
Images
Version 9.0.0.2

Neil Toronto ăneil.toronto@gmail.comą

October 27, 2025

This library contains convenient functions for constructing icons and logos, and will eventu-
ally offer the same for other bitmap%s. The idea is to make it easy to include such things in
your own programs.

Generally, the images in this library are computed when requested, not loaded from disk.
Most of them are drawn on a dc<%> and then ray traced. Ray tracing images can become
computationally expensive, so this library also includes images/compile-time, which
makes it easy to compute images at compile time and access them at run time.

The ray tracing API will eventually be finalized and made public. This Racket release begins
doing so by finalizing and making public the basic image API used by the ray tracer. It is
provided by the images/flomap module.

1

mailto:neil.toronto@gmail.com
http://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29

Contents

1 Icons 4

1.1 What is an icon? . 4

1.2 About These Icons . 5

1.3 Icon Style . 6

1.4 Arrow Icons . 10

1.5 Control Icons . 14

1.6 File Icons . 21

1.7 Symbol and Text Icons . 24

1.8 Miscellaneous Icons . 27

1.9 Stickman Icons . 37

1.10 Tool Icons . 38

2 Logos 42

3 Embedding Bitmaps in Compiled Files 46

4 Floating-Point Bitmaps 49

4.1 Overview . 50

4.1.1 Motivation . 50

4.1.2 Conceptual Model . 51

4.1.3 Opacity (Alpha Components) . 53

4.1.4 Data Layout . 55

4.2 Struct Type and Accessors . 56

4.3 Conversion and Construction . 59

4.4 Component Operations . 64

2

4.5 Pointwise Operations . 68

4.6 Gradients and Normals . 74

4.7 Blur . 76

4.8 Resizing . 82

4.9 Compositing . 88

4.10 Spatial Transformations . 94

4.10.1 Provided Transformations . 95

4.10.2 General Transformations . 100

4.10.3 Lens Projection and Correction 107

4.11 Effects . 112

3

1 Icons

1.1 What is an icon?
This section
describes an ideal
that DrRacket and
its tools are steadily
approaching.

As a first approximation, an icon is just a small bitmap%, usually with an alpha channel.

But an icon also communicates. Its shape and color are a visual metaphor for an action or
a message. Icons should be easily recognizable, distinguishable, visually consistent, and
metaphorically appropriate for the actions and messages they are used with. It can be
difficult to meet all four requirements at once (“distinguishable” and “visually consistent”
are often at odds), but good examples, good abstractions, and an existing icon library help
considerably.

Example: The Macro Stepper icon is composed by appending a text icon and a

step icon to get . The syntax quote icon is the color that

DrRacket colors syntax quotes by default. The step icon is colored like DrRacket
colors identifier syntax by default, and is shaped using metaphors used in debugger toolbars,

TV remotes, and music players around the world. It is composed of to connote starting

and to connote immediately stopping.

It would not do to have just as the Macro Stepper icon: it would be too easily

confused with the Debugger icon , especially for new users and people with certain
forms of color-blindness, and thus fail to be distinguishable enough.

As another example, the Check Syntax icon connotes inspecting and pass-
ing. Notice that the check mark is also the color of syntax.

4

1.2 About These Icons

The icons in this collection are designed to be composed to create new ones: they are simple,
thematically consistent, and can be constructed in any size and color. Further, slideshow’s
pict combiners offer a way to compose them almost arbitrarily. For example, a media
player application might create a large “step” button by superimposing a record-icon and
a step-icon:

> (require pict images/icons/control images/icons/style)
> (pict->bitmap

(cc-superimpose
(bitmap (record-icon #:color "forestgreen" #:height 96

#:material glass-icon-material))
(bitmap (step-icon #:color light-metal-icon-color #:height 48

#:material metal-icon-material))))

All the icons in this collection are first drawn using standard dc<%> drawing commands.
Then, to get lighting effects, they are turned into 3D objects and ray traced. Many are after-

ward composed to create new icons; for example, the stop-signs-icon superim-

poses three stop-sign-icons, and the magnifying-glass-icon is composed of
three others (frame, glass and handle).

The ray tracer helps keep icons visually consistent with each other and with physical objects
in day-to-day life. As an example of the latter, the record-icon, when rendered in clear
glass, looks like the clear, round button on a Wii Remote. See the plt-logo and planet-
logo functions for more striking examples.

When the rendering API is stable enough to publish, it will allow anyone who can draw a
shape to turn that shape into a visually consistent icon.

As with any sort of rendering (such as SVG rendering), ray tracing takes time. For icons, this
usually happens during tool or application start up. You can reduce the portion of start-up
time taken by rendering to almost nothing by using the images/compile-time library to
embed bitmaps directly into compiled modules.

5

http://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
http://en.wikipedia.org/wiki/Wiimote
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

1.3 Icon Style

(require images/icons/style) package: images-lib

Use these constants and parameters to help keep icon sets visually consistent.

light-metal-icon-color : (or/c string? (is-a?/c color%))
= "azure"

metal-icon-color : (or/c string? (is-a?/c color%))
= "lightsteelblue"

dark-metal-icon-color : (or/c string? (is-a?/c color%))
= "steelblue"

Good colors to use with metal-icon-material. See bomb-icon and magnifying-
glass-icon for examples.

syntax-icon-color : (or/c string? (is-a?/c color%))
= (make-object color% 76 76 255)

halt-icon-color : (or/c string? (is-a?/c color%))
= (make-object color% 255 32 24)

run-icon-color : (or/c string? (is-a?/c color%)) = "lawngreen"

Standard toolbar icon colors.

Use syntax-icon-color in icons that connote macro expansion or syntax. Example:

> (step-icon #:color syntax-icon-color #:height 32)

Use halt-icon-color in icons that connote stopping or errors. Example:

6

https://pkgs.racket-lang.org/package/images-lib

> (stop-icon #:color halt-icon-color #:height 32)

Use run-icon-color in icons that connote executing programs or evaluation. Examples:

> (play-icon #:color run-icon-color #:height 32)

> (require images/icons/stickman)
> (running-stickman-icon 0.9 #:height 32

#:body-color run-icon-color
#:arm-color "white"
#:head-color run-icon-color)

For new users and for accessibility reasons, do not try to differentiate icons for similar func-
tions only by color.

(default-icon-height) Ñ (and/c rational? (>=/c 0))
(default-icon-height height) Ñ void?

height : (and/c rational? (>=/c 0))
= 24

The height of DrRacket’s standard icons.

(toolbar-icon-height) Ñ (and/c rational? (>=/c 0))
(toolbar-icon-height height) Ñ void?

height : (and/c rational? (>=/c 0))
= 16

The height of DrRacket toolbar icons.

7

Use (toolbar-icon-height) as the height argument for common icons that will be used
in toolbars, status bars, and buttons.

(When making an icon for DrRacket’s main toolbar, try to keep it nearly square so that it
will not take up too much horizontal space when the toolbar is docked vertically. If you
cannot, as with the Macro Stepper, send a thinner icon as the alternate-bitmap argument
to a switchable-button%.)

(default-icon-backing-scale) Ñ (and/c rational? (>/c 0))
(default-icon-backing-scale scale) Ñ void?

scale : (and/c rational? (>/c 0))
= 2

The backing scale of DrRacket icons.

A backing scale of 2 means that the icon bitmap internally has two pixels per drawing unit,
so it renders well at double resolution, such as Retina display mode for Mac OS.

Added in version 1.1 of package images-lib.

plastic-icon-material : deep-flomap-material-value?

rubber-icon-material : deep-flomap-material-value?

glass-icon-material : deep-flomap-material-value?

metal-icon-material : deep-flomap-material-value?

Materials for icons.

Plastic is opaque and reflects a little more than glass.

Rubber is also opaque, reflects more light than plastic, but diffuses less.

Glass is transparent but frosted, so it scatters refracted light. It has the high refractive index
of cubic zirconia, or fake diamond. The “glassy look” cannot actually be achieved using
glass.

Metal reflects the most, its specular highlight is nearly the same color as the material (in the
others, the highlight is white), and it diffuses much more ambient light than directional. This
is because while plastic and glass mostly reflect light directly, metal mostly absorbs light and
re-emits it.

Examples:

8

http://en.wikipedia.org/wiki/Cubic_zirconia
http://en.wikipedia.org/wiki/Specular_highlight

> (require images/icons/misc)
> (for/list ([material (list plastic-icon-material

rubber-icon-material
glass-icon-material
metal-icon-material)])

(bomb-icon #:height 32 #:material material))

(list)

(default-icon-material) Ñ deep-flomap-material-value?
(default-icon-material material) Ñ void?

material : deep-flomap-material-value?
= plastic-icon-material

The material used for rendering most icons and icon parts. There are exceptions; for exam-
ple, the floppy-disk-icon always renders the sliding cover in metal.

(bitmap-render-icon bitmap [z-ratio material]) Ñ (is-a?/c bitmap%)
bitmap : (is-a?/c bitmap%)
z-ratio : (and rational? (>=/c 0)) = 5/8
material : deep-flomap-material-value?

= (default-icon-material)

Makes a 3D object out of bitmap and renders it as an icon.

The z-ratio argument only makes a difference when material is transparent, such as
glass-icon-material. It controls what fraction of bitmap ’s height the icon is raised,
which in turn affects the refracted shadow under the icon: the higher the z-ratio , the
lower the shadow.

Examples:

> (define bitmap
(pict->bitmap (colorize (filled-ellipse 64 64) "tomato")))

> (for/list ([z-ratio (in-range 0 2 1/3)])
(bitmap-render-icon bitmap z-ratio glass-icon-material))

(list)

9

More complex shapes than “embossed and rounded” are possible with the full rendering
API, which will be made public in a later release. Still, most of the simple icons (such as
those in images/icons/arrow and images/icons/control) can be rendered using only
bitmap-render-icon.

(icon-color->outline-color color) Ñ (is-a?/c color%)
color : (or/c string? (is-a?/c color%))

For a given icon color, returns the proper outline color%.

As an example, here is how to duplicate the record-icon using pict:

> (define outline-color (icon-color->outline-color "forestgreen"))
> (define brush-pict (colorize (filled-ellipse 62 62) "forestgreen"))
> (define pen-pict (linewidth 2 (colorize (ellipse 62 62) outline-
color)))
> (bitmap-render-icon

(pict->bitmap (inset (cc-superimpose brush-pict pen-pict) 1))
5/8 glass-icon-material)

> (record-icon #:color "forestgreen" #:height 64
#:material glass-icon-material)

The outline width is usually (/ height 32) (in this case, 2), but not always. (For example,
recycle-icon is an exception, as are parts of floppy-disk-icon.)

1.4 Arrow Icons

(require images/icons/arrow) package: images-lib

10

https://pkgs.racket-lang.org/package/images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

(right-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(left-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(up-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(down-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

11

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Standard directional arrows.

Example:

> (list (right-arrow-icon #:color syntax-icon-color
#:height (toolbar-icon-height))

(left-arrow-icon #:color run-icon-color)
(up-arrow-icon #:color halt-icon-color #:height 37)
(down-arrow-icon #:color "lightblue" #:height 44

#:material glass-icon-material))

(list)

(right-over-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(left-over-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)

12

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(right-under-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(left-under-arrow-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Standard bent arrows.

Example:

> (list (right-over-arrow-icon #:color metal-icon-color
#:height (toolbar-icon-height))

(left-over-arrow-icon #:color dark-metal-icon-color)
(right-under-arrow-icon #:color run-icon-

color #:height 37)
(left-under-arrow-icon #:color "lightgreen" #:height 44

#:material glass-icon-material))

13

(list)

1.5 Control Icons

(require images/icons/control) package: images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

(bar-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (bar-icon #:color run-icon-color #:height 32)

This is not a “control” icon per se, but is used to make many others.

(play-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)

14

https://pkgs.racket-lang.org/package/images-lib

material : deep-flomap-material-value?
= (default-icon-material)

backing-scale : (and/c rational? (>/c 0.0))
= (default-icon-backing-scale)

Example:

> (play-icon #:color run-icon-color #:height 32)

(back-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (back-icon #:color run-icon-color #:height 32)

(fast-forward-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)

15

backing-scale : (and/c rational? (>/c 0.0))
= (default-icon-backing-scale)

Example:

> (fast-forward-icon #:color syntax-icon-color #:height 32)

(rewind-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (rewind-icon #:color syntax-icon-color #:height 32)

(stop-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

16

Example:

> (stop-icon #:color halt-icon-color #:height 32)

(record-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (record-icon #:color "red" #:height 32)

(pause-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

17

> (pause-icon #:color halt-icon-color #:height 32)

(step-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (step-icon #:color run-icon-color #:height 32)

(step-back-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (step-back-icon #:color run-icon-color #:height 32)

18

(continue-forward-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (continue-forward-icon #:color run-icon-color #:height 32)

(continue-backward-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (continue-backward-icon #:color run-icon-color #:height 32)

19

(search-forward-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (search-forward-icon #:color syntax-icon-color #:height 32)

(search-backward-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (search-backward-icon #:color syntax-icon-color #:height 32)

20

1.6 File Icons

(require images/icons/file) package: images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

(floppy-disk-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = "slategray"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (floppy-disk-icon #:height 32 #:material glass-icon-material)

(save-icon [#:disk-color disk-color
#:arrow-color arrow-color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

disk-color : (or/c string? (is-a?/c color%)) = "gold"
arrow-color : (or/c string? (is-a?/c color%))

= syntax-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)

21

https://pkgs.racket-lang.org/package/images-lib

material : deep-flomap-material-value?
= (default-icon-material)

backing-scale : (and/c rational? (>/c 0.0))
= (default-icon-backing-scale)

Example:

> (save-icon #:height 32)

(load-icon [#:disk-color disk-color
#:arrow-color arrow-color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

disk-color : (or/c string? (is-a?/c color%)) = "gold"
arrow-color : (or/c string? (is-a?/c color%))

= syntax-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (load-icon #:height 32)

(small-save-icon [#:disk-color disk-color
#:arrow-color arrow-color
#:height height
#:material material
#:backing-scale backing-scale])

22

Ñ (is-a?/c bitmap%)
disk-color : (or/c string? (is-a?/c color%)) = "gold"
arrow-color : (or/c string? (is-a?/c color%))

= syntax-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (small-save-icon #:height 32)

(small-load-icon [#:disk-color disk-color
#:arrow-color arrow-color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
disk-color : (or/c string? (is-a?/c color%)) = "gold"
arrow-color : (or/c string? (is-a?/c color%))

= syntax-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (small-load-icon #:height 32)

23

1.7 Symbol and Text Icons

(require images/icons/symbol) package: images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

(text-icon str
[font
#:trim? trim?
#:color color
#:height height
#:material material
#:outline outline
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

str : string?
font : (is-a?/c font%) = (make-font)
trim? : boolean? = #t
color : (or/c string? (is-a?/c color%)) = "white"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
outline : (and/c rational? (>=/c 0)) = (/ height 32)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Renders a text string as an icon. For example,

> (text-icon "An Important Point!"
(make-font #:weight 'bold #:underlined? #t)
#:color "lightskyblue" #:height 44)

The size and face of font are ignored. If trim? is #f, the drawn text is not cropped before
rendering. Otherwise, it is cropped to the smallest rectangle containing all the non-zero-
alpha pixels. Rendering very small glyphs shows the difference dramatically:

> (list (text-icon "." #:trim? #t)
(text-icon "." #:trim? #f))

24

https://pkgs.racket-lang.org/package/images-lib

(list)

Notice that both icons are (default-icon-height) pixels tall.

Because different platforms have different fonts, text-icon cannot guarantee the icons it
returns have a consistent look or width across all platforms, or that any unicode characters
in str will exist.

(recycle-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = "forestgreen"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns the universal recycling symbol, rendered as an icon.

Example:

> (recycle-icon #:height 48)

(x-icon [#:color color
#:height height
#:material material
#:thickness thickness
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%)) = halt-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)

25

thickness : (and/c rational? (>=/c 0)) = 10
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns an “x” icon that is guaranteed to look the same on all platforms. (Anything similar
that would be constructed by text-icon would differ at least slightly across platforms.)

Example:

> (x-icon #:height 32)

Changed in version 1.1 of package images-lib: Added optional #:thickness argument.

(check-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%)) = run-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (check-icon #:height 32)

(lambda-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
= light-metal-icon-color

26

height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (lambda-icon #:height 32 #:material metal-icon-material)

(hash-quote-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = "mediumseagreen"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Examples:

> (require (only-in images/icons/tool macro-stepper-hash-color))
> (hash-quote-icon #:color macro-stepper-hash-color #:height 32)

1.8 Miscellaneous Icons

(require images/icons/misc) package: images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

27

https://pkgs.racket-lang.org/package/images-lib

(regular-polygon-icon sides
[start]
#:color color

[#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
sides : exact-positive-integer?
start : real? = (- (/ pi sides) (* 1/2 pi))
color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Renders the largest regular polygon with sides sides, with the first vertex at angle start ,
that can be centered in a height ˆ height box. The default start angle is chosen so that
the polygon has a horizontal bottom edge.

Example:

> (for/list ([sides (in-range 1 9)]
[material (in-cycle (list plastic-icon-material

glass-icon-material))])
(regular-polygon-icon sides #:color "cornflowerblue" #:height 32

#:material material))

(list)

(stop-sign-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = halt-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

28

Example:

> (stop-sign-icon #:height 32 #:material glass-icon-material)

(stop-signs-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = halt-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (stop-signs-icon #:height 32 #:material plastic-icon-material)

(foot-icon #:color color
[#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%))
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

29

> (foot-icon #:color "chocolate" #:height 32
#:material glass-icon-material)

(magnifying-glass-icon [#:frame-color frame-color
#:handle-color handle-color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
frame-color : (or/c string? (is-a?/c color%))

= light-metal-icon-color
handle-color : (or/c string? (is-a?/c color%)) = "brown"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (magnifying-glass-icon #:height 32)

(left-magnifying-glass-icon [#:frame-color frame-color
#:handle-color handle-color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
frame-color : (or/c string? (is-a?/c color%))

= light-metal-icon-color
handle-color : (or/c string? (is-a?/c color%)) = "brown"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)

30

backing-scale : (and/c rational? (>/c 0.0))
= (default-icon-backing-scale)

Example:

> (left-magnifying-glass-icon #:height 32)

(bomb-icon [#:cap-color cap-color
#:bomb-color bomb-color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

cap-color : (or/c string? (is-a?/c color%))
= light-metal-icon-color

bomb-color : (or/c string? (is-a?/c color%))
= dark-metal-icon-color

height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (bomb-icon #:height 48 #:material glass-icon-material)

(left-bomb-icon [#:cap-color cap-color
#:bomb-color bomb-color
#:height height
#:material material
#:backing-scale backing-scale])

31

Ñ (is-a?/c bitmap%)
cap-color : (or/c string? (is-a?/c color%))

= light-metal-icon-color
bomb-color : (or/c string? (is-a?/c color%))

= dark-metal-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (left-bomb-icon #:height 48)

(clock-icon [hours
minutes
#:face-color face-color
#:hand-color hand-color
#:height height
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

hours : (integer-in 0 11) = 0
minutes : (real-in 0 60) = 47
face-color : (or/c string? (is-a?/c color%))

= light-metal-icon-color
hand-color : (or/c string? (is-a?/c color%)) = "firebrick"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Examples:

> (clock-icon #:height 96)

32

> (clock-icon 3 21 #:height 48
#:face-color "lightblue"
#:hand-color "darkblue")

(stopwatch-icon [hours
minutes
#:face-color face-color
#:hand-color hand-color
#:height height
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
hours : (integer-in 0 11) = 0
minutes : (real-in 0 60) = 47
face-color : (or/c string? (is-a?/c color%))

= light-metal-icon-color
hand-color : (or/c string? (is-a?/c color%)) = "firebrick"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

33

> (stopwatch-icon #:height 96)

(stethoscope-icon [#:color color
#:height height
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = "black"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (stethoscope-icon #:height 96)

34

(short-stethoscope-icon [#:color color
#:height height
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
color : (or/c string? (is-a?/c color%)) = "black"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (short-stethoscope-icon #:color "purple" #:height 96)

(lock-icon [open?
#:body-color body-color
#:shackle-color shackle-color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

open? : boolean? = #f
body-color : (or/c string? (is-a?/c color%)) = "orange"
shackle-color : (or/c string? (is-a?/c color%))

= light-metal-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

35

Examples:

> (lock-icon #:height 32)

> (lock-icon #t #:height 48
#:body-color "navajowhite"
#:shackle-color "lemonchiffon"
#:material glass-icon-material)

(close-icon [#:color color
#:height height
#:material material
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

color : (or/c string? (is-a?/c color%)) = "black"
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Example:

> (close-icon #:height 32 #:material glass-icon-material)

Added in version 1.1 of package images-lib.

36

1.9 Stickman Icons

(require images/icons/stickman) package: images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

(standing-stickman-icon [#:body-color body-color
#:arm-color arm-color
#:head-color head-color
#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
body-color : (or/c string? (is-a?/c color%)) = run-icon-color
arm-color : (or/c string? (is-a?/c color%)) = "white"
head-color : (or/c string? (is-a?/c color%)) = run-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns the icon displayed in DrRacket’s lower-right corner when no program is running.

Example:

> (standing-stickman-icon #:height 64)

(running-stickman-icon t
[#:body-color body-color
#:arm-color arm-color
#:head-color head-color
#:height height
#:material material
#:backing-scale backing-scale])

37

https://pkgs.racket-lang.org/package/images-lib

Ñ (is-a?/c bitmap%)
t : rational?
body-color : (or/c string? (is-a?/c color%)) = run-icon-color
arm-color : (or/c string? (is-a?/c color%)) = "white"
head-color : (or/c string? (is-a?/c color%)) = run-icon-color
height : (and/c rational? (>=/c 0)) = (default-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns a frame of the icon animated in DrRacket’s lower-right corner when a program is
running. The frame returned is for time t of a run cycle with a one-second period.

The following example samples the run cycle at 12 Hz, or every 1/12 second:

> (for/list ([t (in-range 0 1 1/12)])
(running-stickman-icon t #:height 32))

(list)

The stickman’s joint angles are defined by continuous periodic functions, so the run cycle
can be sampled at any resolution, or at any real-valued time t . The cycle is modeled after
the run cycle of the player’s avatar in the Commodore 64 game Impossible Mission.

1.10 Tool Icons

(require images/icons/tool) package: images-lib

Changed in version 1.1 of package images-lib: Added optional #:backing-scale arguments.

(check-syntax-icon [#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = (toolbar-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

38

http://en.wikipedia.org/wiki/Impossible_Mission
https://pkgs.racket-lang.org/package/images-lib

(small-check-syntax-icon [#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = (toolbar-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Icons for Check Syntax. The small-check-syntax-icon is used when the toolbar is on
the side.

Example:

> (list (check-syntax-icon #:height 32)
(small-check-syntax-icon #:height 32))

(list)

(macro-stepper-icon [#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = (toolbar-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(small-macro-stepper-icon [#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = (toolbar-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

39

Icons for the Macro Stepper. The small-macro-stepper-icon is used when the toolbar
is on the side.

Example:

> (list (macro-stepper-icon #:height 32)
(small-macro-stepper-icon #:height 32))

(list)

(debugger-icon [#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = (toolbar-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

(small-debugger-icon [#:height height
#:material material
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = (toolbar-icon-height)
material : deep-flomap-material-value?

= (default-icon-material)
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Icons for the Debugger. The small-debugger-icon is used when the toolbar is on the
side.

Example:

> (list (debugger-icon #:height 32)
(small-debugger-icon #:height 32))

(list)

40

debugger-bomb-color : (or/c string? (is-a?/c color%))
= (make-object color% 128 32 32)

macro-stepper-hash-color : (or/c string? (is-a?/c color%))
= (make-object color% 60 192 60)

small-macro-stepper-hash-color : (or/c string? (is-a?/c color%))
= (make-object color% 128 255 128)

Constants used within images/icons/tool.

41

2 Logos

(require images/logos) package: images-lib

(plt-logo [#:height height
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

height : (and/c rational? (>=/c 0)) = 256
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns the PLT logo, rendered in tinted glass and azure metal by the ray tracer that renders
icons.

Example:

> (plt-logo)

42

https://pkgs.racket-lang.org/package/images-lib

The default height is the size used for DrRacket splash screen.

43

(planet-logo [#:height height
#:backing-scale backing-scale]) Ñ (is-a?/c bitmap%)

height : (and/c rational? (>=/c 0)) = 96
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns an unofficial PLaneT logo. This is used as the PLaneT icon when DrRacket down-
loads PLaneT packages.

Examples:

> (planet-logo)

> (planet-logo #:height (default-icon-height))

(stepper-logo [#:height height
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = 96
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns the algebraic stepper logo.

Example:

44

> (stepper-logo)

(macro-stepper-logo [#:height height
#:backing-scale backing-scale])

Ñ (is-a?/c bitmap%)
height : (and/c rational? (>=/c 0)) = 96
backing-scale : (and/c rational? (>/c 0.0))

= (default-icon-backing-scale)

Returns the macro stepper logo.

Example:

> (macro-stepper-logo)

45

3 Embedding Bitmaps in Compiled Files

(require images/compile-time) package: images-lib

Producing computed bitmaps can take time. To reduce the startup time of programs that use
computed bitmaps, use the macros exported by images/compile-time to compile them:
to embed the computed bitmaps in fully expanded, compiled modules. This is a form of

constant folding, or
equivalently a form
of safe “3D” values.

The macros defined here compute bitmaps at expansion time, and expand to the bitmap’s
bytes and a simple wrapper that converts bytes to a bitmap%. Thus, fully expanded,
compiled modules contain (more or less) literal bitmap values, which do not need to be
computed again when the module is required by another.

The literal bitmap values are encoded in PNG or JPEG format, so they are compressed in the
compiled module.

To get the most from compiled bitmaps during development, it is best to put them in files
that are changed infrequently. For example, for games, we suggest having a separate mod-
ule called something like images.rkt or resources.rkt that provides all the game’s
images.

(compiled-bitmap expr [quality])

expr : (is-a?/c bitmap%)

quality : (integer-in 0 100)

Evaluates expr at expansion time, which must return a bitmap%, and returns to the bitmap
at run time. Keep in mind that expr has access only to expansion-time values, not run-time
values.

If quality is 100, the bitmap is stored as a PNG. If quality is between 0 and 99 inclusive,
it is stored as a JPEG with quality quality . (See save-file.) If the bitmap has an alpha
channel, its alpha channel is stored as a separate JPEG. The default value is 100.

Generally, to use this macro, wrap a bitmap%-producing expression with it and move any
identifiers it depends on into the expansion phase. For example, suppose we are computing
a large PLT logo at run time:

#lang racket

(require images/logos)

(define the-logo (plt-logo #:height 384))

Running this takes several seconds. To move the cost to expansion time, we change the
program to

46

https://pkgs.racket-lang.org/package/images-lib
http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/JPEG

#lang racket

(require images/compile-time
(for-syntax images/logos))

(define the-logo (compiled-bitmap (plt-logo #:height 384)))

The logo will not change, but now expanding the program takes several seconds, and running
it takes a few milliseconds. Note that images/logos is now required for-syntax, so that
the expansion-phase expression (plt-logo #:height 384) has access to the identifier
plt-logo.

(compiled-bitmap-list expr [quality])

expr : (listof (is-a?/c bitmap%))

quality : (integer-in 0 100)

Like compiled-bitmap, but it expects expr to return a list of bitmap%s, and it returns
the list at run time. The quality argument works as in compiled-bitmap, but is applied
to all the images in the list.

Use this for animations. For example,

#lang racket

(require images/compile-time
(for-syntax images/icons/stickman))

(begin-for-syntax
(define num-stickman-frames 12))

(define running-stickman-frames
(compiled-bitmap-list
(for/list ([t (in-range 0 1 (/ 1 num-stickman-frames))])

(running-stickman-icon t #:height 32
#:body-color "red"
#:arm-color "white"
#:head-color "red"))

50))

This computes

> running-stickman-frames

47

(list)

at expansion time.

48

4 Floating-Point Bitmaps

(require images/flomap) package: images-lib

The images/flomap module provides the struct type flomap, whose instances represent
floating-point bitmaps with any number of color components. It also provides purely func-
tional operations on flomaps for compositing, pointwise floating-point math, blur, gradi-
ent calculation, arbitrary spatial transforms (such as rotation), and conversion to and from
bitmap% instances.

This is a Typed Racket module. Its exports can generally be used from untyped code with
negligible performance loss over typed code. Exceptions are documented in bold text. Most
exceptions are macros used to inline floating-point operations.

The following flomap fm is used in various examples:

> (define fm
(draw-flomap
(𝜆 (fm-dc)

(send fm-dc set-alpha 0)
(send fm-dc set-background "black")
(send fm-dc clear)
(send fm-dc set-alpha 1/3)
(send fm-dc translate 2 2)
(send fm-dc set-pen "black" 4 'long-dash)
(send fm-dc set-brush "red" 'solid)
(send fm-dc draw-ellipse 0 0 192 192)
(send fm-dc set-brush "green" 'solid)
(send fm-dc draw-ellipse 64 0 192 192)
(send fm-dc set-brush "blue" 'solid)
(send fm-dc draw-ellipse 32 44 192 192))

260 240))
> (flomap->bitmap fm)

49

https://pkgs.racket-lang.org/package/images-lib

It is typical to use flomap->bitmap to visualize a flomap at the REPL.

Contents:

4.1 Overview

Contents:

4.1.1 Motivation

There are three main reasons to use flomaps:

• Precision. A point in a typical bitmap is represented by a few bytes, each of which
can have one of 256 distinct values. In contrast, a point in a flomap is represented
by double-precision floating-point numbers, typically between 0.0 and 1.0 inclu-
sive. This range contains about 4.6 quintillion (or 4.6ˆ1018) distinct values. While
bytes are fine for many applications, their low precision becomes a problem when im-
ages are repeatedly operated on, or when their values are built by adding many small
amounts—which are often rounded to zero.

50

• Range. A floating-point value can also represent about 4.6 quintillion distinct in-
tensities above saturation (1.0). If distinguishing oversaturated values is important,
flomaps have the range for it. Further, floating-point images are closed under point-
wise arithmetic (up to floating-point error).

• Speed. The images/flomap module benefits greatly from Typed Racket’s type-
directed optimizations. Even getting individual color values—interpolated between
points, if desired—is fast.

For these reasons, other parts of the images library use flomaps internally, to represent and
operate on RGB and ARGB images, light maps, shadow maps, height maps, and normal
maps.

4.1.2 Conceptual Model

A flomap is conceptually infinite in its width and height, but has nonzero values in a finite
rectangle starting at coordinate 0 0 and extending to its width and height (exclusive). A
flomap is not conceptually infinite in its components because there is no natural linear order
on component coordinates, as the meaning of components depends on programmer intent.

The following example creates a 10ˆ10 bitmap with RGB components, and indexes its top-
left red value and two values outside the finite, nonzero rectangle. It also attempts to index
component 3, which doesn’t exist. Note that flomap-ref accepts its coordinate arguments
in a standard order: k x y (with k for komponent).

> (define magenta-fm (make-flomap* 10 10 #(0.5 0.0 1.0)))
> (flomap->bitmap magenta-fm)

> (flomap-ref* magenta-fm 0 0)
(flvector 0.5 0.0 1.0)
> (flomap-ref* magenta-fm -1 0)
(flvector 0.0 0.0 0.0)
> (flomap-ref* magenta-fm 0 1000)
(flvector 0.0 0.0 0.0)
> (flomap-ref magenta-fm 3 0 0)
flomap-ref: expected argument of type ănonnegative fixnum ă

3ą; given: 3

Many flomap functions, such as flomap-bilinear-ref and flomap-rotate, treat their
arguments as if every real x y coordinate has values. In all such cases, known values are at
half-integer coordinates and others are interpolated.

Examples:

> (flomap-bilinear-ref* magenta-fm 0.5 0.5)

51

(flvector 0.5 0.0 1.0)
> (flomap-bilinear-ref* magenta-fm 0.25 0.25)
(flvector 0.28125 0.0 0.5625)
> (flomap-bilinear-ref* magenta-fm 0.0 0.0)
(flvector 0.125 0.0 0.25)
> (flomap-bilinear-ref* magenta-fm -0.25 -0.25)
(flvector 0.03125 0.0 0.0625)

This conceptual model allows us to treat flomaps as if they were multi-valued functions on
RealˆReal. For example, we might plot the red component of an ARGB icon:

> (require images/icons/misc plot)
> (define icon-fm (bomb-flomap #:bomb-color "orange" #:height 48))
> (flomap->bitmap icon-fm)

> (define-values (icon-width icon-height) (flomap-size icon-fm))
> (plot3d (contour-intervals3d

(𝜆 (x y) (flomap-bilinear-ref icon-fm 1 x y))
-0.5 (+ 0.5 icon-width) -0.5 (+ 0.5 icon-height)))

52

404040404040404040

202020202020202020

000000000

404040404040404040

202020202020202020

000000000

000000000

.5.5.5.5.5.5.5.5.5

111111111

1.51.51.51.51.51.51.51.51.5

000000000

.5.5.5.5.5.5.5.5.5

111111111

1.51.51.51.51.51.51.51.51.5

404040404040404040

202020202020202020

000000000

404040404040404040

202020202020202020

000000000

x axis
x axis
x axisx axis
x axisx axis
x axis
x axis
x axis

y axis
y axis
y axis
y axis
y axis
y axis
y axis
y axis

y axis

Notice that the plot’s maximum height is above saturation (1.0). The tallest peak corre-
sponds to the specular highlight (the shiny part) on the bomb. Specular highlights are one
case where it is important to operate on oversaturated values without truncating them—until
it is time to display the image.

If we have a wˆh flomap and consider its known values as being at half-integer coordi-
nates, the exact center of the flomap is at (* 1/2 w) (* 1/2 h). When unknown values
are estimated using bilinear interpolation, the finite rectangle containing all the known and
estimated nonzero values is from -1/2 -1/2 to (+ w 1/2) (+ h 1/2).

4.1.3 Opacity (Alpha Components)

A partially transparent flomap is simply a flomap in which component 0 is assumed to be an
alpha (opacity) component. The other components should be multiplied by their correspond-
ing alpha value; i.e. an RGB triple 1.0 0.5 0.25 with opacity 0.5 should be represented
by 0.5 0.5 0.25 0.125. This representation

generally goes by
the unfortunate
misnomer
“premultiplied
alpha,” which
makes it seem as if
the alpha
component is
multiplied by
something.

53

We will refer to this representation as alpha-multiplied because the color components are
multiplied by the alpha component. All alpha-aware functions consume alpha-multiplied
flomaps and produce alpha-multiplied flomaps.

There are many good reasons to use alpha-multiplied flomaps instead of non-alpha-
multiplied flomaps. Some are:

• Compositing requires fewer operations per point.

• Compositing is associative; i.e. (flomap-lt-superimpose fm1 (flomap-lt-
superimpose fm2 fm3)) is the same as (flomap-lt-superimpose (flomap-
lt-superimpose fm1 fm2) fm3), up to floating-point error.

• There is only one transparent point: all zeros. We could not conceptualize partially
transparent flomaps as being infinite in size without a unique transparent point.

• Many functions can operate on flomaps without treating the alpha component specially
and still be correct.

As an example of the last point, consider blur. The following example creates an alpha-
multiplied flomap using draw-flomap. It blurs the flomap using a general-purpose (i.e.
non-alpha-aware) blur function, then converts the flomap to non-alpha-multiplied and does
the same.

> (define circle-fm (draw-flomap (𝜆 (fm-dc)
(send fm-dc set-

pen "black" 1 'transparent)
(send fm-dc set-

brush "green" 'solid)
(send fm-dc draw-

ellipse 10 10 30 30))
50 50))

> (flomap->bitmap circle-fm)

> (flomap->bitmap (flomap-blur circle-fm 4 4))

> (let* ([fm (flomap-divide-alpha circle-fm)]
[fm (flomap-blur fm 4 4)]
[fm (flomap-multiply-alpha fm)])

54

(flomap->bitmap fm))

Notice the dark band around the second blurred circle.

Of course, this could be fixed by making flomap-blur operate differently on flomaps with
an alpha component. But the implementation would amount to converting them to alpha-
multiplied flomaps anyway.

The only valid reason to not multiply color components by alpha is loss of precision, which
is not an issue with flomaps.

4.1.4 Data Layout

For most applications, there should be enough flomap functions available that you should
not need to access their fields directly. However, there will always be use cases for direct
manipulation, so the fields are public.

The color values in a flomap are stored flattened in a single FlVector, in row-major order
with adjacent color components. For example, a 2ˆ2 RGB flomap can be visualized as

0
1
2

3
4
5

6
7
8

9
10
11

In a flomap, it would be stored as

0 1 2 3 4 5 6 7 8 9 10 11

Mathematically, for a c-component, w-width flomap, the kth color component at position x
y is at index

(+ k (* c (+ x (* y w))))

55

The coords->index function carries out this calculation quickly using only fixnum arith-
metic.

If i is a calculated index for the value at k x y, then the (+ k 1)th value is at index (+ i
1), the (+ x 1)th value is at index (+ i c), and the (+ y 1)th value is at index (+ i (*
c w)).

4.2 Struct Type and Accessors

(struct flomap (values components width height))
values : FlVector
components : Integer
width : Integer
height : Integer

Represents a widthˆheight floating-point bitmap with components color components.
The values vector contains the flattened image data (see §4.1.4 “Data Layout”).

A guard ensures that the values field has length (* components width height), and
that each size field is a nonnegative fixnum.

Examples:

> (require racket/flonum)
> (flomap (flvector 0.0 0.0 0.0 0.0) 4 1 1)
(flomap (flvector 0.0 0.0 0.0 0.0) 4 1 1)
> (flomap (flvector) 0 0 0)
(flomap (flvector) 0 0 0)
> (flomap (flvector 0.0) 2 1 1)
flomap: expected flvector of length 2; given one of length 1

The default flomap constructor is perhaps the hardest to use. Instead, to construct a flomap
from scratch, you should generally use make-flomap, make-flomap*, build-flomap or
draw-flomap.

(flomap-size fm) Ñ Nonnegative-Fixnum Nonnegative-Fixnum
fm : flomap

Returns the width and height of fm as nonnegative fixnums.

(flomap-ref fm k x y) Ñ Float
fm : flomap
k : Integer
x : Integer
y : Integer

56

Returns fm ’s value at k x y .

If x or y is out of bounds, this function returns 0.0. If k is out of bounds, it raises an error.
The §4.1.2 “Conceptual Model” section explains why k is treated differently.

(flomap-ref* fm x y) Ñ FlVector
fm : flomap
x : Integer
y : Integer

Returns fm ’s component values at x y as an flvector.

If x or y is out of bounds, this function returns an flvector filled with 0.0. It always returns
an flvector of length (flomap-components fm).

(flomap-bilinear-ref fm k x y) Ñ Float
fm : flomap
k : Integer
x : Real
y : Real

Returns an estimated value at any given k x y coordinate, calculated from known values in
fm .

Like all other flomap functions that operate on real-valued coordinates, flomap-
bilinear-ref regards known values as being at half-integer coordinates. Mathematically,
if x = (+ i 0.5) and y = (+ j 0.5) for any integers i and j, then (flomap-bilinear-
ref fm k x y) = (flomap-ref fm k i j).

Suppose fm is size wˆh. If x ď -0.5 or x ě (+ w 0.5), this function returns 0.0; similarly
for y and h. If k is out of bounds, it raises an error. The §4.1.2 “Conceptual Model” section
explains why k is treated differently.

(flomap-bilinear-ref* fm x y) Ñ FlVector
fm : flomap
x : Real
y : Real

Like flomap-bilinear-ref, but returns an flvector containing estimates of all the compo-
nents at x y .

(flomap-min-value fm) Ñ Float
fm : flomap

(flomap-max-value fm) Ñ Float
fm : flomap

57

These return the minimum and maximum values in fm .

(flomap-extreme-values fm) Ñ Float Float
fm : flomap

Equivalent to (values (flomap-min-value fm) (flomap-max-value fm)), but
faster.

(flomap-nonzero-rect fm) Ñ Nonnegative-Fixnum
Nonnegative-Fixnum
Nonnegative-Fixnum
Nonnegative-Fixnum

fm : flomap

Returns the smallest rectangle containing every nonzero value (in any component) in fm .
The values returned are x minimum, y minimum, x maximum + 1, and y maximum + 1.

The values returned by flomap-nonzero-rect can be sent to subflomap to trim away
zero values. But see flomap-trim, which is faster for alpha-multiplied flomaps.

(coords->index c w k x y) Ñ Fixnum
c : Integer
w : Integer
k : Integer
x : Integer
y : Integer

Returns the index of the value at coordinates k x y of a flomap with c color components
and width w . This function does not check any coordinates against their bounds.

(unsafe-flomap-ref vs c w h k x y) Ñ Float
vs : FlVector
c : Integer
w : Integer
h : Integer
k : Integer
x : Integer
y : Integer

If fm = (flomap vs c w h), returns fm’s value at k x y . If x or y is out of bounds, this
returns 0.0. It is unsafe because k is unchecked, as well as indexing into vs .

This function is used by some library functions, such as flomap-bilinear-ref, to index
into already-destructured flomaps. From untyped code, applying this function is likely no
faster than applying flomap-ref, because of extra contract checks.

58

(unsafe-flomap-ref* vs c w h x y) Ñ FlVector
vs : FlVector
c : Integer
w : Integer
h : Integer
x : Integer
y : Integer

Like unsafe-flomap-ref, but returns an flvector containing all the component values at x
y .

4.3 Conversion and Construction

(flomap->bitmap fm
#:backing-scale backing-scale) Ñ Any

fm : flomap
backing-scale : Positive-Real

Converts a flomap to a bitmap%.

The return type is imprecise because Typed Racket does not support the object system well
yet. As a typed function, this is most useful in DrRacket’s REPL to visualize flomaps; any
other typed use is difficult.

Flomaps are interpreted differently depending on the number of components:

• Zero components. Raises an error.

• One component. Interpreted as intensity (grayscale).

• Two components. Interpreted as AL, or alpha+intensity, with intensity multiplied by
alpha.

• Three components. Interpreted as RGB.

• Four components. Interpreted as ARGB with color components multiplied by alpha.

• More components. Raises an error.

See §4.1.3 “Opacity (Alpha Components)” for a discussion of opacity (alpha) representation.

A zero-size fm is padded by one point in any zero direction before conversion. For example,
if fm is size 0ˆ1, the result of (flomap->bitmap fm) is size 1ˆ1.

Values are clamped to between 0.0 and 1.0 before conversion.

59

(bitmap->flomap bm #:unscaled? unscaled?) Ñ flomap
bm : Any
unscaled? : Any

Given a bitmap% instance bm , returns an ARGB flomap with alpha-multiplied color com-
ponents. See §4.1.3 “Opacity (Alpha Components)” for a discussion of opacity (alpha)
representation.

If unscaled? is true, the flomap is converted from the actual bitmap backing bm rather than
a scaled version. See the #:unscaled? keyword parameter of get-argb-pixels for more
information.

The argument type is imprecise because Typed Racket does not support the object system
well yet.

(make-flomap c w h [v]) Ñ flomap
c : Integer
w : Integer
h : Integer
v : Real = 0.0

Returns a wˆh flomap with c components, with every value initialized to v . Analogous to
make-vector.

To create flomaps filled with a solid color, use make-flomap*.

(make-flomap* w h vs) Ñ flomap
w : Integer
h : Integer
vs : (U (Vectorof Real) FlVector)

Returns a wˆh flomap with each point’s components initialized using the values in vs .
Analogous to make-vector.

The following two examples create an RGB and an ARGB flomap:

> (flomap->bitmap (make-flomap* 100 100 #(0.5 0.0 1.0)))

60

> (flomap->bitmap (make-flomap* 100 100 #(0.5 0.25 0.0 0.5)))

See §4.1.3 “Opacity (Alpha Components)” for a discussion of opacity (alpha) representation.

(build-flomap c w h f) Ñ flomap
c : Integer
w : Integer
h : Integer
f : (Nonnegative-Fixnum Nonnegative-Fixnum Nonnegative-Fixnum -> Real)

Returns a wˆh flomap with c color components, with values defined by f . Analogous to
build-vector.

The function f receives three arguments k x y: the color component and two positional
coordinates.

Examples:

> (flomap->bitmap
(build-flomap 1 100 100

(𝜆 (k x y) (/ (+ x y) 200))))

> (define sine-fm
(build-flomap
1 100 100
(𝜆 (k x y)

(* 1/2 (+ 1 (sin (sqrt (+ (sqr (- x 50))
(sqr (- y 50))))))))))

> (flomap->bitmap sine-fm)

61

To build a flomap using a function that returns vectors, see build-flomap*.

(build-flomap* c w h f) Ñ flomap
c : Integer
w : Integer
h : Integer
f : (Nonnegative-Fixnum Nonnegative-Fixnum

-> (U (Vectorof Real) FlVector))

Returns a wˆh flomap with c color components. Its values are defined by f , which returns
vectors of point components. The vectors returned by f must be length c .

Analogous to build-vector.

Examples:

> (flomap->bitmap
(build-flomap* 4 100 100

(𝜆 (x y)
(vector (/ (+ x y) 200)

(/ (+ (- 100 x) y) 200)
(/ (+ (- 100 x) (- 100 y)) 200)
(/ (+ x (- 100 y)) 200)))))

> (build-flomap* 4 100 100
(𝜆 (x y) (vector (/ (+ x y) 200))))

build-flomap*: expected argument of type ălength-4 Vector or
FlVectorą; given: '#(0)

62

(draw-flomap draw w h) Ñ flomap
draw : (Any -> Any)
w : Integer
h : Integer

Returns a wˆh bitmap drawn by draw . Analogous to slideshow’s dc.

The draw function should accept a dc<%> instance and use its drawing methods to draw
on an underlying bitmap. The bitmap is converted to a flomap using bitmap->flomap and
returned. See §4 “Floating-Point Bitmaps” for an example.

This function is very difficult to use in Typed Racket, requiring occurrence checks for, and
use of, experimental types. However, as Typed Racket grows to handle Racket’s object
system, the types will be made more precise.

(flomap-multiply-alpha fm) Ñ flomap
fm : flomap

(flomap-divide-alpha fm) Ñ flomap
fm : flomap

Multiplies/divides each nonzero-component value with the corresponding zero-component
value. Dividing by 0.0 produces 0.0.

In other words, flomap-multiply-alpha converts non-alpha-multiplied flomaps into
alpha-multiplied flomaps, and flomap-divide-alpha converts them back.

You should not generally have to use these functions, because bitmap->flomap returns an
alpha-multiplied flomap and every alpha-aware flomap function assumes its arguments are
alpha-multiplied and produces alpha-multiplied flomaps.

See §4.1.3 “Opacity (Alpha Components)” for a discussion of opacity (alpha) representation.

(inline-build-flomap c w h f)

c : Integer

w : Integer

h : Integer

f :
(Nonnegative-Fixnum Nonnegative-Fixnum Nonnegative-Fixnum
Nonnegative-Fixnum -> Float)

A macro version of build-flomap.

63

There are three differences between the function f passed to build-flomap and the f
passed to inline-build-flomap. First, the f passed to inline-build-flomap can be
a macro. Second, it receives arguments k x y i, where i is a precalculated index into the
result’s values. Third, it must return a Float.

Using inline-build-flomap instead of build-flomap may ensure that f is inlined, and
therefore floats remain unboxed. Many library functions use inline-build-flomap inter-
nally for speed, notably fm+ and the other pointwise arithmetic operators.

This is not available in untyped Racket.

(inline-build-flomap* c w h f)

c : Integer

w : Integer

h : Integer

f :
(Nonnegative-Fixnum Nonnegative-Fixnum
Nonnegative-Fixnum -> FlVector)

A macro version of build-flomap*.

There are three differences between the function f passed to build-flomap* and the f
passed to inline-build-flomap*. First, the f passed to inline-build-flomap* can
be a macro. Second, it receives arguments x y i, where i is a precalculated index into the
result’s values. Third, it must return a FlVector.

This is not available in untyped Racket.

4.4 Component Operations

(flomap-ref-component fm k) Ñ flomap
fm : flomap
k : Integer

Extracts one component of a flomap and returns it as a new flomap. Raises an error if k is
out of bounds.

Use this, for example, to extract the A and R components from an ARGB flomap:

> (flomap->bitmap (flomap-ref-component fm 0))

64

> (flomap->bitmap (flomap-ref-component fm 1))

(flomap-take-components fm k) Ñ flomap
fm : flomap
k : Integer

65

Extracts the first k components and returns them as a new flomap. Raises an error if k is out
of bounds.

Example:

> (flomap->bitmap (flomap-take-components fm 2))

(flomap-drop-components fm k) Ñ flomap
fm : flomap
k : Integer

Extracts all but the first k components and returns them as a new flomap. Raises an error if
k is out of bounds.

Use this, for example, to operate on only the RGB channels of an ARGB flomap:

> (flomap->bitmap
(flomap-append-components (flomap-take-components fm 1)

(fm* 0.25 (flomap-drop-
components fm 1))))

66

(flomap-append-components fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

Appends the components of the given flomaps pointwise. Raises an error if not all flomaps
are the same width and height.

Examples:

> (equal? fm (flomap-append-components (flomap-take-
components fm 2)

(flomap-drop-
components fm 2)))
#t
> (flomap-append-components (make-flomap 1 10 10)

(make-flomap 3 20 20))
flomap-append-components: expected same-size flomaps; given
sizes 10ˆ10 and 20ˆ20

This function could behave according to the §4.1.2 “Conceptual Model”—that is, expand
the smaller ones to the largest size before appending. However, appending the components
of two different-size flomaps almost always indicates a logic or design error. If it really is
intended, use flomap-inset or subflomap to expand the smaller flomaps manually, with
more control over the expansion.

67

4.5 Pointwise Operations

(fmsqrt fm) Ñ flomap
fm : flomap

(fmsqr fm) Ñ flomap
fm : flomap

Unary functions, lifted pointwise to operate on flomaps. Defined as (inline-flomap-lift
flsqrt) and so on.

For example, to estimate the local gradient magnitude at each point in a flomap:

> (define-values (dx-fm dy-fm)
(flomap-gradient (flomap-drop-components fm 1)))

> (flomap->bitmap
(fmsqrt (fm+ (fmsqr dx-fm) (fmsqr dy-fm))))

(flomap-lift f) Ñ (flomap -> flomap)
f : (Float -> Real)

Lifts a unary floating-point function to operate pointwise on flomaps.

68

(flomap-normalize fm) Ñ flomap
fm : flomap

Returns a flomap like fm , but with values linearly rescaled to be between 0.0 and 1.0
inclusive.

Examples:

> (define gray-fm
(build-flomap 1 100 100 (𝜆 (k x y) (+ 0.375 (/ (+ x y) 800)))))

> (flomap->bitmap gray-fm)

> (flomap->bitmap (flomap-normalize gray-fm))

Besides increasing contrast, you could use this function to visualize oversaturated flomaps,
or visualize flomaps that don’t correspond directly to displayed images, such as height maps
and normal maps.

(fm+ fm1 fm2) Ñ flomap
fm1 : (U Real flomap)
fm2 : (U Real flomap)

(fm- fm1 fm2) Ñ flomap
fm1 : (U Real flomap)
fm2 : (U Real flomap)

69

(fm* fm1 fm2) Ñ flomap
fm1 : (U Real flomap)
fm2 : (U Real flomap)

(fm/ fm1 fm2) Ñ flomap
fm1 : (U Real flomap)
fm2 : (U Real flomap)

(fmmin fm1 fm2) Ñ flomap
fm1 : (U Real flomap)
fm2 : (U Real flomap)

(fmmax fm1 fm2) Ñ flomap
fm1 : (U Real flomap)
fm2 : (U Real flomap)

Arithmetic, flmin and flmax lifted to operate pointwise on flomaps. Defined as (inline-
flomap-lift2 +) and so on.

Binary operations accept the following argument combinations, in either order:

• Two flomaps. Both flomaps must have the same number of components, or one of
them must have one component. If one flomap has one component, it is (conceptu-
ally) self-appended (see flomap-append-components) as much as needed before
the operation. In either case, both flomaps must have the same width and height.

• One flomap, one Real. In this case, the real value is (conceptually) made into a
uniform flomap (see make-flomap) before applying the operation.

Any other argument combination will raise a type error.

Examples:

> (define fm1 (build-flomap 1 260 240 (𝜆 (k x y) (/ (+ x y) 500))))
> (define fm2 (fm- 1.0 fm1))
> (flomap->bitmap fm1)

70

> (flomap->bitmap fm2)

> (flomap->bitmap (fmmax fm1 fm2))

71

> (flomap->bitmap (fm* fm1 fm))

> (fm/ (make-flomap 1 10 10 0.5)
(make-flomap 1 30 30 0.25))

fm/: expected same-size flomaps; given sizes 10ˆ10 and 30ˆ30

72

Binary pointwise operators could behave according to the §4.1.2 “Conceptual Model”—that
is, expand the smaller one to the larger size by filling it with 0.0. However, operating on the
components of two different-size flomaps almost always indicates a logic or design error.
If it really is intended, use flomap-inset or subflomap to expand the smaller flomap
manually, with more control over the expansion.

Because fm is an alpha-multiplied flomap (see §4.1.3 “Opacity (Alpha Components)”), mul-
tiplying each component by a scalar less than 1.0 results in a more transparent flomap:

> (flomap->bitmap (fm* fm 0.2))

(flomap-lift2 f) Ñ ((U Real flomap) (U Real flomap) -> flomap)
f : (Float Float -> Real)

Lifts a binary floating-point function to operate pointwise on flomaps, allowing the same
argument combinations as fm+ and others.

(inline-flomap-lift f)

f : (Float -> Float)

A macro version of flomap-lift. The function or macro f must return a Float, not a
Real as the f argument to flomap-lift can.

Using inline-flomap-lift instead of flomap-lift may ensure that f is inlined, and
therefore floats remain unboxed.

73

This is not available in untyped Racket.

(inline-flomap-lift2 f)

f : (Float Float -> Float)

A macro version of flomap-lift2. The function or macro f must return a Float, not a
Real as the f argument to flomap-lift2 can.

Using inline-flomap-lift2 instead of flomap-lift2 may ensure that f is inlined, and
therefore floats remain unboxed.

This is not available in untyped Racket.

4.6 Gradients and Normals

(flomap-gradient-x fm) Ñ flomap
fm : flomap

(flomap-gradient-y fm) Ñ flomap
fm : flomap

These return, per-component, estimates of the local x- and y-directional derivatives using a
3ˆ3 Scharr operator.

(flomap-gradient fm) Ñ flomap flomap
fm : flomap

Equivalent to (values (flomap-gradient-x fm) (flomap-gradient-y fm)).

Examples:

> (define-values (dx-fm dy-fm)
(flomap-gradient (flomap-drop-components fm 1)))

> (values (flomap->bitmap (fm* 0.5 (fm+ 1.0 dx-fm)))
(flomap->bitmap (fm* 0.5 (fm+ 1.0 dy-fm))))

74

http://en.wikipedia.org/wiki/Sobel_operator#Alternative_operators

(flomap-gradient-normal fm) Ñ flomap
fm : flomap

Given a one-component flomap, returns a 3-component flomap containing estimated nor-

75

mals. In other words, flomap-normal converts height maps to normal maps.

Examples:

> (flomap->bitmap sine-fm)

> (flomap->bitmap (flomap-gradient-normal sine-fm))

> (flomap-gradient-normal fm)
flomap-gradient-normal: expected argument of type ăflomap
with 1 componentą; given: (flomap (flvector 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0...

4.7 Blur

(flomap-gaussian-blur fm x𝜎 [y𝜎]) Ñ flomap
fm : flomap
x𝜎 : Real
y𝜎 : Real = x𝜎

Returns fm convolved, per-component, with an axis-aligned Gaussian kernel with standard
deviations x𝜎 and y𝜎.

If perfect Gaussian blur is not important, use flomap-blur instead, which approximates
Gaussian blur closely and is faster.

Examples:

76

> (flomap->bitmap (flomap-gaussian-blur (flomap-inset fm 12) 4))

> (flomap->bitmap (flomap-gaussian-blur (flomap-
inset fm 12 3) 4 1))

77

(flomap-gaussian-blur-x fm 𝜎) Ñ flomap
fm : flomap
𝜎 : Real

Returns fm convolved, per-component and per-row, with a Gaussian kernel with standard
deviation 𝜎.

If perfect Gaussian blur is not important, use flomap-blur-x instead, which approximates
Gaussian blur closely and is usually much faster.

Example:

> (flomap->bitmap (flomap-gaussian-blur-x (flomap-
inset fm 12 0) 4))

78

(flomap-gaussian-blur-y fm 𝜎) Ñ flomap
fm : flomap
𝜎 : Real

Like flomap-gaussian-blur-x, but per-column instead of per-row.

(flomap-box-blur fm x-radius [y-radius]) Ñ flomap
fm : flomap
x-radius : Real
y-radius : Real = x-radius

Returns fm convolved, per-component, with a box kernel with radii x-radius and y-
radius . The radii are of the largest axis-aligned ellipse that would fit in the box.

Examples:

> (flomap->bitmap (flomap-box-blur (flomap-inset fm 4) 4))

79

> (flomap->bitmap (flomap-box-blur (flomap-inset fm 4 1) 4 1))

(flomap-box-blur-x fm radius) Ñ flomap
fm : flomap

80

radius : Real

Returns fm convolved, per-component and per-row, with a box kernel with radius radius .

Example:

> (flomap->bitmap (flomap-box-blur-x (flomap-inset fm 4 0) 4))

(flomap-box-blur-y fm radius) Ñ flomap
fm : flomap
radius : Real

Like flomap-box-blur-x, but per-column instead of per-row.

(flomap-blur fm x𝜎 [y𝜎]) Ñ flomap
fm : flomap
x𝜎 : Real
y𝜎 : Real = x𝜎

Returns approximately the result of (flomap-gaussian-blur fm x𝜎 y𝜎).

Gaussian blur, as it is implemented by flomap-gaussian-blur, is O(x𝜎 + y𝜎) for any
fixed flomap size. On the other hand, flomap-blur is O(1) for the same size.

Examples:

81

> (define gauss-blur-fm (time (flomap-gaussian-blur fm 12)))
cpu time: 510 real time: 86 gc time: 37
> (define blur-fm (time (flomap-blur fm 12)))
cpu time: 173 real time: 31 gc time: 18
> (flomap-extreme-values

(fmsqr (fm- gauss-blur-fm blur-fm)))
0.0
0.0031721674640532663

(flomap-blur-x fm x𝜎) Ñ flomap
fm : flomap
x𝜎 : Real

Like flomap-blur, but blurs per-row only.

(flomap-blur-y fm y𝜎) Ñ flomap
fm : flomap
y𝜎 : Real

Like flomap-blur, but blurs per-column only.

4.8 Resizing

(flomap-copy fm x-start y-start x-end y-end) Ñ flomap
fm : flomap
x-start : Integer
y-start : Integer
x-end : Integer
y-end : Integer

Returns the part of fm for which the x coordinate is x-start ď x ă x-end and the y
coordinate is y-start ď y ă y-end . If x-start ě x-end , the result is width 0, and if
y-start ě y-end , the result is height 0.

The interval arguments may identify a rectangle with points outside the bounds of fm . In
this case, the points’ values in the returned flomap are 0.0, as per the §4.1.2 “Conceptual
Model”.

This function is guaranteed to return a copy.

(subflomap fm x-start y-start x-end y-end) Ñ flomap
fm : flomap
x-start : Integer

82

y-start : Integer
x-end : Integer
y-end : Integer

Like flomap-copy, but returns fm when x-start and y-start are 0, and x-end and
y-end are respectively the width and height of fm .

Use subflomap instead of flomap-copy when programming functionally. Every library
function that returns parts of a flomap (such as flomap-trim and flomap-inset) is defined
using subflomap.

(flomap-trim fm [alpha?]) Ñ flomap
fm : flomap
alpha? : Boolean = #t

Shrinks fm to its largest nonzero rectangle. If alpha? is #t, it uses only component 0 to
determine the largest nonzero rectangle; otherwise, it uses every component.

This function cannot return a larger flomap.

Examples:

> (define small-circle-fm
(draw-flomap (𝜆 (fm-dc)

(send fm-dc draw-ellipse 20 20 10 10))
100 100))

> (flomap->bitmap small-circle-fm)

> (flomap->bitmap (flomap-trim small-circle-fm))

See flomap-nonzero-rect.

(flomap-inset fm amt) Ñ flomap
fm : flomap
amt : Integer

(flomap-inset fm h-amt v-amt) Ñ flomap
fm : flomap

83

h-amt : Integer
v-amt : Integer

(flomap-inset fm l-amt t-amt r-amt b-amt) Ñ flomap
fm : flomap
l-amt : Integer
t-amt : Integer
r-amt : Integer
b-amt : Integer

Extends fm by some amount on each side, filling any new values with 0.0. Positive inset
amounts grow the flomap; negative insets shrink it. Large negative insets may shrink it to
0ˆ0, which is a valid flomap size.

Example:

> (flomap->bitmap (flomap-inset fm -10 20 -30 -40))

(flomap-crop fm w h left-frac top-frac) Ñ flomap
fm : flomap
w : Integer
h : Integer
left-frac : Real
top-frac : Real

Shrinks or grows fm to be size wˆh . The proportion of points removed/added to the left
and top are given by left-frac and top-frac ; e.g. left-frac = 1/2 causes the same
number to be removed/added to the left and right sides.

84

You will most likely want to use one of the following cropping functions instead, which are
defined using flomap-crop.

(flomap-lt-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-lc-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-lb-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-ct-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-cc-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-cb-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-rt-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

85

(flomap-rc-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

(flomap-rb-crop fm w h) Ñ flomap
fm : flomap
w : Integer
h : Integer

These shrink or grow fm to be size wˆh . The two-letter abbreviation determines which
area of the flomap is preserved. For example, flomap-lt-crop (“flomap left-top crop”)
preserves the left-top corner:

> (flomap->bitmap (flomap-lt-crop fm 150 150))

(flomap-scale fm x-scale [y-scale]) Ñ flomap
fm : flomap
x-scale : Real
y-scale : Real = x-scale

Scales fm to a proportion of its size. Uses bilinear interpolation to sample between integer
coordinates, and reduces resolution (blurs) correctly before downsampling so that shrunk
images are still sharp but not aliased (pixelated-looking).

Examples:

> (flomap->bitmap (flomap-scale fm 1/8))

86

> (flomap->bitmap (flomap-scale sine-fm 4))

> (flomap-scale fm 0)
(flomap (flvector) 4 0 0)

(flomap-resize fm w h) Ñ flomap
fm : flomap
w : (Option Integer)
h : (Option Integer)

Like flomap-scale, but accepts a width w and height h instead of scaling proportions. If
either size is #f, the flomap is scaled in that direction to maintain its aspect ratio.

87

Examples:

> (flomap->bitmap (flomap-resize fm 50 #f))

> (flomap->bitmap (flomap-resize fm #f 50))

> (flomap->bitmap (flomap-resize fm 20 50))

> (flomap-resize fm 0 0)
(flomap (flvector) 4 0 0)

4.9 Compositing

Unless stated otherwise, compositing functions assume every flomap argument has an alpha
component.

(flomap-pin fm1 x1 y1 fm2) Ñ flomap
fm1 : flomap
x1 : Integer
y1 : Integer
fm2 : flomap

(flomap-pin fm1 x1 y1 fm2 x2 y2) Ñ flomap
fm1 : flomap
x1 : Integer
y1 : Integer
fm2 : flomap
x2 : Integer
y2 : Integer

Superimposes fm2 over fm1 so that point x2 y2 on flomap f2 is directly over point x1
y1 on flomap f1. If x2 and y2 are not provided, they are assumed to be 0. The result is
expanded as necessary.

fm1 and fm2 must have the same number of components.

88

Examples:

> (flomap-pin fm -10 -10 sine-fm)
flomap-pin: expected two flomaps with the same number of
components; given one with 4 and one with 1
> (define circle-fm

(draw-flomap (𝜆 (fm-dc)
(send fm-dc set-pen "black" 4 'short-dash)
(send fm-dc set-brush "yellow" 'solid)
(send fm-dc set-alpha 1/2)
(send fm-dc draw-ellipse 2 2 124 124))

128 128))
> (flomap->bitmap (flomap-pin fm 0 0 circle-fm 64 64))

> (flomap->bitmap (flomap-pin sine-fm 50 0 sine-fm))

89

The other compositing functions are defined in terms of flomap-pin.

(flomap-pin* x1-frac
y1-frac
x2-frac
y2-frac
fm0
fm ...) Ñ flomap

x1-frac : Real
y1-frac : Real
x2-frac : Real
y2-frac : Real
fm0 : flomap
fm : flomap

For each adjacent pair fm1 fm2 in the argument list, pins fm2 over fm1.

The pin-over points are calculated from the four real arguments as follows. If fm1 is size
w1ˆh1, then x1 = (* w1 x1-frac) and y1 = (* h1 y1-frac), and similarly for x2 and
y2.

The following example pins the upper-left corner of each fm2 over a point near the upper-left
corner of each fm1:

> (flomap->bitmap (flomap-pin* 1/8 1/8 0 0
circle-fm circle-fm circle-fm))

90

All the flomap superimpose and append functions are defined using flomap-pin* with dif-
ferent pin-over point fractions. For example, (flomap-lt-superimpose fm0 fm ...)
= (flomap-pin* 0 0 0 0 fm0 fm ...), and (flomap-vc-append fm0 fm ...) =
(flomap-pin* 1/2 1 1/2 0 fm0 fm ...).

(flomap-lt-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-lc-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-lb-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-ct-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-cc-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

91

(flomap-cb-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-rt-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-rc-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-rb-superimpose fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

These create a new flomap by superimposing the flomaps in the argument list. The two-
letter abbreviation determines the pin-over points. For example, flomap-lt-superimpose
(“flomap left-top superimpose”) pins points 0 0 together on each adjacent pair of flomaps:

> (flomap->bitmap (flomap-lt-superimpose fm circle-fm))

92

See flomap-pin and flomap-pin* for implementation details.

(flomap-vl-append fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-vc-append fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-vr-append fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-ht-append fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-hc-append fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

(flomap-hb-append fm0 fm ...) Ñ flomap
fm0 : flomap
fm : flomap

These create a new flomap by spatially appending the flomaps in the argument list. The
two-letter abbreviation determines direction (v or h) and alignment (l, c, r, or t, c, b).

Example:

> (flomap->bitmap (flomap-ht-append circle-fm fm
(flomap-scale circle-fm 1/2)))

93

See flomap-pin and flomap-pin* for implementation details.

4.10 Spatial Transformations

This section gives the API for applying spatial transforms to a flomap, such as rotations,
warps, morphs, and lens distortion effects.

To use the provided transforms, apply a function like flomap-flip-horizontal di-
rectly, or apply something like a flomap-rotate-transform to a flomap using flomap-
transform.

To make your own transforms, compose existing ones with flomap-transform-compose,
or construct a value of type Flomap-Transform directly:

(: my-awesome-transform Flomap-Transform)
(define (my-awesome-transform w h)

(make-flomap-2d-mapping fun inv))

Here, fun is a mapping from input coordinates to output coordinates and inv is its inverse.

Contents:

94

4.10.1 Provided Transformations

(flomap-flip-horizontal fm) Ñ flomap
fm : flomap

(flomap-flip-vertical fm) Ñ flomap
fm : flomap

(flomap-transpose fm) Ñ flomap
fm : flomap

(flomap-cw-rotate fm) Ñ flomap
fm : flomap

(flomap-ccw-rotate fm) Ñ flomap
fm : flomap

Some standard image transforms. These are lossless, in that repeated applications do not
degrade (blur or alias) the image.

Examples:

> (require pict)
> (define text-fm

(flomap-trim
(bitmap->flomap
(pict->bitmap (vc-append (text "We CLAIM the" '(bold) 25)

(text "PRIVILEGE" '(bold) 25))))))
> (flomap->bitmap text-fm)

> (flomap->bitmap (flomap-flip-horizontal text-fm))

> (flomap->bitmap (flomap-flip-vertical text-fm))

95

> (flomap->bitmap (flomap-transpose text-fm))

> (flomap->bitmap (flomap-cw-rotate text-fm))

> (flomap->bitmap (flomap-ccw-rotate text-fm))

96

> (equal? (flomap-cw-rotate fm)
(flomap-flip-vertical (flomap-transpose fm)))

#t
> (equal? (flomap-ccw-rotate fm)

(flomap-flip-horizontal (flomap-transpose fm)))
#t

(flomap-rotate fm 𝜃) Ñ flomap
fm : flomap
𝜃 : Real

Returns a flomap rotated by 𝜃 radians counterclockwise. Equivalent to (flomap-
transform fm (flomap-rotate-transform 𝜃)).

Example:

> (flomap->bitmap (flomap-rotate text-fm (* 1/4 pi)))

97

(flomap-rotate-transform 𝜃) Ñ Flomap-Transform
𝜃 : Real

Returns a flomap transform that rotates a flomap 𝜃 radians counterclockwise around its
(Real-valued) center.

Use flomap-rotate-transform if you need to know the bounds of the rotated flomap or
need to compose a rotation with another transform using flomap-transform-compose.

Examples:

> (flomap-transform-bounds (flomap-rotate-transform (* 1/4 pi))
100 100)

-21
-21
121
121
> (flomap->bitmap

(flomap-transform text-fm (flomap-rotate-
transform (* 1/4 pi))))

(flomap-whirl-transform 𝜃) Ñ Flomap-Transform
𝜃 : Real

Returns a flomap transform that “whirls” a flomap: rotates it counterclockwise 𝜃 radians in
the center, and rotates less with more distance from the center.

This transform does not alter the size of its input.

Example:

> (flomap->bitmap

98

(flomap-transform text-fm (flomap-whirl-transform pi)))

(flomap-fisheye-transform 𝛼) Ñ Flomap-Transform
𝛼 : Real

Returns a flomap transform that simulates “fisheye” lens distortion with an 𝛼 diagonal angle
of view. Equivalent to

(flomap-projection-transform (equal-area-projection 𝛼)
(perspective-projection 𝛼)
#f)

Example:

> (flomap->bitmap
(flomap-transform text-fm (flomap-fisheye-

transform (* 2/3 pi))))

(flomap-scale-transform x-scale [y-scale]) Ñ Flomap-Transform
x-scale : Real
y-scale : Real = x-scale

Returns a flomap transform that scales flomaps by x-scale horizontally and y-scale ver-
tically.

You should generally prefer to use flomap-scale, which is faster and correctly reduces
resolution before downsampling to avoid aliasing. This is provided for composition with
other transforms using flomap-transform-compose.

flomap-id-transform : Flomap-Transform

A flomap transform that does nothing. See flomap-transform-compose for an example
of using flomap-id-transform as the initial value for a fold.

99

4.10.2 General Transformations

(flomap-transform fm t) Ñ flomap
fm : flomap
t : Flomap-Transform

(flomap-transform fm
t
x-start
y-start
x-end
y-end) Ñ flomap

fm : flomap
t : Flomap-Transform
x-start : Integer
y-start : Integer
x-end : Integer
y-end : Integer

Applies spatial transform t to fm .

The rectangle x-start y-start x-end y-end is with respect to the fm ’s transformed
coordinates. If given, points in fm are transformed only if their transformed coordinates
are within that rectangle. If not given, flomap-transform uses the rectangle returned by
(flomap-transform-bounds t w h), where w and h are the size of fm .

This transform doubles a flomap’s size:

> (define (double-transform w h)
(make-flomap-2d-mapping (𝜆 (x y) (values (* x 2) (* y 2)))

(𝜆 (x y) (values (/ x 2) (/ y 2)))))
> (flomap->bitmap

(flomap-transform text-fm double-transform))

Transforms can use the width and height arguments w h however they wish; for example,
double-transform ignores them, and flomap-rotate-transform uses them to calcu-
late the center coordinate.

100

The flomap-rotate function usually increases the size of a flomap to fit its corners in the
result. To rotate in a way that does not change the size—i.e. to do an in-place rotation—use
0 0 w h as the transformed rectangle:

> (define (flomap-in-place-rotate fm 𝜃)
(define-values (w h) (flomap-size fm))
(flomap-transform fm (flomap-rotate-transform 𝜃) 0 0 w h))

Using it on text-fm with a purple background:

> (define-values (text-fm-w text-fm-h) (flomap-size text-fm))
> (define purple-text-fm

(flomap-lt-superimpose (make-flomap* text-fm-w text-fm-
h #(1 1/2 0 1))

text-fm))
> (flomap->bitmap purple-text-fm)

> (flomap->bitmap (flomap-in-place-rotate purple-text-
fm (* 1/8 pi)))

See flomap-projection-transform for another example of using flomap-transform’s
rectangle arguments, to manually crop a lens projection.

Alternatively, we could define a new transform-producing function flomap-in-place-
rotate-transform that never transforms points outside of the orginal flomap:

> (define ((flomap-in-place-rotate-transform 𝜃) w h)
(match-define (flomap-2d-mapping fun inv _)

((flomap-rotate-transform 𝜃) w h))
(make-flomap-2d-mapping (𝜆 (x y)

(let-values ([(x y) (fun x y)])
(values (if (<= 0 x w) x +nan.0)

(if (<= 0 y h) y +nan.0))))
inv))

> (flomap->bitmap
(flomap-transform purple-text-fm

(flomap-in-place-rotate-
transform (* 1/8 pi))))

101

To transform fm , flomap-transform uses only the inv field of (t w h). Every point
new-x new-y in the transformed bounds is given the components returned by

(let-values ([(old-x old-y) (inv new-x new-y)])
(flomap-bilinear-ref* fm old-x old-y))

The forward mapping fun is used by flomap-transform-bounds.

Flomap-Transform

Defined as (Integer Integer -> flomap-2d-mapping).

A value of type Flomap-Transform receives the width and height of a flomap to operate
on, and returns a flomap-2d-mapping on the coordinates of flomaps of that size.

(struct flomap-2d-mapping (fun inv bounded-by))
fun : (Float Float -> (values Float Float))
inv : (Float Float -> (values Float Float))
bounded-by : (U 'id 'corners 'edges 'all)

Represents an invertible mapping from RealˆReal to RealˆReal, or from real-valued
flomap coordinates to real-valued flomap coordinates. See flomap-transform for exam-
ples. See §4.1.2 “Conceptual Model” for the meaning of real-valued flomap coordinates.

The forward mapping fun is used to determine the bounds of a transformed flomap. (See
flomap-transform-bounds for details.) The inverse mapping inv is used to actually
transform the flomap. (See flomap-transform for details.)

The symbol bounded-by tells flomap-transform-bounds how to transform bounds. In
order of efficiency:

• 'id: Do not transform bounds. Use this for in-place transforms such as flomap-
whirl-transform.

• 'corners: Return the smallest rectangle containing only the transformed corners.
Use this for linear and affine transforms (such as flomap-rotate-transform or a
skew transform), transforms that do not produce extreme points, and others for which
it can be proved (or at least empirically demonstrated) that the rectangle containing
the transformed corners contains all the transformed points.

102

• 'edges: Return the smallest rectangle containing only the transformed left, top, right,
and bottom edges. Use this for transforms that are almost-everywhere continuous and
invertible—which describes most interesting transforms.

• 'all: Return the smallest rectangle containing all the transformed points. Use this
for transforms that produce overlaps and other non-invertible results.

For good performance, define instances of flomap-2d-mapping and functions that return
them (e.g. instances of Flomap-Transform), in Typed Racket. Defining them in untyped
Racket makes every application of fun and inv contract-checked when used in typed code,
such as the implementation of flomap-transform. (In the worst case, flomap-transform
applies fun to every pair of coordinates in the input flomap. It always applies inv to every
pair of coordinates in the output flomap.)

(make-flomap-2d-mapping fun inv [bounded-by]) Ñ flomap-2d-mapping
fun : (Float Float -> (values Real Real))
inv : (Float Float -> (values Real Real))
bounded-by : (U 'id 'corners 'edges 'all) = 'edges

A more permissive, more convenient constructor for flomap-2d-mapping.

(flomap-transform-compose t2 t1) Ñ Flomap-Transform
t2 : Flomap-Transform
t1 : Flomap-Transform

Composes two flomap transforms. Applying the result of (flomap-transform-compose
t2 t1) is the same as applying t1 and then t2 , except:

• The points are transformed only once, meaning their component values are estimated
only once, so the result is less degraded (blurry or aliased).

• The bounds are generally tighter.

The following example “whirls” text-fm clockwise 360 degrees and back. This is first done
by applying the two transforms separately, and secondly by applying a composition of them.

> (let* ([text-fm (flomap-transform
text-fm (flomap-whirl-transform (* 2 pi)))]

[text-fm (flomap-transform
text-fm (flomap-whirl-transform (* -2 pi)))])

(flomap->bitmap text-fm))

103

> (flomap->bitmap
(flomap-transform text-fm (flomap-transform-compose

(flomap-whirl-transform (* -2 pi))
(flomap-whirl-transform (* 2 pi)))))

Notice the heavy aliasing (a “Moiré pattern”) in the first result is not in the second.

In the next example, notice that rotating multiple times blurs the result and pads it with
transparent points, but that applying composed rotation transforms doesn’t:

> (let* ([text-fm (flomap-rotate text-fm (* 1/8 pi))]
[text-fm (flomap-rotate text-fm (* 1/8 pi))]
[text-fm (flomap-rotate text-fm (* 1/8 pi))]
[text-fm (flomap-rotate text-fm (* 1/8 pi))])

(flomap->bitmap text-fm))

104

> (define rotate-pi/2
(for/fold ([t flomap-id-transform]) ([_ (in-range 4)])

(flomap-transform-compose (flomap-rotate-
transform (* 1/8 pi)) t)))
> (flomap->bitmap (flomap-transform text-fm rotate-pi/2))

105

How the bounds for the composed transform are calculated depends on how they would have
been calculated for t1 and t2 . Suppose b1 is the bounds rule for (t1 w h) and b2 is the
bounds rule for (t2 w h). Then the bounds rule b for (flomap-transform-compose t2
t1) is determined by the following rules, applied in order:

• If either b1 = 'all or b2 = 'all, then b = 'all.

• If either b1 = 'edges or b2 = 'edges, then b = 'edges.

• If either b1 = 'corners or b2 = 'corners, then b = 'corners.

• Otherwise, b1 = b2 = 'id, so b = 'id.

See flomap-2d-mapping for details on how b affects bounds calculation.

(flomap-transform-bounds t w h) Ñ Integer Integer Integer Integer
t : Flomap-Transform
w : Integer
h : Integer

Returns the rectangle that would contain a wˆh flomap after transform by t .

How the rectangle is determined depends on the bounded-by field of (t w h). See
flomap-2d-mapping for details.

See flomap-rotate-transform and flomap-projection-transform for examples.

106

4.10.3 Lens Projection and Correction

The following API demonstrates a parameterized family of spatial transforms. It also pro-
vides a physically grounded generalization of the flomap transforms returned by flomap-
fisheye-transform.

(flomap-projection-transform to-proj
from-proj
crop?) Ñ Flomap-Transform

to-proj : Projection
from-proj : Projection
crop? : Boolean

Returns a flomap transform that corrects for or simulates lens distortion.

To correct for lens distortion in a flomap:

• Find a projection from-proj that models the actual lens.

• Find a projection to-proj that models the desired (but fictional) lens.

• Apply (flomap-projection-transform to-proj from-proj) to the flomap.
This photo is in the
public domain.

In the following example, a photo of the State of the Union address was taken using an
“equal area” (or “equisolid angle”) fisheye lens with a 180-degree diagonal angle of view:

> (flomap->bitmap state-of-the-union-fm)

107

We would like it to have been taken with a perfect “rectilinear” (or “perspective projection”)
lens with a 120-degree diagonal angle of view. Following the steps above, we apply a projec-
tion transform using (equal-area-projection (degrees->radians 180)) for from-
proj and (perspective-projection (degrees->radians 120)) for to-proj :

> (flomap->bitmap
(flomap-transform
state-of-the-union-fm
(flomap-projection-transform
(perspective-projection (degrees->radians 120))
(equal-area-projection (degrees->radians 180)))))

108

Notice that the straight geometry in the House chamber (especially the trim around the ceil-
ing) is represented by straight edges in the corrected photo.

When crop? is #t, the output flomap is no larger than the input flomap. When crop? is #f,
the output flomap is large enough to contain the entire transformed flomap. An uncropped
result can be quite large, especially with angles of view at or near 180 degrees.

> (define rectangle-fm
(draw-flomap (𝜆 (fm-dc)

(send fm-dc set-pen "black" 4 'dot)
(send fm-dc set-brush "yellow" 'solid)
(send fm-dc set-alpha 1/2)
(send fm-dc draw-rectangle 0 0 32 32))

32 32))
> (flomap->bitmap rectangle-fm)

109

> (flomap-transform-bounds
(flomap-projection-transform
(perspective-projection (degrees->radians 90))
(equal-area-projection (degrees->radians 180))
#f)

32 32)
-56481829139474512
-56481829139474520
56481829139474552
56481829139474552
> (flomap->bitmap

(flomap-transform
rectangle-fm
(flomap-projection-transform
(perspective-projection (degrees->radians 90))
(orthographic-projection (degrees->radians 160))
#f)))

To crop manually, apply flomap-transform to explicit rectangle arguments:

> (flomap->bitmap
(flomap-transform
rectangle-fm
(flomap-projection-transform
(perspective-projection (degrees->radians 90))
(orthographic-projection (degrees->radians 160))
#f)

-10 -10 42 42))

110

(perspective-projection 𝛼) Ñ Projection
𝛼 : Real

(linear-projection 𝛼) Ñ Projection
𝛼 : Real

(orthographic-projection 𝛼) Ñ Projection
𝛼 : Real

(equal-area-projection 𝛼) Ñ Projection
𝛼 : Real

(stereographic-projection 𝛼) Ñ Projection
𝛼 : Real

Given a diagonal angle of view 𝛼, these all return a projection modeling some kind of camera
lens. See Fisheye Lens for the defining formulas.

Projection

Equivalent to (Float -> projection-mapping).

A value of type Projection receives the diagonal size of a flomap to operate on, and re-
turns a projection-mapping instance. The provided projections (such as perspective-
projection) use a closed-over diagonal angle of view 𝛼 and the diagonal size to calculate
the focal length.

(struct projection-mapping (fun inv))
fun : (Float -> Float)
inv : (Float -> Float)

Represents an invertible function from a point’s angle 𝜌 from the optical axis, to the distance
r to the center of a photo, in flomap coordinates.

For example, given a diagonal angle of view 𝛼 and the diagonal size d of a flomap, the
perspective-projection function calculates the focal length f:

111

http://en.wikipedia.org/wiki/Fisheye_lens

(define f (/ d 2.0 (tan (* 0.5 𝛼))))

It then constructs the projection mapping as

(projection-mapping (𝜆 (𝜌) (* (tan 𝜌) f))
(𝜆 (r) (atan (/ r f))))

See Fisheye Lens for details.

4.11 Effects

(flomap-shadow fm 𝜎 [color]) Ñ flomap
fm : flomap
𝜎 : Real
color : (Option (U (Vectorof Real) FlVector)) = #f

Returns the alpha (zeroth) component of fm , blurred with standard deviation 𝜎 and col-
orized by color . Assumes fm and color are alpha-multiplied; see §4.1.3 “Opacity (Alpha
Components)”.

If color = #f, it is interpreted as (flvector 1.0 0.0 ...), or opaque black.

Examples:

> (flomap->bitmap
(flomap-shadow (flomap-inset text-fm 12) 4 #(1/2 1/8 0 1/4)))

> (flomap->bitmap
(flomap-cc-superimpose
(flomap-shadow (flomap-inset text-fm 12) 4 #(1/2 1/8 0 1/4))
text-fm))

112

http://en.wikipedia.org/wiki/Fisheye_lens

(flomap-outline fm radius [color]) Ñ flomap
fm : flomap
radius : Real
color : (Option (U (Vectorof Real) FlVector)) = #f

Returns a flomap that outlines fm with a radius -thick line when fm is superimposed over
it. Assumes fm and color are alpha-multiplied; see §4.1.3 “Opacity (Alpha Components)”.

If color = #f, it is interpreted as (flvector 1.0 0.0 ...), or opaque black.

Examples:

> (flomap->bitmap
(flomap-outline (flomap-inset text-fm 2) 2 #(1 0 1 1)))

> (flomap->bitmap
(flomap-cc-superimpose
(flomap-outline (flomap-inset text-fm 2) 2 #(1 0 1 1))
text-fm))

The greatest alpha value in the returned outline is the greatest alpha value in fm . Because
of this, flomap-outline does fine with flomaps with fully opaque regions that are made
semi-transparent:

> (define trans-text-fm (fm* 0.5 text-fm))
> (flomap->bitmap trans-text-fm)

> (flomap->bitmap
(flomap-cc-superimpose
(flomap-outline (flomap-inset trans-text-fm 2) 2 #(1 0 1 1))
trans-text-fm))

113

However, it does not do so well with flomaps that are partly opaque and partly semi-
transparent:

> (define mixed-text-fm
(flomap-vc-append text-fm (make-flomap 4 0 10) trans-text-fm))

> (flomap->bitmap
(flomap-cc-superimpose
(flomap-outline (flomap-inset mixed-text-fm 2) 2 #(1 0 1 1))
mixed-text-fm))

114

	1 Icons
	1.1 What is an icon?
	1.2 About These Icons
	1.3 Icon Style
	1.4 Arrow Icons
	1.5 Control Icons
	1.6 File Icons
	1.7 Symbol and Text Icons
	1.8 Miscellaneous Icons
	1.9 Stickman Icons
	1.10 Tool Icons

	2 Logos
	3 Embedding Bitmaps in Compiled Files
	4 Floating-Point Bitmaps
	4.1 Overview
	4.1.1 Motivation
	4.1.2 Conceptual Model
	4.1.3 Opacity (Alpha Components)
	4.1.4 Data Layout

	4.2 Struct Type and Accessors
	4.3 Conversion and Construction
	4.4 Component Operations
	4.5 Pointwise Operations
	4.6 Gradients and Normals
	4.7 Blur
	4.8 Resizing
	4.9 Compositing
	4.10 Spatial Transformations
	4.10.1 Provided Transformations
	4.10.2 General Transformations
	4.10.3 Lens Projection and Correction

	4.11 Effects

