MzScheme: Legacy Language

Version 9.0.0.4

November 18, 2025

(require mzscheme) package: [compatibility-1ib

The mzscheme language provides nearly the same bindings as the mzscheme module of PLT
Scheme version 372 and earlier.

Unlike version 372, the mzscheme language does not include set-car! or set-cdr!, and
cons makes immutable pairs, as in scheme/base; those changes make modules built on
mzscheme reasonably compatible with modules built on scheme/base.

Otherwise, the mzscheme language shares many bindings with scheme/base. It renames a
few bindings, such as syntax-object->datum instead of syntax->datum, and it provides
old versions of some syntactic forms, such as lambda without support for keyword and
optional arguments. In addition, mzscheme includes all of the exports of racket/tcp and
racket/udp.


https://pkgs.racket-lang.org/package/compatibility-lib

Contents

11 Old Syntactic Forms|

2__0ld Functions|

11

12



1 Old Syntactic Forms

(#/module-begin form ...)

Like #/plain-module-begin from scheme/base, but (require-for-syntax
mzscheme) is added to the beginning of the form sequence, thus importing mzscheme
into the transformer environment for the module body. (In contrast, scheme/base exports
for-syntax minimal transformer support, while scheme exports all of scheme/base
for-syntax.)

(#%plain-module-begin form ...)

The same binding as #%plain-module-begin from scheme/base.

(#%plain-lambda formals body ...+)

The same binding as #)plain-lambda in scheme/base. (This binding was not present in
version 372 and earlier.)

(lambda formals body ...+)
(A4 formals body ...+)

The same bindings as #/plain-lambda.

(#%app proc-expr arg-expr ...)
(#%happ)

The same binding as #)%plain-app from scheme/base.

(#%plain-app proc-expr arg-expr ...)
(#%plain-app)

The same binding as #%app. (This binding was not present in version 372 and earlier.)
(define id expr)

(define (head args) body ...+)

head = id
| (head args)

args = arg-id
| arg-id ... . rest-id

Like define in scheme/base, but without support for keyword arguments or optional ar-
guments.



(define-syntax id expr)

(define-syntax (head args) body ...+)
(define-for-syntax id expr)
(define-for-syntax (head args) body ...+)

Like define-syntax and define-for-syntax in scheme/base, but without support for
keyword arguments or optional arguments (i.e., head is as for define).

(if test-expr then-expr else-expr)
(if test-expr then-expr)

Like if in scheme/base, but else-expr defaults to (void).

(cond cond-clause ...)
(case val-expr case-clause ...)

Like cond and case in scheme/base, but else and => are recognized as unbound identi-
fiers, instead of as the scheme/base bindings.

(fluid-let ([id expr] ...) body ...+)

Provides a kind of dynamic binding via mutation of the ids.

The fluid-1let form first evaluates each expr to obtain an entry value for each id. As
evaluation moves into body, either though normal evaluation or a continuation jump, the
current value of each id is swapped with the entry value. On exit from body, then the
current value and entry value are swapped again.

(define-struct id-maybe-super (field-id ...) maybe-inspector-expr)

maybe-inspector-expr =
| expr

Like define-struct from scheme/base, but with fewer options. Each field is implicitly
mutable, and the optional expr is analogous to supplying an #: inspector expression.

(let-struct id-maybe-super (field-id ...) body ...+)

Expands to
(let O
(define-struct id-maybe-super (field-id ...))
body ...+)



(require raw-require-spec)
(require-for-syntax raw-require-spec)
(require-for-template raw-require-spec)
(require-for-label raw-require-spec)
(provide raw-provide-spec)
(provide-for-syntax raw-provide-spec)
(provide-for-label raw-provide-spec)

Like #/require and #/provide. The -for-syntax, -for-template, and -for-label
forms are translated to #J%require and #),provide using for-syntax, for-template,
and for-label sub-forms, respectively.

(#%datum . datum)

Expands to 'datum, even if datum is a keyword.

(#)itop-interaction . form)

The same as #)top-interaction in scheme/base.



2 Old Functions

(apply proc v ... 1st) — any
proc : procedure?
v : any/c
Ist : list?

Like apply from scheme/base, but without support for keyword arguments.

prop:procedure : struct-type-property?

Like prop:procedure from scheme/base, but even if the property’s value for a structure
type is a procedure that accepts keyword arguments, then instances of the structure type still
do not accept keyword arguments. (In contrast, if the property’s value is an integer for a field
index, then a keyword-accepting procedure in the field for an instance causes the instance to
accept keyword arguments.)

(open-input-file file [mode module-mode]) — input-port?
file : path-string?
mode : (one-of/c 'text 'binary) = 'binary
module-mode : (or-of/c 'module 'none) = 'none
(open-output-file file [mode exists]) — input-port?
file : path-string?
mode : (one-of/c 'text 'binary) = 'binary
exists : (one-of/c 'error 'append 'update
'replace 'truncate 'truncate/replace)
= 'error
(open-input-output-file file [mode exists])
— input-port? output-port?
file : path-string?
mode : (one-of/c 'text 'binary) = 'binary
exists : (one-of/c 'error 'append 'update
'replace 'truncate 'truncate/replace)
= 'error
(with-input-from-file file thunk [mode]) — any
file : path-string?
thunk : (-> any)
mode : (one-of/c 'text 'binary) = 'binary
(with-output-to-file file thunk [mode exists]) — any
file : path-string?
thunk : (-> any)
mode : (one-of/c 'text 'binary) = 'binary
exists : (one-of/c 'error 'append 'update
'replace 'truncate 'truncate/replace)
= 'error



(call-with-input-file file proc [mode]) — any

file : path-string?

proc : (input-port? -> any)

mode : (one-of/c 'text 'binary) = 'binary
(call-with-output-file file proc [mode exists]) — any

file : path-string?

proc : (output-port? -> any)

mode : (one-of/c 'text 'binary) = 'binary

exists : (one-of/c 'error 'append 'update

'replace 'truncate 'truncate/replace)
= 'error

Like open-input-file, etc. from scheme/base, but the mode, exists, and module-
mode (corresponds to #:for-module?) arguments are not keyword arguments. When both
mode and exists or module-mode are accepted, they are accepted in either order.

Changed in version 6.0.1.6 of package compatibility-lib: Added the module-mode argument to
open-input-file.

(syntax-object->datum stx) — any
stx : syntax?
(datum->syntax-object ctxt v srcloc [prop cert]) — syntax?
ctxt : (or/c syntax? false/c)
v : any/c
srcloc : (or/c syntax? false/c
(list/c any/c
(or/c exact-positive-integer? false/c)
(or/c exact-nonnegative-integer? false/c)
(or/c exact-nonnegative-integer? false/c)
(or/c exact-positive-integer? false/c))
(vector/c any/c
(or/c exact-positive-integer? false/c)
(or/c exact-nonnegative-integer? false/c)
(or/c exact-nonnegative-integer? false/c)
(or/c exact-positive-integer? false/c)))
prop : (or/c syntax? false/c) = #f
cert : (or/c syntax? false/c) = #f

The same as syntax->datum and datum->syntax.

(module-identifier=? a-id b-id) — boolean?
a-id : syntax?
b-id : syntax?
(module-transformer-identifier=? a-id b-id) — boolean?
a-id : syntax?
b-id : syntax?



(module-template-identifier=? a-id b-id) — boolean?
a-id : syntax?
b-id : syntax?

(module-label-identifier=? a-id b-id) — boolean?
a-id : syntax?
b-id : syntax?

(free-identifier=? a-id b-id) — boolean?
a-id : syntax?
b-id : syntax?

The module-identifier=7?, etc. functions are the same as free-identifier=7, etc. in
scheme/base.

The free-identifier=7 procedure returns

(and (eq? (syntax-e a) (syntax-e b))
(module-identifier=7 a b))

(make-namespace [mode]) — namespace?
mode : (one-of/c 'initial 'empty) = 'initial

Creates a namespace with mzscheme attached. If the mode is empty, the namespace’s top-
level environment is left empty. If mode is 'initial, then the namespace’s top-level en-
vironment is initialized with (namespace-require/copy 'mzscheme). See also make-
base-empty-namespace

(namespace-transformer-require req) — void?
req : any/c

Equivalent to (namespace-require "~ (for-syntax ,req)).

(transcript-on filename) — any
filename : any/c
(transcript-off) — any

Raises exn:fail, because the operations are not supported.

(hash-table? v) — hash-table?

v : any/c
(hash-table? v flag) — hash-table?
v : any/c

flag : (one-of/c 'weak 'equal 'eqv)
(hash-table? v flag flag2) — hash-table?

v : any/c

flag : (one-of/c 'weak 'equal 'eqv)

flag2 : (one-of/c 'weak 'equal 'eqv)



Returns #t if v is a hash table created by make-hash-table or make-immutable-hash-
table with the given flags (or more), #f otherwise. If f1ag2 is provided, it must be dis-
tinct from flag and 'equal cannot be used with 'eqv, otherwise the exn:fail:contract
exception is raised.

(make-hash-table) — hash-table?
(make-hash-table flag) — hash-table?
flag : (one-of/c 'weak 'equal 'eqv)
(make-hash-table flag flag2) — hash-table?
flag : (one-of/c 'weak 'equal 'eqv)
flag2 : (one-of/c 'weak 'equal 'eqv)

Creates and returns a new hash table. If provided, each f1ag must one of the following:

e 'weak — creates a hash table with weakly-held keys via make-weak-hash, make-
weak-hasheq, or make-weak-hasheqv.

e 'equal — creates a hash table that compares keys using equal? instead of eq? using
make-hash or make-weak-hash.

e 'equ — creates a hash table that compares keys using eqv? instead of eq? using
make-hasheqv or make-weak-hasheqv.

By default, key comparisons use eq? (i.e., the hash table is created with make-hasheq). If
flag2 is redundant or 'equal is provided with 'eqv, the exn:fail:contract exception
is raised.

(make-immutable-hash-table assocs)
— (and/c hash-table? immutable?)
assocs : (listof pair?)
(make-immutable-hash-table assocs flag)
— (and/c hash-table? immutable?)
assocs : (listof pair?)
flag : (one-of/c 'equal 'eqv)

Like make-immutable-hash, make-immutable-hasheq, or make-immutable-
hasheqv, depending on whether an 'equal or 'eqv flag is provided.

hash-table-get : procedure?
hash-table-put! : procedure?
hash-table-remove! : procedure?
hash-table-count : procedure?
hash-table-copy : procedure?
hash-table-map : procedure?
hash-table-for-each : procedure?



hash-table-iterate-first : procedure?
hash-table-iterate-next : procedure?
hash-table-iterate-value : procedure?
hash-table-iterate-key : procedure?

The same as hash-ref, hash-set!, hash-remove!, hash-count,hash-copy, hash-
map, hash-for-each, hash-iterate-first, hash-iterate-next, hash-iterate-
value, and hash-iterate-key, respectively.

expand-path : procedure?

The same as cleanse-path.

list-immutable : procedure?

The same as 1ist.

(collection-file-path file collection ...+) — path?
file : path-string?
collection : path-string?

(collection-path collection ...+) — path?
collection : path-string?

Like collection-file-path and collection-path, but without the #:fail option.

(thread proc [keep]) — thread?
proc : procedure?
keep : (or/c #f 'results) = #f

Like thread, but does not accept a #:pool argument, and accepts #:keep as by-position
instead of as a keyword argument.

Changed in version 1.1 of package compatibility-1ib: Made binding distinct from thread and added the keep
argument.

10



3 Extra Libraries

The mzscheme library re-exports racket/promise, racket/tcp, and racket/udp.

11



4 Omitted Forms and Functions

In addition to forms and functions that have replacements listed in[§ 1 “Old Syntactic Forms™]
and |§2 “Old Functions”] the following forms and functions are exported by racket/base
but not mzscheme:

compose filter sort foldl foldr

remv remg remove remv* remg* remove* memf assf findf
build-vector build-string build-list

hash-keys hash-values hash->1list hash-set* hash-setx*!
hash-update hash-update!

vector-copy!

thread-send thread-receive thread-try-receive thread-receive-evt
log-fatal log-error log-warning log-info log-debug

log-message log-level? make-logger logger?

current-logger logger-name make-log-receiver log-receiver?

12



	1 Old Syntactic Forms
	2 Old Functions
	3 Extra Libraries
	4 Omitted Forms and Functions

