
Racklog: Prolog-Style Logic Programming
Version 9.0.0.4

Dorai Sitaram

November 19, 2025

Adapted from
Schelog by Dorai
Sitaram for Racket
by Dorai Sitaram,
John Clements, and
Jay McCarthy.

(require racklog) package: racklog

Racklog is an embedding of Prolog-style logic programming in Racket. “Embedding” means
you don’t lose Racket: You can use Prolog-style and conventional Racket code fragments
alongside each other. Racklog contains the full repertoire of Prolog features, including meta-
logical and second-order (“set”) predicates, leaving out only those features that could more
easily and more efficiently be done with Racket subexpressions.

The Racklog implementation uses the approach to logic programming for Scheme described
in Felleisen [mf:prolog] and Haynes [logick]. In contrast to earlier Lisp simulations of Pro-
log [campbell], which used explicit continuation arguments to store failure (backtrack) infor-
mation, the Felleisen and Haynes model uses the implicit reified continuations of Scheme.
In Racket these are provided by the operator call-with-current-continuation (aka
call/cc). This allows Racklog to be an embedding, ie, logic programming is not built as a
new language on top of Racket, but is used alongside Racket’s other features. Both styles of
programming may be mixed to any extent that a project needs.

The Racklog user does not need to know about the implementation mechanism or about
call/cc and continuations to get on with the business of doing logic programming with
Racklog.

This text is a gentle introduction to Racklog syntax and programming. It assumes a work-
ing knowledge of Racket and an awareness of, if not actual programming experience with,
Prolog. If you need assistance for Prolog, you may consult [bratko, ok:prolog, aop] or many
other excellent books and online documents available.

1

https://pkgs.racket-lang.org/package/racklog

Contents

1 Simple Goals and Queries 4

2 Predicates 5

2.1 Predicates Introducing Facts . 5

2.2 Predicates with Rules . 6

2.3 Solving Goals . 7

2.4 Asserting Extra Clauses . 7

2.5 Local Variables . 8

3 Using Conventional Racket Expressions in Racklog 10

3.1 Constructors . 11

3.2 %is . 11

3.3 Lexical Scoping . 12

3.4 Type Predicates . 13

4 Backtracking 14

5 Unification 16

5.1 The Occurs Check . 16

6 Conjunctions and Disjunctions 18

7 Manipulating Racklog Variables 20

7.1 Checking for Variables . 20

7.2 Preserving Variables . 20

8 The Cut (!) 23

2

8.1 Conditional Goals . 24

8.2 Negation as Failure . 25

9 Set Predicates 26

10 Higher-order Predicates 28

10.1 %apply . 29

10.2 %andmap . 30

11 Racklog Module Language 31

12 Glossary of Racklog Primitives 32

12.1 Racket Predicates . 32

12.2 User Interface . 33

12.3 Relations . 33

12.4 Racklog Variables . 34

12.5 Cut . 35

12.6 Racklog Operators . 35

12.7 Unification . 36

12.8 Numeric Predicates . 37

12.9 List Predicates . 38

12.10Set Predicates . 38

12.11Racklog Predicates . 39

12.12Higher-order Predicates . 40

12.13Racklog Variable Manipulation . 41

Bibliography 42

3

1 Simple Goals and Queries

Racklog objects are the same as Racket objects. However, there are two subsets of these
objects that are of special interest to Racklog: goals and predicates. We will first look at
some simple goals. §2 “Predicates” will introduce predicates and ways of making complex
goals using predicates.

A goal is an object whose truth or falsity we can check. A goal that turns out to be true is
said to succeed. A goal that turns out to be false is said to fail.

Two simple goals that are provided in Racklog are:

%true
%fail

The goal %true succeeds. The goal %fail always fails.

(The names of all Racklog primitive objects start with %. This is to avoid clashes with the
names of conventional Racket objects of related meaning. User-created objects in Racklog
are not required to follow this convention.)

A Racklog user can query a goal by wrapping it in a %which-form.

(%which () %true)

evaluates to (), indicating success, whereas:

(%which () %fail)

evaluates to #f, indicating failure.

Note 1: The second subexpression of the %which-form is the empty list (). Later (§2.3
“Solving Goals”), we will see %whiches with other lists as the second subform.

Henceforth, we will use the notation:

> E
'F

to say that E evaluates to F. Thus,

> (%which () %true)
'()

4

2 Predicates

More interesting goals are created by applying a special kind of Racklog object called a pred-
icate (or relation) to other Racklog objects. Racklog comes with some primitive predicates,
such as the arithmetic operators %=:= and %<, standing for arithmetic “equal” and “less than”
respectively. For example, the following are some goals involving these predicates:

> (%which () (%=:= 1 1))
'()
> (%which () (%< 1 2))
'()
> (%which () (%=:= 1 2))
#f
> (%which () (%< 1 1))
#f

Other arithmetic predicates are %> (“greater than”), %<= (“less than or equal”), %>= (“greater
than or equal”), and %=/= (“not equal”).

Racklog predicates are not to be confused with conventional Racket predicates (such as < and
=). Racklog predicates, when applied to arguments, produce goals that may either succeed
or fail. Racket predicates, when applied to arguments, yield a boolean value. Henceforth,
we will use the term “predicate” to mean Racklog predicates. Conventional predicates will
be explicitly called “Racket predicates”.

2.1 Predicates Introducing Facts

Users can create their own predicates using the Racklog form %rel. For example, let’s
define the predicate %knows:

(define %knows
(%rel ()

[('Odysseus 'TeX)]
[('Odysseus 'Racket)]
[('Odysseus 'Prolog)]
[('Odysseus 'Penelope)]
[('Penelope 'TeX)]
[('Penelope 'Prolog)]
[('Penelope 'Odysseus)]
[('Telemachus 'TeX)]
[('Telemachus 'calculus)]))

The expression has the expected meaning. Each clause in the %rel establishes a fact:
Odysseus knows TeX, Telemachus knows calculus, &c. In general, if we apply the predicate

5

to the arguments in any one of its clauses, we will get a successful goal. Thus, since %knows
has a clause that reads [('Odysseus 'TeX)], the goal (%knows 'Odysseus 'TeX) will
be true.

We can now get answers for the following types of queries:

> (%which ()
(%knows 'Odysseus 'TeX))

'()
> (%which ()

(%knows 'Telemachus 'Racket))
#f

2.2 Predicates with Rules

Predicates can be more complicated than the above bald recitation of facts. The predicate
clauses can be rules, eg,

(define %computer-literate
(%rel (person)

[(person)
(%knows person 'TeX)
(%knows person 'Racket)]

[(person)
(%knows person 'TeX)
(%knows person 'Prolog)]))

This defines the predicate %computer-literate in terms of the predicate %knows. In ef-
fect, a person is defined as computer-literate if they know TeX and Racket, or TeX and
Prolog.

Note that this use of %rel employs a local logic variable called person . In general, a %rel-
expression can have a list of symbols as its second subform. These name new logic variables
that can be used within the body of the %rel.

The following query can now be answered:

> (%which ()
(%computer-literate 'Penelope))

'()

Since Penelope knows TeX and Prolog, she is computer-literate.

6

2.3 Solving Goals

The above queries are yes/no questions. Racklog programming allows more: We can formu-
late a goal with uninstantiated logic variables and then ask the querying process to provide,
if possible, values for these variables that cause the goal to succeed. For instance, the query:

> (%which (what)
(%knows 'Odysseus what))

'((what . TeX))

asks for an instantiation of the logic variable what that satisfies the goal (%knows
'Odysseus what). In other words, we are asking, “What does Odysseus know?”

Note that this use of %which — like %rel in the definition of %computer-literate —
uses a local logic variable, what . In general, the second subform of %which can be a list of
local logic variables. The %which-query returns an answer that is a list of bindings, one for
each logic variable mentioned in its second subform. Thus,

> (%which (what)
(%knows 'Odysseus what))

'((what . TeX))

But that is not all that wily Odysseus knows. Racklog provides a zero-argument procedure
(“thunk”) called %more that retries the goal in the last %which-query for a different solution.

> (%more)
'((what . Racket))

We can keep pumping for more solutions:

> (%more)
'((what . Prolog))
> (%more)
'((what . Penelope))
> (%more)
#f

The final #f shows that there are no more solutions. This is because there are no more
clauses in the %knows predicate that list Odysseus as knowing anything else.

2.4 Asserting Extra Clauses

We can add more clauses to a predicate after it has already been defined with a %rel. Rack-
log provides the %assert! form for this purpose. Eg,

7

(%assert! %knows ()
[('Odysseus 'archery)])

tacks on a new clause at the end of the existing clauses of the %knows predicate. Now, the
query:

> (%which (what)
(%knows 'Odysseus what))

'((what . TeX))

gives TeX, Racket, Prolog, and Penelope, as before, but a subsequent (%more) yields a new
result:

> (%more)
'((what . archery))

The Racklog form %assert-after! is similar to %assert! but adds clauses before any of
the current clauses.

Both %assert! and %assert-after! assume that the variable they are adding to already
names a predicate (presumably defined using %rel). In order to allow defining a predi-
cate entirely through %assert!s, Racklog provides an empty predicate value %empty-rel.
%empty-rel takes any number of arguments and always fails. A typical use of the %empty-
rel and %assert! combination:

(define %parent %empty-rel)

(%assert! %parent ()
[('Laertes 'Odysseus)])

(%assert! %parent ()
[('Odysseus 'Telemachus)]
[('Penelope 'Telemachus)])

(Racklog does not provide a predicate for retracting assertions, since we can keep track of
older versions of predicates using conventional Racket features (let and set!).)

2.5 Local Variables

The local logic variables of %rel- and %which-expressions are in reality introduced by the
Racklog syntactic form called %let. (%rel and %which are macros written using %let.)

%let introduces new lexically scoped logic variables. Supposing, instead of

8

> (%which (what)
(%knows 'Odysseus what))

'((what . TeX))

we had asked

> (%let (what)
(%which ()

(%knows 'Odysseus what)))
'()

This query, too, succeeds five times, since Odysseus knows five things. However, %which
emits bindings only for the local variables that it introduces. Thus, this query emits () five
times before (%more) finally returns #f.

However, note that, like conventional Racket let, the body forms of %let are evaluated in
turn with the last form in tail position. Thus, to combine multiple goals involving a new
logical variable introduced by %let, it is necessary to wrap the body in an %and form.

For example:

> (%which (d)
(%let (a p)

(%and (%= p (cons 1 2))
(%= p (cons a d)))))

'((d . 2))

whereas

> (%which (d)
(%let (a p)

(%= p (cons 1 2)) ; This goal is ignored
(%= p (cons a d))))

'((d . _))

9

3 Using Conventional Racket Expressions in Racklog

The arguments of Racklog predicates can be any Racket objects. In particular, composite
structures such as lists, vectors, strings, hash tables, etc can be used, as also Racket ex-
pressions using the full array of Racket’s construction and decomposition operators. For
instance, consider the following goal:

(%member x '(1 2 3))

Here, %member is a predicate, x is a logic variable, and '(1 2 3) is a structure. Given a
suitably intuitive definition for %member, the above goal succeeds for x = 1, 2, and 3.

Now to defining predicates like %member:

(define %member
(%rel (x y xs)

[(x (cons x xs))]
[(x (cons y xs))

(%member x xs)]))

Ie, %member is defined with three local variables: x, y, xs. It has two clauses, identifying
the two ways of determining membership.

The first clause of %member states a fact: For any x, x is a member of a list whose head is
also x.

The second clause of %member is a rule: x is a member of a list if we can show that it is a
member of the tail of that list. In other words, the original %member goal is translated into a
subgoal, which is also a %member goal.

Note that the variable y in the definition of %member occurs only once in the second clause.
As such, it doesn’t need you to make the effort of naming it. (Names help only in matching
a second occurrence to a first.) Racklog lets you use the expression (_) to denote an anony-
mous variable. (Ie, _ is a thunk that generates a fresh anonymous variable at each call.) The
predicate %member can be rewritten as

(define %member
(%rel (x xs)

[(x (cons x (_)))]
[(x (cons (_) xs))

(%member x xs)]))

10

3.1 Constructors

We can use constructors — Racket procedures for creating structures — to simulate data
types in Racklog. For instance, let’s define a natural-number data-type where 0 denotes
zero, and (succ x) denotes the natural number whose immediate predecessor is x. The
constructor succ can be defined in Racket as:

(define succ
(lambda (x)

(vector 'succ x)))

Addition and multiplication can be defined as:

(define %add
(%rel (x y z)

[(0 y y)]
[((succ x) y (succ z))

(%add x y z)]))

(define %times
(%rel (x y z z1)

[(0 y 0)]
[((succ x) y z)
(%times x y z1)
(%add y z1 z)]))

We can do a lot of arithmetic with this in place. For instance, the factorial predicate looks
like:

(define %factorial
(%rel (x y y1)

[(0 (succ 0))]
[((succ x) y)

(%factorial x y1)
(%times (succ x) y1 y)]))

3.2 %is

The above is a very inefficient way to do arithmetic, especially when the underlying language
Racket offers excellent arithmetic facilities (including a comprehensive number “tower” and
exact rational arithmetic). One problem with using Racket calculations directly in Racklog
clauses is that the expressions used may contain logic variables that need to be dereferenced.
Racklog provides the predicate %is that takes care of this. The goal

11

(%is X E)

unifies X with the value of E considered as a Racket expression. E can have logic variables,
but usually they should at least be bound, as unbound variables may not be palatable values
to the Racket operators used in E .

We can now directly use the numbers of Racket to write a more efficient %factorial pred-
icate:

(define %factorial
(%rel (x y x1 y1)

[(0 1)]
[(x y) (%is x1 (- x 1))

(%factorial x1 y1)
(%is y (* y1 x))]))

A price that this efficiency comes with is that we can use %factorial only with its first
argument already instantiated. In many cases, this is not an unreasonable constraint. In fact,
given this limitation, there is nothing to prevent us from using Racket’s factorial directly:

(define %factorial
(%rel (x y)

[(x y)
(%is y (racket-factorial

x))]))

or better yet, “in-line” any calls to %factorial with %is-expressions calling racket-
factorial, where the latter is defined in the usual manner:

(define racket-factorial
(lambda (n)

(if (= n 0) 1
(* n (racket-factorial

(- n 1))))))

3.3 Lexical Scoping

One can use Racket’s lexical scoping to enhance predicate definition. Here is a list-reversal
predicate defined using a hidden auxiliary predicate:

(define %reverse
(letrec

([revaux

12

(%rel (x y z w)
[('() y y)]
[((cons x y) z w)

(revaux y
(cons x z) w)])])

(%rel (x y)
[(x y) (revaux x '() y)])))

(revaux X Y Z) uses Y as an accumulator for reversing X into Z . (Y starts out as (). Each
head of X is consed on to Y . Finally, when X has wound down to (), Y contains the reversed
list and can be returned as Z .)

revaux is used purely as a helper predicate for %reverse, and so it can be concealed within
a lexical contour. We use letrec instead of let because revaux is a recursive procedure.

3.4 Type Predicates

Racklog provides a couple of predicates that let the user probe the type of objects.

The goal

(%constant X)

succeeds if X is an atomic object.

The predicate %compound, the negation of %constant, checks if its argument is not an
atomic object.

The above are merely the logic-programming equivalents of corresponding Racket predi-
cates. Users can use the predicate %is and Racket predicates to write more type checks in
Racklog. Thus, to test if X is a string, the following goal could be used:

(%is #t (string? X))

User-defined Racket predicates, in addition to primitive Racket predicates, can be thus im-
ported.

13

4 Backtracking

It is helpful to go into the following evaluation (§2.2 “Predicates with Rules”) in a little
detail:

(%which ()
(%computer-literate 'Penelope))

The starting goal is:

G0 = (%computer-literate Penelope)

(I’ve taken out the quote because Penelope is the result of evaluating 'Penelope.)

Racklog tries to match this with the head of the first clause of %computer-literate. It
succeeds, generating a binding [person . Penelope].

But this means it now has two new goals — subgoals — to solve. These are the goals in the
body of the matching clause, with the logic variables substituted by their instantiations:

G1 = (%knows Penelope TeX)
G2 = (%knows Penelope Racket)

For G1, Racklog attempts matches with the clauses of %knows, and succeeds at the fifth try.
(There are no subgoals in this case, because the bodies of these “fact” clauses are empty,
in contrast to the “rule” clauses of %computer-literate.) Racklog then tries to solve
G2 against the clauses of %knows, and since there is no clause stating that Penelope knows
Racket, it fails.

All is not lost though. Racklog now backtracks to the goal that was solved just before, viz.,
G1. It retries G1, ie, tries to solve it in a different way. This entails searching down the
previously unconsidered %knows clauses for G1, ie, the sixth onwards. Obviously, Racklog
fails again, because the fact that Penelope knows TeX occurs only once.

Racklog now backtracks to the goal before G1, ie, G0. We abandon the current successful
match with the first clause-head of %computer-literate, and try the next clause-head.
Racklog succeeds, again producing a binding [person . Penelope], and two new sub-
goals:

G3 = (%knows Penelope TeX)
G4 = (%knows Penelope Prolog)

It is now easy to trace that Racklog finds both G3 and G4 to be true. Since both of G0’s sub-
goals are true, G0 is itself considered true. And this is what Racklog reports. The interested
reader can now trace why the following query has a different denouement:

14

> (%which ()
(%computer-literate 'Telemachus))

#f

15

5 Unification

When we say that a goal matches with a clause-head, we mean that the predicate and argu-
ment positions line up. Before making this comparison, Racklog dereferences all already
bound logic variables. The resulting structures are then compared to see if they are recur-
sively identical. Thus, 1 unifies with 1, and (list 1 2) with '(1 2); but 1 and 2 do not
unify, and neither do '(1 2) and '(1 3).

In general, there could be quite a few uninstantiated logic variables in the compared objects.
Unification will then endeavor to find the most natural way of binding these variables so that
we arrive at structurally identical objects. Thus, (list x 1), where x is an unbound logic
variable, unifies with '(0 1), producing the binding [x 0].

Unification is thus a goal, and Racklog makes the unification predicate available to the user
as %=. Eg,

> (%which (x)
(%= (list x 1) '(0 1)))

'((x . 0))

Racklog also provides the predicate %/=, the negation of %=. (%/= X Y) succeeds if and
only if X does not unify with Y .

Unification goals constitute the basic subgoals that all Racklog goals devolve to. A goal
succeeds because all the eventual unification subgoals that it decomposes to in at least one
of its subgoal-branching succeeded. It fails because every possible subgoal-branching was
thwarted by the failure of a crucial unification subgoal.

Going back to the example in §4 “Backtracking”, the goal (%computer-literate 'Pene-
lope) succeeds because (a) it unified with (%computer-literate person); and then
(b) with the binding [person . Penelope] in place, (%knows person 'TeX) uni-
fied with (%knows 'Penelope 'TeX) and (%knows person 'Prolog) unified with
(%knows 'Penelope 'Prolog).

In contrast, the goal (%computer-literate 'Telemachus) fails because, with [per-
son . Telemachus], the subgoals (%knows person 'Racket) and (%knows person
'Prolog) have no facts they can unify with.

5.1 The Occurs Check

A robust unification algorithm uses the occurs check, which ensures that a logic variable isn’t
bound to a structure that contains itself. Not performing the check can cause the unification
to go into an infinite loop in some cases. On the other hand, performing the occurs check
greatly increases the time taken by unification, even in cases that wouldn’t require the check.

16

Racklog uses the global parameter use-occurs-check? to decide whether to use the occurs
check. By default, this variable is #f, ie, Racklog disables the occurs check. To enable the
check,

(use-occurs-check? #t)

17

6 Conjunctions and Disjunctions

Goals may be combined using the forms %and and %or to form compound goals. (For %not,
see §8.2 “Negation as Failure”.) Eg,

> (%which (x)
(%and (%member x '(1 2 3))

(%< x 3)))
'((x . 1))

gives solutions for x that satisfy both the argument goals of the %and. Ie, x should both be
a member of '(1 2 3) and be less than 3. Typing (%more) gives another solution:

> (%more)
'((x . 2))
> (%more)
#f

There are no more solutions, because [x 3] satisfies the first but not the second goal.

Similarly, the query

> (%which (x)
(%or (%member x '(1 2 3))

(%member x '(3 4 5))))
'((x . 1))

lists all x that are members of either list.

> (%more)
'((x . 2))
> (%more)
'((x . 3))
> (%more)
'((x . 3))
> (%more)
'((x . 4))
> (%more)
'((x . 5))

(Yes, ([x 3]) is listed twice.)

We can rewrite the predicate %computer-literate from §2.2 “Predicates with Rules” us-
ing %and and %or:

18

(define %computer-literate
(%rel (person)

[(person)
(%or

(%and (%knows person
'TeX)

(%knows person
'Racket))

(%and (%knows person
'TeX)

(%knows person
'Prolog)))]))

Or, more succinctly:

(define %computer-literate
(%rel (person)

[(person)
(%and (%knows person

'TeX)
(%or (%knows person

'Racket)
(%knows person

'Prolog)))]))

We can even dispense with the %rel altogether:

(define %computer-literate
(lambda (person)

(%and (%knows person
'TeX)

(%or (%knows person
'Racket)

(%knows person
'Prolog)))))

This last looks like a conventional Racket predicate definition, and is arguably the most
readable format for a Racket programmer.

19

7 Manipulating Racklog Variables

Racklog provides special predicates for probing logic variables, without risking their getting
bound.

7.1 Checking for Variables

The goal

(%== X Y)

succeeds if X and Y are identical objects. This is not quite the unification predicate %=, for
%== doesn’t touch unbound objects the way %= does. Eg, %== will not equate an unbound
logic variable with a bound one, nor will it equate two unbound logic variables unless they
are the same variable.

The predicate %/== is the negation of %==.

The goal

(%var X)

succeeds if X isn’t completely bound — ie, it has at least one unbound logic variable in its
innards.

The predicate %nonvar is the negation of %var.

7.2 Preserving Variables

Racklog lets the user protect a term with variables from unification by allowing that term
to be treated as a (completely) bound object. The predicates provided for this purpose are
%freeze, %melt, %melt-new, and %copy.

The goal

(%freeze S F)

unifies F to the frozen version of S . Any lack of bindings in S are preserved no matter how
much you toss F about. Frozen variables will only unify with themselves. For example, in
the following query, even though x and y are unbound, their frozen counterparts a and b will
not unify with each other:

20

> (%which (x y frozen a b)
(%freeze (list x y) (list a b))
(%= a b))

#f

However, we can unify a frozen variable with itself:

> (%which (x frozen y z)
(%freeze (list x x) (list y z))
(%= y z))

'((x . _) (frozen . _) (y . #<frozen>) (z . #<frozen>))

The goal

(%melt F S)

retrieves the object frozen in F into S ; the variables in S will be identical to those in the
original object. For example:

> (%which (x frozen melted)
(%freeze (list x x) frozen)
(%melt frozen melted)
(%= melted (list 2 2)))

'((x . 2) (frozen #<frozen> #<frozen>) (melted 2 2))

The goal

(%melt-new F S)

is similar to %melt, except that when S is made, the unbound variables in F are replaced
by brand-new unbound variables, respecting the existing equivalences between them, for
example:

> (%which (x y frozen a b c)
(%freeze (list x x y) frozen)
(%melt-new frozen (list a b c))
(%= a 'red)
(%= c 'green))

'((x . _)
(y . _)
(frozen #<frozen> #<frozen> #<frozen>)
(a . red)
(b . red)
(c . green))

21

The goal

(%copy S C)

is an abbreviation for (%freeze S F) followed by (%melt-new F C).

22

8 The Cut (!)

The cut (called !) is a special goal that is used to prune backtracking options. Like the %true
goal, the cut goal too succeeds, when accosted by the Racklog subgoaling engine. However,
when a further subgoal down the line fails, and time comes to retry the cut goal, Racklog
will refuse to try alternate clauses for the predicate in whose definition the cut occurs. In
other words, the cut causes Racklog to commit to all the decisions made from the time that
the predicate was selected to match a subgoal till the time the cut was satisfied.

For example, consider again the %factorial predicate, as defined in §3.2 “%is”:

(define %factorial
(%rel (x y x1 y1)

[(0 1)]
[(x y) (%is x1 (- x 1))

(%factorial x1 y1)
(%is y (* y1 x))]))

Clearly,

> (%which ()
(%factorial 0 1))

'()
> (%which (n)

(%factorial 0 n))
'((n . 1))

But what if we asked for (%more) for either query? Backtracking will try the second clause
of %factorial, and sure enough the clause-head unifies, producing binding [x . 0]. We
now get three subgoals. Solving the first, we get [x1 . -1], and then we have to solve
(%factorial -1 y1). It is easy to see there is no end to this, as we fruitlessly try to get
the factorials of numbers that get more and more negative.

If we placed a cut at the first clause:

...
[(0 1) !]
...

the attempt to find more solutions for (%factorial 0 1) is nipped in the bud.

Calling %factorial with a negative number would still cause an infinite loop. To take care
of that problem as well, we use another cut:

(define %factorial

23

(%rel (x y x1 y1)
[(0 1) !]
[(x y) (%< x 0) ! %fail]
[(x y) (%is x1 (- x 1))

(%factorial x1 y1)
(%is y (* y1 x))]))

> (%which ()
(%factorial 0 1))

'()
> (%more)
#f
> (%which ()

(%factorial -1 1))
#f

Using raw cuts as above can get very confusing. For this reason, it is advisable to use
it hidden away in well-understood abstractions. Two such common abstractions are the
conditional and negation.

8.1 Conditional Goals

An “if ... then ... else ...” predicate can be defined as follows

(define %if-then-else
(%rel (p q r)

[(p q r) p ! q]
[(p q r) r]))

(Note that for the first time we have predicate arguments that are themselves goals.)

Consider the goal

G0 = (%if-then-else Gbool Gthen Gelse)

We first unify G0 with the first clause-head, giving [p . Gbool], [q . Gthen], [r .
Gelse]. Gbool can now either succeed or fail.

Case 1: If Gbool fails, backtracking will cause the G0 to unify with the second clause-head.
r is bound to Gelse, and so Gelse is tried, as expected.

Case 2: If Gbool succeeds, the cut commits to this clause of the %if-then-else. We now
try Gthen. If Gthen should now fail — or even if we simply retry for more solutions —

24

we are guaranteed that the second clause-head will not be tried. If it were not for the cut,
G0 would attempt to unify with the second clause-head, which will of course succeed, and
Gelse will be tried.

8.2 Negation as Failure

Another common abstraction using the cut is negation. The negation of goal G is defined as
(%not G), where the predicate %not is defined as follows:

(define %not
(%rel (g)

[(g) g ! %fail]
[(g) %true]))

Thus, g’s negation is deemed a failure if g succeeds, and a success if g fails. This is of course
confusing goal failure with falsity. In some cases, this view of negation is actually helpful.

25

9 Set Predicates

The goal

(%bag-of X G Bag)

unifies with Bag the list of all instantiations of X for which G succeeds. Thus, the following
query asks for all the things known — ie, the collection of things such that someone knows
them:

> (%which (things-known)
(%let (someone x)

(%bag-of x (%knows someone x)
things-known)))

'((things-known
TeX
Racket
Prolog
Penelope
TeX
Prolog
Odysseus
TeX
calculus
archery))

This is the only solution for this goal:

> (%more)
#f

Note that some things — eg, TeX — are enumerated more than once. This is because more
than one person knows TeX. To remove duplicates, use the predicate %set-of instead of
%bag-of:

> (%which (things-known)
(%let (someone x)

(%set-of x (%knows someone x)
things-known)))

'((things-known TeX Racket Prolog Penelope Odysseus calculus
archery))

In the above, the free variable someone in the %knows-goal is used as if it were existentially
quantified. In contrast, Prolog’s versions of %bag-of and %set-of fix it for each solution of

26

the set-predicate goal. We can do it too with some additional syntax that identifies the free
variable. Eg,

> (%which (someone things-known)
(%let (x)

(%bag-of x
(%free-vars (someone)

(%knows someone x))
things-known)))

'((someone . Odysseus) (things-known TeX Racket Prolog Penelope))

The bag of things known by one someone is returned. That someone is Odysseus. The query
can be retried for more solutions, each listing the things known by a different someone:

> (%more)
'((someone . Penelope) (things-known TeX Prolog Odysseus))
> (%more)
'((someone . Telemachus) (things-known TeX calculus))
> (%more)
'((someone . Odysseus) (things-known archery))
> (%more)
#f

Racklog also provides two variants of these set predicates, viz., %bag-of-1 and %set-of-1.
These act like %bag-of and %set-of but fail if the resulting bag or set is empty.

27

10 Higher-order Predicates

Logic variables which contain predicates may be used as the operator in predicate expres-
sions:

> (%which ()
(%let (p)

(%and (%= p %knows)
(p 'Odysseus 'TeX))))

'()

First the logic variable p is unified with the predicate %knows. In the expression

(p 'Odysseus 'TeX)

p is replaced by its value %knows to become

(%knows 'Odysseus 'TeX)

which succeeds.

This allows us to reason about predicates themselves. For example:

> (%which (p)
(%member p (list %knows %parent))
(p 'Odysseus 'Penelope))

'((p . #<procedure:relation>))
> (%more)
#f

Here we test which of the predicates %knows and %parent succeed when given the argu-
ments 'Odysseus and 'Penelope.

The goal (%knows 'Odysseus 'Penelope) succeeds, but (%parent 'Odysseus
'Penelope) fails. Hence the only possible value for p is %knows.

However, logic variables used as a predicate must be instantiated. Since the set of defined
predicates is not enumerable by Racklog, an unbound query will fail:

> (%which (p) (p 'Odysseus 'Penelope))
#f

We can define a higher-order predicate which tests for unary predicates that succeed with
'Odysseus as their argument:

28

(define (%odyssean p)
(p 'Odysseus))

For example:

> (%which () (%odyssean %computer-literate))
'()

This succeeds because (%computer-literate 'Odysseus) succeeds.

> (%which () (%odyssean %compound))
#f

This fails because (%compound 'Odysseus) fails.

This also works if the predicate argument is a logic variable:

> (%which (p)
(%member p (list %computer-literate %compound))
(%odyssean p))

'((p . #<procedure:%computer-literate>))

Compare this with the example above.

Racklog also provides two predicates for defining relations involving arbitrary predicates.

10.1 %apply

The %apply predicate is analogous to convential Racket apply.

The goal

(%apply P L)

succeeds if L is a list with elements E, ..., and if P is a predicate that accepts as many argu-
ments as there are Es, and if the goal (P E ...) succeeds. For example:

> (%which () (%apply %knows '(Odysseus TeX)))
'()

In this case, the goal

(%apply %knows '(Odysseus TeX))

29

is equivalent to

(%knows 'Odysseus 'TeX)

The list argument to %apply must be sufficiently instantiated to determine its length. The
following goals succeed:

> (%which () (%apply %knows (list 'Odysseus 'TeX)))
'()
> (%which (X) (%apply %knows (list X 'TeX)))
'((X . Odysseus))

but it is not possible to use %apply with a list of unknown length:

> (%which (X Y) (%apply %knows (cons X Y)))
#f

10.2 %andmap

The %andmap predicate is analogous to convential Racket andmap.

The goal

(%andmap P L ...+)

succeeds if all the Ls are lists of equal length, and the goal (P E ...) succeeds for each set
of elements E, ... of the Ls. For example:

> (%which () (%andmap %knows '(Odysseus Penelope) '(TeX Prolog)))
'()

In this case, the goal

(%andmap %knows '(Odysseus Penelope) '(TeX Prolog))

is equivalent to

(%and (%knows 'Odysseus 'TeX)
(%knows 'Penelope 'Prolog))

30

11 Racklog Module Language

#lang racklog package: racklog

This module language accepts the syntax of Datalog (except clauses need not be safe) and
compiles each predicate to a relation.

The accepted syntax is available in the §1 “Datalog Module Language” documentation.

31

https://pkgs.racket-lang.org/package/racklog

12 Glossary of Racklog Primitives

12.1 Racket Predicates

(logic-var? x) Ñ boolean?
x : any/c

Identifies a logic variable.

(atomic-struct? x) Ñ boolean?
x : any/c

Identifies structures that the (current-inspector) cannot inspect.

(atom? x) Ñ boolean?
x : any/c

Identifies atomic values that may appear in Racklog programs. Equivalent to the
contract (or/c boolean? number? string? bytes? char? symbol? regexp?
pregexp? byte-regexp? byte-pregexp? keyword? null? procedure? void?
set? atomic-struct?).

(compound-struct? x) Ñ boolean?
x : any/c

Identifies structures that the (current-inspector) can inspect.

(compound? x) Ñ boolean?
x : any/c

Identifies compound values that may appear in Racklog programs. Equivalent to the contract
(or/c pair? vector? mpair? box? hash? compound-struct?).

(unifiable? x) Ñ boolean?
x : any/c

Identifies values that may appear in Racklog programs. Essentially either an atom?, logic-
var?, or compound? that contains unifiable?s.

(answer-value? x) Ñ boolean?
x : any/c

Identifies values that may appear in answer?. Essentially unifiable?s that do not contain
logic-var?s.

32

(answer? x) Ñ boolean?
x : any/c

Identifies answers returned by %more and %which. Equivalent to the contract (or/c
false/c (listof (cons/c symbol? answer-value?))).

goal/c : contract?

A contract for goals.

12.2 User Interface

(%which (V ...) G ...)

V : identifier?

G : goal/c

Returns an answer? of the variables V , ..., that satisfies all of G , ... If G , ..., cannot be
satisfied, returns #f. Calling the thunk %more produces more instantiations, if available.

(%more) Ñ answer?

The thunk %more produces more instantiations of the variables in the most recent %which-
form that satisfy the goals in that %which-form. If no more solutions can be found, %more
returns #f.

(%find-all (V ...) G ...)

V : identifier?

G : goal/c

Like (list (%which (V ...) G ...) (%more) ...) with as many (%more)s as there
are answers. (This will not terminate if there are an infinite number of answers.)

12.3 Relations

(%rel (V ...) clause ...)

clause = [(E ...) G ...]

33

V : identifier?

E : expression?

G : goal/c

Returns a predicate function. Each clause C signifies that the goal created by applying the
predicate object to anything that matches (E ...) is deemed to succeed if all the goals G ,
..., can, in their turn, be shown to succeed. The variables V , ..., are local logic variables for
clause ,

(%empty-rel E ...) Ñ goal/c
E : unifiable?

The goal (%empty-rel E ...) always fails. The value %empty-rel is used as a starting
value for predicates that can later be enhanced with %assert! and %assert-after!.

(%assert! Pname (V ...) clause ...)

Pname : identifier?

V : identifier?

Adds the clauses clauses, ..., to the end of the predicate that is the value of the Racket
variable Pname . The variables V , ..., are local logic variables for clause ,

(%assert-after! Pname (V ...) clause ...)

Pname : identifier?

V : identifier?

Like %assert!, but adds the new clauses to the front of the existing predicate.

12.4 Racklog Variables

(_) Ñ logic-var?

A thunk that produces a new logic variable. Can be used in situations where we want a logic
variable but don’t want to name it. (%let, in contrast, introduces new lexical names for the
logic variables it creates.)

(%let (V ...) expr ...)

V : identifier?

Introduces V , ..., as lexically scoped logic variables to be used in expr , ...

34

12.5 Cut

(%cut-delimiter . any)

Introduces a cut point. See §8 “The Cut (!)”.

!

The cut goal, see §8 “The Cut (!)”.

May only be used syntactically inside %cut-delimiter or %rel.

12.6 Racklog Operators

%fail : goal/c

The goal %fail always fails.

%true : goal/c

The goal %true succeeds. Fails on retry.

(%repeat) Ñ goal/c

The goal (%repeat) always succeeds (even on retries). Useful for failure-driven loops.

(%and G ...)

G : goal/c

The goal (%and G ...) succeeds if all the goals G , ..., succeed.

(%or G ...)

G : goal/c

The goal (%or G ...) succeeds if one of G , ..., tried in that order, succeeds.

(%not G) Ñ goal/c
G : goal/c

The goal (%not G) succeeds if G fails.

35

(%if-then-else G1 G2 G3) Ñ goal/c
G1 : goal/c
G2 : goal/c
G3 : goal/c

The goal (%if-then-else G1 G2 G3) tries G1 first: if it succeeds, tries G2 ; if not, tries
G3 .

12.7 Unification

(%= E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%= E1 E2) succeeds if E1 can be unified with E2 . Any resulting bindings for
logic variables are kept.

(%/= E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

%/= is the negation of %=. The goal (%/= E1 E2) succeeds if E1 can not be unified with
E2 .

(%== E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%== E1 E2) succeeds if E1 is identical to E2 . They should be structurally
equal. If containing logic variables, they should have the same variables in the same position.
Unlike a %=-call, this goal will not bind any logic variables.

(%/== E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

%/== is the negation of %==. The goal (%/== E1 E2) succeeds if E1 and E2 are not
identical.

(%is E1 E2)

The goal (%is E1 E2) unifies with E1 the result of evaluating E2 as a Racket expression.
E2 may contain logic variables, which are dereferenced automatically. Fails if E2 contains
unbound logic variables.

36

(use-occurs-check?) Ñ boolean?
(use-occurs-check? on?) Ñ void?

on? : boolean?

If this is false (the default), Racklog’s unification will not use the occurs check. If it is true,
the occurs check is enabled.

12.8 Numeric Predicates

(%< E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%< E1 E2) succeeds if E1 and E2 are bound to numbers and E1 is less than E2 .

(%<= E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%<= E1 E2) succeeds if E1 and E2 are bound to numbers and E1 is less than or
equal to E2 .

(%=/= E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%=/= E1 E2) succeeds if E1 and E2 are bound to numbers and E1 is not equal
to E2 .

(%=:= E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%=:= E1 E2) succeeds if E1 and E2 are bound to numbers and E1 is equal to
E2 .

(%> E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%> E1 E2) succeeds if E1 and E2 are bound to numbers and E1 is greater than
E2 .

37

(%>= E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%>= E1 E2) succeeds if E1 and E2 are bound to numbers and E1 is greater than
or equal to E2 .

12.9 List Predicates

(%append E1 E2 E3) Ñ goal/c
E1 : unifiable?
E2 : unifiable?
E3 : unifiable?

The goal (%append E1 E2 E3) succeeds if E3 is unifiable with the list obtained by ap-
pending E1 and E2 .

(%member E1 E2) Ñ goal/c
E1 : unifiable?
E2 : unifiable?

The goal (%member E1 E2) succeeds if E1 is a member of the list in E2 .

12.10 Set Predicates

(%set-of E1 G E2) Ñ goal/c
E1 : unifiable?
G : goal/c
E2 : unifiable?

The goal (%set-of E1 G E2) unifies with E2 the set of all the instantiations of E1 for
which goal G succeeds.

(%set-of-1 E1 G E2) Ñ goal/c
E1 : unifiable?
G : goal/c
E2 : unifiable?

Similar to %set-of, but fails if the set is empty.

38

(%bag-of E1 G E2) Ñ goal/c
E1 : unifiable?
G : goal/c
E2 : unifiable?

The goal (%bag-of E1 G E2) unifies with E2 the bag (multiset) of all the instantiations
of E1 for which goal G succeeds.

(%bag-of-1 E1 G E2) Ñ goal/c
E1 : unifiable?
G : goal/c
E2 : unifiable?

Similar to %bag-of, but fails if the bag is empty.

(%free-vars (V ...) G)

V : identifier?

G : goal/c

Identifies the occurrences of the variables V , ..., in goal G as free. It is used to avoid existen-
tial quantification in calls to set predicates (%bag-of, %set-of, &c.).

12.11 Racklog Predicates

(%compound E) Ñ goal/c
E : unifiable?

The goal (%compound E) succeeds if E is a compound value.

(%constant E) Ñ goal/c
E : unifiable?

The goal (%constant E) succeeds if E is an atomic value.

(%var E) Ñ goal/c
E : unifiable?

The goal (%var E) succeeds if E is not completely instantiated, ie, it has at least one un-
bound variable in it.

39

(%nonvar E) Ñ goal/c
E : unifiable?

%nonvar is the negation of %var. The goal (%nonvar E) succeeds if E is completely
instantiated, ie, it has no unbound variable in it.

12.12 Higher-order Predicates

(%apply P L) Ñ goal/c
P : unifiable?
L : unifiable?

The goal (%apply P L) succeeds if L is a list with elements E, ..., and if P is a predicate
accepting as many arguments as there are Es, and if the goal (P E ...) succeeds.

The goal will fail if L is not sufficiently instantiated to determine its length.

For example, the goal

(%apply %= (list 1 X))

is equivalent to

(%= 1 X)

which succeeds if X can be unified with 1.

(%andmap P L ...+) Ñ goal/c
P : unifiable?
L : unifiable?

The goal (%andmap P L ...) succeeds if all the values L , ..., are lists of equal length, and
if the goal (P E ...) succeeds for each set of values E, ..., taken in turn from each of the
lists L , ...

As an example, in particular the goal (%andmap %<= '(1 2 3) '(4 5 6)) is equivalent
to

(%and (%<= 1 4)
(%<= 2 5)
(%<= 3 6))

40

12.13 Racklog Variable Manipulation

(%freeze S F) Ñ goal/c
S : unifiable?
F : unifiable?

The goal (%freeze S F) unifies with F a new frozen version of the structure in S . Freezing
implies that all the unbound variables are preserved. F can henceforth be used as bound
object with no fear of its variables getting bound by unification.

(%melt F S) Ñ goal/c
F : unifiable?
S : unifiable?

The goal (%melt F S) unifies S with the thawed (original) form of the frozen structure in
F .

(%melt-new F S) Ñ goal/c
F : unifiable?
S : unifiable?

The goal (%melt-new F S) unifies S with a thawed copy of the frozen structure in F . This
means new logic variables are used for unbound logic variables in F .

(%copy F S) Ñ goal/c
F : unifiable?
S : unifiable?

The goal (%copy F S) unifies with S a copy of the frozen structure in F .

41

Bibliography

[aop] Leon Sterling and Ehud Shapiro, The Art of Prolog, 2nd Edition, MIT
Press, 1994. http://mitpress.mit.edu/books/art-prolog

[bratko] Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-
Wesley, 1986.

[campbell] J A Campbell (editor), Implementations of Prolog, Ellis Horwood, 1984.
[ok:prolog] Richard A O’Keefe, The Craft of Prolog, MIT Press, 1990.

http://mitpress.mit.edu/books/craft-prolog
[logick] Christopher T Haynes, “Logic continuations,” J Logic Program, vol 4,

157–176, 1987.
[mf:prolog] Matthias Felleisen, “Transliterating Prolog into Scheme,” Indiana U

Comp Sci Dept Tech Report #182, 1985.

42

http://mitpress.mit.edu/books/art-prolog
http://mitpress.mit.edu/books/craft-prolog

	1 Simple Goals and Queries
	2 Predicates
	2.1 Predicates Introducing Facts
	2.2 Predicates with Rules
	2.3 Solving Goals
	2.4 Asserting Extra Clauses
	2.5 Local Variables

	3 Using Conventional Racket Expressions in Racklog
	3.1 Constructors
	3.2 %is
	3.3 Lexical Scoping
	3.4 Type Predicates

	4 Backtracking
	5 Unification
	5.1 The Occurs Check

	6 Conjunctions and Disjunctions
	7 Manipulating Racklog Variables
	7.1 Checking for Variables
	7.2 Preserving Variables

	8 The Cut (!)
	8.1 Conditional Goals
	8.2 Negation as Failure

	9 Set Predicates
	10 Higher-order Predicates
	10.1 %apply
	10.2 %andmap

	11 Racklog Module Language
	12 Glossary of Racklog Primitives
	12.1 Racket Predicates
	12.2 User Interface
	12.3 Relations
	12.4 Racklog Variables
	12.5 Cut
	12.6 Racklog Operators
	12.7 Unification
	12.8 Numeric Predicates
	12.9 List Predicates
	12.10 Set Predicates
	12.11 Racklog Predicates
	12.12 Higher-order Predicates
	12.13 Racklog Variable Manipulation

	Bibliography

