
MzLib: Legacy Libraries
Version 9.0.0.4

November 17, 2025

The "mzlib" collection contains wrappers and libraries for compatibility with older versions
of Racket. In many ways, the libraries of the "mzlib" collection go with the mzscheme
legacy language. Newer variants of many libraries reside in the "racket" collection.

1

Contents

1 mzlib/a-signature 6

2 mzlib/a-unit 7

3 mzlib/async-channel 8

4 mzlib/awk 9

5 mzlib/class 11

6 mzlib/cm 12

7 mzlib/cm-accomplice 13

8 mzlib/cmdline 14

9 mzlib/cml 15

10 mzlib/compat 16

11 mzlib/compile 18

12 mzlib/contract 19

13 mzlib/control 24

14 mzlib/date 25

15 mzlib/deflate 26

16 mzlib/defmacro 27

2

17 mzlib/etc 28

18 mzlib/file 33

19 mzlib/for 35

20 mzlib/foreign 36

21 mzlib/include 37

22 mzlib/inflate 39

23 mzlib/integer-set 40

24 mzlib/kw 41

24.1 Required Arguments . 42

24.2 Optional Arguments . 42

24.3 Keyword Arguments . 43

24.4 Rest and Rest-like Arguments . 44

24.5 Body Argument . 45

24.6 Mode Keywords . 46

24.7 Property Lists . 48

25 mzlib/list 49

26 mzlib/match 51

27 mzlib/math 53

28 mzlib/md5 54

29 mzlib/os 55

3

30 mzlib/pconvert 56

31 mzlib/pconvert-prop 57

32 mzlib/plt-match 58

33 mzlib/port 59

34 mzlib/pregexp 60

35 mzlib/pretty 62

36 mzlib/process 63

37 mzlib/restart 64

38 mzlib/runtime-path 66

39 mzlib/sandbox 67

40 mzlib/sendevent 69

41 mzlib/serialize 70

42 mzlib/shared 71

43 mzlib/string 72

44 mzlib/struct 75

45 mzlib/stxparam 76

46 mzlib/surrogate 77

4

47 mzlib/tar 78

48 mzlib/thread 79

49 mzlib/trace 81

50 mzlib/traceld 82

51 mzlib/trait 83

52 mzlib/transcr 84

53 mzlib/unit 85

54 mzlib/unit-exptime 86

55 mzlib/unit200 87

56 mzlib/unitsig200 88

57 mzlib/zip 89

Bibliography 90

Index 91

Index 91

5

1 mzlib/a-signature

(require mzlib/a-signature) package: compatibility-lib

NOTE: This library is deprecated; use racket/signature, instead.

Like scheme/signature in #lang form for defining a single signature within a module,
but based on mzscheme instead of scheme/base.

6

https://pkgs.racket-lang.org/package/compatibility-lib

2 mzlib/a-unit

(require mzlib/a-unit) package: compatibility-lib

NOTE: This library is deprecated; use racket/unit, instead.

Like scheme/unit in #lang form for defining a single unit within a module, but based on
mzscheme instead of scheme/base.

7

https://pkgs.racket-lang.org/package/compatibility-lib

3 mzlib/async-channel

(require mzlib/async-channel) package: compatibility-lib

NOTE: This library is deprecated; use racket/async-channel, instead.

Re-exports scheme/async-channel.

8

https://pkgs.racket-lang.org/package/compatibility-lib

4 mzlib/awk

(require mzlib/awk) package: compatibility-lib

(awk next-record-expr
(record field-id ...)
maybe-counter
((state-variable init-expr) ...)
maybe-continue

clause ...)

maybe-counter =
| id

maybe-continue =
| id

clause = (test body ...+)
| (test => procedure-expr)
| (/ regexp-str / (id-or-false ...+) body ...+)
| (range excl-start-test excl-stop-test body ...+)
| (:range incl-start-test excl-stop-test body ...+)
| (range: excl-start-test incl-stop-test body ...+)
| (:range: incl-start-test incl-stop-test body ...+)
| (else body ...+)
| (after body ...+)

test = integer
| regexp-string
| expr

excl-start-test = test

excl-stop-test = test

incl-start-test = test

incl-stop-test = test

id-or-false = id
| #f

The awk macro from Scsh [Shivers06]. In addition to awk, the Scsh-compatible procedures
match:start, match:end, match:substring, and regexp-exec are defined. These
match: procedures must be used to extract match information in a regular expression clause

9

https://pkgs.racket-lang.org/package/compatibility-lib

when using the => form.

(match:start rec [which]) Ñ exact-nonnegative-integer?
rec :
which : exact-nonnegative-integer? = 0

(match:end rec [which]) Ñ exact-nonnegative-integer?
rec :
which : exact-nonnegative-integer? = 0

(match:substring rec [which]) Ñ string?
rec :
which : exact-nonnegative-integer? = 0

Extracts a start position, end position, or substring corresponding to a match. The first
argument is the value supplied to the procedure after => in a awk clause or the result of
regexp-exec.

(regexp-exec re s) Ñ (or/c false/c)
re : (or/c string? regexp?)
s : string?

Matches a regexp to a string, returning a record compatible with match:start, etc.

10

5 mzlib/class

(require mzlib/class) package: compatibility-lib

NOTE: This library is deprecated; use racket/class, instead.

Re-exports scheme/class, except for the contract constructors.

11

https://pkgs.racket-lang.org/package/compatibility-lib

6 mzlib/cm

(require mzlib/cm) package: compatibility-lib

NOTE: This library is deprecated; use compiler/cm, instead.

Re-exports compiler/cm.

12

https://pkgs.racket-lang.org/package/compatibility-lib

7 mzlib/cm-accomplice

(require mzlib/cm-accomplice) package: compatibility-lib

NOTE: This library is deprecated; use compiler/cm-accomplice, instead.

Re-exports compiler/cm-accomplice.

13

https://pkgs.racket-lang.org/package/compatibility-lib

8 mzlib/cmdline

(require mzlib/cmdline) package: compatibility-lib

NOTE: This library is deprecated; use racket/cmdline, instead.

Provides a command-line from that is similar to the one in racket/cmdline, but with-
out using keywords. The parse-command-line procedure from racket/cmdline is re-
exported directly.

(command-line program-name-expr argv-expr clause ...)

clause = (multi flag-spec ...)
| (once-each flag-spec ...)
| (once-any flag-spec ...)
| (final flag-spec ...)
| (help-labels string ...)
| (args arg-formals body-expr ...+)
| (=> finish-proc-expr arg-help-expr help-proc-expr

unknown-proc-expr)

flag-spec = (flags id ... help-str ...+ body-expr ...+)
| (flags => handler-expr help-expr)

flags = flag-string
| (flag-string ...+)

arg-formals = id
| (id ...)
| (id ...+ . id)

Like command-line from racket/cmdline, but without keywords in the syntax.

14

https://pkgs.racket-lang.org/package/compatibility-lib

9 mzlib/cml

(require mzlib/cml) package: compatibility-lib

The mzlib/cml library defines a number of procedures that wrap Racket concurrency pro-
cedures. The wrapper procedures have names and interfaces that more closely match those
of Concurrent ML [Reppy99].

(spawn thunk) Ñ thread?
thunk : (-> any)

Equivalent to (thread/suspend-to-kill thunk).

(channel) Ñ channel?

Equivalent to (make-channel).

(channel-recv-evt ch) Ñ evt?
ch : channel?

Equivalent to ch .

(channel-send-evt ch v) Ñ evt?
ch : channel?
v : any/c

Equivalent to (channel-put-evt ch v).

(thread-done-evt thd) Ñ any
thd : thread?

Equivalent to (thread-dead-evt thread).

(current-time) Ñ real?

Equivalent to (current-inexact-milliseconds).

(time-evt tm) Ñ evt?
tm : real?

Equivalent to (alarm-evt tm).

15

https://pkgs.racket-lang.org/package/compatibility-lib

10 mzlib/compat

(require mzlib/compat) package: compatibility-lib

The mzlib/compat library defines a number of procedures and syntactic forms that are
commonly provided by other Scheme implementations. Most of the procedures are aliases
for mzscheme procedures.

(=? n ...+) Ñ boolean?
n : number?

(<? n ...+) Ñ boolean?
n : real?

(>? n ...+) Ñ boolean?
n : real?

(<=? n ...+) Ñ boolean?
n : real?

(>=? n ...+) Ñ boolean?
n : real?

Same as =, <, etc.

(1+ n) Ñ number?
n : number?

(1- n) Ñ number?
n : number?

Same as add1 and sub1.

(gentmp [base]) Ñ symbol?
base : (or/c string? symbol?) = "g"

Same as gensym.

(flush-output-port [o]) Ñ void?
o : output-port? = (current-output-port)

Same as flush-output.

(real-time) Ñ exact-integer?

Same as current-milliseconds.

(atom? v) Ñ any
v : any/c

16

https://pkgs.racket-lang.org/package/compatibility-lib

Same as (not (pair? v)) (which does not actually imply an atomic value).

(define-structure (name-id field-id ...))
(define-structure (name-id field-id ...)

((init-field-id init-expr) ...))

Like define-struct, except that the name-id is moved inside the parenthesis for fields.
In addition, init-field-ids can be specified with automatic initial-value expression.

The init-field-ids do not have corresponding arguments for the make-name-id con-
structor. Instead, each init-field-id ’s init-expr is evaluated to obtain the field’s value
when the constructor is called. The field-ids are bound in init-exprs, but not other
init-field-ids.

Examples:

> (define-structure (add left right) ([sum (+ left right)]))
> (add-sum (make-add 3 6))
9

(getprop sym property [default]) Ñ any/c
sym : symbol?
property : symbol?
default : any/c = #f

(putprop sym property value) Ñ void?
sym : symbol?
property : symbol?
value : any/c

The getprop function gets a property value associated with sym . The property argument
names the property to be found. If the property is not found, default is returned.

The properties obtained with getprop are the ones installed with putprop.

(new-cafe [eval-handler]) Ñ any
eval-handler : (any/c . -> . any) = #f

Emulates Chez Scheme’s new-cafe by installing eval-handler into the current-eval
parameter while running read-eval-print. In addition, current-exit is set to escape
from the call to new-cafe.

17

11 mzlib/compile

(require mzlib/compile) package: compatibility-lib

Re-exports compile-file from compiler/compile-file.

18

https://pkgs.racket-lang.org/package/compatibility-lib

12 mzlib/contract

(require mzlib/contract) package: compatibility-lib

NOTE: This library is deprecated; use racket/contract, instead. This li-
brary is designed as a backwards compatible library for old uses of contracts. It
should not be used for new libraries.

The main differences: the function contract syntax is more regular and function contracts
now support keywords, and union is now or/c.

The mzlib/contract library re-exports many bindings from racket/contract:

</c flat-rec-contract
<=/c guilty-party
=/c integer-in
>/c list/c
>=/c listof
and/c make-none/c
any make-proj-contract
any/c natural-number/c
between/c none/c
box-immutable/c not/c
build-compound-type-name one-of/c
coerce-contract or/c
cons/c parameter/c
contract printable/c
contract-first-order-passes? promise/c
contract-violation->string provide/contract
contract? raise-contract-error
define-contract-struct real-in
false/c recursive-contract
flat-contract string/len
flat-contract-predicate symbols
flat-contract? syntax/c
flat-murec-contract vector-immutable/c
flat-named-contract vector-immutableof

It also provides the old version of the following contracts:

(define/contract id contract-expr init-value-expr)

Attaches the contract contract-expr to init-value-expr and binds that to id .

The define/contract form treats individual definitions as units of blame. The definition
itself is responsible for positive (co-variant) positions of the contract and each reference to

19

https://pkgs.racket-lang.org/package/compatibility-lib

id (including those in the initial value expression) must meet the negative positions of the
contract.

Error messages with define/contract are not as clear as those provided by pro-
vide/contract, because define/contract cannot detect the name of the definition
where the reference to the defined variable occurs. Instead, it uses the source location of
the reference to the variable as the name of that definition.

(box/c c) Ñ flat-contract?
c : flat-contract?

Returns a flat contract that recognizes boxes. The content of the box must match c .

(vectorof c) Ñ flat-contract?
c : flat-contract?

Accepts a flat contract and returns a flat contract that checks for vectors whose elements
match the original contract.

(vector/c c ...) Ñ flat-contract?
c : flat-contract?

Accepts any number of flat contracts and returns a flat contract that recognizes vectors.
The number of elements in the vector must match the number of arguments supplied to
vector/c, and each element of the vector must match the corresponding flat contract.

(struct/c struct-id flat-contract-expr ...)

Produces a flat contract that recognizes instances of the structure type named by struct-id ,
and whose field values match the flat contracts produced by the flat-contract-exprs.

(build-flat-contract name predicate) Ñ flat-contract?
name : symbol?
predicate : (-> any/c any)

Builds a flat contract out of predicate , giving it the name name . Nowadays, just using
predicate directly is preferred.

(-> contract-dom-expr ... any)
(-> contract-dom-expr ... contract-rng-expr)

This is a restricted form of racket/contract’s -> contract that does not handle keyword
arguments or multiple value results.

20

(->* (contract-dom-expr ...) ->*rng)
(->* (contract-dom-expr ...) contract-rest-expr ->*rng)

->*rng = (contract-rng-expr ...)
| any

The ->* form matches up to racket/contract’s -> and ->*, according to the following
rules; each equation on the left refers to a mzlib/contract combinator; on the right are the
racket/contract equivalents.

(->* (contract-dom-expr ...) any) =
(-> contract-dom-expr ... any)

(->* (contract-dom-expr ...) (contract-rng-expr ...)) =
(-> contract-dom-expr ... (values contract-rng-expr))

(->* (contract-expr ...) contract-rest-expr any) =
(->* (contract-expr ...) #:rest contract-rest-expr any)

(->* (contract-expr ...) contract-rest-expr (contract-rng-
expr ...)) =
(->* (contract-expr ...)

#:rest contract-rest-expr
(values contract-rng-expr ...))

(opt-> (contract-req-expr ...) (contact-opt-expr ...) any)
(opt-> (contract-req-expr ...) (contact-opt-expr ...) contract-rng-expr)

The opt-> form is a simplified verison of racket/contract’s ->* and appearances of
opt-> can be simply replaced with ->*.

(opt->* (contract-req-expr ...) (contact-opt-expr ...) any)
(opt->* (contract-req-expr ...) (contact-opt-expr ...) (contract-rng-expr ...))

The opt->* form matches up to racket/contract’s ->*, according to the following rules;
each equation on the left refers to a mzlib/contract combinator; on the right are the
racket/contract equivalents.

(opt->* (contract-req-expr ...) (contract-opt-expr ...) any) =
(->* (contract-req-expr ...) (contract-opt-expr ...) any)

21

(opt->* (contract-req-expr ...)
(contract-opt-expr ...)
(contract-rng-expr ...)) =

(->* (contract-req-expr ...)
(contract-opt-expr ...)
(values contract-rng-expr ...))

(->d contract-dom-expr ... contract-rng-fun-expr)

The ->d contract constructor is just like ->, except that the range position is expected to be
a function that accepts the actual arguments passed to the function, and returns a contract for
the range. For example, this is one contract for sqrt:

(->d real?
(𝜆 (in)

(and/c real?
(𝜆 (out)

(< (abs (- (sqr out) in))
0.01)))))

It says that the input must be a real number, and so must the result, and that the square of the
result is within 0.01 of input.

(->d* (contract-dom-expr ...) contract-rng-fun-expr)
(->d* (contract-dom-expr ...) contract-rest-expr contract-rng-fun-expr)

The ->d* contract constructor is a generalization of ->d to support multiple values and rest
arguments.

In the two sub-expression case, the first sequence of contracts are contracts on the domain of
the function and the second subexpression is expected to evaluate to a function that accepts
as many arguments as there are expressions in the first position. It should return multiple
values: one contract for each result of the function.

In the three sub-expression case, the first and last subexpressions are just like the sub-
expressions in the two sub-expression case; the middle sub-expression si expected to evalu-
ate to a contract on the rest argument.

(->r ([dom-x contract-dom-expr] ...) rng)
(->r ([dom-x contract-dom-expr] ...) rest-x contract-rest-expr rng)

rng = any
| (values contract-expr ...)
| contract-expr

22

The ->r form is a simplified version of racket/contract’s ->i, where each contract-
dom-expr is parameterized over all of the dom-x variables (and does lax checking; see ->d
for details).

(->pp ([dom-x contract-dom-expr] ...) pre-cond-expr any)
(->pp ([dom-x contract-dom-expr] ...)

pre-cond-expr
(values [rng-x contract-rng-expr] ...)
post-cond-expr)

(->pp ([dom-x contract-dom-expr] ...)
pre-cond-expr
contract-rng-expr
rng-x
post-cond-expr)

The ->pp form, like ->r is a simplified version of racket/contract’s ->i, where each
contract-dom-expr is parameterized over all of the dom-x variables (and does lax check-
ing; see racket/contract’s ->d for details). Unlike ->r, it also has pre- and post-
condition expressions; these expressions are also implicitly parameterized over all of the
dom-x variables and the post-condition is also paramterized over rng-x , which is bound to
the result of the function.
(->pp-rest ([dom-x contract-dom-expr] ...) rest-x rest-contract-
expr pre-cond-expr any)
(->pp-rest ([dom-x contract-dom-expr] ...)

rest-x rest-contract-expr
pre-cond-expr
(values [rng-x contract-rng-expr] ...)
post-cond-expr)

(->pp-rest ([dom-x contract-dom-expr] ...)
rest-x rest-contract-expr
pre-cond-expr
contract-rng-expr
rng-x
post-cond-expr)

Like ->pp, but with an additional contract for the rest arguments of the function.

(case-> mzlib/contract-arrow-contract-expr ...)

Builds a contract analogous to case-lambda, where each case comes from one of the con-
tract expression arguments (tried in order).

(object-contract [id mzlib/contract-arrow-contract-expr] ...)

Builds a contract for objects where each id is expected to be a method on the object living
up to the corresponding contract

23

13 mzlib/control

(require mzlib/control) package: compatibility-lib

NOTE: This library is deprecated; use racket/control, instead.

Re-exports scheme/control.

24

https://pkgs.racket-lang.org/package/compatibility-lib

14 mzlib/date

(require mzlib/date) package: compatibility-lib

NOTE: This library is deprecated; use racket/date, instead.

Re-exports scheme/date.

25

https://pkgs.racket-lang.org/package/compatibility-lib

15 mzlib/deflate

(require mzlib/deflate) package: compatibility-lib

NOTE: This library is deprecated; use file/gzip, instead.

Re-exports file/gzip.

26

https://pkgs.racket-lang.org/package/compatibility-lib

16 mzlib/defmacro

(require mzlib/defmacro) package: compatibility-lib

NOTE: This library is deprecated; use compatibility/defmacro, instead.

Re-exports compatibility/defmacro.

27

https://pkgs.racket-lang.org/package/compatibility-lib

17 mzlib/etc

(require mzlib/etc) package: compatibility-lib

The mzlib/etc library re-exports the following from scheme/base and other libraries:

boolean=?
true
false
build-list
build-string
build-vector
compose
local
symbol=?
nand
nor

(begin-lifted expr ...+)

Lifts the exprs so that they are evaluated once at the “top level” of the current context, and
the result of the last expr is used for every evaluation of the begin-lifted form.

When this form is used as a run-time expression within a module, the “top level” corresponds
to the module’s top level, so that each expr is evaluated once for each invocation of the
module. When it is used as a run-time expression outside of a module, the “top level”
corresponds to the true top level. When this form is used in a define-syntax, letrec-
syntax, etc. binding, the “top level” corresponds to the beginning of the binding’s right-
hand side. Other forms may redefine “top level” (using local-expand/capture-lifts)
for the expressions that they enclose.

(begin-with-definitions defn-or-expr ...)

The same as (block defn-or-expr ...).

(define-syntax-set (id ...) defn ...)

Similar to define-syntaxes, but instead of a single body expression, a sequence of defi-
nitions follows the sequence of defined identifiers. For each identifier, the defns should
include a definition for id/proc. The value for id/proc is used as the (expansion-time)
value for id .

The define-syntax-set form is useful for defining a set of syntax transformers that share
helper functions, though begin-for-syntax now serves essentially the same purposes.

Examples:

28

https://pkgs.racket-lang.org/package/compatibility-lib

(define-syntax-set (let-current-continuation
let-current-escape-continuation)

(define (mk call-id)
(lambda (stx)

(syntax-case stx ()
[(_ id body1 body ...)
(with-syntax ([call call-id])

#'(call (lambda (id) body1 body ...)))])))
(define let-current-continuation/proc

(mk (quote-syntax call/cc)))
(define let-current-escape-continuation/proc

(mk (quote-syntax call/ec))))

(evcase key-expr (value-expr body-expr ...) ...+)
(evcase key-expr (value-expr body-expr ...) ... [else body-expr ...])

The evcase form is similar to case, except that expressions are provided in each clause
instead of a sequence of data. After key-expr is evaluated, each value-expr is evaluated
until a value is found that is eqv? to the key value; when a matching value is found, the
corresponding body-exprs are evaluated and the value(s) for the last is the result of the
entire evcase expression.

The else literal is recognized either as unbound (like in the mzscheme language) or bound
as else from scheme/base.

(identity v) Ñ any/c
v : any/c

Returns v .

(let+ clause body-expr ...+)

clause = (val target expr)
| (rec target expr)
| (vals (target ...) expr)
| (recs (target expr) ...)
| (_ expr ...)

target = id
| (values id ...)

A binding construct that specifies scoping on a per-binding basis instead of a per-expression
basis. It helps eliminate rightward-drift in programs. It looks similar to let, except each
clause has an additional keyword tag before the binding variables.

Each clause has one of the following forms:

29

• (val target expr) : Binds target non-recursively to expr .

• (rec target expr) : Binds target recursively to expr .

• (vals (target expr) ...) : The targets are bound to the exprs. The environ-
ment of the exprs is the environment active before this clause.

• (recs (target expr) ...) : The targetss are bound to the exprs. The envi-
ronment of the exprs includes all of the targetss.

• (_ expr ...) : Evaluates the exprs without binding any variables.

The clauses bind left-to-right. When a target is (values id ...), multiple values re-
turned by the corresponding expression are bound to the multiple variables.

Examples:

> (let+ ([val (values x y) (values 1 2)])
(list x y))

'(1 2)
> (let ([x 1])

(let+ ([val x 3]
[val y x])

y))
3

(loop-until start done? next f) Ñ void?
start : any/c
done? : (any/c . -> . any)
next : (any/c . -> . any/c)
f : (any/c . -> . any)

Repeatedly invokes the f procedure until the done? procedure returns #t:

(define (loop-until start done? next f)
(let loop ([i start])

(unless (done? i)
(f i)
(loop (next i)))))

(namespace-defined? sym) Ñ boolean?
sym : symbol?

Returns #t if namespace-variable-value would return a value for sym , #f otherwise.

(nand expr ...)

30

Same as (not (and expr ...)).

(nor expr ...)

Same as (not (or expr ...)).

(opt-lambda formals body ...+)

Supports optional (but not keyword) arguments like lambda from scheme/base.

(recur id bindings body ...+)

Equivalent to (let id bindings body ...+).

(rec id value-expr)
(rec (id arg-id ...) expr)
(rec (id arg-id rest-id) expr)

Equivalent, respectively, to

(letrec ([id value-expr]) id)
(letrec ([id (lambda (arg-id ...) value-expr)]) id)
(letrec ([id (lambda (arg-id rest-id) value-expr)]) id)

(this-expression-source-directory)
(this-expression-source-directory datum)

See
scheme/runtime-path
for a definition form
that works better
when creating
executables.

Expands to an expression that evaluates to the directory of the file containing the source da-
tum . If datum is not supplied, then the entire (this-expression-source-directory)
expression is used as datum .

If datum has a source module, then the expansion attempts to determine the module’s run-
time location. This location is determined by preserving the lexical context of datum in a
syntax object, extracting its source module path at run time, and then resolving the module
path.

Otherwise, datum ’s source file is determined through source location information associated
with datum , if it is present. As a last resort, current-load-relative-directory is used
if it is not #f, and current-directory is used if all else fails.

A directory path derived from source location is always stored in bytes in the expanded code,
unless the file is within the result of find-collects-dir, in which case the expansion
records the path relative to (find-collects-dir) and then reconstructs it using (find-
collects-dir) at run time.

31

(this-expression-file-name)
(this-expression-file-name datum)

Similar to this-expression-source-directory, except that only source information
associated with datum or (this-expression-file-name) is used to extract a filename.
If no filename is available, the result is #f.

(hash-table (quote flag) ... (key-expr val-expr) ...)

Creates a new hash-table providing the quoted flags (if any) to make-hash-table, and then
mapping each key to the corresponding values.

32

18 mzlib/file

(require mzlib/file) package: compatibility-lib

NOTE: This library is deprecated; use racket/file, instead.

The mzlib/file library mostly re-exports from scheme/file:

find-relative-path
explode-path
normalize-path
filename-extension
file-name-from-path
path-only
delete-directory/files
copy-directory/files
make-directory*
make-temporary-file
get-preference
put-preferences
fold-files
find-files
pathlist-closure

(call-with-input-file* file proc [mode]) Ñ any
file : path-string?
proc : (input-port? -> any)
mode : (one-of/c 'text 'binary) = 'binary

(call-with-output-file* file
proc

[mode
exists]) Ñ any

file : path-string?
proc : (output-port? -> any)
mode : (one-of/c 'text 'binary) = 'binary
exists : (one-of/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Like call-with-input-fileand call-with-output-file, except that the opened port
is closed if control escapes from the body of proc .

33

https://pkgs.racket-lang.org/package/compatibility-lib

(build-relative-path base sub ...) Ñ (and/c path? relative-path?)
base : (or/c path-string?

(one-of/c 'up 'same))
sub : (or/c (and/c path-string?

relative-path?)
(one-of/c 'up 'same))

(build-absolute-path base sub ...) Ñ (and/c path? absolute-path?)
base : (or/c (and/c path-string?

(not/c relative-path?))
(one-of/c 'up 'same))

sub : (or/c (and/c path-string?
(not/c complete-path?))

(one-of/c 'up 'same))

Like build-path, but with extra constraints to ensure a relative or absolute result.

34

19 mzlib/for

(require mzlib/for) package: compatibility-lib

NOTE: This library is deprecated; use racket/base, instead.

The mzlib/for library re-exports from scheme/base:

for/fold for*/fold
for for*
for/list for*/list
for/lists for*/lists
for/and for*/and
for/or for*/or
for/first for*/first
for/last for*/last

for/fold/derived for*/fold/derived

in-range
in-naturals
in-list
in-vector
in-string
in-bytes
in-input-port-bytes
in-input-port-chars
in-hash-table
in-hash-table-keys
in-hash-table-values
in-hash-table-pairs

in-parallel
stop-before
stop-after
in-indexed

sequence?
sequence-generate

define-sequence-syntax
make-do-sequence
:do-in

35

https://pkgs.racket-lang.org/package/compatibility-lib

20 mzlib/foreign

(require mzlib/foreign) package: compatibility-lib

NOTE: This library is deprecated; use ffi/unsafe, instead.

Re-exports scheme/foreign.

36

https://pkgs.racket-lang.org/package/compatibility-lib

21 mzlib/include

(require mzlib/include) package: compatibility-lib

NOTE: This library is deprecated; use racket/include, instead.

Similar to scheme/include, but with a different syntax for paths.

(include path-spec)

path-spec = string
| (build-path elem ...+)
| (lib file-string collection-string ...)

elem = string
| up
| same

Inlines the syntax in the designated file in place of the include expression. The path-spec
can be any of the following:

• A literal string that specifies a path to include, parsed according to the platform’s
conventions (which means that it is not portable).

• A path construction of the form (build-path elem ...+), where build-path is
module-identifier=? either to the build-path export from mzscheme or to the
top-level build-path, and where each elem is a path string, up (unquoted), or same
(unquoted). The elems are combined in the same way as for the build-path function
to obtain the path to include.

• A path construction of the form (lib file-string collection-string ...),
where lib is free or refers to a top-level lib variable. The collection-strings
are passed to collection-path to obtain a directory; if no collection-stringss
are supplied, "mzlib" is used. The file-string is then appended to the directory
using build-path to obtain the path to include.

If path-spec specifies a relative path to include, the path is resolved relative to the source
for the include expression, if that source is a complete path string. If the source is not
a complete path string, then path-spec is resolved relative to the current load relative
directory if one is available, or to the current directory otherwise.

The included syntax is given the lexical context of the include expression.

(include-at/relative-to context source path-spec)
(include-at/relative-to/reader context source path-spec reader-expr)
(include/reader path-spec reader-expr)

37

https://pkgs.racket-lang.org/package/compatibility-lib

Variants of include analogous to the variants of scheme/include.

38

22 mzlib/inflate

(require mzlib/inflate) package: compatibility-lib

NOTE: This library is deprecated; use file/gunzip, instead.

Re-exports file/gunzip.

39

https://pkgs.racket-lang.org/package/compatibility-lib

23 mzlib/integer-set

(require mzlib/integer-set) package: compatibility-lib

NOTE: This library is deprecated; use data/integer-set, instead.

The mzlib/integer-set library re-exports bindings from data/integer-set except that
it renames symmetric-difference to xor, subtract to difference, and count to
card.

40

https://pkgs.racket-lang.org/package/compatibility-lib

24 mzlib/kw

(require mzlib/kw) package: compatibility-lib

NOTE: This library is deprecated; use racket/base, instead. The Racket base
language supports keyword arguments. Using the built-in keyword arguments
in Racket is highly recommended.

The lambda and
procedure-
application forms of
scheme/base
support keyword
arguments, and it is
not compatible with
the mzlib/kw
library.

(lambda/kw kw-formals body ...+)
(define/kw (head args) body ...+)

kw-formals = id
| (id ... [#:optional optional-spec ...]

[#:key key-spec ...]
[rest/mode-spec ...])

| (id id)

optional-spec = id
| (id default-expr)

key-spec = id
| (id default-expr)
| (id keyword default-expr)

rest/mode-spec = #:rest id
| #:other-keys id
| #:other-keys+body id
| #:all-keys id
| #:body kw-formals
| #:allow-other-keys
| #:forbid-other-keys
| #:allow-duplicate-keys
| #:forbid-duplicate-keys
| #:allow-body
| #:forbid-body
| #:allow-anything
| #:forbid-anything

head = id
| (head . kw-formals)

Like lambda, but with optional and keyword-based argument processing. This form is sim-
ilar to an extended version of Common Lisp procedure arguments (but note the differences
below). When used with plain variable names, lambda/kw expands to a plain lambda, so

41

https://pkgs.racket-lang.org/package/compatibility-lib

lambda/kw is suitable for a language module that will use it to replace lambda. Also, when
used with only optionals, the resulting procedure is similar to opt-lambda (but a bit faster).

In addition to lambda/kw, define/kw is similar to define, except that the formals are
as in lambda/kw. Like define, this form can be used with nested parenthesis for curried
functions (the MIT-style generalization of define).

The syntax of lambda/kw is the same as lambda, except for the list of formal argument
specifications. These specifications can hold (zero or more) plain argument names, then an
optionals (and defaults) section that begins after an #:optional marker, then a keyword
section that is marked by #:keyword, and finally a section holding rest and “rest”-like argu-
ments which are described below, together with argument processing flag directives. Each
section is optional, but the order of the sections must be as listed. Of course, all binding ids
must be unique.

The following sections describe each part of the kw-formals .

24.1 Required Arguments

Required arguments correspond to ids that appear before any keyword marker in the argu-
ment list. They determine the minimum arity of the resulting procedure.

24.2 Optional Arguments

The optional-arguments section follows an #:optional marker in the kw-formals . Each
optional argument can take the form of a parenthesized variable and a default expression;
the latter is used if a value is not given at the call site. The default expression can be omitted
(along with the parentheses), in which case #f is the default.

The default expression’s environment includes all previous arguments, both required and
optional names. With k optionals after n required arguments, and with no keyword argu-
ments or rest-like arguments, the resulting procedure accept between n and n+k arguments,
inclusive.

The treatment of optionals is efficient, with an important caveat: default expressions appear
multiple times in the resulting case-lambda. For example, the default expression for the
last optional argument appears k-1 times (but no expression is ever evaluated more than once
in a procedure call). This expansion risks exponential blow-up is if lambda/kw is used in a
default expression of a lambda/kw, etc. The bottom line, however, is that lambda/kw is a
sensible choice, due to its enhanced efficiency, even when you need only optional arguments.

Using both optional and keyword arguments is possible, but note that the resulting behavior
differs from traditional keyword facilities (including the one in Common Lisp). See the

42

following section for details.

24.3 Keyword Arguments

A keyword argument section is marked by a #:key. If it is used with optional arguments,
then the keyword specifications must follow the optional arguments (which mirrors the use
in call sites; where optionals are given before keywords).

When a procedure accepts both optional and keyword arguments, the argument-handling
convention is slightly different than in traditional keyword-argument facilities: a keyword
after required arguments marks the beginning of keyword arguments, no matter how many
optional arguments have been provided before the keyword. This convention restricts the
procedure’s non-keyword optional arguments to non-keyword values, but it also avoids con-
fusion when mixing optional arguments and keywords. For example, when a procedure that
takes two optional arguments and a keyword argument #:x is called with #:x 1, then the
optional arguments get their default values and the keyword argument is bound to 1. (The
traditional behavior would bind #:x and 1 to the two optional arguments.) When the same
procedure is called with 1 #:x 2, the first optional argument is bound to 1, the second
optional argument is bound to its default, and the keyword argument is bound to 2. (The
traditional behavior would report an error, because 2 is provided where #:x is expected.)

Like optional arguments, each keyword argument is specified as a parenthesized variable
name and a default expression. The default expression can be omitted (with the parentheses),
in which case #f is the default value. The keyword used at a call site for the corresponding
variable has the same name as the variable; a third form of keyword arguments has three
parts—a variable name, a keyword, and a default expression—to allow the name of the
locally bound variable to differ from the keyword used at call sites.

When calling a procedure with keyword arguments, the required argument (and all optional
arguments, if specified) must be followed by an even number of arguments, where the first
argument is a keyword that determines which variable should get the following value, etc.
If the same keyword appears multiple times (and if multiple instances of the keyword are
allowed; see §24.6 “Mode Keywords”), the value after the first occurrence is used for the
variable:

Example:

> ((lambda/kw (#:key x [y 2] [z #:zz 3] #:allow-duplicate-keys)
(list x y z))

#:x 'x #:zz 'z #:x "foo")
'(x 2 z)

Default expressions are evaluated only for keyword arguments that do not receive a value
for a particular call. Like optional arguments, each default expression is evaluated in an

43

environment that includes all previous bindings (required, optional, and keywords that were
specified on its left).

See §24.6 “Mode Keywords” for information on when duplicate or unknown keywords are
allowed at a call site.

24.4 Rest and Rest-like Arguments

The last kw-formals section—after the required, optional, and keyword arguments—may
contain specifications for rest-like arguments and/or mode keywords. Up to five rest-like
arguments can be declared, each with an id to bind:

• #:rest — The variable is bound to the list of “rest” arguments, which is the list of all
values after the required and the optional values. This list includes all keyword-value
pairs, exactly as they are specified at the call site.

Scheme’s usual dot-notation is accepted in kw-formals only if no other meta-
keywords are specified, since it is not clear whether it should specify the same binding
as a #:rest or as a #:body. The dot notation is allowed without meta-keywords to
make the lambda/kw syntax compatible with lambda.

• #:body — The variable is bound to all arguments after keyword–value pairs. (This is
different from Common Lisp’s &body, which is a synonym for &rest.) More gener-
ally, a #:body specification can be followed by another kw-formals , not just a single
id ; see §24.5 “Body Argument” for more information.

• #:all-keys — the variable is bound to the list of all keyword-values from the call
site, which is always a proper prefix of a #:rest argument. (If no #:body arguments
are declared, then #:all-keys binds the same as #:rest.) See also keyword-get.

• #:other-keys — The variable is bound like an #:all-keys variable, except that all
keywords specified in the kw-formals are removed from the list. When a keyword
is used multiple times at a call cite (and this is allowed), only the first instances is
removed for the #:other-keys binding.

• #:other-keys+body — the variable is bound like a #:rest variable, except that
all keywords specified in the kw-formals are removed from the list. When a key-
word is used multiple times at a call site (and this is allowed), only the first instance
us removed for the #:other-keys+body binding. (When no #:body variables are
specified, then #:other-keys+body is the same as #:other-keys.)

In the following example, all rest-like arguments are used and have different bindings:

Example:

44

> ((lambda/kw (#:key x y
#:rest r
#:other-keys+body rk
#:all-keys ak
#:other-keys ok
#:body b)

(list r rk b ak ok))
#:z 1 #:x 2 2 3 4)

'((#:z 1 #:x 2 2 3 4) (#:z 1 2 3 4) (2 3 4) (#:z 1 #:x 2) (#:z 1))

Note that the following invariants always hold:

• rest = (append all-keys body)

• other-keys+body = (append other-keys body)

To write a procedure that uses a few keyword argument values, and that also calls another
procedure with the same list of arguments (including all keywords), use #:other-keys (or
#:other-keys+body). The Common Lisp approach is to specify :allow-other-keys,
so that the second procedure call will not cause an error due to unknown keywords, but the
:allow-other-keys approach risks confusing the two layers of keywords.

24.5 Body Argument

The most notable divergence from Common Lisp in lambda/kw is the #:body argument,
and the fact that it is possible at a call site to pass plain values after the keyword-value pairs.
The #:body binding is useful for procedure calls that use keyword-value pairs as sort of an
attribute list before the actual arguments to the procedure. For example, consider a procedure
that accepts any number of numeric arguments and will apply a procedure to them, but the
procedure can be specified as an optional keyword argument. It is easily implemented with
a #:body argument:

Examples:

> (define/kw (mathop #:key [op +] #:body b)
(apply op b))

> (mathop 1 2 3)
6
> (mathop #:op max 1 2 3)
3

(Note that the first body value cannot itself be a keyword.)

45

A #:body declaration works as an arbitrary kw-formals, not just a single variable like b in
the above example. For example, to make the above mathop work only on three arguments
that follow the keyword, use (x y z) instead of b:

Example:

> (define/kw (mathop #:key [op +] #:body (x y z))
(op x y z))

In general, #:body handling is compiled to a sub procedure using lambda/kw, so that a
procedure can use more then one level of keyword arguments. For example:

Examples:

> (define/kw (mathop #:key [op +]
#:body (x y z #:key [convert values]))

(op (convert x) (convert y) (convert z)))
> (mathop #:op * 2 4 6 #:convert exact->inexact)
48.0

Obviously, nested keyword arguments works only when non-keyword arguments separate
the sets.

Run-time errors during such calls report a mismatch for a procedure with a name that is
based on the original name plus a ~body suffix:

Example:

> (mathop #:op * 2 4)
mathop~body: arity mismatch;

the expected number of arguments does not match the given
number

expected: at least 3
given: 2

24.6 Mode Keywords

Finally, the argument list of a lambda/kw can contain keywords that serve as mode flags to
control error reporting.

• #:allow-other-keys — The keyword-value sequence at the call site can include
keywords that are not listed in the keyword part of the lambda/kw form.

• #:forbid-other-keys — The keyword-value sequence at the call site cannot in-
clude keywords that are not listed in the keyword part of the lambda/kw form, other-
wise the exn:fail:contract exception is raised.

46

• #:allow-duplicate-keys — The keyword-value list at the call site can include
duplicate values associated with same keyword, the first one is used.

• #:forbid-duplicate-keys — The keyword-value list at the call site cannot in-
clude duplicate values for keywords, otherwise the exn:fail:contract exception
is raised. This restriction applies only to keywords that are listed in the keyword part
of the lambda/kw form — if other keys are allowed, this restriction does not apply to
them.

• #:allow-body — Body arguments can be specified at the call site after all keyword-
value pairs.

• #:forbid-body — Body arguments cannot be specified at the call site after all
keyword-value pairs.

• #:allow-anything — Allows all of the above, and treat a single keyword at the end
of an argument list as a #:body, a situation that is usually an error. When this is used
and no rest-like arguments are used except #:rest, an extra loop is saved and calling
the procedures is faster (around 20%).

• #:forbid-anything — Forbids all of the above, ensuring that calls are as restricted
as possible.

These above mode markers are rarely needed, because the default modes are determined by
the declared rest-like arguments:

• The default is to allow other keys if a #:rest, #:other-keys+body, #:all-keys,
or #:other-keys variable is declared (and an #:other-keys declaration requires
allowing other keys).

• The default is to allow duplicate keys if a #:rest or #:all-keys variable is declared.

• The default is to allow body arguments if a #:rest, #:body, or #:other-keys+body
variable is declared (and a #:body argument requires allowing them).

Here’s an alternate specification, which maps rest-like arguments to the behavior that they
imply:

• #:rest: Everything is allowed (a body, other keys, and duplicate keys);

• #:other-keys+body: Other keys and body are allowed, but duplicates are not;

• #:all-keys: Other keys and duplicate keys are allowed, but a body is not;

• #:other-keys: Other keys must be allowed (on by default, cannot use with
#:forbid-other-keys), and duplicate keys and body are not allowed;

47

• #:body: Body must be allowed (on by default, cannot use with #:forbid-body) and
other keys and duplicate keys and body are not allowed;

• Except for the previous two “must”s, defaults can be overridden by an explicit
#:allow-... or a #:forbid-... mode.

24.7 Property Lists

(keyword-get args kw not-found) Ñ any
args : (listof (cons/c keyword? any/c))
kw : keyword?
not-found : (-> any)

Searches a list of keyword arguments (a “property list” or “plist” in Lisp jargon) for the
given keyword, and returns the associated value. It is the facility that is used by lambda/kw
to search for keyword values.

The args list is scanned from left to right, if the keyword is found, then the next value is
returned. If the kw was not found, then the not-found thunk is used to produce a value
by applying it. If the kw was not found, and not-found thunk is not given, #f is returned.
(No exception is raised if the args list is imbalanced, and the search stops at a non-keyword
value.)

48

25 mzlib/list

(require mzlib/list) package: compatibility-lib

NOTE: This library is deprecated; use racket/list, instead.

The mzlib/list library re-exports several functions from scheme/base and
scheme/list:

cons?
empty?
empty
foldl
foldr
remv
remq
remove
remv*
remq*
remove*
findf
memf
assf
filter
sort

(first v) Ñ any/c
v : pair?

(second v) Ñ any/c
v : (and/c pair?)

(third v) Ñ any/c
v : (and/c pair?)

(fourth v) Ñ any/c
v : (and/c pair?)

(fifth v) Ñ any/c
v : (and/c pair?)

(sixth v) Ñ any/c
v : (and/c pair?)

(seventh v) Ñ any/c
v : (and/c pair?)

(eighth v) Ñ any/c
v : (and/c pair?)

Accesses the first, second, etc. elment of “list” v . The argument need not actually be a list; it
is inspected only as far as necessary to obtain an element (unlike the same-named functions
from scheme/list, which do require the argument to be a list).

49

https://pkgs.racket-lang.org/package/compatibility-lib

(rest v) Ñ any/c
v : pair?

The same as cdr.

(last-pair v) Ñ pair?
v : pair?

Returns the last pair in v , raising an error if v is not a pair (but v does not have to be a proper
list).

(merge-sorted-lists lst1 lst2 less-than?) Ñ list?
lst1 : list?
lst2 : lst?
less-than? : (any/c any/c . -> . any/c)

Merges the two sorted input lists, creating a new sorted list. The merged result is stable:
equal items in both lists stay in the same order, and these in lst1 precede lst2 .

(mergesort lst less-than?) Ñ list?
lst : list?
less-than? : (any/c any/c . -> . any/c)

The same as sort.

(quicksort lst less-than?) Ñ list?
lst : list?
less-than? : (any/c any/c . -> . any/c)

The same as sort.

50

26 mzlib/match

(require mzlib/match) package: compatibility-lib

NOTE: This library is deprecated; use racket/match, instead.

The mzlib/match library provides a match form similar to that of racket/match, but with
an different (older and less extensible) syntax of patterns.

(match val-expr clause ...)

clause = [pat expr ...+]
| [pat (=> id) expr ...+]

See match from racket/match for a description of matching. The grammar of pat for this
match is as follows:

pat ::= id match anything, bind identifier
| _ match anything
| literal match literal
| 'datum match equal? datum
| (lvp ...) match sequence of lvps
| (lvp pat) match lvps consed onto a pat
| #(lvp ...) match vector of pats
| #&pat match boxed pat
| ($ struct-id pat ...) match struct-id instance
| (and pat ...) match when all pats match
| (or pat ...) match when any pat match
| (not pat ...) match when no pat match
| (= expr pat) match (expr value) to pat
| (? pred-expr pat ...) match if (expr value) and pats
| `qp match quasipattern

literal ::= #t match true
| #f match false
| string match equal? string
| number match equal? number
| character match equal? character
| bytes match equal? byte string
| keyword match equal? keyword
| regexp match equal? regexp literal
| pregexp match equal? pregexp literal

lvp ::= pat greedily match pat instances
| pat match pat

ooo ::= ... zero or more; ... is literal
| ___ zero or more

51

https://pkgs.racket-lang.org/package/compatibility-lib

| ..k k or more
| __k k or more

qp ::= literal match literal
| id match equal? symbol
| (qp ...) match sequences of qps
| (qp qp) match sequence of qps consed onto a qp
| (qp ... qp ooo) match qps consed onto a repeated qp
| #(qp ...) match vector of qps
| #&qp match boxed qp
| ,pat match pat
| ,@pat match pat , spliced

(define/match (head args) match*-clause ...)
(match-lambda clause ...)
(match-lambda* clause ...)
(match-let ([pat expr] ...) body ...+)
(match-let* ([pat expr] ...) body ...+)
(match-letrec ([pat expr] ...) body ...+)
(match-define pat expr)

Analogous to the combined forms from racket/match.

(define-match-expander id proc-expr)
(define-match-expander id proc-expr proc-expr)
(define-match-expander id proc-expr proc-expr proc-expr)
(match-equality-test) Ñ (any/c any/c . -> . any)
(match-equality-test comp-proc) Ñ void?

comp-proc : (any/c any/c . -> . any)

Analogous to the form and parameter from racket/match. The define-match-expander
form, however, supports an extra proc-expr as the middle one: an expander for use with
match from mzlib/match.

52

27 mzlib/math

(require mzlib/math) package: compatibility-lib

NOTE: This library is deprecated; use racket/math, instead.

Re-exports scheme/math, and also exports e.

e : real?

An approximation to Euler’s constant: 2.718281828459045.

53

https://pkgs.racket-lang.org/package/compatibility-lib

28 mzlib/md5

(require mzlib/md5) package: compatibility-lib

NOTE: This library is deprecated; use file/md5, instead.

Re-exports file/md5.

54

https://pkgs.racket-lang.org/package/compatibility-lib

29 mzlib/os

(require mzlib/os) package: compatibility-lib

(gethostname) Ñ string?

Returns a string for the current machine’s hostname (including its domain).

(getpid) Ñ exact-integer?

Returns an integer identifying the current process within the operating system.

(truncate-file file [n-bytes]) Ñ void?
file : path-string?
n-bytes : exact-nonnegative-integer? = 0

Truncates or extends the given file so that it is n-bytes long. If the file does not exist, or
if the process does not have sufficient privilege to truncate the file, the exn:fail exception
is raised.

The truncate-file function is implemented in terms of racket/base’s file-
truncate.

55

https://pkgs.racket-lang.org/package/compatibility-lib

30 mzlib/pconvert

See mzlib/pconvert.

56

31 mzlib/pconvert-prop

See mzlib/pconvert-prop.

57

32 mzlib/plt-match

(require mzlib/plt-match) package: compatibility-lib

NOTE: This library is deprecated; use racket/match, instead.

The mzlib/plt-match library mostly re-provides scheme/match.

(define-match-expander id proc-expr)
(define-match-expander id proc-expr proc-expr)
(define-match-expander id proc-expr proc-expr proc-expr)

The same as the form from mzlib/match.

58

https://pkgs.racket-lang.org/package/compatibility-lib

33 mzlib/port

(require mzlib/port) package: compatibility-lib

NOTE: This library is deprecated; use racket/port, instead.

The mzlib/port library mostly re-provides racket/port.

(strip-shell-command-start in) Ñ void?
in : input-port?

Reads and discards a leading #! in in (plus continuing lines if the line ends with a back-
slash). Since #! followed by a forward slash or space is a comment, this procedure is not
needed before reading Scheme expressions.

59

https://pkgs.racket-lang.org/package/compatibility-lib

34 mzlib/pregexp

(require mzlib/pregexp) package: compatibility-lib

NOTE: This library is deprecated; use racket/base, instead.

The mzlib/pregexp library provides wrappers around regexp-match, etc. that coerce
string and byte-string arguments to pregexp matchers instead of regexp matchers.

The library also re-exports: pregexp, and it re-exports regexp-quote as pregexp-quote.

(pregexp-match pattern
input

[start-pos
end-pos
output-port])

Ñ (or/c (listof (or/c (cons (or/c string? bytes?)
(or/c string? bytes?))

false/c))
false/c)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? false/c) = #f
output-port : (or/c output-port? false/c) = #f

(pregexp-match-positions pattern
input

[start-pos
end-pos
output-port])

Ñ (or/c (listof (or/c (cons exact-nonnegative-integer?
exact-nonnegative-integer?)

false/c))
false/c)

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? false/c) = #f
output-port : (or/c output-port? false/c) = #f

60

https://pkgs.racket-lang.org/package/compatibility-lib

(pregexp-split pattern
input

[start-pos
end-pos]) Ñ (listof (or/c string? bytes?))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? false/c) = #f

(pregexp-replace pattern input insert) Ñ (or/c string? bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

(string? . -> . string?)
(bytes? . -> . bytes?))

(pregexp-replace* pattern input insert) Ñ (or/c string? bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

(string? . -> . string?)
(bytes? . -> . bytes?))

Like regexp-match, etc., but a string pattern argument is compiled via pregexp, and a
byte string pattern argument is compiled via byte-pregexp.

61

35 mzlib/pretty

(require mzlib/pretty) package: compatibility-lib

NOTE: This library is deprecated; use racket/pretty, instead.

Re-exports scheme/pretty.

62

https://pkgs.racket-lang.org/package/compatibility-lib

36 mzlib/process

(require mzlib/process) package: compatibility-lib

NOTE: This library is deprecated; use racket/system, instead.

Re-exports scheme/system.

63

https://pkgs.racket-lang.org/package/compatibility-lib

37 mzlib/restart

(require mzlib/restart) package: compatibility-lib

NOTE: This library is deprecated; use racket/sandbox, instead. The
racket/sandbox library provides a more general way to simulate running a
new Racket process.

(restart-mzscheme init-argv
adjust-flag-table
argv
init-namespace) Ñ boolean?

init-argv : (vectorof string?)
adjust-flag-table : (any/c . -> . any/c)
argv : (vectorof string?)
init-namespace : (-> any)

Simulates starting Racket with the vector of command-line strings argv . The init-argv ,
adjust-flag-table , and init-namespace arguments are used to modify the default
settings for command-line flags, adjust the parsing of command-line flags, and customize
the initial namespace, respectively.

The vector of strings init-argv is read first with the standard Racket command-line pars-
ing. Flags that load files or evaluate expressions (e.g., -f and -e) are ignored, but flags that
set Racket’s modes (e.g., -c or -j) effectively set the default mode before argv is parsed.

Before argv is parsed, the procedure adjust-flag-table is called with a command-line
flag table as accepted by parse-command-line. The return value must also be a table of
command-line flags, and this table is used to parse argv . The intent is to allow adjust-
flag-table to add or remove flags from the standard set.

After argv is parsed, a new thread and a namespace are created for the “restarted” Racket.
(The new namespace is installed as the current namespace in the new thread.) In the new
thread, restarting performs the following actions:

• The init-namespace procedure is called with no arguments. The return value is
ignored.

• Expressions and files specified by argv are evaluated and loaded. If an error occurs,
the remaining expressions and files are ignored, and the return value for restart-
mzscheme is set to #f.

• The read-eval-print-loop procedure is called, unless a flag in init-argv or
argv disables it. When read-eval-print-loop returns, the return value for
restart-mzscheme is set to #t.

64

https://pkgs.racket-lang.org/package/compatibility-lib

Before evaluating command-line arguments, an exit handler is installed that immediately
returns from restart-mzscheme with the value supplied to the handler. This exit handler
remains in effect when read-eval-print-loop is called (unless a command-line argu-
ment changes it). If restart-mzscheme returns normally, the return value is determined as
described above.

Note that an error in a command-line expression followed by read-eval-print-loop pro-
duces a #t result. This is consistent with Racket’s stand-alone behavior.

65

38 mzlib/runtime-path

(require mzlib/runtime-path) package: compatibility-lib

NOTE: This library is deprecated; use racket/runtime-path, instead.

Re-exports scheme/runtime-path.

66

https://pkgs.racket-lang.org/package/compatibility-lib

39 mzlib/sandbox

(require mzlib/sandbox) package: compatibility-lib

NOTE: This library is deprecated; use racket/sandbox, instead.

The mzlib/sandbox library mostly re-exports racket/sandbox, but it provides a slightly
different make-evaluator function.

The library re-exports the following bindings:

sandbox-init-hook
sandbox-reader
sandbox-input
sandbox-output
sandbox-error-output
sandbox-propagate-breaks
sandbox-coverage-enabled
sandbox-namespace-specs
sandbox-override-collection-paths
sandbox-security-guard
sandbox-path-permissions
sandbox-network-guard
sandbox-make-inspector
sandbox-eval-limits
kill-evaluator
break-evaluator
set-eval-limits
put-input
get-output
get-error-output
get-uncovered-expressions
call-with-limits
with-limits
exn:fail:resource?
exn:fail:resource-resource

(make-evaluator language
requires
input-program ...) Ñ (any/c . -> . any)

language : (or/c module-path?
(one-of/c 'r5rs 'beginner 'beginner-abbr

'intermediate 'intermediate-lambda 'advanced)
(list/c (one-of/c 'special) symbol?)
(list/c (one-of/c 'special) symbol?)
(cons/c (one-of/c 'begin) list?))

67

https://pkgs.racket-lang.org/package/compatibility-lib

requires : (or/c (cons/c 'begin list?)
(listof (or/c module-path? path?)))

input-program : any/c
(make-evaluator module-decl) Ñ (any/c . -> . any)

module-decl : (or/c syntax? pair?)

Like make-evaluator or make-module-evaluator, but with several differences:

• The language argument can be one of a fixed set of symbols: 'r5rs, etc. They are
converted by adding a (list 'special) wrapper.

• If requires starts with 'begin, then each element in the remainder of the list is
effectively evaluated as a prefix to the program. Otherwise, it corresponds to the
#:requires argument of make-evaluator.

• For each of language and requires that starts with 'begin, the expressions are in-
spected to find top-level require forms (using symbolic equality to detect require),
and the required modules are added to the #:allow list for make-evaluator.

68

40 mzlib/sendevent

(require mzlib/sendevent) package: compatibility-lib

The mzlib/sendevent library provides a send-event function that works only on Mac
OS, and only when running in GRacket (though the library can be loaded in Racket).

(send-event receiver-bytes
event-class-bytes
event-id-bytes

[direct-arg-v
argument-list]) Ñ any/c

receiver-bytes : (lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))

event-class-bytes : (lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))

event-id-bytes : (lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))

direct-arg-v : any/c = (void)
argument-list : list? = null

Calls send-event scheme/gui/base, if available, otherwise raises
exn:fail:unsupported.

69

https://pkgs.racket-lang.org/package/compatibility-lib

41 mzlib/serialize

(require mzlib/serialize) package: compatibility-lib

NOTE: This library is deprecated; use racket/serialize, instead.

The mzlib/serialize library provides the same bindings as racket/serialize, except
that define-serializable-struct and define-serializable-struct/versions
are based on the syntax of define-struct from mzscheme.

(define-serializable-struct id-maybe-super (field-id ...) maybe-
inspector-expr)
(define-serializable-struct/versions id-maybe-super vers-num (field-id ...)

(other-version-clause ...)
maybe-inspector-expr)

id-maybe-super = id
| (id super-id)

maybe-inspector-expr =
| inspector-expr

other-version-clause = (other-vers make-proc-expr
cycle-make-proc-expr)

Like define-serializable-struct and define-serializable-struct/versions,
but with the syntax of closer to define-struct of mzscheme.

70

https://pkgs.racket-lang.org/package/compatibility-lib

42 mzlib/shared

(require mzlib/shared) package: compatibility-lib

NOTE: This library is deprecated; use racket/shared, instead.

Re-exports scheme/shared.

71

https://pkgs.racket-lang.org/package/compatibility-lib

43 mzlib/string

(require mzlib/string) package: compatibility-lib

NOTE: This library is deprecated; use racket/base, instead. Also see
racket/string

The mzlib/string library re-exports several functions from scheme/base:

real->decimal-string
regexp-quote
regexp-replace-quote
regexp-match*
regexp-match-positions*
regexp-match-peek-positions*
regexp-split
regexp-match-exact?

It also re-exports regexp-try-match as regexp-match/fail-without-reading.

(glob->regexp [str
hide-dots?
case-sensitive?
simple?]) Ñ (or/c regexp? byte-regexp?)

str : (or/c string bytes?) = ?
hide-dots? : any/c = #t
case-sensitive? : any/c

= (eq? (system-path-convention-type)'unix)
simple? : any/c = #f

Produces a regexp for a an input “glob pattern” str . A glob pattern is one that matches *
with any string, ? with a single character, and character ranges are the same as in regexps
(unless simple? is true). In addition, the resulting regexp does not match strings that begin
with ., unless str begins with . or hide-dots? is #f. The resulting regexp can be used
with string file names to check the glob pattern. If the glob pattern is provided as a byte
string, the result is a byte regexp.

The case-sensitive? argument determines whether the resulting regexp is case-sensitive.

If simple? is true, then ranges with [...] in str are treated as literal character sequences.

(string-lowercase! str) Ñ void?
str : (and/c string? (not/c immutable?))

Destructively changes str to contain only lowercase characters.

72

https://pkgs.racket-lang.org/package/compatibility-lib

(string-uppercase! str) Ñ void?
str : (and/c string? (not/c immutable?))

Destructively changes str to contain only uppercase characters.

(eval-string str [err-handler]) Ñ list?
str : (or/c string? bytes?)
err-handler : (or/c false/c

(any/c . -> . any/c)
(-> any/c))

= #f

Reads and evaluates S-expressions from str , returning results for all of the expressions
in the string. If any expression produces multiple results, the results are spliced into the
resulting list. If str contains only whitespace and comments, an empty list is returned,
and if str contains multiple expressions, the result will be contain multiple values from all
subexpressions.

The err-handler argument can be:

• #f (the default) which means that errors are not caught;

• a one-argument procedure, which will be used with an exception (when an error oc-
curs) and its result will be returned

• a thunk, which will be used to produce a result.

(expr->string expr) Ñ string?
expr : any/c

Prints expr into a string and returns the string.

(read-from-string str [err-handler]) Ñ any/c
str : (or/c string? bytes?)
err-handler : (or/c false/c

(any/c . -> . any/c)
(-> any/c))

= #f

Reads the first S-expression from str and returns it. The err-handler is as in eval-
string.

(read-from-string-all str [err-handler]) Ñ list?
str : (or/c string? bytes?)
err-handler : (or/c false/c

(any/c . -> . any/c)
(-> any/c))

= #f

73

Reads all S-expressions from the string (or byte string) str and returns them in a list. The
err-handler is as in eval-string.

74

44 mzlib/struct

(require mzlib/struct) package: compatibility-lib

(copy-struct struct-id struct-expr
(accessor-id field-expr) ...)

“Functional update” for structure instances. The result of evaluating struct-expr must
be an instance of the structure type named by struct-id . The result of the copy-struct
expression is a fresh instance of struct-id with the same field values as the result of
struct-expr , except that the value for the field accessed by each accessor-id is replaced
by the result of field-expr .

The result of struct-expr might be an instance of a sub-type of struct-id , but the result
of the copy-struct expression is an immediate instance of struct-id . If struct-expr
does not produce an instance of struct-id , the exn:fail:contract exception is raised.

If any accessor-id is not bound to an accessor of struct-id (according to the expansion-
time information associated with struct-id), or if the same accessor-id is used twice,
then a syntax error is raised.

(define-struct/properties id (field-id ...)
((prop-expr val-expr) ...)
maybe-inspector-expr)

maybe-inspector-expr =
| expr

Like define-struct from mzscheme, but properties can be attached to the structure type.
Each prop-expr should produce a structure-type property value, and each val-expr pro-
duces the corresponding value for the property.

Examples:

> (define-struct/properties point (x y)
([prop:custom-write (lambda (p port write?)

(fprintf port "(~a, ~a)"
(point-x p)
(point-y p)))]))

> (display (make-point 1 2))
(1, 2)

(make-->vector struct-id)

Builds a function that accepts a structure type instance (matching struct-id) and provides
a vector of the fields of the structure type instance.

75

https://pkgs.racket-lang.org/package/compatibility-lib

45 mzlib/stxparam

(require mzlib/stxparam) package: compatibility-lib

NOTE: This library is deprecated; use racket/stxparam, instead. Also see
racket/stxparam-exptime.

Re-exports scheme/stxparam and scheme/stxparam-exptime (both at phase level 0).

76

https://pkgs.racket-lang.org/package/compatibility-lib

46 mzlib/surrogate

(require mzlib/surrogate) package: compatibility-lib

NOTE: This library is deprecated; use racket/surrogate, instead.

Re-exports scheme/surrogate.

77

https://pkgs.racket-lang.org/package/compatibility-lib

47 mzlib/tar

(require mzlib/tar) package: compatibility-lib

NOTE: This library is deprecated; use file/tar, instead.

Re-exports file/tar.

78

https://pkgs.racket-lang.org/package/compatibility-lib

48 mzlib/thread

(require mzlib/thread) package: compatibility-lib

NOTE: This library is deprecated; use racket/engine, instead.

Re-exports the bindings from racket/engine under different names and also provides two
extra bindings. The renamings are:

• engine as coroutine

• engine? as coroutine?

• engine-run as coroutine-run

• engine-result as coroutine-result

• engine-kill as coroutine-kill

(consumer-thread f [init]) Ñ thread? procedure?
f : procedure?
init : (-> any) = void

Returns two values: a thread descriptor for a new thread, and a procedure with the same arity
as f .

When the returned procedure is applied, its arguments are queued to be passed on to f ,
and #<void> is immediately returned. The thread created by consumer-thread dequeues
arguments and applies f to them, removing a new set of arguments from the queue only
when the previous application of f has completed; if f escapes from a normal return (via an
exception or a continuation), the f -applying thread terminates.

The init argument is a procedure of no arguments; if it is provided, init is called in the
new thread immediately after the thread is created.

(run-server port-no
conn-proc
conn-timeout

[handler
listen
close
accept
accept/break]) Ñ void?

port-no : (integer-in 1 65535)
conn-proc : (input-port? output-port? . -> . any)

79

https://pkgs.racket-lang.org/package/compatibility-lib

conn-timeout : (and/c real? (not/c negative?))
handler : (exn? . -> . any/c) = void
listen : ((integer-in 1 65535) (one-of/c 5) (one-of/c #t)

. -> . listener?)
= tcp-listen

close : (listener? . -> . any) = tcp-close
accept : (listener? . ->* . (input-port? output-port?))

= tcp-accept
accept/break : (listener? . ->* . (input-port? output-port?))

= tcp-accept/enable-break

Executes a TCP server on the port indicated by port-no . When a connection is made by a
client, conn is called with two values: an input port to receive from the client, and an output
port to send to the client.

Each client connection is managed by a new custodian, and each call to conn occurs in a new
thread (managed by the connection’s custodian). If the thread executing conn terminates for
any reason (e.g., conn returns), the connection’s custodian is shut down. Consequently,
conn need not close the ports provided to it. Breaks are enabled in the connection thread if
breaks are enabled when run-server is called.

To facilitate capturing a continuation in one connection thread and invoking it in another,
the parameterization of the run-server call is used for every call to handler . In this
parameterization and for the connection’s thread, the current-custodian parameter is
assigned to the connection’s custodian.

If conn-timeout is not #f, then it must be a non-negative number specifying the time in
seconds that a connection thread is allowed to run before it is sent a break signal. Then, if the
thread runs longer than (* conn-timeout 2) seconds, then the connection’s custodian is
shut down. If conn-timeout is #f, a connection thread can run indefinitely.

If handler is provided, it is passed exceptions related to connections (i.e., exceptions not
caught by conn-proc , or exceptions that occur when trying to accept a connection). The
default handler ignores the exception and returns #<void>.

The run-server function uses listen , close , accept and accept/break in the same
way as it might use tcp-listen, tcp-close, tcp-accept, and tcp-accept/enable-
break to accept connections. Provide alternate procedures to use an alternate communica-
tion protocol (such as SSL) or to supply optional arguments in the use of tcp-listen. The
listener? part of the contract indicates that the procedures must all work on the same kind
of listener value.

The run-server procedure loops to serve client connections, so it never returns. If a break
occurs, the loop will cleanly shut down the server, but it will not terminate active connec-
tions.

80

49 mzlib/trace

(require mzlib/trace) package: compatibility-lib

NOTE: This library is deprecated; use racket/trace, instead.

Re-exports racket/trace.

81

https://pkgs.racket-lang.org/package/compatibility-lib

50 mzlib/traceld

(require mzlib/traceld) package: compatibility-lib

The mzlib/traceld library does not provide any bindings. Instead, mzlib/traceld is
required for its side-effects.

The mzlib/traceld library installs a new load handler (see current-load) and load-
extension handler (see current-load-extension) to print information about the files that
are loaded. These handlers chain to the current handlers to perform the actual loads. Trace
output is printed to the port that is the current error port (see current-error-port) when
the library is instantiated.

Before a file is loaded, the tracer prints the file name and “time” (as reported by the procedure
current-process-milliseconds) when the load starts. Trace information for nested
loads is printed with indentation. After the file is loaded, the file name is printed with the
“time” that the load completed.

82

https://pkgs.racket-lang.org/package/compatibility-lib

51 mzlib/trait

(require mzlib/trait) package: compatibility-lib

NOTE: This library is deprecated; use racket/trait, instead.

Re-exports scheme/trait.

83

https://pkgs.racket-lang.org/package/compatibility-lib

52 mzlib/transcr

(require mzlib/transcr) package: compatibility-lib

The transcript-on and transcript-off procedures of mzscheme always raise
exn:fail:unsupported. The mzlib/transcr library provides working versions of
transcript-on and transcript-off.

(transcript-on filename) Ñ any
filename : any/c

(transcript-off) Ñ any

Starts/stops recording a transcript at filename .

84

https://pkgs.racket-lang.org/package/compatibility-lib

53 mzlib/unit

(require mzlib/unit) package: compatibility-lib

NOTE: This library is deprecated; use racket/unit, instead.

The mzlib/unit library mostly re-provides racket/unit, except for struct and
struct/ctc from racket/unit.

(struct id (field-id ...) omit-decl ...)

omit-decl = -type
| -selectors
| -setters
| -constructor

A signature form like struct from racket/base, but with a different syntax for options
that limit exports.

(struct/ctc id ([field-id contract-expr] ...) omit-decl ...)

omit-decl = -type
| -selectors
| -setters
| -constructor

A signature form like struct/ctc from racket/unit, but with a different syntax for the
options that limit exports.

struct~r
struct~r/ctc

The same as struct from racket/base and struct/ctc from racket/unit.

struct~s
struct~s/ctc

Like struct~r and struct~r/ctc, but the constructor is named the same as the type,
instead of with make- prefix.

85

https://pkgs.racket-lang.org/package/compatibility-lib

54 mzlib/unit-exptime

(require mzlib/unit-exptime) package: compatibility-lib

NOTE: This library is deprecated; use racket/unit-exptime, instead.

Re-exports scheme/unit-exptime.

86

https://pkgs.racket-lang.org/package/compatibility-lib

55 mzlib/unit200

(require mzlib/unit200) package: compatibility-lib

NOTE: This library is deprecated; use racket/unit, instead.

The mzlib/unit200 library provides an old implementation of units. See archived version
360 documentation on the "unit.ss" library of the "mzlib" collection for information
about this library.

87

https://pkgs.racket-lang.org/package/compatibility-lib

56 mzlib/unitsig200

(require mzlib/unitsig200) package: compatibility-lib

NOTE: This library is deprecated; use racket/unit, instead.

The mzlib/unit200 library provides an old implementation of units. See archived version
360 documentation on the "unitsig.ss" library of the "mzlib" collection for information
about this library.

88

https://pkgs.racket-lang.org/package/compatibility-lib

57 mzlib/zip

(require mzlib/zip) package: compatibility-lib

NOTE: This library is deprecated; use file/zip, instead.

Re-exports file/zip.

89

https://pkgs.racket-lang.org/package/compatibility-lib

Bibliography

[Shivers06] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike Sperber,
“Scsh Reference Manual.” 2006.

[Reppy99] John H. Reppy, “Concurrent Programming in ML.” 1999.

90

Index
#:all-keys, 44
#:allow-anything, 47
#:allow-body, 47
#:allow-duplicate-keys, 47
#:allow-other-keys, 46
#:body, 44
#:forbid-anything, 47
#:forbid-body, 47
#:forbid-duplicate-keys, 47
#:forbid-other-keys, 46
#:key, 43
#:optional, 42
#:rest, 44
->, 20
->*, 21
->d, 22
->d*, 22
->pp, 23
->pp-rest, 23
->r, 22
1+, 16
1-, 16
<=?, 16
<?, 16
=?, 16
>=?, 16
>?, 16
atom?, 16
awk, 9
begin-lifted, 28
begin-with-definitions, 28
Body Argument, 45
box/c, 20
build-absolute-path, 34
build-flat-contract, 20
build-relative-path, 34
call-with-input-file*, 33
call-with-output-file*, 33
case->, 23
channel, 15

channel-recv-evt, 15
channel-send-evt, 15
command-line, 14
consumer-thread, 79
copy-struct, 75
current-time, 15
define-match-expander, 52
define-match-expander, 58
define-serializable-struct, 70
define-serializable-
struct/versions, 70

define-struct/properties, 75
define-structure, 17
define-syntax-set, 28
define/contract, 19
define/kw, 41
define/match, 52
e, 53
eighth, 49
eval-string, 73
evcase, 29
expr->string, 73
fifth, 49
first, 49
flush-output-port, 16
fourth, 49
gentmp, 16
gethostname, 55
getpid, 55
getprop, 17
glob->regexp, 72
hash-table, 32
identity, 29
include, 37
include-at/relative-to, 37
include-at/relative-to/reader, 37
include/reader, 37
Keyword Arguments, 43
keyword-get, 48
lambda/kw, 41
last-pair, 50
let+, 29

91

loop-until, 30
make-->vector, 75
make-evaluator, 67
match, 51
match-define, 52
match-equality-test, 52
match-lambda, 52
match-lambda*, 52
match-let, 52
match-let*, 52
match-letrec, 52
match:end, 10
match:start, 10
match:substring, 10
merge-sorted-lists, 50
mergesort, 50
Mode Keywords, 46
mzlib/a-signature, 6
mzlib/a-unit, 7
mzlib/async-channel, 8
mzlib/awk, 9
mzlib/class, 11
mzlib/cm, 12
mzlib/cm-accomplice, 13
mzlib/cmdline, 14
mzlib/cml, 15
mzlib/compat, 16
mzlib/compile, 18
mzlib/contract, 19
mzlib/control, 24
mzlib/date, 25
mzlib/deflate, 26
mzlib/defmacro, 27
mzlib/etc, 28
mzlib/file, 33
mzlib/for, 35
mzlib/foreign, 36
mzlib/include, 37
mzlib/inflate, 39
mzlib/integer-set, 40
mzlib/kw, 41
mzlib/list, 49

mzlib/match, 51
mzlib/math, 53
mzlib/md5, 54
mzlib/os, 55
mzlib/pconvert, 56
mzlib/pconvert-prop, 57
mzlib/plt-match, 58
mzlib/port, 59
mzlib/pregexp, 60
mzlib/pretty, 62
mzlib/process, 63
mzlib/restart, 64
mzlib/runtime-path, 66
mzlib/sandbox, 67
mzlib/sendevent, 69
mzlib/serialize, 70
mzlib/shared, 71
mzlib/string, 72
mzlib/struct, 75
mzlib/stxparam, 76
mzlib/surrogate, 77
mzlib/tar, 78
mzlib/thread, 79
mzlib/trace, 81
mzlib/traceld, 82
mzlib/trait, 83
mzlib/transcr, 84
mzlib/unit, 85
mzlib/unit-exptime, 86
mzlib/unit200, 87
mzlib/unitsig200, 88
mzlib/zip, 89
MzLib: Legacy Libraries, 1
namespace-defined?, 30
nand, 30
new-cafe, 17
nor, 31
object-contract, 23
opt->, 21
opt->*, 21
opt-lambda, 31
Optional Arguments, 42

92

pregexp-match, 60
pregexp-match-positions, 60
pregexp-replace, 61
pregexp-replace*, 61
pregexp-split, 61
Property Lists, 48
putprop, 17
quicksort, 50
read-from-string, 73
read-from-string-all, 73
real-time, 16
rec, 31
recur, 31
regexp-exec, 10
Required Arguments, 42
rest, 50
Rest and Rest-like Arguments, 44
restart-mzscheme, 64
run-server, 79
second, 49
send-event, 69
seventh, 49
sixth, 49
spawn, 15
string-lowercase!, 72
string-uppercase!, 73
strip-shell-command-start, 59
struct, 85
struct/c, 20
struct/ctc, 85
struct~r, 85
struct~r/ctc, 85
struct~s, 85
struct~s/ctc, 85
third, 49
this-expression-file-name, 32
this-expression-source-directory,

31
thread-done-evt, 15
time-evt, 15
transcript-off, 84
transcript-on, 84

truncate-file, 55
vector/c, 20
vectorof, 20

93

	1 mzlib/a-signature
	2 mzlib/a-unit
	3 mzlib/async-channel
	4 mzlib/awk
	5 mzlib/class
	6 mzlib/cm
	7 mzlib/cm-accomplice
	8 mzlib/cmdline
	9 mzlib/cml
	10 mzlib/compat
	11 mzlib/compile
	12 mzlib/contract
	13 mzlib/control
	14 mzlib/date
	15 mzlib/deflate
	16 mzlib/defmacro
	17 mzlib/etc
	18 mzlib/file
	19 mzlib/for
	20 mzlib/foreign
	21 mzlib/include
	22 mzlib/inflate
	23 mzlib/integer-set
	24 mzlib/kw
	24.1 Required Arguments
	24.2 Optional Arguments
	24.3 Keyword Arguments
	24.4 Rest and Rest-like Arguments
	24.5 Body Argument
	24.6 Mode Keywords
	24.7 Property Lists

	25 mzlib/list
	26 mzlib/match
	27 mzlib/math
	28 mzlib/md5
	29 mzlib/os
	30 mzlib/pconvert
	31 mzlib/pconvert-prop
	32 mzlib/plt-match
	33 mzlib/port
	34 mzlib/pregexp
	35 mzlib/pretty
	36 mzlib/process
	37 mzlib/restart
	38 mzlib/runtime-path
	39 mzlib/sandbox
	40 mzlib/sendevent
	41 mzlib/serialize
	42 mzlib/shared
	43 mzlib/string
	44 mzlib/struct
	45 mzlib/stxparam
	46 mzlib/surrogate
	47 mzlib/tar
	48 mzlib/thread
	49 mzlib/trace
	50 mzlib/traceld
	51 mzlib/trait
	52 mzlib/transcr
	53 mzlib/unit
	54 mzlib/unit-exptime
	55 mzlib/unit200
	56 mzlib/unitsig200
	57 mzlib/zip
	Bibliography
	Index
	Index

