
File: Racket File and Format Libraries
Version 9.0.0.4

November 19, 2025

1

Contents

1 Convertible: Data-Conversion Protocol 4

2 gzip Compression and File Creation 9

3 gzip Decompression 10

4 zip File Creation 11

5 zip File Extraction 13

6 tar File Creation 19

7 tar File Extraction 23

8 tar+gzip File Extraction 26

9 MD5 Message Digest 27

10 SHA1 Message Digest 28

11 GIF File Writing 30

12 ICO File Reading and Writing 35

13 Windows Registry 38

14 Caching 41

15 Globbing 43

Bibliography 46

2

Index 47

Index 47

3

1 Convertible: Data-Conversion Protocol

(require file/convertible) package: base

The file/convertible library provides a protocol to mediate between providers of data
in different possible formats and consumers of the formats. For example, a datatype that
implements prop:convertible might be convertible to a GIF or PDF stream, in which
case it would produce data for 'gif-bytes or 'pdf-bytes requests.

Any symbol can be used for a conversion request, but the following should be considered
standard:

• 'text — a string for human-readable text

• 'gif-bytes — a byte string containing a GIF image encoding

• 'png-bytes — a byte string containing a PNG image encoding

• 'png-bytes+bounds — a list containing a byte string and four numbers; the byte
string contains a PNG document, and the four numbers are sizing information for the
image: the width, height, descent (included in the height), and extra vertical top space
(included in the height), in that order

• 'png-bytes+bounds8 — a list containing a byte string and eight numbers; like
'png-bytes+bounds, but where the image encoded that is in the byte string can
be padded in each direction (to allow the drawn region to extend beyond its “bounding
box”), where the extra four numbers in the list specify the amount of padding that was
added to the image: left, right, top, and bottom

• 'png@2x-bytes — like 'png-bytes, but for an image that is intended for drawing
at 1/2 scale

• 'png@2x-bytes+bounds — like 'png-bytes+bounds, but for an image that is in-
tended for drawing at 1/2 scale, where the numbers in the result list are already scaled
(e.g, the byte string encodes an image that is twice as wide as the first number in the
resulting list)

• 'png@2x-bytes+bounds8 — like 'png-bytes+bounds8, but but for an image that
is intended for drawing at 1/2 scale, and where the numbers in the result list are
already scaled

• 'svg-bytes — a byte string containing a SVG image encoding

• 'svg-bytes+bounds — like 'png-bytes+bounds, but for an SVG image

• 'svg-bytes+bounds8 — like 'png-bytes+bounds8, but for an SVG image

• 'ps-bytes — a byte string containing a PostScript document

• 'eps-bytes — a byte string containing an Encapsulated PostScript document

4

https://pkgs.racket-lang.org/package/base

• 'eps-bytes+bounds — like 'png-bytes+bounds, but, but for an Encapsulated
PostScript document

• 'eps-bytes+bounds8 — like 'png-bytes+bounds8, but, but for an Encapsulated
PostScript document

• 'pdf-bytes — a byte string containing a PDF document

• 'pdf-bytes+bounds — like 'png-bytes+bounds, but, but for an PDF document

• 'pdf-bytes+bounds8 — like 'png-bytes+bounds8, but, but for an PDF document

prop:convertible

5

: (struct-type-property/c
(->i ([v convertible?] [request symbol?] [default default/c])

[result
(case request

[(text)
(or/c string? default/c)]

[(gif-bytes
png-bytes
png@2x-bytes
ps-bytes
eps-bytes
pdf-bytes
svg-bytes)

(or/c bytes? default/c)]
[(png-bytes+bounds

png@2x-bytes+bounds
eps-bytes+bounds
pdf-bytes+bounds)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[(png-bytes+bounds8

png@2x-bytes+bounds8
eps-bytes+bounds8
pdf-bytes+bounds8)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[else (or/c opaque-default/c any/c)])]))

A property whose value is invoked by convert.

The v argument to the procedure is the structure, the request argument is a symbol for
the requested conversion, and the default argument is a value to return (typically #f if the
conversion is not supported). The procedure’s result depends on the requested conversion,
as above.

6

The default/c contract is one generated by new-@/c.

(convertible? v) Ñ boolean?
v : any/c

Returns #t if v supports the conversion protocol, #f otherwise.

(convert v request [default])
Ñ (case request

[(text)
(or/c string? default/c)]

[(gif-bytes
png-bytes
png@2x-bytes
ps-bytes
eps-bytes
pdf-bytes
svg-bytes)

(or/c bytes? default/c)]
[(png-bytes+bounds

png@2x-bytes+bounds
eps-bytes+bounds
pdf-bytes+bounds)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[(png-bytes+bounds8

png@2x-bytes+bounds8
eps-bytes+bounds8
pdf-bytes+bounds8)

(or/c (list/c bytes?
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?))
(and/c real? (not/c negative?)))

default/c)]
[else (or/c opaque-default/c any/c)])

v : convertible?
request : symbol?

7

default : any/c = #f

Requests a data conversion from v , where request indicates the type of requested data and
default is the value that the converter should return if it cannot produce data in the format
indicated by request .

The default/c contract is one created by new-@/c and it guarantees that the result of
convert is the given default argument (or #f if one is not supplied).

8

2 gzip Compression and File Creation

(require file/gzip) package: base

The file/gzip library provides utilities to create archive files in gzip format, or simply to
compress data using the pkzip “deflate” method.

(gzip in-file [out-file]) Ñ void?
in-file : path-string?
out-file : path-string?

= (path-add-extension in-file ".gz" #".")

Compresses data to the same format as the gzip utility, writing the compressed data directly
to a file. The in-file argument is the name of the file to compress. If the file named by
out-file exists, it will be overwritten.

Changed in version 6.8.0.2 of package base: Changed default expression of out-file to use
path-add-extension instead of string-append.

(gzip-through-ports in
out
orig-filename
timestamp) Ñ void?

in : input-port?
out : output-port?
orig-filename : (or/c string? #f)
timestamp : exact-integer?

Reads the port in for data and compresses it to out , outputting the same format as the
gzip utility. The orig-filename string is embedded in this output; orig-filename can
be #f to omit the filename from the compressed stream. The timestamp number is also
embedded in the output stream, as the modification date of the original file (in Unix seconds,
as file-or-directory-modify-seconds would report on Unix).

(deflate in out) Ñ exact-nonnegative-integer?
exact-nonnegative-integer?
exact-nonnegative-integer?

in : input-port?
out : output-port?

Writes pkzip-format “deflated” data to the port out , compressing data from the port in .
The data in a file created by gzip uses this format (preceded with header information).

The result is three values: the number of bytes read from in , the number of bytes written to
out , and a cyclic redundancy check (CRC) value for the input.

9

https://pkgs.racket-lang.org/package/base

3 gzip Decompression

(require file/gunzip) package: base

The file/gunzip library provides utilities to decompress archive files in gzip format, or
simply to decompress data using the pkzip “inflate” method.

(gunzip file [output-name-filter]) Ñ void?
file : path-string?
output-name-filter : (string? boolean? . -> . path-string?)

= (lambda (file archive-supplied?) file)

Extracts data that was compressed using the gzip utility (or gzip function), writing the
uncompressed data directly to a file. The file argument is the name of the file containing
compressed data. The default output file name is the original name of the compressed file
as stored in file . If a file by this name exists, it will be overwritten. If no original name is
stored in the source file, "unzipped" is used as the default output file name.

The output-name-filter procedure is applied to two arguments—the default destination
file name and a boolean that is #t if this name was read from file—before the destination
file is created. The return value of the file is used as the actual destination file name (to be
opened with the 'truncate flag of open-output-file).

If the compressed data turns out to be corrupted, the exn:fail exception is raised.

(gunzip-through-ports in out) Ñ void?
in : input-port?
out : output-port?

Reads the port in for compressed data that was created using the gzip utility, writing the
uncompressed data to the port out .

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
unzipping process may peek further into in than needed to decompress the data, but it will
not consume the unneeded bytes.

(inflate in out) Ñ void?
in : input-port?
out : output-port?

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“in-
flated”) data to the port out . The data in a file created by gzip uses this format (preceded
with some header information).

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
inflate process may peek further into in than needed to decompress the data, but it will not
consume the unneeded bytes.

10

https://pkgs.racket-lang.org/package/base

4 zip File Creation

(require file/zip) package: base

The file/zip library provides utilities to create zip archive files, which are compatible
with both Windows and Unix (including Mac OS) unpacking. The actual compression is
implemented by deflate.

(zip zip-file
path ...

[#:timestamp timestamp
#:get-timestamp get-timestamp
#:utc-timestamps? utc-timestamps?
#:round-timestamps-down? round-timestamps-down?
#:path-prefix path-prefix
#:system-type sys-type]) Ñ void?

zip-file : path-string?
path : path-string?
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

utc-timestamps? : any/c = #f
round-timestamps-down? : any/c = #f
path-prefix : (or/c #f path-string?) = #f
sys-type : symbol? = (system-type)

Creates zip-file , which holds the complete content of all paths.

The given paths are all expected to be relative path names of existing directories and files
(i.e., relative to the current directory). If a nested path is provided as a path , its ances-
tor directories are also added to the resulting zip file, up to the current directory (using
pathlist-closure).

Files are packaged as usual for zip files, including permission bits for both Windows and
Unix (including Mac OS). The permission bits are determined by file-or-directory-
permissions, which does not preserve the distinction between owner/group/other permis-
sions. Also, symbolic links are always followed.

The get-timestamp function is used to obtain the modification date to record in the archive
for a file or directory. Normally, zip archives record modification dates in local time, but if
utc-timestamps? is true, then the UTC time is recorded. Timestamps in zip archives are
precise only to two seconds; by default, the time is rounded toward the future (like WinZip
or PKZIP), but time is rounded toward the past (like Java) if round-timestamps-down? is
true.

11

https://pkgs.racket-lang.org/package/base

The sys-type argument determines the system type recorded in the archive.

If path-prefix is not #f, then it prefixes the name of each path as it is written in the zip
file, and directory entries are added for each element of path-prefix .

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp and #:system-type arguments.
Changed in version 6.0.1.12: Added the #:path-prefix, #:utc-timestamps?, and
#:utc-timestamps-down? arguments.

(zip->output paths
[out
#:timestamp timestamp
#:get-timestamp get-timestamp
#:utc-timestamps? utc-timestamps?
#:round-timestamps-down? round-timestamps-down?
#:path-prefix path-prefix
#:system-type sys-type])

Ñ void?
paths : (listof path-string?)
out : output-port? = (current-output-port)
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

utc-timestamps? : any/c = #f
round-timestamps-down? : any/c = #f
path-prefix : (or/c #f path-string?) = #f
sys-type : symbol? = (system-type)

Zips each of the given paths , and packages it as a zip “file” that is written directly to out .
Unlike zip, the specified paths are included without closing over directories: if a directory
is specified, its content is not automatically added, and nested directories are added without
parent directories.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp and #:system-type arguments.
Changed in version 6.0.1.12: Added the #:path-prefix, #:utc-timestamps?, and
#:utc-timestamps-down? arguments.

(zip-verbose) Ñ boolean?
(zip-verbose on?) Ñ void?

on? : any/c

A parameter that controls output during a zip operation. Setting this parameter to a true
value causes zip to display to (current-error-port) the filename that is currently being
compressed.

12

5 zip File Extraction

(require file/unzip) package: base

The file/unzip library provides a function to extract items from a zip archive.

(unzip in
[entry-reader
#:must-unzip? must-unzip?
#:preserve-attributes? preserve-attributes?
#:preserve-timestamps? preserve-timestamps?
#:utc-timestamps? utc-timestamps?]) Ñ void?

in : (or/c path-string? input-port?)
entry-reader : (cond

[preserve-attributes?
(bytes? boolean? input-port? (and/c hash? immutable?)

. -> . any)]
[preserve-timestamps?
(bytes? boolean? input-port? (or/c #f exact-integer?)

. -> . (or/c #f (-> any)))]
[else
(bytes? boolean? input-port? . -> . any)])

= (make-filesystem-entry-reader)
must-unzip? : any/c = #t
preserve-attributes? : any/c = #f
preserve-timestamps? : any/c = #f
utc-timestamps? : any/c = #f

Unzips an entire zip archive from in . If in does not start with zip-archive magic bytes, an
error is reported only if must-unzip? is true, otherwise the result is (void) with no bytes
consumed from in . If in is an input port and preserve-attributes? is a true value, it
must support position setting via file-position.

For each entry in the archive, the entry-reader procedure is called with three or four
arguments: the byte string representing the entry name, a boolean flag indicating whether
the entry represents a directory, an input port containing the inflated contents of the entry,
and either (if preserve-attributes?) a hash table or (if preserve-timestamps? and
not preserve-attributes?) #f or a timestamp. The default entry-reader unpacks
entries to the filesystem; call make-filesystem-entry-reader to configure aspects of
the unpacking, such as the destination directory.

When preserve-attributes? is true, the hash table passed to entry-reader provides
additional file attributes, and entry-reader must produce either #f for a post-action
thunk. All post-action thunks are run in order after the last call to entry-reader ; these
actions are useful for setting permissions on a directory after all contained files are written,

13

https://pkgs.racket-lang.org/package/base

for eample. Attributes are mapped in the hash table using the following keys, but either of
the keys may be absent:

• 'timestamp — an exact integer representing the file timestamp

• 'permissions — an exact integer representing file or directory permissions

Although preserve-attributes? and preserve-timestamps? provide extra informa-
tion to entry-reader , unpacking entries and preserving attributes and timestamps is up
to entry-reader . The reader produced by make-filesystem-entry-reader preserves
whatever information is it given, except for directories on Windows or directories that al-
ready exist, and it returns a post-action thunk only when given a directory plus a times-
tamp and/or permission attribute.

For timestamps, zip archives normally record modification dates in local time, but if utc-
timestamps? is true, then the time in the archive is interpreted as UTC.

When preserve-attributes? is #f, then in is read in a single pass as long as file entries
are found. Beware that if the input represents an archive that has file entries not referenced
by the “central directory” in the archive, the corresponding files are unpacked, anyway.

Changed in version 6.0.0.3 of package base: Added the #:preserve-timestamps? argument.
Changed in version 6.0.1.12: Added the #:utc-timestamps? argument.
Changed in version 8.0.0.10: Added the #:must-unzip? argument.
Changed in version 8.2.0.7: Changed the #:must-unzip? default to #t.
Changed in version 8.7.0.9: Added the #:preserve-attributes? argument.

(call-with-unzip in
proc

[#:must-unzip? must-unzip?]) Ñ any
in : (or/c path-string? input-port?)
proc : (-> path-string? any)
must-unzip? : any/c = #t

Unpacks in to a temporary directory, calls proc on the temporary directory’s path, and then
deletes the temporary directory while returning the result of proc .

Like unzip, no error is reported in the case in is not a zip archive, unless must-unzip? is
true.

Added in version 6.0.1.6 of package base.
Changed in version 8.0.0.10: Added the #:must-unzip? argument.
Changed in version 8.2.0.7: Changed the #:must-unzip? default to #t.

(make-filesystem-entry-reader [#:dest dest-path
#:strip-count strip-count
#:permissive? permissive?
#:exists exists])

14

Ñ ((bytes? boolean? input-port?) ((or/c hash? #f exact-integer?))
. ->* . (or/c void? #f (-> void?)))

dest-path : (or/c path-string? #f) = #f
strip-count : exact-nonnegative-integer? = 0
permissive? : any/c = #f
exists : (or/c 'skip 'error 'replace 'truncate

'truncate/replace 'append 'update
'can-update 'must-truncate)

= 'error

Creates a zip entry reader that can be used with either unzip or unzip-entry and whose
behavior is to save entries to the local filesystem. Intermediate directories are always cre-
ated if necessary before creating files. Directory entries are created as directories in the
filesystem, and their entry contents are ignored.

If dest-path is not #f, every path in the archive is prefixed to determine the destination
path of the extracted entry.

If strip-count is positive, then strip-count path elements are removed from the entry
path from the archive (before prefixing the path with dest-path); if the item’s path contains
strip-count elements, then it is not extracted.

Unless permissive? is true, then entries with paths containing an up-directory indicator are
disallowed, and a link entry whose target is an absolute path or contains an up-directory in-
dicator is also disallowed. Absolute paths are always disallowed. A disallowed path triggers
an exception.

If exists is 'skip and the file for an entry already exists, then the entry is skipped. Other-
wise, exists is passed on to open-output-file for writing the entry’s inflated content.

When the resulting returned procedure is called, it will produce (void) unless it is given a
hash table as a fourth argument. When given a hash table, the result is either #f or a thunk.
A thunk is returned on Unix and Mac OS when arguments refer to a directory that does not
already exist and either a timestamp attribute, permission attribute, or both are provided.

Changed in version 6.0.0.3 of package base: Added support for the optional timestamp argument in the result
function.
Changed in version 6.3: Added the #:permissive? argument.
Changed in version 8.7.0.9: Added support for an optional attributes hash-table argument in the result function.

(read-zip-directory in) Ñ zip-directory?
in : (or/c path-string? input-port?)

Reads the central directory of a zip file and generates a zip directory representing the zip
file’s contents. If in is an input port, it must support position setting via file-position.

This procedure performs limited I/O: it reads the list of entries from the zip file, but it does
not inflate any of their contents.

15

(zip-directory? v) Ñ boolean?
v : any/c

Returns #t if v is a zip directory, #f otherwise.

(zip-directory-entries zipdir) Ñ (listof bytes?)
zipdir : zip-directory?

Extracts the list of entries for a zip archive.

(zip-directory-contains? zipdir name) Ñ boolean?
zipdir : zip-directory?
name : (or/c bytes? path-string?)

Determines whether the given entry name occurs in the given zip directory. If name is not a
byte string, it is converted using path->zip-path.

Directory entries match with or without trailing slashes.

(zip-directory-includes-directory? zipdir
name) Ñ boolean?

zipdir : zip-directory?
name : (or/c bytes? path-string?)

Determines whether the given name is included anywhere in the given zip directory as a
filesystem directory, either as an entry itself or as the containing directory of other entries.
If name is not a byte string, it is converted using path->zip-path.

(unzip-entry in
zipdir
entry

[entry-reader
#:preserve-attributes? preserve-attributes?
#:preserve-timestamps? preserve-timestamps?
#:utc-timestamps? utc-timestamps?])

Ñ (if preserve-attributes? void? (or/c #f (-> any)))
in : (or/c path-string? input-port?)
zipdir : zip-directory?
entry : (or/c bytes? path-string?)

16

entry-reader : (cond
[preserve-attributes?
(bytes? boolean? input-port? (and/c hash? immutable?)

. -> . any)]
[preserve-timestamps?
(bytes? boolean? input-port? (or/c #f exact-integer?)

. -> . any)]
[else
(bytes? boolean? input-port? . -> . any)])

= (make-filesystem-entry-reader)
preserve-attributes? : any/c = #f
preserve-timestamps? : any/c = #f
utc-timestamps? : any/c = #f

Unzips a single entry from a zip archive based on a previously read zip directory, zipdir ,
from read-zip-directory. If in is an input port, it must support position setting via
file-position.

The entry parameter is a byte string whose name must be found in the zip file’s central
directory. If entry is not a byte string, it is converted using path->zip-path.

The entry-reader argument is used to read the contents of the zip entry in the same way
as for unzip. When preserve-attributes? is a true value, the result of entry-reader
is returned by unzip-entry, and it will be either #f or a post-action thunk. The returned
post-action thunks should all be called after extracting from in is complete.

If entry is not in zipdir , an exn:fail:unzip:no-such-entry exception is raised.

Changed in version 6.0.0.3 of package base: Added the #:preserve-timestamps? argument.
Changed in version 6.0.1.12: Added the #:utc-timestamps? argument.
Changed in version 8.7.0.9: Added the #:preserve-attributes? argument.

(call-with-unzip-entry in entry proc) Ñ any
in : (or/c path-string? input-port?)
entry : path-string?
proc : (-> path-string? any)

Unpacks entry within in to a temporary directory, calls proc on the unpacked file’s path,
and then deletes the temporary directory while returning the result of proc .

Added in version 6.0.1.6 of package base.

(path->zip-path path) Ñ bytes?
path : path-string?

Converts a file name potentially containing path separators in the current platform’s format
to use path separators recognized by the zip file format: /.

17

(struct exn:fail:unzip:no-such-entry exn:fail (entry)
#:extra-constructor-name make-exn:fail:unzip:no-such-entry)

entry : bytes?

Raised when a requested entry cannot be found in a zip archive. The entry field is a byte
string representing the requested entry name.

18

6 tar File Creation

(require file/tar) package: base

The file/tar library provides utilities to create archive files in USTAR format, like the
archive that the Unix utility pax generates. Long paths are supported using either the
POSIX.1-2001/pax or GNU format for long paths. The resulting archives contain only di-
rectories, files, and symbolic links, and owner information is not preserved; the owner that
is stored in the archive is always “root.”

Symbolic links (on Unix and Mac OS) are not followed by default.

(tar tar-file
path-or-entry ...

[#:follow-links? follow-links?
#:exists-ok? exists-ok?
#:format format
#:path-prefix path-prefix
#:path-filter path-filter
#:timestamp timestamp
#:get-timestamp get-timestamp])

Ñ exact-nonnegative-integer?
tar-file : path-string?
path-or-entry : (or/c path-string? tar-entry?)
follow-links? : any/c = #f
exists-ok? : any/c = #f
format : (or/c 'pax 'gnu 'ustar) = 'pax
path-prefix : (or/c #f path-string?) = #f
path-filter : (or/c #f (path? . -> . any/c)) = #f
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

Creates tar-file , which holds the complete content of all path-or-entrys. Each path-
or-entry is either a path that refers to a file, directory, or link on the filesystem, or it is a
tar-entry that describes such an entity without requiring it to exist on the filesystem.

The given paths among path-or-entrys are all expected to be relative paths for existing
directories and files (i.e., relative to the current directory for a path-or-entry is a path).
If a nested path is provided in a path-or-entry , its ancestor directories are also added to
the resulting tar file, up to the current directory (using pathlist-closure). If follow-
links? is false, then symbolic links are included in the resulting tar file as links.

If exists-ok? is #f, then an exception is raised if tar-file exists already. If exists-ok?

19

https://pkgs.racket-lang.org/package/base

is true, then tar-file is truncated or replaced if it exists already.

The format argument determines the handling of long paths and long symbolic-link targets.
If format is 'pax, then POSIX.1-2001/pax extensions are used. If format is 'gnu, then
GNU extensions are used. If format is 'ustar, then tar raises an error for too-long paths
or symbolic-link targets.

If path-prefix is not #f, then it is prefixed to each path in the archive.

The get-timestamp function is used to obtain the modification date to record in the archive
for each file or directory.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp argument.
Changed in version 6.1.1.1: Added the #:exists-ok? argument.
Changed in version 6.3.0.3: Added the #:follow-links? argument.
Changed in version 6.3.0.11: Added the #:path-filter argument.
Changed in version 6.7.0.4: Added the #:format argument and effectively changed its default from 'ustar to
'pax.
Changed in version 7.3.0.3: Added the #:timestamp argument.
Changed in version 8.1.0.5: Added support for tar-entry arguments.

(tar->output paths-and-entries
[out
#:follow-links? follow-links?
#:format format
#:path-prefix path-prefix
#:path-filter path-filter
#:timestamp timestamp
#:get-timestamp get-timestamp])

Ñ exact-nonnegative-integer?
paths-and-entries : (listof (or/c path? tar-entry?))
out : output-port? = (current-output-port)
follow-links? : any/c = #f
format : (or/c 'pax 'gnu 'ustar) = 'pax
path-prefix : (or/c #f path-string?) = #f
path-filter : (or/c #f (path? . -> . any/c)) = #f
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

Like tar, but packages each element of the given paths-and-entries in a tar format
archive that is written directly to the out . The specified paths-and-entries are included
as-is (except for adding path-prefix , if any); if a directory is specified, its content is not
automatically added, and nested directories are added without parent directories.

20

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp argument.
Changed in version 6.3.0.3: Added the #:follow-links? argument.
Changed in version 6.3.0.11: Added the #:path-filter argument.
Changed in version 6.7.0.4: Added the #:format argument and effectively changed its default from 'ustar to
'pax.
Changed in version 7.3.0.3: Added the #:timestamp argument.
Changed in version 8.1.0.5: Added support for tar-entry arguments.

(tar-gzip tar-file
paths-and-entries ...

[#:follow-links? follow-links?
#:exists-ok? exists-ok?
#:format format
#:path-prefix path-prefix
#:timestamp timestamp
#:get-timestamp get-timestamp]) Ñ void?

tar-file : path-string?
paths-and-entries : (and/c path-string? tar-entry?)
follow-links? : any/c = #f
exists-ok? : any/c = #f
format : (or/c 'pax 'gnu 'ustar) = 'pax
path-prefix : (or/c #f path-string?) = #f
timestamp : (or/c #f exact-integer?) = #f
get-timestamp : (path? . -> . exact-integer?)

= (if timestamp
(lambda (p) timestamp)
file-or-directory-modify-seconds)

Like tar, but compresses the resulting file with gzip.

Changed in version 6.0.0.3 of package base: Added the #:get-timestamp argument.
Changed in version 6.1.1.1: Added the #:exists-ok? argument.
Changed in version 6.3.0.3: Added the #:follow-links? argument.
Changed in version 6.7.0.4: Added the #:format argument and effectively changed its default from 'ustar to
'pax.
Changed in version 7.3.0.3: Added the #:timestamp argument.
Changed in version 8.1.0.5: Added support for tar-entry arguments.

(struct tar-entry (kind path content size attribs)
#:extra-constructor-name make-tar-entry)

kind : (or/c 'file 'directory 'link)
path : (and/c path-string? relative-path?)
content : (or/c input-port? (-> input-port?) #f path-string?)
size : exact-nonnegative-integer?
attribs : (hash/c symbol? any/c)

Represents a file, directory, or link to be included in a USTAR file or stream.

21

If kind is 'file, then content must be an input port or a thunk that produces an input port,
and it must provide exactly size bytes. If kind is 'directory, then content and size
are expected to be #f and 0. If kind is 'link, then content must be a path, and size is
expected to be 0.

The attribs field contains a hash table providing additional properties of the entry. The
following keys are currently used when writing a USTAR file or stream:

• 'permissions — an integer representing read, write, and execute permissions in the
form accepted by file-or-directory-permissions.

• 'modify-seconds — an integer representing a modification time, which is consistent
with file-or-directory-modify-seconds.

• 'owner — an exact integer presenting a file owner ID.

• 'owner-bytes — a byte string representing a file owner name.

• 'group — an exact integer presenting a file group ID.

• 'group-bytes — a byte string representing a file group name.

Added in version 8.1.0.5 of package base.

22

7 tar File Extraction

(require file/untar) package: base

The file/untar library provides a function to extract items from a TAR/USTAR archive
using GNU and/or pax extensions to support long pathnames.

(untar in
[#:dest dest-path
#:strip-count strip-count
#:permissive? permissive?
#:filter filter-proc
#:handle-entry handle-entry]) Ñ void?

in : (or/c path-string? input-port?)
dest-path : (or/c path-string? #f) = #f
strip-count : exact-nonnegative-integer? = 0
permissive? : any/c = #f
filter-proc : (path? (or/c path? #f)

symbol? exact-integer? (or/c path? #f)
exact-nonnegative-integer?
exact-nonnegative-integer?
. -> . any/c)

= (lambda args #t)
handle-entry : ((or/c 'file 'directory 'link)

(and path? relative-path?)
(or/c input-port? #f path?)
exact-nonnegative-integer?
(hash/c symbol? any/c)
. -> . (listof (-> any)))

= handle-tar-entry

Extracts TAR/USTAR content from in , recognizing POSIX.1-2001/pax and GNU exten-
sions for long paths and long symbolic-link targets.

If dest-path is not #f, every path in the archive is prefixed to determine the destination
path of the extracted item.

If strip-count is positive, then strip-count path elements are removed from the item
path from the archive (before prefixing the path with dest-path); if the item’s path contains
strip-count elements, then it is not extracted.

Unless permissive? is true, then archive items with paths containing an up-directory in-
dicator are disallowed, and a link item whose target is an absolute path or contains an up-
directory indicator is also disallowed. Absolute paths are always disallowed. A disallowed
path triggers an exception.

23

https://pkgs.racket-lang.org/package/base

For each item in the archive, filter-proc is applied to

• the item’s path as it appears in the archive;

• a destination path that is based on the path in the archive, strip-count , and dest-
path–which can be #f if the item’s path does not have strip-count or more ele-
ments;

• a symbol representing the item’s type—'file, 'dir, 'link, 'hard-link,
'character-special, 'block-special, 'fifo, 'contiguous-file,
'extended-header, 'extended-header-for-next, or 'unknown—where
only 'file, 'dir, or 'link can be unpacked by untar;

• an exact integer representing the item’s size;

• a target path for a 'link type or #f for any other type;

• an integer representing the item’s modification date; and

• an integer representing the item’s permissions

If the result of filter-proc is #f, then the item is not unpacked.

The handle-entry function is called to unpack one entry, and the default handle-tar-
entry function for handle-entry creates a directory, file, or link on the filesystem. The
handle-entry function must accept five arguments:

• kind — one of 'file, 'directory, or 'link.

• path — the relative path recorded in the TAR file.

• content — an input port that provides the content for a 'file entry, where exactly
size bytes must be read from the port before handle-entry returns. For a 'di-
rectory entry, content is #f. For a 'link entry, content is a path for the link
target.

• size — the number of bytes for a 'file entry, and 0 for other entries.

• attribs — an immutable hash table mapping symbols to attribute values. The avail-
able keys may change, but the currently included keys are the same ones as recognized
in tar-entry.

The result of handle-entry is a list of thunks that are called in order after the TAR input
is fully unpacked. A result thunk from handle-entry is useful, for example, to set a
directory’s modification time after all files have been written to it.

Changed in version 6.3 of package base: Added the #:permissive? argument.
Changed in version 6.7.0.4: Support long paths and long symbolic-link targets using POSIX.1-2001/pax and GNU

24

extensions.
Changed in version 8.1.0.5: Added the #:handle-entry argument.

(handle-tar-entry kind
path
content
size
attribs) Ñ (listof (-> any))

kind : (or/c 'file 'directory 'link)
path : (and path? relative-path?)
content : (or/c input-port? #f path?)
size : exact-nonnegative-integer?
attribs : (hash/c symbol? any/c)

As the default entry handler for untar, handle-tar-entry creates directories and files
and returns a list of thunks that complete unpacking by setting directory permissions and
modification times.

Added in version 8.1.0.5 of package base.

25

8 tar+gzip File Extraction

(require file/untgz) package: base

The file/untgz library provides a function to extract items from a possible gzipped
TAR/USTAR archive.

(untgz in
[#:dest dest-path
#:strip-count strip-count
#:permissive? permissive?
#:filter filter-proc]) Ñ void?

in : (or/c path-string? input-port?)
dest-path : (or/c path-string? #f) = #f
strip-count : exact-nonnegative-integer? = 0
permissive? : any/c = #f
filter-proc : (path? (or/c path? #f)

symbol? exact-integer? (or/c path? #f)
exact-nonnegative-integer?
exact-nonnegative-integer?
. -> . any/c)

= (lambda args #t)

The same as untar, but if in is in gzip form, it is gunzipped as it is unpacked.

Changed in version 6.3 of package base: Added the #:permissive? argument.

26

https://pkgs.racket-lang.org/package/base

9 MD5 Message Digest

(require file/md5) package: base

See openssl/md5 for a faster implementation with a slightly different interface.

(md5 in [hex-encode?]) Ñ bytes?
in : (or/c input-port? bytes? string?)
hex-encode? : boolean? = #t

If hex-encode? is #t, produces a byte string containing 32 hexadecimal digits (lowercase)
that is the MD5 hash of the given input stream or byte string. Otherwise produces the 16
byte long byte string that is the MD5 hash of the given input stream or byte string.

Examples:

> (md5 #"abc")
#"900150983cd24fb0d6963f7d28e17f72"
> (md5 #"abc" #f)
#"\220\1P\230<\322O\260\326\226?}(\341\177r"

27

https://pkgs.racket-lang.org/package/base

10 SHA1 Message Digest

(require file/sha1) package: base

See openssl/sha1 for a faster implementation.

(sha1 in [start end]) Ñ string?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f

Returns a 40-character string that represents the SHA-1 hash (in hexadecimal notation) of the
content from in . The in , start , and end arguments are treated the same as sha1-bytes
from racket/base.

The sha1 function composes bytes->hex-string with sha1-bytes.

Example:

> (sha1 (open-input-bytes #"abc"))
"a9993e364706816aba3e25717850c26c9cd0d89d"

Changed in version 7.0.0.5 of package base: Allowed a byte string as in and added the start and end arguments.

(sha1-bytes in [start end]) Ñ bytes?
in : (or/c bytes? input-port?)
start : exact-nonnegative-integer? = 0
end : (or/c #f exact-nonnegative-integer?) = #f

The same as sha1-bytes from racket/base, returns a 20-byte byte string that represents
the SHA-1 hash of the content from in .

Example:

> (sha1-bytes (open-input-bytes #"abc"))
#"\251\231>6G\6\201j\272>%qxP\302l\234\320\330\235"

Changed in version 7.0.0.5 of package base: Allowed a byte string as in and added the start and end arguments.

(bytes->hex-string bstr) Ñ string?
bstr : bytes?

Converts the given byte string to a string representation, where each byte in bstr is con-
verted to its two-digit hexadecimal representation in the resulting string.

Example:

28

https://pkgs.racket-lang.org/package/base

> (bytes->hex-string #"turtles")
"747572746c6573"

(hex-string->bytes str) Ñ bytes?
str : string?

Converts the given string to a byte string, where each pair of characters in str is converted
to a single byte in the result.

Examples:

> (hex-string->bytes "70")
#"p"
> (hex-string->bytes "Af")
#"\257"

29

11 GIF File Writing

(require file/gif) package: draw-lib

The file/gif library provides functions for writing GIF files to a stream, including GIF
files with multiple images and controls (such as animated GIFs).

A GIF stream is created by gif-start, and then individual images are written with gif-
add-image. Optionally, gif-add-control inserts instructions for rendering the images.
The gif-end function ends the GIF stream.

A GIF stream can be in any one of the following states:

• 'init : no images or controls have been added to the stream

• 'image-or-control : another image or control can be written

• 'image : another image can be written (but not a control, since a control was written)

• 'done : nothing more can be added

(gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream created by gif-write, #f otherwise.

(image-ready-gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream that is not in 'done mode, #f otherwise.

(image-or-control-ready-gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream that is in 'init or 'image-or-control mode, #f other-
wise.

(empty-gif-stream? v) Ñ boolean?
v : any/c

Returns #t if v is a GIF stream that in 'init mode, #f otherwise.

(gif-colormap? v) Ñ boolean?
v : any/c

30

https://pkgs.racket-lang.org/package/draw-lib

Returns #t if v represets a colormap, #f otherwise. A colormap is a list whose size is a
power of 2 between 21 and 28, and whose elements are vectors of size 3 containing colors
(i.e., exact integers between 0 and 255 inclusive).

(color? v) Ñ boolean?
v : any/c

The same as byte?.

(dimension? v) Ñ boolean?
v : any/c

Returns #t if v is an exact integer between 0 and 65535 inclusive, #f otherwise.

(gif-state stream) Ñ symbol?
stream : gif-stream?

Returns the state of stream .
(gif-start out w h bg-color cmap) Ñ gif-stream?

out : output-port?
w : dimension?
h : dimension?
bg-color : color?
cmap : (or/c gif-colormap? #f)

Writes the start of a GIF file to the given output port, and returns a GIF stream that adds to
the output port.

The width and height determine a virtual space for the overall GIF image. Individual images
added to the GIF stream must fit within this virtual space. The space is initialized by the
given background color.

Finally, the default meaning of color numbers (such as the background color) is determined
by the given colormap, but individual images within the GIF file can have their own col-
ormaps.

A global colormap need not be supplied, in which case a colormap must be supplied for each
image. Beware that bg-color is ill-defined if a global colormap is not provided.

(gif-add-image stream
left
top
width
height
interlaced?
cmap
bstr) Ñ void?

31

stream : image-ready-gif-stream?
left : dimension?
top : dimension?
width : dimension?
height : dimension?
interlaced? : any/c
cmap : (or/c gif-colormap? #f)
bstr : bytes?

Writes an image to the given GIF stream. The left , top , width , and height values
specify the location and size of the image within the overall GIF image’s virtual space.

If interlaced? is true, then bstr should provide bytes ininterlaced order instead of top-
to-bottom order. Interlaced order is:

• every 8th row, starting with 0

• every 8th row, starting with 4

• every 4th row, starting with 2

• every 2nd row, starting with 1

If a global color is provided with gif-start, a #f value can be provided for cmap .

The bstr argument specifies the pixel content of the image. Each byte specifies a color
(i.e., an index in the colormap). Each row is provided left-to-right, and the rows provided
either top-to-bottom or in interlaced order (see above). If the image is prefixed with a control
that specifies an transparent index (see gif-add-control), then the corresponding “color”
doesn’t draw into the overall GIF image.

An exception is raised if any byte value in bstr is larger than the colormap’s length, if
the bstr length is not width times height , or if the top , left , width , and height
dimensions specify a region beyond the overall GIF image’s virtual space.

(gif-add-control stream
disposal
wait-for-input?
delay
transparent) Ñ void?

stream : image-or-control-ready-gif-stream?
disposal : (or/c 'any 'keep 'restore-bg 'restore-prev)
wait-for-input? : any/c
delay : dimension?
transparent : (or/c color? #f)

32

Writes an image-control command to a GIF stream. Such a control must appear just before
an image, and it applies to the following image.

The GIF image model involves processing images one by one, placing each image into the
specified position within the overall image’s virtual space. An image-control command can
specify a delay before an image is added (to create animated GIFs), and it also specifies how
the image should be kept or removed from the overall image before proceeding to the next
one (also for GIF animation).

The disposal argument specifies how to proceed:

• 'any : doesn’t matter (perhaps because the next image completely overwrites the
current one)

• 'keep : leave the image in place

• 'restore-bg : replace the image with the background color

• 'restore-prev : restore the overall image content to the content before the image is
added

If wait-for-input? is true, then the display program may wait for some cue from the user
(perhaps a mouse click) before adding the image.

The delay argument specifies a delay in 1/100s of a second.

If the transparent argument is a color, then it determines an index that is used to represent
transparent pixels in the follow image (as opposed to the color specified by the colormap for
the index).

An exception is raised if a control is already added to stream without a corresponding
image.

(gif-add-loop-control stream iteration) Ñ void?
stream : empty-gif-stream?
iteration : dimension?

Writes a control command to a GIF stream for which no images or other commands have
already been written. The command causes the animating sequence of images in the GIF to
be repeated ‘iteration-dimension’ times, where 0 can be used to mean “infinity.”

An exception is raise if some control or image has been added to the stream already.

(gif-add-comment stream bstr) Ñ void?
stream : image-or-control-ready-gif-stream?
bstr : bytes?

33

Adds a generic comment to the GIF stream.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(gif-end stream) Ñ void?
stream : image-or-control-ready-gif-stream?

Finishes writing a GIF file. The GIF stream’s output port is not automatically closed.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(quantize bstr) Ñ bytes? gif-colormap? (or/c color? #f)
bstr : (and/c bytes?

(lambda (bstr)
(zero? (remainder (bytes-length bstr) 4))))

Each image in a GIF stream is limited to 256 colors, including the transparent “color,” if any.
The quantize function converts a 24-bit image (plus alpha channel) into an indexed-color
image, reducing the number of colors if necessary.

Given a set of pixels expressed in ARGB format (i.e., each four bytes is a set of values for
one pixel: alpha, red, blue, and green), quantize produces produces

• bytes for the image (i.e., a array of colors, expressed as a byte string)

• a colormap

• either #f or a color index for the transparent “color”

The conversion treats alpha values less than 128 as transparent pixels, and other alpha values
as solid.

The quantization process uses Octrees [Gervautz1990] to construct an adaptive palette for all
(non-transparent) colors in the image. This implementation is based on an article by Dean
Clark [Clark1996].

To convert a collection of images all with the same quantization, simply append them for the
input of a single call of quantize, and then break apart the result bytes.

34

12 ICO File Reading and Writing

(require file/ico) package: base

The file/ico library provides functions for reading and writing ".ico" files, which con-
tain one or more icons. Each icon is up to 256 by 256 pixels, has a particular depth (i.e., bits
per pixel used to represent a color), and mask (i.e., whether a pixel is shown, except that the
mask may be ignored for 32-bit icons that have an alpha value per pixel). The library also
provides support for reading and writing icons in Windows executables.

(ico? v) Ñ boolean?
v : any/c

Returns #t if v represents an icon, #f otherwise.

(ico-width ico) Ñ exact-positive-integer?
ico : ico?

(ico-height ico) Ñ exact-positive-integer?
ico : ico?

(ico-depth ico) Ñ (or/c 1 2 4 8 16 24 32)
ico : ico?

Returns the width or height of an icon in pixels, or the depth in bits per pixel.

Changed in version 6.3 of package base: A PNG-format icon can have a width or height greater than 256.

(ico-format ico) Ñ (or/c 'bmp 'png)
ico : ico?

Reports the format of the icon.

Added in version 6.3 of package base.

(read-icos src) Ñ (listof ico?)
src : (or/c path-string? input-port?)

Parses src as an ".ico" to extract a list of icons.

(read-icos-from-exe src) Ñ (listof ico?)
src : (or/c path-string? input-port?)

Parses src as an ".exe" to extract the list of icons that represent the Windows executable.

(write-icos icos dest [#:exists exists]) Ñ void?
icos : (listof ico?)

35

https://pkgs.racket-lang.org/package/base

dest : (or/c path-string? output-port?)
exists : (or/c 'error 'append 'update 'can-update

'replace 'truncate
'must-truncate 'truncate/replace)

= 'error

Writes each icon in icos to dest as an ".ico" file. If dest is not an output port, exists
is passed on to open-output-file to open dest for writing.

(replace-icos icos dest) Ñ void?
icos : (listof ico?)
dest : path-string?

Writes icons in icos to replace icons in dest as an Windows executable. Only existing icon
sizes and depths in the executable are replaced, and only when the encoding sizes match.
Best matches for the existing sizes and depth are drawn from icos (adjusting the scale and
depth of a best match as necessary).

Use replace-all-icos, instead, to replace a set of icons wholesale, especially when the
set include PNG-format icons.

(replace-all-icos icos dest) Ñ void?
icos : (listof ico?)
dest : (or/c path-string? output-port?)

Replaces the icon set in the executable dest with the given set of icons.

(ico->argb ico) Ñ bytes?
ico : ico?

Converts an icon in BMP format (see ico-format) to an ARGB byte string, which has the
icon’s pixels in left-to-right, top-to-bottom order, with four bytes (alpha, red, green, and blue
channels) for each pixel.

(ico->png-bytes ico) Ñ bytes?
ico : ico?

Returns the bytes of a PNG encoding for an icon in PNG format (see ico-format).

Added in version 6.3 of package base.

(argb->ico width height bstr [#:depth depth]) Ñ ico?
width : (integer-in 1 256)
height : (integer-in 1 256)
bstr : bytes?
depth : (or/c 1 2 4 8 24 32) = 32

36

Converts an ARGB byte string (in the same format as from ico->argb) to an icon of the
given width, height, and depth in BMP format.

The bstr argument must have a length (* 4 width height), and (* width depth)
must be a multiple of 8.

(png-bytes->ico bstr) Ñ ico?
bstr : bytes?

Wraps the given PNG encoding as a PNG-encoded icon.

Added in version 6.3 of package base.

37

13 Windows Registry

(require file/resource) package: base

(get-resource section
entry

[value-box
file
#:type type])

Ñ (or/c #f string? bytes? exact-integer? #t)
section : string?
entry : string?
value-box : (or/c #f (box/c (or/c string? bytes? exact-integer?)))

= #f
file : (or/c #f path-string?) = #f
type : (or/c 'string 'string/utf-16 'bytes 'bytes* 'integer)

= derived-from-value-box

Gets a value from the Windows registry or an ".ini" file. For backward compati-
bility, the result is #f for platforms other than Windows. The registry is read when
file is #f and when section is "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG",
"HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", or "HKEY_USERS". When file is #f
and section is not one of the special registry strings, then (build-path (find-system-
path 'home-dir) "mred.ini") is read.

The resource value is keyed on the combination of section and entry . The result is #f if
no value is found for the specified section and entry . If value-box is a box, then the
result is #t if a value is found, and the box is filled with the value; when value-box is #f,
the result is the found value.

Registry values of any format can be extracted. A combination of the type argument and
the type of the resource determines how the resource is initially converted to a Racket value:

• A REG_SZ registry value’s bytes are first converted to a string by a nul-terminated
UTF-16 interpretation (not including the terminator in the string)—unless type is
'bytes*, in which case the bytes are kept as-is in a byte string.

• A REG_DWORD registry value’s bytes are first interpreted as a 32-bit signed integer, and
then the integer is converted to a string with number->string.

• Any other kind of register value’s bytes are kept as a byte string.

That initial conversion produces either a string or a byte string. The requested type might
then trigger an additional transformation:

38

https://pkgs.racket-lang.org/package/base

• 'string: a string is kept as-is, but a byte string are converted to a string using bytes-
>string/utf-8. Note that a UTF-8 conversion is not appropriate for some resource
types, such as REG_EXPAND_SZ; use 'string/utf-16, instead.

• 'string/utf-16: a string is kept as-is, but a byte string is converted to a string by a
nul-terminated UTF-16 interpretation (omitting the nul terminator from the string).

• 'bytes: a byte string is kept as-is, but a string is converted using string-
>bytes/utf-8. Note that this conversion does not produce the original bytes for
a REG_SZ resource; use 'bytes*, instead, since that avoids the initial conversion to a
string.

• 'bytes*: the same as 'bytes, but 'bytes* affects the initial conversion for a
REG_SZ resource.

• 'integer: a string is converted to a number using string->number, and a byte
string is converted by composing bytes->string/utf-8 with string->number.

If value-box is a box, then the default type is derived from the initial box content:
'string, 'bytes, or 'integer. Otherwise, the default type is 'string.

Resources from ".ini" files are always strings, and are converted like REG_SZ registry
values.

To get the “default” value for a registry entry, use a trailing backslash. For example, the
following expression gets a command line for starting a browser:

(get-resource "HKEY_CLASSES_ROOT"
"htmlfile\\shell\\open\\command\\")

Changed in version 8.0.0.10 of package base: Added 'sting/utf-16 and 'bytes* options for type .

(write-resource section
entry
value

[file
#:type type
#:create-key? create-key?]) Ñ boolean?

section : string?
entry : string?
value : (or/c string? bytes? exact-integer?)
file : (or/c path-string? #f) = #f
type : (or/c 'string 'expand-string 'bytes 'dword

'bytes/string 'bytes/expand-string)
= 'string

create-key? : any/c = #f

Write a value to the Windows registry or an ".ini" file. For backward compatibil-
ity, the result is #f for platforms other than Windows. The registry is written when

39

file is #f and when section is "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG",
"HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", or "HKEY_USERS". When file is #f
and section is not one of the special registry strings, then (build-path (find-system-
path 'home-dir) "mred.ini") is written.

The resource value is keyed on the combination of section and entry . If create-key? is
false when writing to the registry, the resource entry must already exist, otherwise the write
fails. If writing to the registry fails (due to a permissions issue or when the entry does not
exist and create-key? is false), then (build-path (find-system-path 'home-dir)
"mred.ini") is written to instead. The result is #f if the ".ini" write fails or #t if either
the registry write or the ".ini" write succeeds.

The type argument determines both the format of the value written to the registry and its
conversion of the to bytes:

• 'string: writes as REG_SZ, where a string value is converted to UTF-16 bytes
adding a nul terminator. A byte string value is converted first with bytes-
>string/utf-8, and an integer value is first converted with number->string, and
then the result in each case is treated like a string. Note that 'string is unlikely to be
a useful conversion for a byte string value ; use 'bytes/string, instead.

• 'expand-string: like 'string, but written as REG_EXPAND_SZ. Note that
'expand-string is unlikely to be a useful conversion for a byte string value ; use
'bytes/expand-string, instead.

• 'bytes: REG_BINARY, where a byte string value is written as-is, a string value is
converted to bytes by string->bytes/utf-8, and an integer value is converted to
bytes by composing number->string with string->bytes/utf-8.

• 'bytes/string: writes as REG_SZ, where a byte string value is written as-is (unlike
'string, so the byte string must be a UTF-16 encoding with a nul terminator), a string
value is converted to UTF-16 bytes adding a nul terminator, and an integer value is
converted to a string with number->string and then to UTF-16 bytes adding a nul
terminator.

• 'bytes/expand-string: like 'bytes/string, but writes as REG_EXPAND_SZ.

• 'dword: writes as REG_DWORD, where an integer value is converted to 32-bit signed
integer bytes, a string value is converted with string->number and then the same as
an integer, and a byte string value is converted by composing bytes->string/utf-
8 with string->number and then the same as an integer.

When writing to an ".ini" file, the format is always a string, independent of type .

Changed in version 8.0.0.10 of package base: Added 'expand-string, 'bytes/string, and
'bytes/expand-string options for type .

40

14 Caching

(require file/cache) package: base

The file/cache library provides utilities for managing a local cache of files, such as down-
loaded files. The cache is safe for concurrent use across processes, since it uses filesystem
locks, and it isolates clients from filesystem failures.

(cache-file dest-file
[#:exists-ok? exists-ok?]
key
cache-dir
fetch

[#:notify-cache-use notify-cache-use
#:max-cache-files max-files
#:max-cache-size max-size
#:evict-before? evict-before?
#:log-error-string log-error-string
#:log-debug-string log-debug-string]) Ñ void?

dest-file : path-string?
exists-ok? : any/c = #f
key : (not/c #f)
cache-dir : path-string?
fetch : (-> any)
notify-cache-use : (string? . -> . any) = void
max-files : real? = 1024
max-size : real? = (* 64 1024 1024)
evict-before? : (hash? hash? . -> . boolean?)

= (lambda (a b)
(< (hash-ref a 'modify-seconds)

(hash-ref b 'modify-seconds)))
log-error-string : (string? . -> . any)

= (lambda (s) (log-error s))
log-debug-string : (string? . -> . any)

= (lambda (s) (log-debug s))

Looks for a file in cache-dir previously cached with key , and copies it to dest-file
(which must not exist already, unless exists-ok? is true) if a cached file is found. Other-
wise, fetch is called; if dest-file exists after calling fetch , it is copied to cache-dir
and recorded with key . When a cache entry is used, notify-cache-use is called with the
name of the cache file.

When a new file is cached, max-files (as a file count) and max-size (in bytes) deter-
mine whether any previously cached files should be evicted from the cache. If so, evict-
before? determines an order on existing cache entries for eviction; each argument to
evict-before? is a hash table with at least the following keys:

41

https://pkgs.racket-lang.org/package/base

• 'modify-seconds — the file’s modification date

• 'size — the file’s size in bytes

• 'key — the cache entry’s key

• 'name — the cache file’s name

The log-error-string and log-debug-string functions are used to record errors and
debugging information.

(cache-remove key
cache-dir

[#:log-error-string log-error-string
#:log-debug-string log-debug-string]) Ñ void?

key : any/c
cache-dir : path-string?
log-error-string : (string? . -> . any)

= (lambda (s) (log-error s))
log-debug-string : (string? . -> . any)

= (lambda (s) (log-debug s))

Removes the cache entry matching key (if any) from the cache in cache-dir , or removes
all cached files if key is #f.

The log-error-string and log-debug-string functions are used to record errors and
debugging information.

42

15 Globbing

(require file/glob) package: base

The file/glob library implements globbing for path-string? values. A glob is a path
string that matches a set of path strings using the following wildcards:

• A sextile (*) matches any sequence of characters in a file or directory name.

• Two sextiles (**) match any sequence of characters and any number of path separators.

• A question mark (?) matches any single character in a file or directory name.

• Square bracket-delimited character groups, e.g. [abc], match any character within the
group. The square brackets have the same meaning in globs as in regular expressions,
see §4.8.1 “Regexp Syntax”.

• If the glob ends with a path separator (/ on any (system-type), additionally \ on
'windows) then it only matches directories.

On Windows,
wildcards cannot be
escaped because \
is a path separator.

By default, wildcards will not match files or directories whose name begins with a period
(aka "dotfiles"). To override, set the parameter glob-capture-dotfiles? to a non-#f
value or supply a similar value using the #:capture-dotfiles? keyword.

glob/c : (or/c path-string? (sequence/c path-string?))

A flat contract that accepts a glob or a sequence of globs.

All file/glob functions accept glob/c values. These functions also recognize braces ({})
as a meta-wildcard for describing multiple globs. Braces are

interpreted before
any other wildcards.

• Brace-delimited, comma-separated character groups, e.g. {foo,bar}, expand to mul-
tiple globs before the file/glob module begins matching. For example, the glob/c
value "{foo,bar}.rkt" has the same meaning as '("foo.rkt" "bar.rkt").

(glob pattern
[#:capture-dotfiles? capture-dotfiles?]) Ñ (listof path?)

pattern : glob/c
capture-dotfiles? : boolean? = (glob-capture-dotfiles?)

Builds a list of all paths on the current filesystem that match any glob in pattern . The order
of paths in the result is unspecified.

43

https://pkgs.racket-lang.org/package/base
https://en.wikipedia.org/wiki/Glob_(programming)

If pattern contains the wildcard **, then glob recursively searches the filesystem to find
matches. For example, the glob "/**.rkt" will search the entire filesystem for files or
directories with a ".rkt" suffix (aka, Racket files).

Examples:

> (glob "*.rkt")
;; Lists all Racket files in current directory

> (glob "*/*.rkt")
;; Lists all Racket files in all sub-directories of the current directory.
;; (Does not search sub-sub-directories, etc.)

> (glob (build-path (find-system-path 'home-dir) "**" "*.rkt"))
;; Recursively searches home directory for Racket files, lists all matches.

> (glob "??.rkt")
;; Lists all Racket files in current directory with 2-
character names.

> (glob "[a-z0-9].rkt")
;; Lists all Racket files in current directory with single-
character,
;; alphanumeric names.

> (glob '("foo-bar.rkt" "foo-baz.rkt" "qux-bar.rkt" "qux-
baz.rkt"))
;; Filters the list to contain only files or directories that exist.

> (glob "{foo,qux}-{bar,baz}.rkt")
;; Same as above, returns at most 4 files.

(in-glob pattern
[#:capture-dotfiles? capture-dotfiles?])

Ñ (sequence/c path?)
pattern : glob/c
capture-dotfiles? : boolean? = (glob-capture-dotfiles?)

Returns a stream of all paths matching the glob pattern , instead of eagerly building a list.

(glob-match? pattern
path

[#:capture-dotfiles? capture-dotfiles?]) Ñ boolean?
pattern : glob/c
path : path-string?
capture-dotfiles? : boolean? = (glob-capture-dotfiles?)

44

Analogous to regexp-match?; returns #true if path matches any glob in pattern .

(glob-match? pattern path) is not the same as:

(member path (glob pattern))

because glob only returns files/directories that exist, whereas glob-match? does not check
that path exists.

This operation accesses the filesystem.

(glob-quote str) Ñ string?
str : string?

(glob-quote path) Ñ path?
path : path?

Escapes all glob wildcards and glob meta-wildcards in the given string or path string.

Examples:

> (glob-quote "*.rkt")
"*.rkt"
> (glob-quote "[Ff]ile?{zip,tar.gz}")
"\\[Ff\\]ile\\?\\{zip\\,tar.gz\\}"
> (glob-quote "]")
"\\]"

(glob-capture-dotfiles?) Ñ boolean?
(glob-capture-dotfiles? capture-dotfiles?) Ñ void?

capture-dotfiles? : boolean?
= #f

Determines whether wildcards match names that begin with a #\. character. If #t, the
wildcards will match dotfiles. If #f, use a glob such as ".*" to match dotfiles explicitly.

45

Bibliography

[Gervautz1990] M. Gervautz and W. Purgathofer, “A simple method for color quantiza-
tion: Octree quantization,” Graphics Gems, 1990.

[Clark1996] Dean Clark, “Color Quantization using Octrees,” Dr. Dobbs Journal, Jan-
uary 1, 1996. http://www.ddj.com/184409805

46

http://www.ddj.com/184409805

Index
argb->ico, 36
bytes->hex-string, 28
cache-file, 41
cache-remove, 42
Caching, 41
call-with-unzip, 14
call-with-unzip-entry, 17
color?, 31
convert, 7
convertible, 4
Convertible: Data-Conversion Protocol, 4
convertible?, 7
deflate, 9
dimension?, 31
empty-gif-stream?, 30
exn:fail:unzip:no-such-entry (struct),

18
exn:fail:unzip:no-such-entry-
entry, 18

exn:fail:unzip:no-such-entry?, 18
file/cache, 41
file/convertible, 4
file/gif, 30
file/glob, 43
file/gunzip, 10
file/gzip, 9
file/ico, 35
file/md5, 27
file/resource, 38
file/sha1, 28
file/tar, 19
file/untar, 23
file/untgz, 26
file/unzip, 13
file/zip, 11
File: Racket File and Format Libraries, 1
get-resource, 38
GIF File Writing, 30
gif-add-comment, 33
gif-add-control, 32

gif-add-image, 31
gif-add-loop-control, 33
gif-colormap?, 30
gif-end, 34
gif-start, 31
gif-state, 31
gif-stream?, 30
glob, 43
glob-capture-dotfiles?, 45
glob-match?, 44
glob-quote, 45
glob/c, 43
Globbing, 43
gunzip, 10
gunzip-through-ports, 10
gzip, 9
gzip Compression and File Creation, 9
gzip Decompression, 10
gzip-through-ports, 9
handle-tar-entry, 25
hex-string->bytes, 29
"HKEY_CLASSES_ROOT", 38
"HKEY_CURRENT_CONFIG", 38
"HKEY_CURRENT_USER", 38
"HKEY_LOCAL_MACHINE", 38
"HKEY_USERS", 38
ICO File Reading and Writing, 35
ico->argb, 36
ico->png-bytes, 36
ico-depth, 35
ico-format, 35
ico-height, 35
ico-width, 35
ico?, 35
image-or-control-ready-gif-
stream?, 30

image-ready-gif-stream?, 30
in-glob, 44
inflate, 10
make-exn:fail:unzip:no-such-entry,

18
make-filesystem-entry-reader, 14

47

make-tar-entry, 21
md5, 27
MD5 Message Digest, 27
meta-wildcard, 43
path->zip-path, 17
png-bytes->ico, 37
prop:convertible, 5
quantize, 34
read-icos, 35
read-icos-from-exe, 35
read-zip-directory, 15
replace-all-icos, 36
replace-icos, 36
sha1, 28
SHA1 Message Digest, 28
struct:exn:fail:unzip:no-such-
entry, 18

struct:tar-entry, 21
tar, 19
tar File Creation, 19
tar File Extraction, 23
tar+gzip File Extraction, 26
tar->output, 20
tar-entry (struct), 21
tar-entry-attribs, 21
tar-entry-content, 21
tar-entry-kind, 21
tar-entry-path, 21
tar-entry-size, 21
tar-entry?, 21
tar-gzip, 21
untar, 23
untgz, 26
unzip, 13
unzip-entry, 16
wildcards, 43
Windows Registry, 38
write-icos, 35
write-resource, 39
zip, 11
zip directory, 15
zip File Creation, 11

zip File Extraction, 13
zip->output, 12
zip-directory-contains?, 16
zip-directory-entries, 16
zip-directory-includes-directory?,

16
zip-directory?, 16
zip-verbose, 12

48

	1 Convertible: Data-Conversion Protocol
	2 gzip Compression and File Creation
	3 gzip Decompression
	4 zip File Creation
	5 zip File Extraction
	6 tar File Creation
	7 tar File Extraction
	8 tar+gzip File Extraction
	9 MD5 Message Digest
	10 SHA1 Message Digest
	11 GIF File Writing
	12 ICO File Reading and Writing
	13 Windows Registry
	14 Caching
	15 Globbing
	Bibliography
	Index
	Index

