
Dynext: Running a C Compiler/Linker
Version 9.0.0.10

December 15, 2025

The "dynext" collection provides libraries for using a platform-specific C compiler and
linker.

1

Contents

1 Compilation 3

1.1 Compilation Parameters . 3

1.2 Helper functions . 5

1.3 Signature . 5

1.4 Unit . 6

2 Linking 7

2.1 Linking Parameters . 7

2.2 Helper Functions . 9

2.3 Signature . 9

2.4 Unit . 9

3 Filenames 10

3.1 Signature . 11

3.2 Unit . 11

2

1 Compilation

(require dynext/compile) package: dynext-lib

(compile-extension quiet?
input-file
output-file
include-dirs) Ñ any/c

quiet? : any/c
input-file : path-string?
output-file : path-string?
include-dirs : (listof path-string?)

Compiles the given input file (C source) to the given output file (a compiled-object file). The
quiet? argument indicates whether command should be echoed to the current output port.
The include-dirs argument is a list of directories to search for include files; the Racket
installation’s "include" directories are added automatically.

1.1 Compilation Parameters

(current-extension-compiler) Ñ (or/c path-string? #f)
(current-extension-compiler compiler) Ñ void?

compiler : (or/c path-string? #f)

A parameter that determines the executable for the compiler.

The default is set by searching for an executable using the PATH environment variable, or
using the CC or MZSCHEME_DYNEXT_COMPILER environment variable if either is defined (and
the latter takes precedence). On Windows, the search looks for "cl.exe", then "gcc.exe",
then "bcc32.exe" (Borland). On Unix, it looks for "gcc", then "cc". A #f value indicates
that no compiler could be found.

(current-extension-compiler-flags)
Ñ (listof (or/c path-string?

(-> (or/c null? (listof string?)))))
(current-extension-compiler-flags flags) Ñ void?

flags : (listof (or/c path-string?
(-> (or/c null? (listof string?)))))

A parameter that determines strings passed to the compiler as flags. See also expand-for-
compile-variant.

On Windows, the default is (list "/c" "/O2" "/MT" 3m-flag-thunk) for "cl.exe",
or (list "-c" "-O2" "-fPIC" 3m-flag-thunk) for "gcc.exe" and "bcc32.exe",

3

https://pkgs.racket-lang.org/package/dynext-lib

where 3m-flag-thunk returns (list "-DMZ_PRECISE_GC") for the 3m variant and null
for the CGC variant. On Unix, the default is usually (list "-c" "-O2" "-fPIC" 3m-
flag-thunk). If the CFLAGS or MZSCHEME_DYNEXT_COMPILER_FLAGS environment vari-
able is defined (the latter takes precedence), then its value is parsed as a list of strings that is
appended before the defaults.

(current-make-compile-include-strings)
Ñ (-> path-string? (listof string?))

(current-make-compile-include-strings proc) Ñ void?
proc : (-> path-string? (listof string?))

A parameter the processes include-path inputs to the compiler; the parameter values takes
an include directory path and returns a list of strings for the command line.

On Windows, the default converts "dir" to (list "/Idir") for "cl.exe", (list "-
Idir") for "gcc.exe" and "bcc32.exe". On Unix, the default converts "dir" to (list
"-Idir"). If the CFLAGS environment variable is defined, then its value is parsed as a list
of flags that is appended before the defaults.

(current-make-compile-input-strings)
Ñ (-> (or/c string? path?) (listof string?))

(current-make-compile-input-strings proc) Ñ void?
proc : (-> (or/c string? path?) (listof string?))

A parameter that processes inputs to the compiler; the parameter’s values takes an input file
path and returns a list of strings for the command line. The default is list.

(current-make-compile-output-strings)
Ñ (-> (or/c string? path?) (listof string?))

(current-make-compile-output-strings proc) Ñ void?
proc : (-> (or/c string? path?) (listof string?))

A parameter that processes outputs specified for the compiler; the parameter’s value takes
an output file path and returns a list of strings for the command line.

On Windows, the default converts "file" to (list "/Fofile") for "cl.exe", or to
(list "-o" "file") for "gcc.exe" and "bcc32.exe". On Unix, the default converts
"file" to (list "-o" "file").

(current-extension-preprocess-flags)
Ñ (listof (or/c string? path? (-> (or/c string? path?))))

(current-extension-preprocess-flags flags) Ñ void?
flags : (listof (or/c string? path? (-> (or/c string? path?))))

A parameters that specifies flags to the compiler preprocessor, instead of to the com-
piler proper; use these flags for preprocessing instead of current-extension-compiler-
flags.

4

The defaults are similar to current-extension-compiler-flags, but with "/E" (Win-
dows "cl.exe") or "-E" and without non-"-D" flags.

(compile-variant) Ñ (or/c 'normal 'cgc '3m)
(compile-variant variant-symbol) Ñ void?

variant-symbol : (or/c 'normal 'cgc '3m)

A parameter that indicates the target for compilation, where 'normal is an alias for the result
of (system-type 'gc)

1.2 Helper functions

(use-standard-compiler name) Ñ any
name : (apply or/c (get-standard-compilers))

Sets the parameters described in §1.1 “Compilation Parameters” for a particular known com-
piler. The acceptable names are platforms-specific:

• Unix: 'cc or 'gcc

• Windows: 'gcc, 'msvc, or 'borland

• MacOS: 'cw

(get-standard-compilers) Ñ (listof symbol?)

Returns a list of standard compiler names for the current platform. See use-standard-
compiler.

(expand-for-compile-variant l) Ñ any
l : (listof (or/c path-string? (-> (listof string?))))

Takes a list of paths and thunks and returns a list of strings. Each thunk in the input list
is applied to get a list of strings that is inlined in the corresponding position in the output
list. This expansion enables occasional parametrization of flag lists, etc., depending on the
current compile variant.

1.3 Signature

(require dynext/compile-sig) package: dynext-lib

dynext:compile^ : signature

5

https://pkgs.racket-lang.org/package/dynext-lib

Includes everything exported by the dynext/compile module.

1.4 Unit

(require dynext/compile-unit) package: dynext-lib

dynext:compile@ : unit?

Imports nothing, exports dynext:compile^.

6

https://pkgs.racket-lang.org/package/dynext-lib

2 Linking

(require dynext/link) package: dynext-lib

(link-extension quiet?
input-files
output-file) Ñ any

quiet? : any/c
input-files : (listof path-string?)
output-file : path-string?

Links object files to create an extension (normally of a form that can be loaded with load-
extension).

The quiet? argument indicates whether command should be echoed to the current output
port. The input-files argument is list of compiled object filenames, and output-file
is the destination extension filename.

2.1 Linking Parameters

(current-extension-linker) Ñ (or/c path-string? #f)
(current-extension-linker linker) Ñ void?

linker : (or/c path-string? #f)

A parameter that determines the executable used as a linker.

The default is set by searching for an executable using the PATH environment variable, or
by using the LD or MZSCHEME_DYNEXT_LINKER environment variable if it is defined (and
the latter takes precedence). On Windows, it looks for "cl.exe", then "ld.exe" (gcc),
then "ilink32.exe" (Borland). On Cygwin, Solaris, FreeBSD 2.x, or HP/UX, it looks for
"ld". On other Unix variants, it looks for "cc". #f indicates that no linker could be found.

(current-extension-linker-flags)
Ñ (listof (or/c path-string? (-> (listof string?))))

(current-extension-linker-flags flags) Ñ void?
flags : (listof (or/c path-string? (-> (listof string?))))

A parameter that determines flags provided to the linker. See also expand-for-link-
variant.

On Windows, default is (list "/LD") for "cl.exe", (list "--dll") for "ld.exe",
and (list "/Tpd" "/c") for "ilink32.exe". On Unix, the default varies greatly among
platforms. If the LDFLAGS or MZSCHEME_DYNEXT_LINKER_FLAGS (the latter takes prece-
dence) environment variable is defined, then its value is parsed as a list of strings that is
appended before the defaults.

7

https://pkgs.racket-lang.org/package/dynext-lib

(current-make-link-input-strings)
Ñ (-> path-string? (listof string?))

(current-make-link-input-strings proc) Ñ void?
proc : (-> path-string? (listof string?))

A parameter that processes linker input arguments; the parameter value takes an input file
path and returns a list of strings for the command line. The default is list.

(current-make-link-output-strings)
Ñ (-> path-string? (listof string?))

(current-make-link-output-strings proc) Ñ void?
proc : (-> path-string? (listof string?))

A parameter that processes linker output arguments; the parameter value takes an output file
path and returns a list of strings for the command line.

On Windows, the default converts "file" to (list "/Fefile") for "cl.exe", something
like (list "-e" "_dll_entry@12" "-o" "file") for "ld.exe", and something com-
plex for "ilink32.exe". On Unix, the default converts "file" to (list "-o" "file").

(current-standard-link-libraries)
Ñ (listof (or/c path-string? (-> (listof string?))))

(current-standard-link-libraries libs) Ñ void?
libs : (listof (or/c path-string? (-> (listof string?))))

A parameter that determines libraries supplied to the linker, in addition to other inputs. See
also expand-for-link-variant.

For most platforms, the default is

(list (build-path (collection-path "mzscheme" "lib")
(system-library-subpath)
(mzdyn-thunk)))

where mzdyn-thunk produces (list "mzdyn.o") for the 'cgc variant and (list
"mzdyn3m.o") for the '3m variant. See also current-use-mzdyn).

(current-use-mzdyn) Ñ boolean?
(current-use-mzdyn use-mzdyn?) Ñ void?

use-mzdyn? : boolean?

A parameter that determines whether the default standard link libraries include the "mzdyn"
library which allows the resulting file to be loaded via load-extension. Defaults to #t.

8

(link-variant) Ñ (or/c 'normal 'cgc '3m)
(link-variant variant-symbol) Ñ void?

variant-symbol : (or/c 'normal 'cgc '3m)

A parameter that indicates the target for linking, where 'normal is an alias for the result of
(system-type 'gc).

2.2 Helper Functions

(use-standard-linker name) Ñ void?
name : (or/c 'cc 'gcc 'msvc 'borland 'cw)

Sets the parameters described in §2.1 “Linking Parameters” for a particular known linker.

(expand-for-link-variant l) Ñ any
l : (listof (or/c path?

string?
(-> (listof string?))))

The same as expand-for-compile-variant.

2.3 Signature

(require dynext/link-sig) package: dynext-lib

dynext:link^ : signature

Includes everything exported by the dynext/link module.

2.4 Unit

(require dynext/link-unit) package: dynext-lib

dynext:link@ : unit?

Imports nothing, exports dynext:link^.

9

https://pkgs.racket-lang.org/package/dynext-lib
https://pkgs.racket-lang.org/package/dynext-lib

3 Filenames

(require dynext/file) package: base

(append-zo-suffix s) Ñ path?
s : (or/c string? path?)

Appends the ".zo" file suffix to s , returning a path. The existing suffix, if any, is preserved
and converted as with path-add-suffix.

(append-object-suffix s) Ñ path?
s : path-string?

Appends the platform-standard compiled object file suffix to s , returning a path.

(append-c-suffix s) Ñ path?
s : path-string?

Appends the platform-standard C source-file suffix to s , returning a path.

(append-constant-pool-suffix s) Ñ path?
s : (or/c string? path?)

Appends the constant-pool file suffix ".kp" to s , returning a path.

(append-extension-suffix s) Ñ path?
s : (or/c string? path?)

Appends the platform-standard dynamic-extension file suffix to s , returning a path.

(extract-base-filename/ss s [program]) Ñ (or/c path? #f)
s : path-string?
program : any/c = #f

Strips the Racket file suffix from s and returns a stripped path. The recognized suffixes are
the ones reported by (get-module-suffixes #:group 'libs) when extract-base-
filename/ss is first called.

Unlike the other functions below, when program is not #f, then any suffix (including no
suffix) is allowed. If s is not a Racket file and program is #f, #f is returned.

(extract-base-filename/c s [program]) Ñ (or/c path? #f)
s : path-string?
program : any/c = #f

10

https://pkgs.racket-lang.org/package/base

Strips the Racket file suffix from s and returns a stripped path. If s is not a Racket file name
and program is a symbol, and error is signaled. If s is not a Racket file and program is #f,
#f is returned.

(extract-base-filename/kp s [program]) Ñ (or/c path? #f)
s : path-string?
program : any/c = #f

Same as extract-base-filename/c, but for constant-pool files.

(extract-base-filename/o s [program]) Ñ (or/c path? #f)
s : path-string?
program : any/c = #f

Same as extract-base-filename/c, but for compiled-object files.

(extract-base-filename/ext s [program]) Ñ (or/c path? #f)
s : path-string?
program : any/c = #f

Same as extract-base-filename/c, but for extension files.

3.1 Signature

(require dynext/file-sig) package: dynext-lib

dynext:file^ : signature

Includes everything exported by the dynext/file module.

3.2 Unit

(require dynext/file-unit) package: dynext-lib

dynext:file@ : unit?

Imports nothing, exports dynext:file^.

11

https://pkgs.racket-lang.org/package/dynext-lib
https://pkgs.racket-lang.org/package/dynext-lib

	1 Compilation
	1.1 Compilation Parameters
	1.2 Helper functions
	1.3 Signature
	1.4 Unit

	2 Linking
	2.1 Linking Parameters
	2.2 Helper Functions
	2.3 Signature
	2.4 Unit

	3 Filenames
	3.1 Signature
	3.2 Unit

