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1 Quick Start

Given a module written in the racket language, using Typed Racket requires the following
steps:

1. Change the language to typed/racket.

2. Change the uses of (require mod) to (require typed/mod).

3. Annotate structure definitions and top-level definitions with their types.

Then, when the program is run, it will automatically be typechecked before any execution,
and any type errors will be reported. If there are any type errors, the program will not run.

Here is an example program, written in the racket language:

#lang racket
(struct pt (x y))

; distance : pt pt -> real
(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
(sqr (- (pt-y p2) (pt-y p1))))))

Here is the same program, in typed/racket:

#lang typed/racket
(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))
(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
(sqr (- (pt-y p2) (pt-y p1))))))

1.1 Using Typed Racket from the Racket REPL

It is possible to use Typed Racket from the Racket REPL. To do so, start Racket with the
following command line:

racket -I typed/racket
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2 Beginning Typed Racket

Recall the typed module from §1 “Quick Start”:

#lang typed/racket
(struct pt ([x : Real] [y : Real]))

(: distance (-> pt pt Real))
(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
(sqr (- (pt-y p2) (pt-y p1))))))

Let us consider each element of this program in turn.

#lang typed/racket

This specifies that the module is written in the typed/racket language, which is a typed
version of the racket language. Typed versions of other languages are provided as well; for
example, the typed/racket/base language corresponds to racket/base.

(struct pt ([x : Real] [y : Real]))
Typed Racket
provides modified
versions of core
Racket forms,
which permit type
annotations.
Previous versions of
Typed Racket
provided these with
a : suffix, but these
are now only
included as legacy
forms for
backwards
compatibility.

This defines a new structure, named pt, with two fields, x and y. Both fields are specified
to have the type Real, which corresponds to the real numbers. The struct form corre-
sponds to its untyped counterpart from racket—when porting a program from racket to
typed/racket, simply add type annotations to existing field declarations.

(: distance (-> pt pt Real))

This declares that distance has the type (-> pt pt Real).

The type (-> pt pt Real) is a function type, that is, the type of a procedure. The input
type, or domain, is two arguments of type pt, which refers to an instance of the pt structure.
The -> indicates that this is a function type. The range type, or output type, is the last
element in the function type, in this case Real.

If you are familiar with contracts, the notation for function types is similar to function con-
tract combinators.

(define (distance p1 p2)
(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))

(sqr (- (pt-y p2) (pt-y p1))))))

This definition is unchanged from the untyped version of the code. The goal of Typed Racket
is to allow almost all definitions to be typechecked without change. The typechecker verifies
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that the body of the function has the type Real, under the assumption that p1 and p2 have
type pt, taking these types from the earlier type declaration. Since the body does have this
type, the program is accepted.

In the Typed Racket REPL, calling distance will show the result as usual and will also
print the result’s type:

> (distance (pt 0 0) (pt 3.1415 2.7172))
- : Real
4.153576541969583

Just evaluating the function name will print the function value and its type, which can be use-
ful for discovering the types that Typed Racket ascribes to Racket functions. Alternatively,
the :print-type command will just print the type:

> distance
- : (-> pt pt Real)
#<procedure:distance>
> string-length
- : (-> String Index)
#<procedure:string-length>
> (:print-type string-ref)
(-> String Integer Char)

2.1 Datatypes and Unions

Many data structures involve multiple variants. In Typed Racket, we represent these using
union types, written (U t1 t2 ...).

#lang typed/racket
(define-type Tree (U leaf node))
(struct leaf ([val : Number]))
(struct node ([left : Tree] [right : Tree]))

(: tree-height (-> Tree Integer))
(define (tree-height t)

(cond [(leaf? t) 1]
[else (max (+ 1 (tree-height (node-left t)))

(+ 1 (tree-height (node-right t))))]))

(: tree-sum (-> Tree Number))
(define (tree-sum t)

(cond [(leaf? t) (leaf-val t)]
[else (+ (tree-sum (node-left t))

(tree-sum (node-right t)))]))
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In this module, we have defined two new datatypes: leaf and node. We’ve also defined
the type name Tree to be (U node leaf), which represents a binary tree of numbers. In
essence, we are saying that the tree-height function accepts a Tree, which is either a
node or a leaf, and produces a number.

In order to calculate interesting facts about trees, we have to take them apart and get at their
contents. But since accessors such as node-left require a node as input, not a Tree, we
have to determine which kind of input we were passed.

For this purpose, we use the predicates that come with each defined structure. For example,
the leaf? predicate distinguishes leafs from all other Typed Racket values. Therefore, in
the first branch of the cond clause in tree-sum, we know that t is a leaf, and therefore we
can get its value with the leaf-val function.

In the else clauses of both functions, we know that t is not a leaf, and since the type of t
was Tree by process of elimination we can determine that t must be a node. Therefore, we
can use accessors such as node-left and node-right with t as input.

The process by which Typed Racket type-checks the bodies of the cond clauses, using in-
formation from the predicate checks, is called occurrence typing and is described in detail in
§5 “Occurrence Typing”.

2.2 Type Errors

When Typed Racket detects a type error in the module, it raises an error before running the
program.

Example:

> (add1 "not a number")
eval:9:0: Type Checker: type mismatch

expected: Number
given: String
in: "not a number"
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3 Specifying Types

The previous section introduced the basics of the Typed Racket type system. In this section,
we will see several new features of the language, allowing types to be specified and used.

3.1 Type Annotation and Binding Forms

In general, variables in Typed Racket must be annotated with their type. A later subsection
(§3.2.1 “When do you need type annotations?”) introduces a heuristic which more precisely
details when type annotations are needed.

3.1.1 Annotating Definitions

We have already seen the : type annotation form. This is useful for definitions, at both the
top level of a module

(: x Number)
(define x 7)

and in an internal definition

(let ()
(: x Number)
(define x 7)
(add1 x))

In addition to the : form, almost all binding forms from racket are replaced with coun-
terparts which allow the specification of types. Typed Racket’s define form allows the
definition of variables in both top-level and internal contexts.

(define x : Number 7)
(define (id [z : Number]) : Number z)

Here, x has the type Number, and id has the type (-> Number Number). In the body of
id, z has the type Number.

3.1.2 Annotating Local Binding

(let ([x : Number 7])
(add1 x))
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The let form is exactly like let from racket, but type annotations may be provided for
each variable bound. Here, x is given the type Number. The let* and letrec are similar.
Annotations are optional with let and variants.

(let-values ([([x : Number] [y : String]) (values 7 "hello")])
(+ x (string-length y)))

The let*-values and letrec-values forms are similar.

3.1.3 Annotating Functions

Function expressions also bind variables, which can be annotated with types. This function
expects two arguments, a Number and a String:

(lambda ([x : Number] [y : String]) (+ x 5))

This function accepts at least one String, followed by arbitrarily many Numbers. In the
body, y is a list of Numbers.

(lambda ([x : String] . [y : Number *]) (apply + y))

This function has the type (-> String Number * Number). To specify the return type,
add a type annotation after the arguments:

(lambda ([x : String] . [y : Number *]) : (U Number String) (apply + y))

Functions defined by cases may also be annotated:

(case-lambda [() 0]
[([x : Number]) x])

This function has the type (case-> (-> Number) (-> Number Number)). To specify
the return type, either annotate the entire function or use the expression annotation form
(ann) inside each case.

3.1.4 Annotating Single Variables

When a single variable binding needs annotation, the annotation can be applied to a single
variable using a reader extension:

(let ([#{x : Number} 7]) (add1 x))
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This is equivalent to the earlier use of let. This is mostly useful for binding forms which
do not have counterparts provided by Typed Racket, such as match:

(: assert-symbols! ((Listof Any) -> (Listof Symbol)))
(define (assert-symbols! lst)

(match lst
[(list (? symbol? #{s : (Listof Symbol)}) ...) s]
[_ (error "expected only symbols, given" lst)]))

3.1.5 Annotating Expressions

It is also possible to provide an expected type for a particular expression.

(ann (+ 7 1) Number)

This ensures that the expression, here (+ 7 1), has the desired type, here Number. Other-
wise, the type checker signals an error. For example:

> (ann "not a number" Number)
eval:2:0: Type Checker: type mismatch

expected: Number
given: String
in: Number

3.2 Type Inference

In many cases, type annotations can be avoided where Typed Racket can infer them. For
example, the types of all local bindings using let and let* can be inferred.

(let ([x 7]) (add1 x))

In this example, x has the type Exact-Positive-Integer.

Similarly, top-level constant definitions do not require annotation:

(define y "foo")

In this examples, y has the type String.

Finally, the parameter types for loops are inferred from their initial values.

(let loop ([x 0] [y (list 1 2 3)])
(if (null? y) x (loop (+ x (car y)) (cdr y))))
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Here x has the inferred type Integer, and y has the inferred type (Listof Integer). The
loop variable has type (-> Integer (Listof Integer) Integer).

3.2.1 When do you need type annotations?

The last several subsections explained several ways to add type annotations and explained
that type inference allows some annotations to be left out. Since annotations can often be
omitted, it is helpful to know the situations in which they are actually required.

The following four rules of thumb will usually suffice to determine if a type annotation is
necessary.

An expression or definition needs a type annotation if it:

• is a define form for a function,

• is a lambda that is immediately bound to a variable,

• is a lambda that is an argument to a polymorphic function, or

• is defining a mutable variable.

Here are examples that correspond to each of the cases above:

Example 1:

(: fn (-> String Symbol))
(define (fn str) ...)

Example 2:

(: fn (-> String Symbol))
(define fn (lambda (str) ...))

Example 3:

(map (lambda ([n : Integer]) (add1 n)) '(1 2 3))

Example 4:

(: maybe-animal (Option String))
(define maybe-animal #f)
(set! maybe-animal "Odontodactylus scyllarus")

In all four cases, if the type annotation is omitted then the inferred type will often be too
conservative (e.g., Any) and the code may not type-check.
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3.3 New Type Names

Any type can be given a name with define-type.

(define-type NN (-> Number Number))

Anywhere the name NN is used, it is expanded to (-> Number Number). Type names may
be recursive or even mutually recursive.
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4 Types in Typed Racket

Typed Racket provides a rich variety of types to describe data. This section introduces them.

4.1 Basic Types

The most basic types in Typed Racket are those for primitive data, such as True and False
for booleans, String for strings, and Char for characters.

> '"hello, world"
- : String
"hello, world"
> #\f
- : Char
#\f
> #t
- : True
#t
> #f
- : False
#f

Each symbol is given a unique type containing only that symbol. The Symbol type includes
all symbols.

> 'foo
- : 'foo
'foo
> 'bar
- : 'bar
'bar

Typed Racket also provides a rich hierarchy for describing particular kinds of numbers.

> 0
- : Integer [more precisely: Zero]
0
> -7
- : Integer [more precisely: Negative-Fixnum]
-7
> 14
- : Integer [more precisely: Positive-Byte]
14
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> 3.2
- : Flonum [more precisely: Positive-Float-No-NaN]
3.2
> 7.0+2.8i
- : Float-Complex
7.0+2.8i

Finally, any value is itself a type:

> (ann 23 23)
- : Integer [more precisely: 23]
23

4.2 Function Types

We have already seen some examples of function types. Function types are constructed
using ->, where the last type is the result type and the others are the argument types. Here
are some example function types:

(-> Number Number)
(-> String String Boolean)
(-> Char (Values String Natural))

The first type requires a Number as input, and produces a Number. The second requires two
arguments. The third takes one argument, and produces multiple values, of types String
and Natural. Here are example functions for each of these types.

> (lambda ([x : Number]) x)
- : (-> Number Number)
#<procedure>
> (lambda ([a : String] [b : String]) (equal? a b))
- : (-> String String Boolean)
#<procedure>
> (lambda ([c : Char]) (values (string c) (char->integer c)))
- : (-> Char (values (String : (Top | Bot)) (Index : (Top |
Bot))))
#<procedure>

4.3 Types for Functions with Optional or Keyword Arguments

Racket functions often take optional or keyword arguments in addition to standard manda-
tory arguments. Types for these functions can be written concisely using the ->* type con-
structor. Here are some examples:
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(->* () (Number) Number)
(->* (String String) Boolean)
(->* (#:x Number) (#:y Number) (values Number Number))

The first type describes a function that has no mandatory arguments, one optional argument
with type Number, and returns a Number.

The second requires two mandatory arguments, no optional arguments, and produces a
Boolean. This function type could have been written using -> as (-> String String
Boolean).

The third requires a mandatory keyword argument with the keyword #:x and accepts an
optional argument with keyword #:y. The result is two values of type Number.

4.4 Union Types

Sometimes a value can be one of several types. To specify this, we can use a union type,
written with the type constructor U.

> (let ([a-number 37])
(if (even? a-number)

'yes
'no))

- : (U 'no 'yes)
'no

Any number of types can be combined together in a union, and nested unions are flattened.

(U Number String Boolean Char)

4.5 Recursive Types

Recursive types are types whose definitions refer to themselves. This allows a type to de-
scribe an infinite family of data. For example, this is the type of binary trees of numbers. Recursive types can

also be created
anonymously
without the use of
define-type
using the Rec type
constructor.

(define-type BinaryTree (U Number (Pair BinaryTree BinaryTree)))

Types can also be mutually recursive. For example, the above type defintion could also be
written like this.

(define-type BinaryTree (U BinaryTreeLeaf BinaryTreeNode))
(define-type BinaryTreeLeaf Number)
(define-type BinaryTreeNode (Pair BinaryTree BinaryTree))
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Of course, all recursive types must pass the contractivity check. In other words, types which
directly refer to themselves are not permitted. They must be used as arguments to productive
type constructors, such as Listof and Pairof. For example, of the following definitions,
only the last is legal.

> (define-type BinaryTree BinaryTree)
eval:18:0: Type Checker: Error in macro expansion -- parse
error in type;

not in a productive position
variable: BinaryTree
in: BinaryTree

> (define-type BinaryTree (U Number BinaryTree))
eval:19:0: Type Checker: Error in macro expansion -- parse
error in type;

not in a productive position
variable: BinaryTree
in: BinaryTree

> (define-type BinaryTree (U Number (Listof BinaryTree)))

4.6 Structure Types

Using struct introduces new types, distinct from any previous type.

(struct point ([x : Real] [y : Real]))

Instances of this structure, such as (point 7 12), have type point.

If a struct supertype is provided, then the newly defined type is a subtype of the parent.

4.7 Types for Structure Type Properties

To annotate a new structure type property created by make-struct-type-property, it
must be defined via define-values at the top level or module level:

> (: prop:foo (Struct-Property (-> Self Number)))
> (: foo-pred (-> Any Boolean : (Has-Struct-Property prop:foo)))
> (: foo-accessor (-> (Has-Struct-Property prop:foo)

(Some (X) (-> X Number) : #:+ X)))
> (define-values (prop:foo foo-pred foo-accessor)

(make-struct-type-property 'foo))

Struct-Property creates a type for a structure type property descriptor and its argument is
the expected type for property values. In particular, when a structure type property expects
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a function to be applied with the receiver, a structure instance the property value is extracted
from, Self is used to denotes the receiver type. For a value in supplied in a struct defini-
tion for such a property, we use the structure type for a by-position parameter for Self:

(struct apple ([a : Number])
#:property prop:foo
(lambda ([me : apple]) : Number

(apple-a me)))

A property predicate tells the arguments variable is a Has-Struct-Property if the predi-
cate check succeeds. Has-Struct-Property describes a subtyping relation between struc-
ture types and properties attached to them. In the example above, apple is a subtype of
(Has-Struct-Property prop:foo)

For a property accessor procedure, the argument must have a Has-Struct-Property type.
If a property expects a value to be a function called with the receiver, i.e. Self appears
in the type of the corresponding property descriptor, an existential type result is required.
Its quantifier needs to correspond to Self and also appear in the proposition. Such a
return type ensures that the extracted function cannot be called with another instance of the
structure type or substructure types other than the receiver:

> (let ([a1 : apple (apple 42)])
((foo-accessor a1) a1))

- : Number
42
> (let ([a1 : apple (apple 42)])

((foo-accessor a1) (apple 10)))
eval:27:0: Type Checker: type mismatch

expected: X
given: apple
in: 10

Otherwise, the return type should be the same as the type argument to Struct-Property
for the descriptor.

4.8 Subtyping

In Typed Racket, all types are placed in a hierarchy, based on what values are included in
the type. When an element of a larger type is expected, an element of a smaller type may be
provided. The smaller type is called a subtype of the larger type. The larger type is called a
supertype. For example, Integer is a subtype of Real, since every integer is a real number.
Therefore, the following code is acceptable to the type checker:

(: f (-> Real Real))
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(define (f x) (* x 0.75))

(: x Integer)
(define x -125)

(f x)

All types are subtypes of the Any type.

The elements of a union type are individually subtypes of the whole union, so String is
a subtype of (U String Number). One function type is a subtype of another if they have
the same number of arguments, the subtype’s arguments are more permissive (is a super-
type), and the subtype’s result type is less permissive (is a subtype). For example, (-> Any
String) is a subtype of (-> Number (U String #f)).

4.9 Polymorphism

Typed Racket offers abstraction over types as well as values. This allows the definition of
functions that use parametric polymorphism.

4.9.1 Type Constructors

Types for built-in collections are created by built-in type constructors. Users can also define
their own type constructors through define-type.

Note that types and type constructors are different. If a type constructor is used in a position
where a type, the type checker will report a type error:

> (ann 10 (Listof Listof))
eval:28:0: Type Checker: Error in macro expansion -- parse
error in type;

expected a valid type not a type constructor
given: Listof
in: Listof

Conversely, types cannot be used as type constructors:

> (ann 10 (Number Number))
eval:29:0: Type Checker: Error in macro expansion -- parse
error in type;

bad syntax in type application: expected a type constructor
given a type: Number
in: (Number Number)
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4.9.2 Polymorphic Data Structures

Virtually every Racket program uses lists and other collections. Fortunately, Typed Racket
can handle these as well. A simple list processing program can be written like this:

#lang typed/racket
(: sum-list (-> (Listof Number) Number))
(define (sum-list l)

(cond [(null? l) 0]
[else (+ (car l) (sum-list (cdr l)))]))

This looks similar to our earlier programs — except for the type of l, which looks like a
function application. In fact, it’s a use of the type constructor Listof, which takes another
type as its input, here Number. We can use Listof to construct the type of any kind of list
we might want.

We can define our own type constructors as well. For example, here is an analog of the
Maybe type constructor from Haskell:

#lang typed/racket
(struct Nothing ())
(struct (A) Just ([v : A]))

(define-type (Maybe A) (U Nothing (Just A)))

(: find (-> Number (Listof Number) (Maybe Number)))
(define (find v l)

(cond [(null? l) (Nothing)]
[(= v (car l)) (Just v)]
[else (find v (cdr l))]))

The first struct defines Nothing to be a structure with no contents.

The second definition

(struct (A) Just ([v : A]))

creates a type constructor, Just, and defines a namesake structure with one element, whose
type is that of the type argument to Just. Here the type parameters (only one, A, in this case)
are written before the type name, and can be referred to in the types of the fields.

The type definiton

(define-type (Maybe A) (U Nothing (Just A)))
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creates a type constructor — Maybe is a potential container for whatever type is supplied.

The find function takes a number v and list, and produces (Just v) when the number is
found in the list, and (Nothing) otherwise. Therefore, it produces a (Maybe Number), just
as the annotation specified.

4.9.3 Polymorphic Functions

Sometimes functions over polymorphic data structures only concern themselves with the
form of the structure. For example, one might write a function that takes the length of a list
of numbers:

#lang typed/racket
(: list-number-length (-> (Listof Number) Integer))
(define (list-number-length l)

(if (null? l)
0
(add1 (list-number-length (cdr l)))))

and also a function that takes the length of a list of strings:

#lang typed/racket
(: list-string-length (-> (Listof String) Integer))
(define (list-string-length l)

(if (null? l)
0
(add1 (list-string-length (cdr l)))))

Notice that both of these functions have almost exactly the same definition; the only dif-
ference is the name of the function. This is because neither function uses the type of the
elements in the definition.

We can abstract over the type of the element as follows:

#lang typed/racket
(: list-length (All (A) (-> (Listof A) Integer)))
(define (list-length l)

(if (null? l)
0
(add1 (list-length (cdr l)))))

The new type constructor All takes a list of type variables and a body type. The type
variables are allowed to appear free in the body of the All form.
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4.9.4 Lexically Scoped Type Variables

When the : type annotation form includes type variables for parametric polymorphism, the
type variables are lexically scoped. In other words, the type variables are bound in the body
of the definition that you annotate.

For example, the following definition of my-id uses the type variable a to annotate the
argument x :

(: my-id (All (a) (-> a a)))
(define my-id (lambda ([x : a]) x))

Lexical scope also implies that type variables can be shadowed, such as in the following
example:

(: my-id (All (a) (-> a a)))
(define my-id

(lambda ([x : a])
(: helper (All (a) (-> a a)))
(define helper

(lambda ([y : a]) y))
(helper x)))

The reference to a inside the inner lambda refers to the type variable in helper ’s annota-
tion. That a is not the same as the a in the annotation of the outer lambda expression.

4.10 Variable-Arity Functions: Programming with Rest Arguments

Typed Racket can handle some uses of rest arguments.

4.10.1 Uniform Variable-Arity Functions

In Racket, one can write a function that takes an arbitrary number of arguments as follows:

#lang racket
(define (sum . xs)

(if (null? xs)
0
(+ (car xs) (apply sum (cdr xs)))))

(sum)
(sum 1 2 3 4)
(sum 1 3)
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The arguments to the function that are in excess to the non-rest arguments are converted to a
list which is assigned to the rest parameter. So the examples above evaluate to 0, 10, and 4.

We can define such functions in Typed Racket as well:

#lang typed/racket
(: sum (-> Number * Number))
(define (sum . xs)

(if (null? xs)
0
(+ (car xs) (apply sum (cdr xs)))))

This type can be assigned to the function when each element of the rest parameter is used at
the same type.

4.10.2 Non-Uniform Variable-Arity Functions

However, the rest argument may be used as a heterogeneous list. Take this (simplified)
definition of the R6RS function fold-left:

#lang racket
(define (fold-left f i as . bss)

(if (or (null? as)
(ormap null? bss))

i
(apply fold-left

f
(apply f i (car as) (map car bss))
(cdr as)
(map cdr bss))))

(fold-left + 0 (list 1 2 3 4) (list 5 6 7 8))
(fold-left + 0 (list 1 2 3) (list 2 3 4) (list 3 4 5) (list 4 5 6))
(fold-left (𝜆 (i v n s) (string-append i (vector-ref v n) s))

""
(list (vector "A cat" "A dog" "A mouse")

(vector "tuna" "steak" "cheese"))
(list 0 2)
(list " does not eat " "."))

Here the different lists that make up the rest argument bss can be of different types, but the
type of each list in bss corresponds to the type of the corresponding argument of f. We also
know that, in order to avoid arity errors, the length of bss must be two less than the arity of
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f. The first argument to f is the accumulator, and as corresponds to the second argument of
f.

The example uses of fold-left evaluate to 36, 42, and "A cat does not eat
cheese.".

In Typed Racket, we can define fold-left as follows:

#lang typed/racket
(: fold-left

(All (C A B ...)
(-> (-> C A B ... B C) C (Listof A) (Listof B) ... B

C)))
(define (fold-left f i as . bss)

(if (or (null? as)
(ormap null? bss))

i
(apply fold-left

f
(apply f i (car as) (map car bss))
(cdr as)
(map cdr bss))))

Note that the type variable B is followed by an ellipsis. This denotes that B is a dotted type
variable which corresponds to a list of types, much as a rest argument corresponds to a list
of values. When the type of fold-left is instantiated at a list of types, then each type t
which is bound by B (notated by the dotted pre-type t ... B) is expanded to a number of
copies of t equal to the length of the sequence assigned to B. Then B in each copy is replaced
with the corresponding type from the sequence.

So the type of (inst fold-left Integer Boolean String Number) is

(-> (-> Integer Boolean String Number Integer) Integer (Listof
Boolean) (Listof String) (Listof Number) Integer).
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5 Occurrence Typing

5.1 Basic Occurrence Typing

One of Typed Racket’s distinguishing type system features is occurrence typing, which al-
lows the type system to ascribe more precise types based on whether a predicate check
succeeds or fails.

To illustrate, consider the following code:

(: flexible-length (-> (U String (Listof Any)) Integer))
(define (flexible-length str-or-lst)

(if (string? str-or-lst)
(string-length str-or-lst)
(length str-or-lst)))

The flexible-length function above computes the length of either a string or a list. The
function body uses the typical Racket idiom of dispatching using a predicate (e.g., string?).

Typed Racket successfully type-checks this function because the type system understands
that in the "then" branch of the if expression, the predicate string? must have returned
a true value. The type system further knows that if string? returns true, then the str-
or-lst variable must have type String and can narrow the type from its original union of
String and (Listof Any). This allows the call to string-length in the "then" branch
to type-check successfully.

Furthermore, the type system also knows that in the "else" branch of the if expression, the
predicate must have returned #f. This implies that the variable str-or-lst must have
type (Listof Any) by process of elimination, and thus the call (length str-or-lst)
type-checks.

To summarize, if Typed Racket can determine the type a variable must have based on a
predicate check in a conditional expression, it can narrow the type of the variable within the
appropriate branch of the conditional.

5.2 Propositions and Predicates

In the previous section, we demonstrated that a Typed Racket programmer can take advan-
tage of occurrence typing to type-check functions with union types and conditionals. This
may raise the question: how does Typed Racket know how to narrow the type based on the
predicate?

The answer is that predicate types in Typed Racket are annotated with logical propositions
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that tell the typechecker what additional information is gained when a predicate check suc-
ceeds or fails.

For example, consider the REPL’s type printout for string?:

> string?
- : (-> Any Boolean : String)
#<procedure:string?>

The type (-> Any Boolean : String) has three parts. The first two are the same as any
other function type and indicate that the predicate takes any value and returns a boolean.
The third part, after the :, represents the logical propositions the typechecker learns from
the result of applying the function:

1. If the predicate check succeeds (i.e. produces a non-#f value), the argument variable
has type String

2. If the predicate check fails (i.e. produces #f), the argument variable does not have
type String

Predicates for all built-in types are annotated with similar propositions that allow the type
system to reason logically about predicate checks.

5.2.1 Specifying Propositions

While propositions are provided for all built-in type predicates, we may want to provide
propositions for our own predicates as well. For instance, consider the following predicate,
which determines whether a given list contains only strings. Intuitively, a value that satisfies
the predicate must have type (Listof String).

(: listof-string? (-> (Listof Any) Boolean))
(define (listof-string? lst)

(andmap string? lst))

We then may wish to use this predicate to narrow a type in the main function:

> (: main (-> (Listof Any) String))
> (define (main lst)

(cond
[(listof-string? lst) (first lst)]
[else "not a list of strings"]))

eval:5:0: Type Checker: Polymorphic function `first' could
not be applied to arguments:
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Types: (Pairof a (Listof b)) -ą (a : ((! (car (0 0)) False)
| (: (car (0 0)) False)) : (car (0 0)))

(Listof a) -ą a
Arguments: (Listof Any)
Expected result: String

in: "not a list of strings"

Unfortunately, Typed Racket fails to narrow the type, because we did not specify a proposi-
tion for listof-string?. To fix this issue, we include the proposition in the -> form for Note that if we

directly use
(andmap string?
lst) as the
conditional
expression, main
would be
successfully
type-checked,
because andmap
and string? do
provide
propositions that
allow Typed Racket
to narrow the type.

listof-string?.

(: listof-string? (-> (Listof Any) Boolean : (Listof String)))
(define (listof-string? lst)

(andmap string? lst))

With the proposition, Typed Racket successfully type-checks main.

> (: main (-> (Listof Any) String))
> (define (main lst)

(cond
[(listof-string? lst) (first lst)]
[else "not a list of strings"]))

5.2.2 One-sided Propositions

Sometimes, a predicate may provide information when it succeeds, but not when it fails. For
instance, consider this function:

(define (legal-id? s)
(and (symbol? s)

(not (member s '(cond else if)))))

This function only returns #t when given a symbol, so the type of something that satisfies
this predicate can be refined to Symbol.

However, values that fail this predicate can’t be refined to non-symbols; symbols such as
'else also fail to satisfy this predicate.

In cases such as these, it’s possible to provide a proposition that’s applied only to the “posi-
tive” assertion. Specifically, this type

(: legal-id? (Any -> Boolean : #:+ Symbol))
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... captures the idea that if this predicate returns #t, the argument is known to be a Symbol,
without making any claim at all about values for which this predicate returns #f.

There is a negative form as well, which allows types that specify propositions only about
values that cause a predicate to return #f.

5.3 Other conditionals and assertions
After all, these
control flow
constructs
macro-expand to if
in the end.

So far, we have seen that occurrence typing allows precise reasoning about if expressions.
Occurrence typing works for most control flow constructs that are present in Racket such as
cond, when, and others.

For example, the flexible-length function from earlier can be re-written to use cond
with no additional effort:

(: flexible-length/cond (-> (U String (Listof Any)) Integer))
(define (flexible-length/cond str-or-lst)

(cond [(string? str-or-lst) (string-length str-or-lst)]
[else (length str-or-lst)]))

In some cases, the type system does not have enough information or is too conservative to
type-check an expression. For example, consider the following interaction:

> (: a Positive-Integer)
> (define a 15)
> (: b Positive-Integer)
> (define b 20)
> (: c Positive-Integer)
> (define c (- b a))
eval:17:0: Type Checker: type mismatch

expected: Positive-Integer
given: Integer
in: a

In this case, the type system only knows that a and b are positive integers and cannot con-
clude that their difference will always be positive in defining c . In cases like this, occurrence
typing can be used to make the code type-check using an assertion. For example,

(: d Positive-Integer)
(define d (assert (- b a) positive?))

Using the logical propositions on positive?, Typed Racket can assign the type Positive-
Integer to the whole assert expression. This type-checks, but note that the assertion may
raise an exception at run-time if the predicate returns #f.
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Note that assert is a derived concept in Typed Racket and is a natural consequence of
occurrence typing. The assertion above is essentially equivalent to the following:

(: e Positive-Integer)
(define e (let ([diff (- b a)])

(if (positive? diff)
diff
(error "Assertion failed"))))

5.4 A caveat about set!

If a variable is ever mutated with set! in the scope in which it is defined, Typed Racket
cannot use occurrence typing with that variable. This precaution is needed to ensure that
concurrent modification of a variable does not invalidate Typed Racket’s knowledge of the
type of that variable. Also see §4.9.1 “Guidelines for Using Assignment”.

Furthermore, this means that the types of top-level variables in the REPL cannot be refined
by Typed Racket either. This is because the scope of a top-level variable includes future
top-level interactions, which may include mutations. It is possible to work around this by
moving the variable inside of a module or into a local binding form like let.

5.5 Access to structure fields

Occurrence typing can work with accessors to immutable structure fields.

(struct apple ([a : Any]))
(struct (A) fruit ([a : A]))

(define (f [obj : Any]) : Number
(cond

[(and (apple? obj) (number? (apple-a obj))) (apple-a obj)]
[(and (fruit? obj) (number? (fruit-a obj))) (fruit-a obj)]
[else 42]))

5.6 let-aliasing

Typed Racket is able to reason about some cases when variables introduced by
let-expressions alias other values (e.g. when they alias non-mutated identifiers,
car/cdr/struct accesses into immutable values, etc...). This allows programs which ex-
plicitly rely on occurrence typing and aliasing to type-check:

(: f (Any -> Number))
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(define (f x)
(let ([y x])

(cond
[(number? y) x]
[(and (pair? y)

(number? (car y)))
(car x)]

[else 42])))

It also allows the typechecker to check programs which use macros that heavily rely on
let-bindings internally (such as match):

(: g (Any -> Number))
(define (g x)

(match x
[(? number?) x]
[`(_ _ . ,(? number?)) (cddr x)]
[`(_ _ . ,(? pair? p))
(if (number? (caddr x))

(car p)
41)]

[_ 42]))
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6 Typed-Untyped Interaction

In the previous sections, all of the examples have consisted of programs that are entirely
typed. One of the key features of Typed Racket is that it allows the combination of both
typed and untyped code in a single program.

From a static typing perspective, combining typed and untyped code is straightforward.
Typed code must declare types for its untyped imports to let the type checker validate their
use (§6.1 “Using Untyped Code in Typed Code”). Untyped code can freely import bindings
from typed code (§6.2 “Using Typed Code in Untyped Code”).

At run-time, combining typed and untyped code is complicated because there is a tradeoff
between strong type guarantees and the performance cost of checking that untyped code
matches the types. Typed Racket provides strong Deep type guarantees by default, but offers
two weaker options as well: Shallow and Optional types (§6.3 “Protecting Typed-Untyped
Interaction”).

6.1 Using Untyped Code in Typed Code

Suppose that we write the untyped module from §1 “Quick Start” again:

"distance.rkt"
#lang racket

(provide (struct-out pt)
distance)

(struct pt (x y))

; distance : pt pt -> real
(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))
(sqr (- (pt-y p2) (pt-y p1))))))

If we want to use the distance function defined in the above module from a typed module,
we need to use the require/typed form to import it. Since the untyped module did not
specify any types, we need to annotate the imports with types (just like how the example in
§1 “Quick Start” had additional type annotations with :): Note that a typed

module should not
use
require/typed to
import from another
typed module. The
require form will
work in such cases.

"client.rkt"
#lang typed/racket

(require/typed "distance.rkt"
[#:struct pt ([x : Real] [y : Real])]
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[distance (-> pt pt Real)])

(distance (pt 3 5) (pt 7 0))

The require/typed form has several kinds of clauses. The #:struct clause specifies the
import of a structure type and allows us to use the structure type as if it were defined with
Typed Racket’s struct.

The second clause in the example above specifies that a given binding distance has the
given type (-> pt pt Real).

Note that the require/typed form can import bindings from any module, including those
that are part of the Racket standard library. For example,

#lang typed/racket

(require/typed racket/base [add1 (-> Integer Integer)])

is a valid use of the require/typed form and imports add1 from the racket/base library.

6.1.1 Opaque Types

The #:opaque clause of require/typed defines a new type using a predicate from untyped
code. Suppose we have an untyped distance function that uses pairs of numbers as points:

"distance2.rkt"
#lang racket

(provide point?
distance)

; A Point is a (cons real real)
(define (point? x)

(and (pair? x)
(real? (car x))
(real? (cdr x))))

; distance : Point Point -> real
(define (distance p1 p2)

(sqrt (+ (sqr (- (car p2) (car p1)))
(sqr (- (cdr p2) (cdr p1))))))

A typed module can use #:opaque to define a Point type as all values that the point?
predicate returns #t for:
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"client2.rkt"
#lang typed/racket

(require/typed "distance2.rkt"
[#:opaque Point point?]
[distance (-> Point Point Real)])

(define p0 : Point (assert (cons 3 5) point?))
(define p1 : Point (assert (cons 7 0) point?))
(distance p0 p1)

6.2 Using Typed Code in Untyped Code

In the previous subsection, we saw that the use of untyped code from typed code requires
the use of require/typed. However, the use of code in the other direction (i.e., the use of
typed code from untyped code) requires no additional work.

If an untyped module requires a typed module, it will be able to use the bindings defined
in the typed module as expected. The major exception to this rule is that macros defined in
typed modules may not be used in untyped modules.

6.3 Protecting Typed-Untyped Interaction

One might wonder if the interactions described in the first two subsections are actually safe.
After all, untyped code might be able to ignore the errors that Typed Racket’s type system
will catch at compile-time.

For example, suppose that we write an untyped module that implements an increment
function:

Example:

> (module increment racket
(provide increment)

; increment : exact-integer? -> exact-integer?
(define (increment x) "this is broken"))

and a typed module that uses it:

> (module client typed/racket

(require/typed 'increment [increment (-> Integer Integer)])
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(increment 5))

This combined program has a problem. All uses of increment in Typed Racket are correct
under the assumption that the increment function upholds the (-> Integer Integer)
type. Unfortunately, our increment implementation does not actually uphold this assump-
tion, because the function actually produces strings.

By default, Typed Racket establishes contracts wherever typed and untyped code interact to
ensure strong types. These contracts can, however, have a non-trivial performance impact.
For programs in which these costs are problematic, Typed Racket provides two alternatives.
All together, the three options are Deep, Shallow, and Optional types.

1. Deep types get enforced with rigorous contract checks.

2. Shallow types get checked in typed code with lightweight assertions called shape
checks.

3. Optional types do not get enforced in any way. They do not ensure safe typed-untyped
interactions.

See also: §8 “Deep,
Shallow, and
Optional
Semantics” in the
Typed Racket
Reference.

The next subsections give examples of Deep, Shallow, and Optional behaviors.

6.3.1 Deep Types: Completely Reliable

When the client program above is run, standard Typed Racket (aka. Deep Typed Racket)
enforces the require/typed interface with a contract. This contract detects a failed type
assumption when the client calls the untyped increment function:

> (require 'client)
increment: broke its own contract

promised: exact-integer?
produced: "this is broken"
in: (-ą any/c exact-integer?)
contract from: (interface for increment)
blaming: (interface for increment)

(assuming the contract is correct)
at: eval:3:0

Because the implementation in the untyped module broke the contract by returning a string
instead of an integer, the error message blames it. For general

information on
Racket’s contract
system, see §7
“Contracts”.

In general, Deep Typed Racket checks all functions and other values that pass from a typed
module to untyped module or vice versa with contracts. This means that, for example,
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Typed Racket can safely optimize programs (see §7 “Optimization in Typed Racket”) with
the assurance that the program will not segfault due to an unchecked assumption.

Important caveat: contracts such as the Integer check from above are performant. How-
ever, contracts in general can have a non-trivial performance impact, especially with the use
of first-class functions or other higher-order data such as vectors.

Note that no contract overhead is ever incurred for uses of typed values from another Deep-
typed module.

6.3.2 Shallow Types: Sound Types, Low-Cost Interactions

Changing the module language of the client program from typed/racket to
typed/racket/shallow changes the way in which typed-untyped interactions are pro-
tected. Instead of contracts, Typed Racket uses shape checks to enforce these Shallow types.

With Shallow types, the client program from above still detects an error when an untyped
function returns a string instead of an integer:

> (module client typed/racket/shallow

(require/typed 'increment [increment (-> Integer Integer)])

(increment 5))
> (require 'client)
shape-check: value does not match expected type

value: "this is broken"
type: Integer
lang: 'typed/racket/shallow
src: '(eval 2 0 2 1)

The compiled client module has two shape checks in total:

1. A shape check at the require/typed boundary confirms that increment is a func-
tion that expects one argument.

2. A shape check after the call (increment 5) looks for an integer. This check fails.

Such checks work together within one typed module to enforce the assumptions that it makes
about untyped code.

A design guideline for a shape checks is to ensure that a value matches the top-level construc-
tor of a type. Shape checks are always yes-or-no predicates (unlike contracts, which may
wrap a value) and typically run in constant time. Because they ensure the validity of type
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constructors, shape checks allow Typed Racket to safely optimize some programs—though
not to the same extent as Deep types.

Important caveats: (1) The number of shape checks in a module grows in proportion to its
size. For example, every function call in Shallow-typed code gets checked—unless Typed
Racket is certain that it can trust the function. Shallow types are therefore a poor choice
for large, computationally-heavy modules. (2) Shallow types are only enforced in their
immediate, local context. For example, if typed code were to cast increment to expect a
string, then the function could be called without an error.

6.3.3 Optional Types: It’s Just Racket

A third option for the client program is to use Optional types, which are provided by the
language typed/racket/optional:

> (module client typed/racket/optional

(require/typed 'increment [increment (-> Integer Integer)])

(increment 5))

Optional types do not ensure safe typed-untyped interactions. In fact, they do nothing to
check types at run-time. A call to the increment function does not raise an error:

> (require 'client)

Optional types cannot detect incorrect type assumptions and therefore do not enable type-
driven optimizations. But, they also add no costs to slow a program down. The run-time
behavior is very similar to untyped Racket and typed/racket/no-check.

6.3.4 When to Use Deep, Shallow, or Optional?

• Deep types maximize the benefits of static checking and type-driven optimizations.
Use them for tightly-connected groups of typed modules. Avoid them when untyped,
higher-order values frequently cross boundaries into typed code. Expensive boundary
types include Vectorof, ->, and Object.

• Shallow types are best for small typed modules that frequently interact with untyped
code. This is because Shallow shape checks run quickly: constant-time for most types,
and linear time (in the size of the type, not the value) for a few exceptions such as U and
case->. Avoid Shallow types in large typed modules that frequently call functions or
access data structures because these operations may incur shape checks and their net
cost may be significant.
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• Optional types enable the typechecker and nothing else. Use them when you do not
want types enforced at run-time.
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7 Optimization in Typed Racket
For general
information on
Racket performance
and benchmarking,
see §19
“Performance”.

Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten-
tially make them faster.

7.1 Turning the optimizer off

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

The optimizer is also disabled when executing a typed racket program in a
sandbox (see §14.12 “Sandboxed Evaluation”) and when the environment variable
PLT_TR_NO_OPTIMIZE is set (to any value).

7.2 Getting the most out of the optimizer

Typed Racket’s optimizer can improve the performance of various common Racket idioms.
However, it does a better job on some idioms than on others. By writing your programs
using the right idioms, you can help the optimizer help you.

To best take advantage of the Typed Racket optimizer, consult the Optimization Coach doc-
umentation.

The Typed Racket optimizer logs events with the topic 'TR-optimizer. See §15.5 “Log-
ging” to learn how to receive these log events.

7.2.1 Numeric types

Being type-driven, the optimizer makes most of its decisions based on the types you assigned
to your data. As such, you can improve the optimizer’s usefulness by writing informative
types.

For example, the following programs both typecheck:

(define (f [x : Real]) : Real (+ x 2.5))
(f 3.5)
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(define (f [x : Float]) : Float (+ x 2.5))
(f 3.5)

However, the second one uses more informative types: the Float type includes only 64-bit
floating-point numbers whereas the Real type includes both exact and inexact real numbers
and the Inexact-Real type includes both 32- and 64-bit floating-point numbers. Typed
Racket’s optimizer can optimize the latter program to use float -specific operations whereas
it cannot do anything with the former program.

Thus, to get the most of Typed Racket’s optimizer, you should use the Float type when
possible. For similar reasons, you should use floating-point literals instead of exact literals
when doing floating-point computations.

When mixing floating-point numbers and exact reals in arithmetic operations, the result is
not necessarily a Float. For instance, the result of (* 2.0 0) is 0 which is not a Float.
This can result in missed optimizations. To prevent this, when mixing floating-point numbers
and exact reals, coerce exact reals to floating-point numbers using real->double-flonum.
This is not necessary when using + or -. When mixing floating-point numbers of different
precisions, results use the highest precision possible.

On a similar note, the Float-Complex type is preferable to the Complex type for the same
reason. Typed Racket can keep float complex numbers unboxed; as such, programs us-
ing complex numbers can have better performance than equivalent programs that represent
complex numbers as two real numbers. As with floating-point literals, float complex literals
(such as 1.0+1.0i) should be preferred over exact complex literals (such as 1+1i).

To get the most of Typed Racket’s optimizer, you should also favor rectangular coordinates
over polar coordinates.

Note that on Racket BC, it is possible to have complex numbers where one component is
exact and the other is inexact. These values, including literals written +1.0i, do not have
the type Float-Complex. On Racket CS, such mixed-exactness values do not exist.

7.2.2 Lists

Typed Racket handles potentially empty lists and lists that are known to be non-empty dif-
ferently: when taking the car or the cdr of a list Typed Racket knows is non-empty, it can
skip the check for the empty list that is usually done when calling car and cdr.

(define (sum [l : (Listof Integer)]) : Integer
(if (null? l)

0
(+ (car l) (sum (cdr l)))))

In this example, Typed Racket knows that if we reach the else branch, l is not empty. The
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checks associated with car and cdr would be redundant and are eliminated.

In addition to explicitly checking for the empty list using null?, you can inform Typed
Racket that a list is non-empty by using the known-length list type constructor; if your data
is stored in lists of fixed length, you can use the List type constructors.

For instance, the type of a list of two Integers can be written either as:

(define-type List-2-Ints (Listof Integer))

or as the more precise:

(define-type List-2-Ints (List Integer Integer))

Using the second definition, all car and cdr-related checks can be eliminated in this func-
tion:

(define (sum2 [l : List-2-Ints]) : Integer
(+ (car l) (car (cdr l))))

7.2.3 Vectors

In addition to known-length lists, Typed Racket supports known-length vectors through the
Vector type constructor. Known-length vector access using constant indices can be opti-
mized in a similar fashion as car and cdr.

; #(color r g b)
(define-type Color (Vector String Integer Integer Integer))
(define x : Color (vector "red" 255 0 0))
(vector-ref x 0) ; good
(define color-name 0)
(vector-ref x color-name) ; good
(vector-ref x (* 0 10)) ; bad

In many such cases, however, structs are preferable to vectors. Typed Racket can optimize
struct access in all cases.

7.2.4 Contract boundaries

When interoperating with untyped code (see §6 “Typed-Untyped Interaction”), contracts are
installed between typed and untyped modules. Contracts can have significant overhead, thus
typed-untyped boundary crossings should be avoided in performance-sensitive code.
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Typed Racket provides types for most of the bindings provided by #lang racket; using
require/typed is unnecessary in these cases.

If you suspect that contracts at a typed-untyped boundary may have a significant cost in your
program, you can investigate further using the contract profiler.

If the contract profiler is not already installed, the following command will install it:

raco pkg install contract-profile
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8 Caveats and Limitations

This section describes limitations and subtle aspects of the type system that programmers
often stumble on while porting programs to Typed Racket.

8.1 The Integer type and integer?

In Typed Racket, the Integer type corresponds to values that return #t for the exact-
integer? predicate, not the integer? predicate. In particular, values that return #t for
integer? may be inexact numbers (e.g, 1.0).

When porting a program to Typed Racket, you may need to replace uses of functions like
round and floorwith corresponding exact functions like exact-round and exact-floor.

In other cases, it may be necessary to use assertions or casts.

8.2 Type inference for polymorphic functions

Typed Racket’s local type inference algorithm is currently not able to infer types for poly-
morphic functions that are used on higher-order arguments that are themselves polymorphic.

For example, the following program results in a type error that demonstrates this limitation:

> (map cons '(a b c d) '(1 2 3 4))
eval:2:0: Type Checker: Polymorphic function `map' could not
be applied to arguments:
Domains: (-ą a b ... b c) (Listof a) (Listof b) ... b

(-ą a c) (Pairof a (Listof a))
Arguments: (All (a b) (case-ą (-ą a (Listof a) (Listof a))
(-ą a b (Pairof a b)))) (List 'a 'b 'c 'd) (List One
Positive-Byte Positive-Byte Positive-Byte)

in: 4

The issue is that the type of cons is also polymorphic:

> cons
- : (All (a b) (case-> (-> a (Listof a) (Listof a)) (-> a b
(Pairof a b))))
#<procedure:cons>

To make this expression type-check, the inst form can be used to instantiate the polymor-
phic argument (e.g., cons) at a specific type:
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> (map (inst cons Symbol Integer) '(a b c d) '(1 2 3 4))
- : (Listof (Pairof Symbol Integer))
'((a . 1) (b . 2) (c . 3) (d . 4))

8.3 Typed-untyped interaction and contract generation

When a typed module requires bindings from an untyped module (or vice-versa), there are
some types that cannot be converted to a corresponding contract.

This could happen because a type is not yet supported in the contract system, because Typed
Racket’s contract generator has not been updated, or because the contract is too difficult to
generate. In some of these cases, the limitation will be fixed in a future release.

The following illustrates an example type that cannot be converted to a contract:

> (require/typed racket/base
[object-name (case-> (-> Struct-Type-Property Symbol)

(-> Regexp (U String Bytes)))])
eval:5:0: Type Checker: Error in macro expansion -- Type
(case-ą (-ą Struct-Type-Property Symbol) (-ą Regexp (U Bytes
String))) could not be converted to a contract: function
type has two cases of arity 1

in: (case-ą (-ą Struct-Type-Property Symbol) (-ą Regexp (U
String Bytes)))

This function type by cases is a valid type, but a corresponding contract is difficult to gener-
ate because the check on the result depends on the check on the domain. In the future, this
may be supported with dependent contracts.

A more approximate type will work for this case, but with a loss of type precision at use
sites:

> (require/typed racket/base
[object-name (-> (U Struct-Type-Property Regexp)

(U String Bytes Symbol))])
> (object-name #rx"a regexp")
- : (U Bytes String Symbol)
"a regexp"

Use of define-predicate also involves contract generation, and so some types cannot
have predicates generated for them. The following illustrates a type for which a predicate
can’t be generated:

> (define-predicate p? (All (A) (Listof A)))
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eval:8:0: Type Checker: Error in macro expansion -- Type
(All (A) (Listof A)) could not be converted to a predicate:
cannot generate contract for non-function polymorphic type

in: (All (A) (Listof A))

8.4 Unsupported features

Typed Racket currently does not support generic interfaces.

8.5 Type generalization

Not so much a caveat as a feature that may have unexpected consequences. To make pro-
gramming with invariant type constructors (such as Boxof) easier, Typed Racket generalizes
types that are used as arguments to invariant type constructors. For example:

> 0
- : Integer [more precisely: Zero]
0
> (define b (box 0))
> b
- : (Boxof Integer)
'#&0

0 has type Zero, which means that b “should” have type (Boxof Zero). On the other hand,
that type is not especially useful, as it only allows 0 to be stored in the box. Most likely, the
intent was to have a box of a more general type (such as Integer) and initialize it with 0.
Type generalization does exactly that.

In some cases, however, type generalization can lead to unexpected results:

> (box (ann 1 Fixnum))
- : (Boxof Integer)
'#&1

The intent of this code may be to create of box of Fixnum, but Typed Racket will generalize
it anyway. To create a box of Fixnum, the box itself should have a type annotation:

> (ann (box 1) (Boxof Fixnum))
- : (Boxof Fixnum)
'#&1
> ((inst box Fixnum) 1)
- : (Boxof Fixnum)
'#&1
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8.6 Macros and compile-time computation

Typed Racket will type-check all expressions at the run-time phase of the given module and
will prevent errors that would occur at run-time. However, expressions at compile-time—
including computations that occur inside macros—are not checked.

Concretely, this means that expressions inside, for example, a begin-for-syntax block
are not checked:

> (begin-for-syntax (+ 1 "foo"))
+: contract violation

expected: number?
given: "foo"

Similarly, expressions inside of macros defined in Typed Racket are not type-checked. On
the other hand, the macro’s expansion is always type-checked:

(define-syntax (example-1 stx)
(+ 1 "foo")
#'1)

(define-syntax (example-2 stx)
#'(+ 1 "foo"))

> (example-1)
+: contract violation

expected: number?
given: "foo"

> (example-2)
eval:17:0: Type Checker: type mismatch

expected: Number
given: String
in: (quote "foo")

Note that functions defined in Typed Racket that are used at compile-time in other typed
modules or untyped modules will be type-checked and then protected with contracts as de-
scribed in §6 “Typed-Untyped Interaction”.

Additionally, macros that are defined in Typed Racket modules cannot be used in ordinary
Racket modules because such uses can circumvent the protections of the type system.

8.7 Expensive contract boundaries

Contract boundaries installed for typed-untyped interaction may cause significant slow-
downs. See §7.2.4 “Contract boundaries” for details.
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8.8 Pattern Matching and Occurrence Typing

Because Typed Racket type checks code after macro expansion, certain forms—such as
match—are difficult for Typed Racket to reason about completely. In particular, in a match
clause, the type of an identifier is often not updated to reflect the fact that a previous pattern
failed to match. For example, in the following function, the type checker is unaware that if
execution reaches the last clause then the string? predicate has already failed to match on
the value for x, and so (abs x) in the last clause fails to type check:

> (: size (-> (U String Integer) Integer))
> (define (size x)

(match x
[(? string?) (string-length x)]
[_ (abs x)]))

eval:21:0: Type Checker: type mismatch
expected: Integer
given: (U Integer String)
in: x

Because they are much simpler forms, similar cond and if expressions do type check suc-
cessfully:

> (: size (-> (U String Integer) Integer))
> (define (size x)

(cond
[(string? x) (string-length x)]
[else (abs x)]))

One work around is to simply not rely on a catch-all "else" clause that needs to know that
previous patterns have failed to match in order to type check:

> (: size (-> (U String Integer) Integer))
> (define (size x)

(match x
[(? string?) (string-length x)]
[(? exact-integer?) (abs x)]))

It is important to note, however, that match always inserts a catch-all failure clause if one is
not provided! This means that the type checker will not inform the programmer that match
clause coverage is insufficient because the implicit (i.e. macro-inserted) failure clause will
cover any cases the programmer failed to anticipate with their pattern matching, e.g.:

> (: size (-> (U String Integer) Integer))
> (define (size x)

(match x
[(? string?) (string-length x)]))
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> (size 42)
match: no matching clause for 42

Patterns involving an ellipsis ... for repetition may generate a for loop that requires an-
notations on variables to type check. The (deliberately obscure) code below does not type
check without the type annotation on the match pattern variable c.

(: do-nothing (-> (Listof Integer) (Listof Integer)))
(define (do-nothing lst)

(match lst
[(list (? number? #{c : (Listof Integer)}) ...) c]))

8.9 is-a? and Occurrence Typing

Typed Racket does not use the is-a? predicate to refine object types because the target
object may have been created in untyped code and is-a? does not check the types of fields
and methods.

For example, the code below defines a class type Pizza%, a subclass type Sauce-Pizza%,
and a function get-sauce (this function contains a type error). The get-sauce function
uses is-a? to test the class of its argument; if the test is successful, the function expects the
argument to have a field named topping that contains a value of type Sauce.

#lang typed/racket

(define-type Pizza%
(Class (field [topping Any])))

(define-type Sauce
(U 'tomato 'bbq 'no-sauce))

(define-type Sauce-Pizza%
(Class #:implements Pizza% (field [topping Sauce])))

(define sauce-pizza% : Sauce-Pizza%
(class object%

(super-new)
(field [topping 'tomato])))

(define (get-sauce [pizza : (Instance Pizza%)]) : Sauce
(cond

[(is-a? pizza sauce-pizza%)
(get-field topping pizza)] ; type error

[else
'bbq]))
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The type-error message explains that (get-field topping pizza) can return any kind
of value, even when pizza is an instance of the sauce-pizza% class. In particular, pizza
could be an instance of an untyped subclass that sets its topping to the integer 0:

; #lang racket
(define evil-pizza%

(class sauce-pizza%
(inherit-field topping)
(super-new)
(set! topping 0)))

To downcast as intended, add a cast after the is-a? test. Below is a complete example that
passes the type checker and raises a run-time error to prevent the typed get-sauce function
from returning a non-Sauce value.

Examples:

> (module pizza typed/racket
(provide get-sauce sauce-pizza%)

(define-type Pizza%
(Class (field [topping Any])))

(define-type Sauce
(U 'tomato 'bbq 'no-sauce))

(define-type Sauce-Pizza%
(Class #:implements Pizza% (field [topping Sauce])))

(define sauce-pizza% : Sauce-Pizza%
(class object%

(super-new)
(field [topping 'tomato])))

(define (get-sauce [pizza : (Instance Pizza%)]) : Sauce
(cond

[(is-a? pizza sauce-pizza%)
(define p+ (cast pizza (Instance Sauce-Pizza%)))
(get-field topping p+)]

[else
'no-sauce])))

> (require 'pizza)
> (define evil-pizza%

(class sauce-pizza%
(inherit-field topping)
(super-new)
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(set! topping 0)))
> (get-sauce (new evil-pizza%))
sauce-pizza%: broke its own contract

promised: (or/c (quote no-sauce) (quote bbq) (quote
tomato))

produced: 0
in: the topping field in

(recursive-contract g40 #:impersonator)
contract from: pizza
blaming: pizza

(assuming the contract is correct)
at: eval:1:0
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