Legacy Print Convert

Version 9.0.0.4

November 18, 2025

(require mzlib/pconvert) package: pconvert-1ib

The mzlib/pconvert library defines routines for printing Racket values as evaluable S-
expressions. Racket’s default printing mode also prints values as expressions (in contrast to
the Lisp and Racket tradition of printing readable S-expressions), but mzlib/pconvert is
more configurable and approximates expressions for a wider range of values. For example,
procedures print using lambda instead of #<procedure>.

The print-convert procedure does not print values; rather, it converts a Racket value
into another Racket value such that the new value pretty-writes as a Racket expression
that evaluates to the original value. For example, (pretty-write (print-convert (9
, (box 5) #(6 7)))) prints the literal expression (1list 9 (box 5) (vector 6 7))
to the current output port.

To install print converting into the read-eval-print loop, require mzlib/pconvert and call
the procedure install-converting-printer.

In addition to print-convert, this library provides print-convert, build-share, get-
shared, and print-convert-expr. The last three are used to convert sub-expressions of
a larger expression (potentially with shared structure).

See also prop:print-convert-constructor-name.

(abbreviate-cons-as-list) — boolean?
(abbreviate-cons-as-list abbreviate?) — void?
abbreviate? : any/c

A parameter that controls how lists are represented with constructor-style conversion. If the
parameter’s value is #t, lists are represented using list. Otherwise, lists are represented
using cons. The initial value of the parameter is #t.

(booleans-as-true/false) — boolean?


https://pkgs.racket-lang.org/package/pconvert-lib

(booleans-as-true/false use-name?) — void?
use-name? : any/c

A parameter that controls how #t and #f are represented. If the parameter’s value is #t, then
#t is represented as true and #f is represented as false. The initial value of the parameter
is #t.

(use-named/undefined-handler) — (any/c . -> . any/c)
(use-named/undefined-handler use-handler) — void?
use-handler : (any/c . -> . any/c)

A parameter that controls how values that have inferred names are represented. The pro-
cedure is passed a value. If the procedure returns true, the procedure associated with
named/undefined-handler is invoked to render that value. Only values that have inferred
names but are not defined at the top-level are used with this handler.

The initial value of the parameter is (lambda (x) #f).

(named/undefined-handler) — (any/c . -> . any/c)
(named/undefined-handler use-handler) — void?
use-handler : (any/c . -> . any/c)

Parameter for a procedure that controls how values that have inferred names are represented.
The procedure is called only if use-named/undefined-handler returns true for some
value. In that case, the procedure is passed that same value, and the result of the parameter
is used as the representation for the value.

The initial value of the parameter is (Lambda (x) #f).

(add-make-prefix-to-constructor) — boolean?
(add-make-prefix-to-constructor add-prefix?) — void?
add-prefix? : any/c

A parameter that controls whether a make- prefix is added to a constructor name for a struc-
ture instance. The initial value of the parameter is #f£.

(hash-table-constructor-with-lists) — boolean?
(hash-table-constructor-with-lists use-1list?) — void?
use-1ist? : any/c

A parameter that controls whether the key/value pairs in a hash are printed with cons or
list. The initial value of the parameter is #f, meaning that a hash table like (hash 'x 1
'y 2) converts to ' (make-immutable-hash (list (cons 'y 2) (comns 'x 1))).

Added in version 1.2 of package pconvert-1ib.



(build-share v) —
v : any/c

Takes a value and computes sharing information used for representing the value as an ex-
pression. The return value is an opaque structure that can be passed back into get-shared
or print-convert-expr.

(constructor-style-printing) — boolean?
(constructor-style-printing use-constructors?) — void?
use-constructors? : any/c

Parameter that controls how values are represented after conversion. If this parameter’s value
is #t, then constructors are used; e.g., pair containing 1 and 2 is represented as (cons 1 2).
Otherwise, quasiquote-style syntax is used; e.g., the pair containing 1 and 2 is represented
as "~ (1 . 2). The initial value of the parameter is #f.

The constructor used for mutable pairs is mcons, unless print-mpair-curly-braces is
set to #£, in which case cons and 1ist are used. Similarly, when using quasiquote style
and print-mpair-curly-braces is set to #f, mutable pair constructions are represented
using quote, quasiquote, etc.

See also quasi-read-style-printing and prop:print-convert-constructor-
name.

(current-build-share-hook)
— (any/c (any/c . -> . void?)
(any/c . -> . void?) . -> . any)
(current-build-share-hook hook) — void?
hook : (any/c (any/c . -> . void?)
(any/c . -> . void?) . -> . any)

Parameter that sets a procedure used by print-convert and build-share to assemble
sharing information. The procedure hook takes three arguments: a value v, a procedure
basic-share, and a procedure sub-share; the return value is ignored. The basic-share
procedure takes v and performs the built-in sharing analysis, while the sub-share proce-
dure takes a component of v ands analyzes it. Sharing information is accumulated as values
are passed to basic-share and sub-share.

A current-build-share-hook procedure usually works together with a current-
print-convert-hook procedure.

(current-build-share-name-hook)

— (any/c . -> . (or/c symbol? false/c))

(current-build-share-name-hook hook) — void?
hook : (any/c . -> . (or/c symbol? false/c))



Parameter that sets a procedure used by print-convert and build-share to generate a
new name for a shared value. The hook procedure takes a single value and returns a symbol
for the value’s name. If hook returns #f, a name is generated using the form “-n -, where n
is an integer.

(current-print-convert-hook) — (any/c (any/c . -> . any/c)
(any/c . -> . any/c)
-> . any/c)

(current-print-convert-hook hook) — void?
hook : (any/c (any/c . -> . any/c)
(any/c . -> . any/c)
-> . any/c)

Parameter that sets a procedure used by print-convert and print-convert-expr to
convert values. The procedure hook takes three arguments—a value v, a procedure basic-
convert, and a procedure sub-convert—and returns the converted representation of v.
The basic-convert procedure takes v and returns the default conversion, while the sub-
convert procedure takes a component of v and returns its conversion.

A current-print-convert-hook procedure usually works together with a current-
build-share-hook procedure.

(current-read-eval-convert-print-prompt) — string?
(current-read-eval-convert-print-prompt str) — void?
str : string?

Parameter that sets the prompt used by install-converting-printer. The initial value
is " | _m,

(get-shared share-info [cycles-only?])
— (list-of (cons/c symbol? any/c))
share-info :
cycles-only? : any/c = #f

The shared-info value must be a result from build-share. The procedure returns a list
matching variables to shared values within the value passed to build-share.

The default value for cycles-only? is #f; if it is not #f, get-shared returns only infor-
mation about cycles.

For example,

(get-shared (build-share (shared ([a (cons 1 b)]
[b (cons 2 a)l)
a)))



might return the list

"((-1- (cons 1 -2-)) (-2- (cons 2 -1-)))

(install-converting-printer) — void?

Sets the current print handler to print values using print-convert and sets print-as-
expression to #f (since the conversion of a value is meant to be printed in readable form
rather than evaluable form). The current read handler is also set to use the prompt returned
by current-read-eval-convert-print-prompt.

(print-convert v [cycles-only?]) — any/c
v : any/c
cycles-only? : any/c = (show-sharing)

Converts the value v. If cycles-only? is not #f, then only circular objects are included in
the output.

(print-convert-expr share-info
v
unroll-once?) — any/c
share-info :
v : any/c
unroll-once? : any/c

Converts the value v using sharing information share-info, which was previously returned
by build-share for a value containing v. If the most recent call to get-shared with
share-info requested information only for cycles, then print-convert-expr will only
display sharing among values for cycles, rather than showing all value sharing.

The unroll-once? argument is used if v is a shared value in share-info. In this case, if
unroll-once? is #£f, then the return value will be a shared-value identifier; otherwise, the
returned value shows the internal structure of v (using shared value identifiers within v’s
immediate structure as appropriate).

(quasi-read-style-printing) — boolean?
(quasi-read-style-printing on?) — void?
on? : any/c

Parameter that controls how vectors and boxes are represented after conversion when the
value of constructor-style-printing is #f. If quasi-read-style-printing is set
to #£, then boxes and vectors are unquoted and represented using constructors. For example,
the list of a box containing the number 1 and a vector containing the number 1 is represented
as " (, (box 1) ,(vector 1)). If the parameter’s value is #t, then #&. ... and #(. .. .)
are used, e.g., ~ (#&1 #(1)). The initial value of the parameter is #t.



(show-sharing) — boolean?
(show-sharing show?) — void?
show? : any/c

Parameter that determines whether sub-value sharing is conserved (and shown) in the con-
verted output by default. The initial value of the parameter is #t.

(whole/fractional-exact-numbers) — boolean?
(whole/fractional-exact-numbers whole-frac?) — void?
whole-frac? : any/c

Parameter that controls how exact, non-integer numbers are converted when the numerator
is greater than the denominator. If the parameter’s value is #t, the number is converted to
the form (+ integer fraction) (i.e., alist containing '+, an exact integer, and an exact
rational less than 1 and greater than -1). The initial value of the parameter is #f.



1 Print Convert Properties

(require mzlib/pconvert-prop) package: [pconvert-1ib

prop:print-converter : property?
(print-converter? v) — any
v : any/c
(print-converter-proc v)
— (any/c (any/c . -> . any/c) . -> . any/c)
v ! print-converter?

The prop:print-converter property can be given a procedure value for a structure type.
In that case, for constructor-style print conversion via print-convert, instances of the
structure are converted by calling the procedure that is the property’s value. The procedure
is called with the value to convert and a procedure to recursively convert nested values. The
result should be an S-expression for the converted value.

The print-converter? predicate recognizes instances of structure types that have the
prop:print-converter property, and print-converter-proc extracts the property
value.

prop:print-convert-constructor-name : property?
(print-convert-named-constructor? v) — any

v : any/c
(print-convert-constructor-name v) — any

v : print-convert-named-constructor?

The prop:print-convert-constructor-name property can be given a symbol value for
a structure type. In that case, for constructor-style print conversion via print-convert,
instances of the structure are shown using the symbol as the constructor name.

The prop:print-converter property takes precedence over prop:print-convert-
constructor-name. If neither is attached to a structure type, its instances are converted
using a constructor name that is make- prefixed onto the result of object-name.

The print-convert-named-constructor? predicate recognizes instances of structure
types that have the prop:print-convert-constructor-name property, and print-
convert-constructor-name extracts the property value.


https://pkgs.racket-lang.org/package/pconvert-lib

	1 Print Convert Properties

