Cards: Virtual Playing Cards Library

Version 9.0.0.4

November 19, 2025

(require games/cards) package: [games

The games/cards module provides a toolbox for creating card games.


https://pkgs.racket-lang.org/package/games

1 Creating Tables and Cards

(make-table [title w h #:mixin mixin]|) — table<}>
title : string? = "Cards"
w . real? =7
h : real? = 3
mixin : (make-mixin-contract table<%>) = values

Returns a table. The table is named by title, and it is w cards wide and h cards high
(assuming a standard card of 71 by 96 pixels). If mixin is provided, it is applied to the class
implementing table<y> before it is instantiated.

The table is not initially shown; (send table show #t) shows it.

(make-deck) — (listof card<¥%>)

Returns a list of 52 cards, one for each suit-value combination. The cards are all face-down,
sorted lowest-suit then lowest-value. A card can only be on one table at a time.

(make-card front-bm back-bm suit-id value) — (is-a?/c card<i>)
front-bm : (is-a?/c bitmap?)
back-bm : (or/c (is-a?/c bitmap}) #f)
suit-id : any/c
value : any/c

Returns a single card given a bitmap for the front, an optional bitmap for the back, and
arbitrary values for the card’s suit and value (which are returned by the card’s get-value
and get-suit-id methods). If back-bm is #f, then the back defaults to a standard 71 by
96 bitmap. The front and back must be the same size.

(shuffle-list Ist n) — list?
Ist : list?
n : exact-nonnegative-integer?

Shuffles the given 1st n times, returning the new list. Shuffling simulates an actual shuffle:
the list is split into halves which are merged back together by repeatedly pulling the top
card off one of the halves, randomly selecting one half or the other. According to [some
mathematical theorem], 7 is a large enough n to get a perfect shuffle.



2 Regions and Buttons

(struct region (x
¥
W
h
label
[callback #:mutable]
[interactive-callback #:auto #:mutable]
[paint-callback #:auto #:mutable]
[button? #:auto]
[hilite? #:auto])
#:extra-constructor-name make-region)

x : real?

y @ real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

label : (or/c string? (is-a?/c bitmap}) #f)

callback : (or/c #f (if button?

(-> any)

(-> (listof (is-a?/c card<%>)) any)))
interactive-callback : (or/c #f (-> any/c (listof (is-a?/c card<’>)) any))
paint-callback : (or/c #f (-> (is-a?/c dc<)>) real? real? real? real? any))
button? : any/c
hilite? : any/c

The x, y, w, and h fields determine the region’s location on the table.

When label is a string, it is drawn in the region in 12-pixel text, centered horizontally and
5 pixels down from the region’s top outline. If label is #£, no label or box is drawn for the
region.

The callback procedure takes a list of cards that were dragged to the region; if callback
is #f, the region is not active (i.e., dragging cards to the region doesn’t highlight the region
box). The region remains hilited until the callback returns.

The interactive-callback procedure is invoked when a region is (un)hilited as the user
drags a set of cards to the region. The callback is provided two arguments: a boolean indicat-
ing whether the region is hilited, and the list of cards being dragged. Like region-callback,
the default is #f, which indicates that the region has no interactive callback (but does not
affect whether the region is hilited as cards are dragged). The final unhilite (when cards are
potentially delivered) does not trigger this callback.

The paint-callback function is called with a drawing context, x and y offsets, and the
width and height (which are always w and h). The x and y offsets can be different than
the supplied x and y when part of the table is drawn offscreen. Regions are painted in



the order that they are added to a table, and all regions are painted before any card. The
paint-callback procedure should not assume a particular state for the drawing context
(i.e.,current brush or pen), and it should restore any modified drawing context state before
returning.

The only available mutators on the structure are set-region-callback!, set-region-
interactive-callback!, and set-region-paint-callback!. The structure created
by make-region actually has extra hidden fields.

(make-button-region x y w h label callback) — region?
X : real?
y : real?
w : (and/c real? (not/c negative?))
h : (and/c real? (not/c negative?))
label : (or/c string? (is-a?/c bitmap}) #f)
callback : (or/c #f (-> any))

Returns a region like one made by make-region, but the is drawn slightly differently and it
reacts differently to cards and the mouse. The label is drawn in the middle of the box instead
of at the top, and the callback is called with no arguments when the user clicks the region
(instead of dragging cards to the region).

(make-background-region x

y

W

h

paint-callback) — region?
: real?
: real?

(and/c real? (not/c negative?))
: (and/c real? (not/c negative?))
paint-callback : (-> (is-a?/c dc<}>) real? real? real? real? any)

S ]

Returns a region that does not respond to mouse clicks, but which has a general paint call-
back.



3 Table Methods

table<y> : interface?
implements: frame?,

Create an instance with make-table.

(send a-table add-card card x y) — void?
card : (is-a?/c card<’%>)
X : real?
y : real?

Adds card to the table with its top-left corner at (x, y) in table pixels.

(send a-table add-cards cards

X

y

[offset-proc]) — void?
cards : (listof (is-a?/c card<’%>))
X : real?
y @ real?
offset-proc : (exact-nonnegative-integer?

. => . (values real? real?))
= (lambda (i) (values 0 0))

Adds a list of cards at (x, y). The optional offset-proc procedure is called
with an index i (counting from 0) and should return two values: dx and dy;
the ith card is the placed at (+ x +dx) and (+ y dy). The cards are added
in order on top of cards already one the table such that the first card in cards is
topmost.

(send a-table add-cards-to-region cards
region?) — void?
cards : (listof (is-a?/c card<}>))
region? : r

Adds cards to fill the region r, fanning them out bottom-right to top-left, as-
suming that all cards in cards have the same width and height. The region r
does not have to be added to the table.

(send a-table remove-card card) — void?
card : (is-a?/c card<%>)

Removes card from the table.



(send a-table remove-cards cards) — void?
cards : (listof (is-a?/c card<%>))

Removes cards from the table.

(send a-table move-card card x y) — void?
card : (is-a?/c card<}>)
X @ real?
y @ real?

Moves card, which must be on the same already. The movement of the cards
is animated. If the cards are in snap-back-after-move mode and a drag is

active, snapping back will use the new location.

(send a-table move-cards cards
X

y
[offset-proc]) — void?

cards : (listof (is-a?/c card<’%>))

x : real?
y . real?
offset-proc : (exact-nonnegative-integer?

. => . (values real? real?))
= (lambda (i) (values 0 0))

Like add-cards, but moves cards that are already on the table like move-card.
All of the cards are moved at once.
(send a-table move-cards-to-region cards
region?) — void?
cards : (listof (is-a?/c card<%>))

region? : r

Like add-cards-to-region, but moves cards that are already on the table like
move-card. All of the cards are moved at once.

(send a-table flip-card card) — void?
card : (is-a?/c card<}>)

(send a-table flip-cards cards) — void?
cards : (listof (is-a?/c card<’%>))

Flips card or all cards over (at once) with animation.



(send a-table card-face-up card) — void?
card : (is-a?/c card<’%>)

(send a-table cards-face-up cards) — void?
cards : (listof (is-a?/c card<’%>))

(send a-table card-face-down card) — void?
card : (is-a?/c card<)>)

(send a-table cards-face-down cards) — void?
cards : (listof (is-a?/c card<’>))

Like f1lip-cards, but only for card or elements of cards that are currently
face down/up.

(send a-table rotate-card card mode) — void?

card : (is-a?/c card<%>)

mode : (or/c 'cw 'ccw 0 90 -90 180 -180 270 -270 360)
(send a-table rotate-cards cards mode) — void?

cards : (listof (is-a?/c card<’%>))

mode : (or/c 'cw 'ccw 0 90 -90 180 -180 270 -270 360)

Rotates card or all cards (at once, currently without animation, but animation
may be added in the future). The center of each card is kept in place, except that
the card is moved as necessary to keep it on the table. See rotate in card<y,>
for information on mode.

(send a-table card-to-front card) — void?
card : (is-a?/c card<’%>)

(send a-table card-to-back card) — void?
card : (is-a?/c card<}>)

Moves card before/behind of all other cards.

(send a-table stack-cards cards) — void?
cards : (listof (is-a?/c card<%>))

The first card in cards is not moved; the second card is moved to follow im-
mediately behind the first one, then stack-cards is called on (cdr cards).
If cards is empty or contains only one card, no action is taken.

(send a-table card-location card) — real? real?
card : (is-a?/c card<%>)

Returns the location of the given card; an exception is raised if the card is not
on the table.

(send a-table all-cards) — (listof (is-a?/c card<%>))



Returns a list of all cards on the table in stacking order from front to back.

(send a-table table-width) — exact-nonnegative-integer?
(send a-table table-height) — exact-nonnegative-integer?

Returns the width/height of the table in pixels.

(send a-table begin-card-sequence) — void?
(send a-table end-card-sequence) — void?

Starts/ends a sequence of card or region changes that won’t be animated or
updated until the end of the sequence. Sequences can be nested via matching
begin-/end- pairs.

(send a-table add-region r) — void
r : region?

Adds the region r to the table; regions are drawn in the order that they are added
to the table, and when a region added later is hilighted, it can obscure regions
added earlier.

(send a-table remove-region r) — void
r : region?

Removes the region r from the table.

(send a-table hilite-region r) — void?
r : region?

(send a-table unhilite-region r) — void?
r . region?

Manual (un)hilite, usually for animation.

(send a-table set-button-action which
action) — void?
which : (one-of/c 'left 'middle 'right)
action : symbol?

Sets the way that a mouse click is handled for a particular button indicated by
which. The action argument must be one of the following:
e 'drag/one — drag only the clicked-on card.

e 'drag-raise/one — like drag/one, but raise the card to the top on a
click.



* 'drag/above — drag the card along with any card on top of the card
(i.e., more towards the front and overlapping with the card). The on-top-
of relation is closed transitively.

e 'drag-raise/above — like 'drag/above, but raises.

e 'drag-below — drag the card along with any card underneath the card
(i.e., more towards the back and overlapping with the card). The under-
neath relation is closed transitively.

e 'drag-raise/below — like 'drag/below, but raises.

The initial settings are: 'drag-raise/above for 'left, 'drag/one for
'middle, and 'drag/below for 'right.

(send a-table set-double-click-action proc) — void?
proc : ((is-a?/c card<)>) . -> . any)

Sets the procedure to be called when a card is double-clicked. The procedure is
called with the double-clicked card. The default procedure flips the cards along
with its on-top-of cards, raises the cards, and reverses the front-to-back order of
the cards

(send a-table set-single-click-action proc) — void?
proc : ((is-a?/c card<%>) . -> . any)

Sets the procedure to be called when a card is single-clicked, after the button
action is initiated. (If the card is double-clicked, this action is invoked for the
first click, then the double-click action is invoked.) The default action does
nothing.

(send a-table pause secs) — void?
secs : real?

Pauses, allowing the table display to be updated (unless a sequence is active),
but does not let the user click on the cards.

(send a-table animated) — boolean?
(send a-table animated on?) — void?
on? : any/c

Gets/sets animation enabled/diabled.

(send a-table create-status-pane) — (is-a?/c pane’)

Creates a pane with a status message (initially empty) and returns the pane so
that you can add additional controls.



(send a-table set-status str) — void?
str . string?

Sets the text message in the status pane.

(send a-table add-help-button pane
coll-path
str
tt?) — void?
pane : (is-a?/c area-container<y>)
coll-path : (listof string?)
str : string?
tt? : any/c

Adds a Help button to the given pane, where clicking the button opens a new
window to display "doc.txt" from the given collection. The str argument
is used for the help window title. If tt? is true, then "doc.txt" is displayed
verbatim, otherwise it is formatted as for show-help from games/show-help.

(send a-table add-scribble-button pane
mod-path
tag) — void?
pane : (is-a?/c area-container<y>)
mod-path : module-path?
tag : string?

Adds a Help button to the given pane, where clicking the button opens

Scribble-based documentation, as with show-scribbling from games/show-
scribbling.

10



4 Card Methods

card<%> : interface?

Create instances with make-deck or make-card.

(send a-card card-width) — exact-nonnegative-integer?
Returns the width of the card in pixels. If the card is rotated 90 or 270 degrees,
the result is the card’s original height.

(send a-card card-height) — exact-nonnegative-integer?
Returns the height of the card in pixels. If the card is rotated 90 or 270 degrees,
the result is the card’s original width.

(send a-card flip) — void?

Flips the card without animation. This method is useful for flipping a card
before it is added to a table.

(send a-card face-up) — void?

Makes the card face up without animation.

(send a-card face-down) — void?

Makes the card face down without animation.

(send a-card face-down?) — boolean?

Returns #t if the card is currently face down.

(send a-card rotate mode) — void?
mode : (or/c 'cw 'ccw 0 90 -90 180 -180 270 -270 360)

Rotates the card. Unlike using the rotate-card in table<Y> method, the
card’s top-left position is kept in place.

If mode is ' cw, the card is rotated clockwise; if mode is ' ccw, the card is rotated
counter-clockwise; if mode is one of the allowed numbers, the card is rotated
the corresponding amount in degrees counter-clockwise.

(send a-card orientation) — (or/c 0 90 180 270)

11



Returns the orientation of the card, where O corresponds to its initial state, 90 is
rotated 90 degrees counter-clockwise, and so on.

(send a-card get-suit-id) — any/c

Normally returns 1, 2, 3, or 4 (see get-suit for corresponding suit names), but
the result can be anything for a card created by make-card.

(send a-card get-suit) — symbol?

Returns 'clubs, 'diamonds, 'hearts, 'spades, or 'unknown, depending on
whether get-suit-id returns 1, 2, 3, 4, or something else.

(send a-card get-value) — any/c

Normally returns 1 (Ace), 2, ... 10, 11 (Jack), 12 (Queen), or 13 (King), but the
result can be anything for a card created by make-card.

(send a-card user-can-flip) — boolean?
(send a-card user-can-flip can?) — void?
can? : any/c

Gets/sets whether the user can flip the card interactively, usually by double-
clicking it. Initially #t.

(send a-card user-can-move) — boolean?
(send a-card user-can-move can?) — void?
can? : any/c

Gets/sets whether the user can move the card interactively, usually by dragging
it. Disabling moves has the side-effect of disabling raises and double-clicks.
Initially #t.

(send a-card snap-back-after-move) — boolean?
(send a-card snap-back-after-move on?) — void?
on? : any/c

Assuming user can move the card interactively, gets/sets whether the card stays
where the user dragged it or snaps back to its original place. Initially #£.

A region callback can disable snap-back for a dragged card only if snap-back-
after-regions mode is enabled for the card. Otherwise, a region’s interactive
callback can disable snap-back for a card (e.g., so that the card can be delivered
to the region).

12



(send a-card snap-back-after-regions) — boolean?
(send a-card snap-back-after-regions on?) — void?
on? : any/c

Determines whether snap-back-after-move and home-region constraints
apply before or after region callbacks are invoked for dragged cards. Initially
#£ (i.e., constraints apply before callbacks).

Added in version 1.1 of package games.

(send a-card stay-in-region) — (or/c region? #f)
(send a-card stay-in-region r) — void?
r : (or/c region? #f)

Gets/sets a constraining region r. If r is not #£, the user cannot move the card
out of r. Initially #£.

(send a-card home-region) — (or/c region? #f)
(send a-card home-region r) — void?
r : (or/c region? #f)

Gets/sets a home region r. If r is not #£, then the user can move the card freely,
but the card snaps back if moved out of the region. (If the card is moved partly
out of the region, the card is moved enough to get completely back in.) Initially
#E.

A region callback can change the snap-back home for a dragged card only if
snap-back-after-regions mode is enabled for the card. Otherwise, a re-
gion’s interactive callback can adjust snap-back for a card.

(send a-card dim) — boolean?
(send a-card dim can?) — void?
can? : any/c

Gets/sets a hilite on the card, which is rendered by drawing it dimmer than
normal.

(send a-card copy) — (is-a?/c card<%>)

Makes a new card with the same suit and value.

13



Bibliography

[some mathematical theorem] Bayer, Dave; Diaconis, Persi, “Trailing the Dovetail Shuffle to its Lair.”
http://projecteuclid.org/euclid.aoap/1177005705

14


http://projecteuclid.org/euclid.aoap/1177005705

	1 Creating Tables and Cards
	2 Regions and Buttons
	3 Table Methods
	4 Card Methods
	Bibliography

