Essentials of Programming Languages LLanguage

Version 9.0.0.10

December 15, 2025

The Essentials of Programming Languages language in DrRacket provides a subset of func-
tions and syntactic forms of racket—mostly the ones that correspond to r5rs forms. See
below for a complete list. The language is intended for use with the textbook [EoPL].

#lang eopl

The following bindings are re-provided from racket:

package: eopl

make-parameter * inexact?
parameterize / zero?
print-struct abs positive?
unquote gcd negative?
unquote-splicing lcm odd?
quote exp even?
quasiquote log quotient
if sin remainder
lambda cos modulo
letrec tan floor
define-syntax not ceiling
delay eq”? truncate
let make-string round
letx* symbol->string numerator
let-syntax string->symbol denominator
letrec-syntax make-rectangular asin

and exact->inexact acos

or inexact->exact atan

cond number->string sqrt

case string->number expt

do rationalize make-polar
begin output-port? real-part
set! current-input-port imag-part


https://pkgs.racket-lang.org/package/eopl

#%module-begin

#%app
#J,datum
#itop

#%top-interaction

#%require
#)iprovide

#expression

syntax-rules

cons
car
cdr
pair?
map
for-each
caar
cadr
cdar
cddr
caaar
caadr
cadar
caddr
cdaar
cdadr
cddar
cdddr
caaaar
caaadr
caadar
caaddr
cadaar
cadadr
caddar
cadddr
cdaaar
cdaadr
cdadar
cdaddr
cddaar
cddadr
cdddar
cddddr

<

current-output-port
current-error-port
open-input-file
open-output-file
close-input-port
close-output-port
with-output-to-file
flush-output
string-length
string-ci<="?
string-ci>="?
string-append
string-fill!
string->list
list->string
vector-length
vector-fill!
vector->list
list->vector
char-alphabetic?
char-numeric?
char-whitespace?
char-upper-case?
char-lower-case?
char->integer
integer->char
char-downcase

call-with-output-file

call-with-input-file
with-input-from-file
apply

symbol?

null?

list?

list

length

append

reverse

list-tail

list-ref

memq

memv

member

assq

assv

assoc

angle
magnitude
input-port?
read
read-char
peek-char
eof-object?
char-ready?
write
display
newline
write-char
load
string?
string
string-ref
string-set!
string="7
substring
string-copy
string-ci="?
string<?
string>?
string<="7
string>=7?
string-ci<?
string-ci>?
vector?
make-vector
vector
vector-ref
vector-set!
char?
char=7
char<?
char>?
char<=7
char>=7
char-ci="?
char-ci<?
char-ci>?
char-ci<="?
char-ci>=?
char-upcase
boolean?
equ?



> procedure?

<= number?
>= complex?
max real?
min rational?
+ integer?
- exact?

(define-datatype id predicate-id
(variant-id (field-id predicate-expr)

)

equal?

force
call-with-values
values
dynamic-wind
eval

)

Defines the datatype id and a function predicate-id that returns #t for instances of the

datatype, and #f for any other value.

Each variant-id is defined as a constructor function that creates an instance of the
datatype; the constructor takes as many arguments as the variant’s field-ids, and each
argument is checked by applying the function produced by the variant’s predicate-expr.

In DrScheme v209 and older, when constructor-based printing was used, variant instances
were printed with a make- prefix before the variant name. Thus, for compatibility, in addi-
tion to variant-id, make-variant-id is also defined for each variant-id (to the same

constructor as variant-id).

(cases datatype-id expr

(variant-id (field-id ...) result-expr
)
(cases datatype-id expr
(variant-id (field-id ...) result-expr
(else result-expr ...))

)

Branches on the datatype instance produced by expr, which must be an instance of the
specified datatype-id that is defined with define-datatype.

sllgen:make-string-scanner
sllgen:make-string-parser
sllgen:make-stream-parser
sllgen:make-define-datatypes
sllgen:show-define-datatypes
sllgen:list-define-datatypes

Defined in the textbook’s Appendix B [EoPL]. However, the DrRacket versions are syntac-
tic forms, instead of procedures, and the arguments must be either quoted literal tables or
identifiers that are defined (at the top level) to quoted literal tables.



sllgen:make-rep-loop : procedure?

Defined in the EoPL textbook’s Appendix B [EoPL] (and still a function).

eopl:error : procedure?

As in the book.

(eopl:printf form v ...) — void?
form : string?
v : any/c
(eopl:pretty-print v [port]) — void?
v : any/c
port : output-port? = (current-output-port)

Same as scheme/base’s printf and pretty-print.

((list-of pred ...+) x) — boolean?
pred : (any/c . -> . any)
x : any/c
(always? x) — boolean?
x : any/c
(maybe pred) — boolean?
pred : (any/c . -> . boolean?)

As in the book [EoPL].
empty : empty?

The empty list.

(time expr)

Evaluates expr, and prints timing information before returning the result.

(collect-garbage) — void?

Performs a garbage collection (useful for repeatable timings).

(trace id ...)
(untrace id ...)

For debugging: trace redefines each id at the top level (bound to a procedure) so that
it prints arguments on entry and results on exit. The untrace form reverses the action of
trace for the given ids.

Tracing a function causes tail-calls in the original function to become non-tail calls.



(provide provide-spec ...)

Useful only with a module that uses eopl as a language: exports identifiers from the module.
See provide from racket for more information.

eopl:error-stop : (-> any/c)
Defined only in the top-level namespace (i.e., not in a module); mutate this variable to install
an exception-handling thunk. Typically, the handler thunk escapes through a continuation.

The eopl library sets this variable to #f in the current namespace when it executes.

(install-eopl-exception-handler) — void?

Sets an exception handler to one that checks eopl:error-stop.

The eopl library calls this function when it executes.



Bibliography

[EoPL] “Essentials of Programming Languages, Third Edition,” MIT Press, 2008.
http://www.eopl3.com/


http://www.eopl3.com/

	Bibliography

