of a protocol design is to figure out which major events—the addition of a
world to the universe, the arrival of a message at the server or at a world—to deal with and
what they imply for the exchange of messages. Conversely, when a server sends a message
to a world, this may have implications for both the state of the server and the state of the
world. A good tool for writing down these agreements is an interaction diagram.

Server World1 World2
| | |
| 'go | |
|<------------------| |
| 'go | |
|------------------------------------------>|
| | |
| | |

Each vertical line is the life line of a world program or the server. Each horizontal arrow
denotes a message sent from one universe participant to another.

The design of the protocol, especially the data definitions, have direct implications for the
design of event handling functions. For example, in the server we may wish to deal with
two kinds of events: the joining of a new world and the receipt of a message from one of the
worlds. This translates into the design of two functions with the following headers,

; Bundle is
; (make-bundle UniverseState [Listof mail?] [Listof iworld?])

; UniverseState iworld? -> Bundle
; next list of worlds when world iw is joining
; the universe in state s
(define (add-world s iw) ...)

; UniverseState iworld? W2U -> Bundle
; next list of worlds when world iw is sending message m to
; the universe in state s
(define (process s iw m) ...)

Finally, we must also decide how the messages affect the states of the worlds; which of their
callback may send messages and when; and what to do with the messages a world receives.
Because this step is difficult to explain in the abstract, we move on to the protocol design for
the universe of ball worlds.
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Designing the Ball Universe

Running the ball universe has a simple overall goal: to ensure that at any point in time,
one world is active and all others are passive. The active world displays a moving ball, and
the passive worlds should display something, anything that indicates that it is some other
world’s turn.

As for the server’s state, it must obviously keep track of all worlds that joined the universe,
and it must know which one is active and which ones are passive. Of course, initially the
universe is empty, i.e., there are no worlds and, at that point, the server has nothing to track.

While there are many different useful ways of representing such a universe, we just use the
list of iworlds that is handed to each handler and that handlers return via their bundles. The
UniverseState itself is useless for this trivial example. We interpret non-empty lists as those
where the first iworld is active and the remainder are the passive iworlds. As for the two
possible events,

• it is natural to add new iworlds to the end of the list; and

• it is natural to move an active iworld that relinquishes its turn to the end of the list,
too.

The server should send messages to the first iworld of its list as long as it wishes this iworld
to remain active. In turn, it should expect to receive messages only from this one active
iworld and no other iworld. The content of these two messages is nearly irrelevant because
a message from the server to an iworld means that it is the iworld’s turn and a message from
the iworld to the server means that the turn is over. Just so that we don’t confuse ourselves,
we use two distinct symbols for these two messages:

• A GoMessage is 'it-is-your-turn.

• A StopMessage is 'done.

From the universe’s perspective, each world is in one of two states:

• A passive world is resting. We use 'resting for this state.

• An active world is not resting. We delay choosing a representation for this part of a
world’s state until we design its “local” behavior.

It is also clear that an active world may receive additional messages, which it may ignore.
When it is done with its turn, it will send a message.
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Server
| World1
|<==================|
| 'it-is-your-turn |
|------------------>|
| | World2
|<==========================================|
| 'done | |
|<------------------| |
| 'it-is-your-turn | |
|------------------------------------------>|
| | |
| | |
| 'done | |
|<------------------------------------------|
| 'it-is-your-turn | |
|------------------>| |
| | |
| | |

Here the double-lines (horizontal) denote the registration step, the others are message ex-
changes. The diagram thus shows how the server decides to make the first registered world
the active one and to enlist all others as they join.

Designing the Ball Server

The preceding subsection dictates that our server program starts like this:

(require 2htdp/universe)

; UniverseState is [Listof iworld?]
; StopMessage is 'done.
; GoMessage is 'it-is-your-turn.

The design of a protocol has immediate implications for the design of the event handling
functions of the server. Here we wish to deal with two events: the appearance of a new world
and the receipt of a message. Based on our data definitions and based on the general contracts
of the event handling functions spelled out in this documentation, we get two functions for
our wish list:

; Result is
; (make-bundle [Listof iworld?]
; (list (make-mail iworld? GoMessage))
; '())

; [Listof iworld?] iworld? -> Result
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; add world iw to the universe, when server is in state u
(define (add-world u iw) ...)

; [Listof iworld?] iworld? StopMessage -> Result
; world iw sent message m when server is in state u
(define (switch u iw m) ...)

Although we could have re-used the generic contracts from this documentation, we also
know from our protocol that our server sends a message to exactly one world. Note how
these contracts are just refinements of the generic ones. (A type-oriented programmer would
say that the contracts here are subtypes of the generic ones.)

The second step of the design recipe calls for functional examples:

; an obvious example for adding a world:
(check-expect

(add-world '() iworld1)
(make-bundle (list iworld1)

(list (make-mail iworld1 'it-is-your-turn))
'()))

; an example for receiving a message from the active world:
(check-expect
(switch (list iworld1 iworld2) iworld1 'done)
(make-bundle (list iworld2 iworld1)

(list (make-mail iworld2 'it-is-your-turn))
'()))

Note that our protocol analysis dictates this behavior for the two functions. Also note how
we use world1, world2, and world3 because the teachpack applies these event handlers to
real worlds.

Exercise Create additional examples for the two functions based on our protocol.

The protocol tells us that add-world just adds the given world structure—recall that this a
data representation of the actual world program—to the given list of worlds. It then sends a
message to the first world on this list to get things going:

(define (add-world univ wrld)
(local ((define univ* (append univ (list wrld))))

(make-bundle univ*
(list (make-mail (first univ*) 'it-is-your-turn))
'())))

Because univ* contains at least wrld, it is acceptable to create a mail to (first univ*). Of
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course, this same reasoning also implies that if univ isn’t empty, its first element is an active
world and is about to receive a second 'it-is-your-turn message.

Similarly, the protocol says that when switch is invoked because a world program sends a
message, the data representation of the corresponding world is moved to the end of the list
and the next world on the (resulting) list is sent a message:

(define (switch univ wrld m)
(local ((define univ* (append (rest univ) (list (first univ)))))

(make-bundle univ*
(list (make-mail (first univ*) 'it-is-your-turn))
'())))

As before, appending the first world to the end of the list guarantees that there is at least this
one world on this list. It is therefore acceptable to create a mail for this world.

Start the server now.

(universe '() (on-new add-world) (on-msg switch))

Exercise The function definition simply assumes that wrld is iworld=? to (first univ)
and that the received message m is 'done. Modify the function definition so that it checks
these assumptions and raises an error signal if either of them is wrong. Start with functional
examples. If stuck, re-read the section on checked functions from HtDP. (Note: in a universe
it is quite possible that a program registers with a server but fails to stick to the agreed-upon
protocol. How to deal with such situations properly depends on the context. For now, stop
the universe at this point by returning an empty list of worlds. Consider alternative solutions,
too.)

Exercise An alternative state representation would equate UniverseState with world struc-
tures, keeping track of the active world. The list of world in the server would track the
passive worlds only. Design appropriate add-world and switch functions.

Designing the Ball World

The final step is to design the ball world. Recall that each world is in one of two possible
states: active or passive. The second kind of world moves a ball upwards, decreasing the
ball’s y coordinate; the first kind of world displays something that says it’s someone else’s
turn. Assuming the ball always moves along a vertical line and that the vertical line is fixed,
the state of the world is an enumeration of two cases:

(require 2htdp/universe)

; WorldState is one of:
; – Number %% representing the y coordinate
; – 'resting
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(define WORLD0 'resting)

; A WorldResult is one of:
; – WorldState
; – (make-package WorldState StopMessage)

The definition says that initially a world is passive.

The communication protocol and the refined data definition of WorldState imply a number
of contract and purpose statements:

; WorldState GoMessage -> WorldResult
; make sure the ball is moving
(define (receive w n) ...)

; WorldState -> WorldResult
; move this ball upwards for each clock tick
; or stay 'resting
(define (move w) ...)

; WorldState -> Image
; render the world as an image
(define (render w) ...)

Let’s design one function at a time, starting with receive. Since the protocol doesn’t spell
out what receive is to compute, let’s create a good set of functional examples, exploiting the
structure of the data organization of WorldState:

(check-expect (receive 'resting 'it-is-your-turn) HEIGHT)
(check-expect (receive (- HEIGHT 1) 'it-is-your-turn) ...)

Since there are two kinds of states, we make up at least two kinds of examples: one for a
'resting state and another one for a numeric state. The dots in the result part of the second
unit test reveal the first ambiguity; specifically it isn’t clear what the result should be when
an active world receives another message to activate itself. The second ambiguity shows
up when we study additional examples, which are suggested by our approach to designing
functions on numeric intervals (HtDP, section 3). That is we should consider the following
three inputs to receive:

• HEIGHT when the ball is at the bottom of the image;

• (- HEIGHT 1) when the ball is properly inside the image; and

• 0 when the ball has hit the top of the image.
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In the third case the function could produce three distinct results: 0, 'resting, or (make-
package 'resting 'done). The first leaves things alone; the second turns the active
world into a resting one; the third does so, too, and tells the universe about this switch.

We choose to design receive so that it ignores the message and returns the current state of
an active world. This ensures that the ball moves in a continuous fashion and that the world
remains active.

Exercise One alternative design is to move the ball back to the bottom of the image every
time 'it-is-your-turn is received. Design this function, too.

(define (receive w m)
(cond

[(symbol? w) HEIGHT] ; meaning: (symbol=? w 'resting)
[else w]))

Our second function to design is move, the function that computes the ball movement. We
have the contract and the second step in the design recipe calls for examples:

; WorldState -> WorldState or (make-package 'resting 'done)
; move the ball if it is flying

(check-expect (move 'resting) 'resting)
(check-expect (move HEIGHT) (- HEIGHT 1))
(check-expect (move (- HEIGHT 1)) (- HEIGHT 2))
(check-expect (move 0) (make-package 'resting 'done))

(define (move x) ...)

Following HtDP again, the examples cover four typical situations: 'resting, two end points
of the specified numeric interval, and one interior point. They tell us that move leaves a
passive world alone and that it otherwise moves the ball until the y coordinate becomes 0.
In the latter case, the result is a package that renders the world passive and tells the server
about it.

Turning these thoughts into a complete definition is straightforward now:

(define (move x)
(cond

[(symbol? x) x]
[(number? x) (if (<= x 0)

(make-package 'resting 'done)
(sub1 x))]))

Exercise what could happen if we had designed receive so that it produces 'resting when
the state of the world is 0? Use your answer to explain why you think it is better to leave this
kind of state change to the tick event handler instead of the message receipt handler?
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Finally, here is the third function, which renders the state as an image:

; String -> (WorldState -> Image)
; render the state of the world as an image

(check-expect
((draw "Carl") 100)
(underlay/xy (underlay/xy MT 50 100 BALL)

5 85
(text "Carl" 11 "black")))

(define (draw name)
(lambda (w)

(overlay/xy
(cond

[(symbol? w) (underlay/xy MT 10 10 (text "resting" 11 "red"))]
[(number? w) (underlay/xy MT 50 w BALL)])

5 85
(text name 11 'black))))

By doing so, we can use the same program to create many different worlds that register with
a server on your computer:

; String -> WorldState
; create and hook up a world with the LOCALHOST server
(define (create-world a-name)

(big-bang WORLD0
(on-receive receive)
(to-draw (draw a-name))
(on-tick move)
(name a-name)
(register LOCALHOST)))

Now you can use (create-world 'carl) and (create-world 'sam), respectively, to
run two different worlds, after launching a server first. You may wish to use launch-many-
worlds here.

Exercise Design a function that takes care of a world to which the universe has lost its
connection. Is Result the proper contract for the result of this function?

2.5 Web IO: "web-io.rkt"

(require 2htdp/web-io) package: htdp-lib

The teachpack provides a single function:
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(show-in-browser x) Ñ string?
x : xexpr?

Translates the given X-expression into a String. It also has the effect of opening an external
browser and displaying the X-expression rendered as XHTML.

Example

(show-in-browser '(html (body (b "hello world"))))

Added in version 1.0 of package htdp-lib.

2.6 iTunes: "itunes.rkt"

(require 2htdp/itunes) package: htdp-lib

The itunes.rkt teachpack implements and provides the functionality for reading the col-
lection of tracks exported from iTunes.

In iTunes, select Library from the File menu and then choose Export Library. Doing
so exports a description of your iTunes collection as a file in XML format.

2.6.1 Data Definitions

(struct track (name artist album time track# added play# played)
#:extra-constructor-name make-track)

name : string?
artist : string?
album : string?
time : natural-number/c
track# : natural-number/c
added : date?
play# : natural-number/c
played : date?

is one representations for the music tracks in an iTunes collection.

An instance records that the track has title name, is produced by artist, belongs to album,
plays for time milliseconds, is positioned at track#, was added at date added, has been
played play# times, and was last played at played date.

(struct date (year month day hour minute second)
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#:extra-constructor-name make-date)
year : natural-number/c
month : natural-number/c
day : natural-number/c
hour : natural-number/c
minute : natural-number/c
second : natural-number/c

is a representations of dates in an iTunes collection.

An instance records six pieces of information: the date’s year, month (between 1 and 12
inclusive), day (between 1 and 31), hour (between 0 and 23), minute (between 0 and 59),
and second (between 0 and 59).

In this context, we introduce the following data definitions:

; Track is a track?
; Date is date?

; LTracks is one of:
; – '()
; – (cons Track LTracks)

; LLists is one of:
; – '()
; – (cons LAssoc LLists)

; LAssoc is one of:
; – '()
; – (cons Association LAssoc)

; Association is (cons string? (cons BSDN '()))

; BSDN satisfies either string?, integer?, real?, Date, or
boolean?.

2.6.2 Exported Functions

(read-itunes-as-lists file-name) Ñ LLists
file-name : string?

creates a list-of-lists representation for all tracks in file-name , an XML export from an
iTunes library.

Effect reads an XML document from file-name

185



Example:

(read-itunes-as-lists "Library.xml")

(read-itunes-as-tracks file-name) Ñ LTracks
file-name : string?

creates a list-of-tracks representation for all tracks in file-name , an XML export from an
iTunes library.

Effect reads an XML document from file-name

Example:

(read-itunes-as-tracks "Library.xml")

(create-track name
artist
album
time
track#
added
play#
played) Ñ (or/c track? false?)

name : string?
artist : string?
album : string?
time : natural-number/c
track# : natural-number/c
added : date?
play# : natural-number/c
played : date?

creates a track representation if the inputs live up to their predicates. Otherwise it produces
#false.

Note This is a checked constructor.

> (create-track "one"
"two"
"three"
4
5
(create-date 1 2 3 4 5 6)
7
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(create-date 1 2 3 4 5 6))
(track "one" "two" "three" 4 5 (date 1 2 3 4 5 6) 7 (date 1 2 3 4
5 6))
> (create-track "one" "two" "three" 4 5 "a date" 7 "another date")
#f

(create-date year month day hour minute second)
Ñ (or/c date? false?)
year : natural-number/c
month : natural-number/c
day : natural-number/c
hour : natural-number/c
minute : natural-number/c
second : natural-number/c

creates a date representation if the inputs live up to their predicates. Otherwise it produces
#false.

Note This is a checked constructor.

> (create-date 1 2 3 4 5 6)
(date 1 2 3 4 5 6)
> (create-date 1 2 3 "four" 5 6)
#f

In addition to the above, the teachpack exports the predicates for Track and Date plus all
selectors:

track?
track-name
track-artist
track-album
track-time
track-track#
track-added
track-play#
track-played

date?
date-year
date-month
date-day
date-hour
date-minute
date-second
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2.7 Abstraction: "abstraction.rkt"

(require 2htdp/abstraction) package: htdp-lib

The abstract.rkt teachpack provides some additional abstraction facilities: comprehen-
sions and loops, matching, and algebraic data types. Most of these are restricted versions of
full-featured constructs in other members of the Racket family so that students of HtDP/2e
don’t stumble across syntactic oddities.

HtDP/2e introduces loops and matching in an intermezzo, with the sole purpose of acknowl-
edging the existence of powerful linguistic mechanisms.

Algebraic data types are provided for those who think teaching the features of functional
programming is more important than teaching universally applicable ideas of program de-
sign.

Added in version 1.1 of package htdp-lib.

2.7.1 Loops and Comprehensions

(for/list (comprehension-clause comprehension-clause ...) body-expr)

comprehension-clause = (name clause-expr)

evaluates body-expr for the parallel sequences of values determined by the
comprehension-clauses.

Each comprehension-clause binds its name in body-expr .

The for/list expression evaluates all clause-expr to generate sequences of values. If a
clause-expr evaluates to a

• list, its items make up the sequence values;

• natural number n, the sequence of values consists of the numbers 0, 1, ..., (- n 1);

• string, its one-character strings are the sequence items.

For sequences generated by in-range and in-naturals, see below.

Finally, for/list evaluates body-expr with name ... successively bound to the values of
the sequences determined by clause-expr ...

> (for/list ((i 10))
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i)
'(0 1 2 3 4 5 6 7 8 9)
> (for/list ((i 2) (j '(a b)))

(list i j))
'((0 a) (1 b))
> (for/list ((c "abc"))

c)
'("a" "b" "c")

The evaluation stops when the shortest sequence is exhausted.

> (for/list ((i 2) (j '(a b c d e)))
(list i j))

'((0 a) (1 b))

(for*/list (comprehension-clause comprehension-clause ...) body-expr)

evaluates body-expr for the nested sequences of values determined by the
comprehension-clauses.

Each comprehension-clause binds its name in the expressions of the following
comprehension-clauses as well as body-expr .

> (for*/list ((i 2) (j '(a b)))
(list i j))

'((0 a) (0 b) (1 a) (1 b))
> (for*/list ((i 5) (j i))

(list i j))
'((1 0) (2 0) (2 1) (3 0) (3 1) (3 2) (4 0) (4 1) (4 2) (4 3))

With nesting, the evaluation does not stop when the shortest sequence is exhausted because
comprehension-clauses are evaluated in order:

> (for*/list ((i 2) (j '(a b c d e)))
(list i j))

'((0 a) (0 b) (0 c) (0 d) (0 e) (1 a) (1 b) (1 c) (1 d) (1 e))

(for/or (comprehension-clause comprehension-clause ...) body-expr)

iterates over the sequences generated by the comprehension-clauses like for/list. It
produces the first non-#false value, if any, and #false otherwise.

> (for/or ([c "abcd"])
(if (string=? "x" c) c #false))

#f
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> (for/or ([c (list #false 1 #false 2)])
c)

1

(for*/or (comprehension-clause comprehension-clause ...) body-expr)

iterates over the sequences generated by the comprehension-clauses like for*/list. It
produces the first non-#false value, if any, and #false otherwise.

> (for*/or ([i 2][j i])
(if (> j i) (list i j) #false))

#f

(for/and (comprehension-clause comprehension-clause ...) body-expr)

iterates over the sequences generated by the comprehension-clauses like for/list. If
any evaluation of body-expr produces #false, the loop stops and returns #false, too;
otherwise, the loop produces the result of the last evaluation of body-expr .

> (for/and ([c '(1 2 3)])
(if (> c 4) c #false))

#f
> (for/and ([c '(1 2 3)])

(if (< c 4) c #false))
3

(for*/and (comprehension-clause comprehension-clause ...) body-expr)

iterates over the sequences generated by the comprehension-clauses like for*/list. If
any evaluation of body-expr produces #false, the loop stops and returns #false, too;
otherwise, the loop produces the result of the last evaluation of body-expr .

> (for*/and ([i 2][j i])
(if (< j i) (list i j) #false))

'(1 0)

(for/sum (comprehension-clause comprehension-clause ...) body-expr)

iterates over the sequences generated by the comprehension-clauses like for/list. It
adds up the numbers that body-expr evaluates to.

> (for/sum ([i 2][j 8])
(max i j))

1
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(for*/sum (comprehension-clause comprehension-clause ...) body-expr)

iterates over the sequences generated by the comprehension-clauses like for*/list. It
adds up the numbers that body-expr evaluates to.

> (for*/sum ([i 2][j i])
(min i j))

0

(for/product (comprehension-clause comprehension-clause ...) body-
expr)

iterates over the sequences generated by the comprehension-clauses like for/list. It
multiplies the numbers that body-expr evaluates to.

> (for/product ([i 2][j 3])
(+ i j 1))

3

(for*/product (comprehension-clause comprehension-clause ...) body-
expr)

iterates over the sequences generated by the comprehension-clauses like for*/list. It
multiplies the numbers that body-expr evaluates to.

> (for*/product ([i 2][j i])
(+ i j 1))

2

(for/string (comprehension-clause comprehension-clause ...) body-
expr)

iterates over the sequences generated by the comprehension-clauses like for/list. It
collects the one-character strings that body-expr evaluates to with implode.

> (for/string ([i "abc"])
(int->string (+ (string->int i) 1)))

"bcd"

(for*/string (comprehension-clause comprehension-clause ...) body-
expr)

iterates over the sequences generated by the comprehension-clauses like for*/list. It
collects the one-character strings that body-expr evaluates to with implode.
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> (for*/string ([i "ab"][j (- (string->int i) 90)])
(int->string (+ (string->int i) j)))

"abcdefgbcdefghi"

(in-range start end step) Ñ sequence?
start : natural-number/c
end : natural-number/c
step : natural-number/c

(in-range end) Ñ sequence?
end : natural-number/c

generates a finite sequence of natural numbers.

If start , end , and step are provided, the sequence consists of start , (+ start step),
(+ start step step), ... until the sum is greater than or equal to end .

> (for/list ([i (in-range 1 10 3)]) i)
'(1 4 7)

If only end is provided, start defaults to 0 and step to 1:

> (for/list ([i (in-range 3)])
i)

'(0 1 2)
> (for/list ([i (in-range 0 3 1)])

i)
'(0 1 2)

(in-naturals start) Ñ sequence?
start : natural-number/c

generates an infinite sequence of natural numbers, starting with start .

> (define (enumerate a-list)
(for/list ([x a-list][i (in-naturals 1)])

(list i x)))
> (enumerate '(Maxwell Einstein Planck Heisenberg Feynman))
'((1 Maxwell) (2 Einstein) (3 Planck) (4 Heisenberg) (5 Feynman))
> (enumerate '("Pinot noir" "Pinot gris" "Pinot blanc"))
'((1 "Pinot noir") (2 "Pinot gris") (3 "Pinot blanc"))

2.7.2 Pattern Matching

192



(match case-expr (pattern body-expr) ...)

pattern = name
| literal-constant
| (cons pattern pattern)
| (list pattern ...)
| (name pattern ...)
| (? name)

dispatches like a cond, matching the result of case-expr sequentially against all pat-
terns. The first successful match triggers the evaluation of the matching body-expr ,
whose value is the result of the entire match expression.

The literal constants commonly used are numbers, strings, symbols, and '().

Each pattern that contains names binds these names in the corresponding body-expr .

Matching a value with a pattern proceeds according to the following rules. If the pattern is a

• name , it matches any value;

• literal-constant , it matches only the literal constant;

• (cons pattern_1 pattern_2), it matches when the value is an instance of cons ,
and its first/rest fields match pattern_1 and pattern_2, respectively;

• (list pattern ...), it matches when the value is a list , and each element
matches its corresponding pattern ;

• (name pattern ...), it matches when the value is an instance of the name struc-
ture type, and its field values match pattern ...;

• (? name), it matches when name refers to a predicate function and the latter produces
#true on the given value.

Furthermore, if the given pattern is name and the value is V, name stands for V during the
evaluation of the corresponding body-expr .

The following match expression distinguishes conses with '() in the second position from
all others:

> (define (last-item l)
(match l

[(cons lst '()) lst]
[(cons fst rst) (last-item rst)]))

> (last-item '(a b c))
'c
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The following match expression extracts the title of an HTML page in the nested list
representation:

> (define (get-title page)
(match page

[(list 'html (list 'head (list 'title title)) body) title]
[anything "Untitled"]))

> (get-title '(html (head (title "hello")) (body (p "world"))))
"hello"
> (get-title '(html (head) (body (p "world"))))
"Untitled"

With ?, a match can use a predicate to distinguish arbitrary values:

> (define (is-it-odd-or-even l)
(match l

[(? even?) 'even]
[(? odd?) 'odd]))

> (is-it-odd-or-even '1)
'odd
> (is-it-odd-or-even '2)
'even

A match expression can also deal with structure instances:

> (define-struct doll (layer))
> (define (inside a-doll)

(match a-doll
[(? symbol?) a-doll]
[(doll below) (inside below)]))

> (inside (make-doll (make-doll 'wood)))
'wood

Note, however, that the pattern uses just doll, the name of the structure type, not make-
doll, the constructor name.

2.7.3 Algebraic Data Types

(define-type type (variant (field predicate) ...) ...)
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type = name

variant = name

field = name

predicate = name

defines structure types variant ... with fields field ..., respectively. In addition, it defines
constructors that enforce that the field values satisfy the specified predicate. Finally, it intro-
duce the name type as the name for the union of all variant structure types and type? as
a predicate that determines whether a value belongs to this class of values.

Consider the following type definition:

(define-type BTree
(leaf (info number?))
(node (left BTree?) (right BTree?)))

It defines two structure types:

(define-struct leaf (info))
(define-struct node (left right))

The make-leaf constructor signals an error when applied to any other values but numbers,
while make-node accepts only instances of BTree. Finally, BTree? is a predicate that
recognizes such instances:

> (make-leaf 42)
(leaf 42)
> (make-node (make-leaf 42) (make-leaf 21))
(node (leaf 42) (leaf 21))
> (BTree? (make-node (make-leaf 42) (make-leaf 21)))
#t

And here is how a constructor fails when applied to the wrong kind of values:

> (make-leaf 'four)
make-leaf: contract violation

expected: (or/c undefined? number?)
given: 'four
in: the 1st argument of

(-ą (or/c undefined? number?) leaf?)
contract from: make-leaf
blaming: use

(assuming the contract is correct)
at: program:2:0

195



(type-case type case-expr (variant (field ...) body-expr) ...)

dispatches like a cond, matching the result of case-expr sequentially against all vari-
ants. The first successful match triggers the evaluation of the matching body-expr , whose
value is the result of the entire type-case expression.

A type-case expression also ensures that (1) the collection variant cases covers all vari-
ant structure type definitions in type and (2) that each variant clauses specifies as many
fields as the definition of type specifies.

Assume that the following definition is placed in the scope of the above type definition for
BTree:

(define (depth t)
(type-case BTree t

[leaf (info) 0]
[node (left right) (+ (max (depth left) (depth right)) 1)]))

This function definition uses a type-case for BTree and the latter consists of two clauses:
one for leafs and one for nodes. The function computes the depth of the given tree.

> (depth (make-leaf 42))
0
> (depth (make-node (make-leaf 42) (make-leaf 21)))
1

2.8 Planet Cute Images

(require 2htdp/planetcute) package: htdp-lib

The 2htdp/planetcute library contains the Planet Cute art by Daniel Cook (Lostgar-
den.com).

The images are designed to be overlaid with each other to build scenes for use in games.
Here is an example image taken from the Planet Cute website.

; stack : non-empty-list-of-images -> image
; stacks 'imgs' on each other, separated by 40 pixels
(define (stack imgs)

(cond
[(empty? (rest imgs)) (first imgs)]
[else (overlay/xy (first imgs)

0 40
(stack (rest imgs)))]))
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> (beside/align
"bottom"
(stack (list wall-block-tall stone-block))
(stack (list character-cat-girl

stone-block stone-block
stone-block stone-block))

water-block
(stack (list grass-block dirt-block))
(stack (list grass-block dirt-block dirt-block)))

The Planet Cute images also include some shadows that can improve the look of your game;
see the §2.8.6 “Shadows” section for an overview of how to use them.

2.8.1 Characters

character-boy : image?
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character-cat-girl : image?

character-horn-girl : image?

character-pink-girl : image?
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character-princess-girl : image?

enemy-bug : image?

speech-bubble : image?
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2.8.2 Blocks

brown-block : image?

dirt-block : image?
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grass-block : image?

plain-block : image?

stone-block-tall : image?
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stone-block : image?

wall-block-tall : image?

wall-block : image?
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water-block : image?

wood-block : image?

2.8.3 Items

chest-closed : image?
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chest-lid : image?

chest-open : image?

gem-blue : image?
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gem-green : image?

gem-orange : image?

heart : image?
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key : image?

rock : image?

selector : image?
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tree-short : image?

tree-tall : image?

tree-ugly : image?
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yellow-star : image?

2.8.4 Ramps

ramp-east : image?
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ramp-north : image?

ramp-south : image?

ramp-west : image?
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2.8.5 Buildings

door-tall-closed : image?

door-tall-open : image?

roof-east : image?
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roof-north-east : image?

roof-north-west : image?

roof-north : image?
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roof-south-east : image?

roof-south-west : image?

roof-south : image?
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roof-west : image?

window-tall : image?
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2.8.6 Shadows

The shadow images are intended to be overlaid on the other blocks when they appear in
certain configurations, as detailed here.
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shadow-east : image?

shadow-north-east : image?

shadow-north-west : image?
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shadow-north : image?

shadow-side-west : image?

shadow-south-east : image?
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shadow-south-west : image?

shadow-south : image?

shadow-west : image?
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2.9 Porting World Programs to Universe

2.9.1 The World is Not Enough

With the June 2009 release, we started deprecating the world teachpack; instead we rec-
ommended the use of the universe teachpack. With the January 2010 release, we are also
introducing a new image teachpack and, in support of this second teachpack, we have sepa-
rated out the image functionality from the functionality for world programs.

In this document, we explain how to port programs that assume the old world teachpack
into this new setting, one step at a time. Most importantly, programs must now import two
teachpacks insteead of one:

World Style Universe Style

(require htdp/world)
(require 2htdp/universe)
(require htdp/image)

The table shows the old style on the left and the new style on the right. If your programs
imported teachpacks via the drscheme teachpack menu, we recommend that you use the
require form from now on; alternatively, you use the drscheme menu twice to import the
functions from two teachpacks.

In the next section, we first explain how to port world programs so that they use the universe
teachpack and the old image teachpack. In the section after that, we list suggestions for
changing programs so that they no longer rely on the old image functionality but the new
one.

In order to distinguish between the various pieces of functionality, we uniformly prefix old
functionality with "htdp:" and new functionality with "2htdp:". There is no need to use these
prefixes in your programs of course.

2.9.2 Porting World Programs

Here is the first program from the documentation for the world teachpack:

(require htdp/world)

; Number -> Scene
(define (create-UFO-scene height)

(htdp:place-image UFO
50 height
(htdp:empty-scene 100 100)))
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; Scene
(define UFO

(htdp:overlay
(htdp:circle 10 'solid 'red)
(htdp:rectangle 40 4 'solid 'red)))

; –- run program run
(htdp:big-bang 100 100 (/1 28) 0)
(htdp:on-tick-event add1)
(htdp:on-redraw create-UFO-scene)

This program defines a function for placing a UFO into a 100 by 100 scene, where UFO is a
defined image. The world program itself consists of three lines:

• the first one creates the 100 by 100 scene, specifies a rate of 28 images per second,
and 0 as the initial world description;

• the second one says that for each clock tick, the world (a number) is increased by 1;
and

• the last line tells drscheme to use create-UFO-scene as the function that renders the
current world as a scene.

Let us now convert this program into the universe setting, step by step, staring with the
require specification, which is converted as above:

World Style Universe Style

(require htdp/world)
(require 2htdp/universe)
(require htdp/image)

The function that renders the world as a scene remains the same:

World Style Universe Style

; Number -> Scene
(define (create-UFO-scene height)

(htdp:place-image
UFO
50 height
(htdp:empty-scene 100 100)))

; Number -> Scene
(define (create-UFO-scene height)

(htdp:place-image
UFO
50 height
(htdp:empty-scene 100 100)))

For the image constant we switch from symbols to strings:

World Style Universe Style
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; Scene
(define UFO

(htdp:overlay
(htdp:circle
10 'solid 'red)

(htdp:rectangle
40 4 'solid 'red)))

; Scene
(define UFO

(htdp:overlay
(htdp:circle
10 "solid" "red")

(htdp:rectangle
40 4 "solid" "red")))

Strictly speaking, this isn’t necessary, but we intend to replace symbols with strings when-
ever possible because strings are more common than symbols.

The most important change concerns the lines that launch the world program:

World Style Universe Style

(htdp:big-bang 100 100 (/1 28) 0)
(htdp:on-tick-event add1)
(htdp:on-redraw create-UFO-scene)

(2htdp:big-bang
0
(on-tick add1)
(on-draw create-UFO-scene))

They are turned into a single expression that comes with as many clauses as there are lines in
the old program. As you can see, the big-bang expression from the universe teachpack no
longer requires the specification of the size of the scene or the rate at which the clock ticks
(though it is possible to supply the clock rate if the default is not satisfactory). Furthermore,
the names of the clauses are similar to the old names but shorter.

The other big change concerns key event handling and mouse event handling. The respective
handlers no longer accept symbols and chars but strings only. Here is the first key event
handler from the documentation of the world teachpack:

World Style Universe Style
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(define (change w a-key-event)
(cond

[(key=? a-key-event 'left)
(world-go w -DELTA)]

[(key=? a-key-event 'right)
(world-go w +DELTA)]

[(char? a-key-event)
w]

[(key=? a-key-event 'up)
(world-go w -DELTA)]

[(key=? a-key-event 'down)
(world-go w +DELTA)]

[else
w]))

(define (change w a-key-event)
(cond

[(key=? a-key-event "left")
(world-go w -DELTA)]

[(key=? a-key-event "right")
(world-go w +DELTA)]

[(= (string-length a-key-event) 1)
w]

[(key=? a-key-event "up")
(world-go w -DELTA)]

[(key=? a-key-event "down")
(world-go w +DELTA)]

[else
w]))

Note how the char? clause changed. Since all chars are now represented as strings contain-
ing one “letter”, the program on the right just checks the length of the string. Otherwise, we
simply change all symbols into strings.

If you ever recorded your programs’ work via an animated gif, you can still do so. Instead
of adding a fifth argument to big-bang, however, you will need to add a clause of the shape
(record? x).

Finally, the universe teachpack implements a richer functionality than the world teachpack.

2.9.3 Porting Image Programs

The universe library also comes with a new image library, 2htdp/image. Using the old
image library still works fine with 2htdp/universe, but the new image library provides a
number of improvements, including faster image comparison (especially useful in check-
expect expressions), rotating images, scaling images, curves, a number of new polygon
shapes, and more control over line drawing.

To use the new image library in isloation:

World Style Universe Style

(require htdp/image) (require 2htdp/image)

and to use the new image library with the universe teachpack:

World Style Universe Style
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(require htdp/world)
(require 2htdp/universe)
(require 2htdp/image)

Overlay vs Underlay

The htdp:overlay function places its first argument under its second (and subsequent)
arguments and so in 2htdp/image, we decided to call that function 2htdp:underlay.

World Style Universe Style

(htdp:overlay
(htdp:rectangle
10 20 "solid" "red")

(htdp:rectangle
20 10 "solid" "blue"))

(2htdp:underlay
(2htdp:rectangle
10 20 "solid" "red")

(2htdp:rectangle
20 10 "solid" "blue"))

No more pinholes

The concept of pinholes from htdp/image has no correspondance in 2htdp/image (we do
expect to bring back pinholes in 2htdp/image eventually, but they will not be as pervasive
as they are in htdp/image).

Instead of a special position in the image that overlay operations are sensitive to,
2htdp/image has a family of overlay operations, that overlay images based on their centers
or their edges.

Since the default position of the pinhole is in the center for most images and the default for
overlaying and underlaying images in 2htdp/image is based on the center, simple examples
(like the one above) behave the same in both libraries.

But, consider this expression that overlays two images on their upper-left corners, written
using both libraries.

World Style Universe Style

(htdp:overlay
(htdp:put-pinhole
(htdp:rectangle 10 20 "solid" "red")
0 0)

(htdp:put-pinhole
(htdp:rectangle 20 10 "solid" "blue")
0 0))

(2htdp:underlay/align
"left"
"top"
(2htdp:rectangle
10 20 "solid" "red")

(2htdp:rectangle
20 10 "solid" "blue"))

In the 2htdp/image version, the programmer uses 2htdp:underlay/align to specify
where the images should be lined up, instead of using the pinhole.
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Outlines in different places

The outline style shapes are now shifted by one pixel for 2htdp/image images as compared
to htdp/image. This means that these two rectangles draw the same sets of pixels.

World Style Universe Style

(htdp:rectangle
11 11 "outline" "black")

(2htdp:rectangle
10 10 "outline" "black")

See also §2.2.7 “The Nitty Gritty of Pixels, Pens, and Lines”.

Star changed

The 2htdp:star function is a completely different function from htdp:star. Both pro-
duce stars based, on polygons, but 2htdp:star always produces a five-pointed star. See
also 2htdp:star-polygon for more general star shapes.
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