Games: Fun Examples

Version 9.0.0.10

December 15, 2025

The PLT Games executable (or plt-games on Unix) lets you select one of the games dis-
tributed by PLT or other games installed as sub-collections of the "games" collection (see
[$2 “Implementing New Games™).

Contents

1 Bundled Games| 4
[L1 Aces—Sofitaire Card Gamel 4
2 GoFish—KidsCardGamel 4
[1.3° Crazy 8s—CardGame| it 5
1.4 Blackjack —21CardGame| 5
1.5 Rummy—CardGame|. 6
1.6 Spider — Solitaire Card Game|. 6
1.7 Memory — Kid’sGame| 7
1.8 Slidey —Picture Puzzle| 7
I1.9 Same — Dot-Removing Game|. 8

191 TheRules. 8
................................ 10

[1.10 Minesweeper — Logic Game| 10
[1.11 Paint By Numbers —Logic Game| 10
[1.12 Lights Out —LogicGame| 12
— Tic-Tac-Toe-like Gamel 13

|1.14 Gobblet — Strategy Game| 14
141 GameRuled. 14
[CI427Controlsl. . - - o v 15
[[.143 Auto-Play|. 15
[LI5 Jewe[—3-DSkillGame]. 16
[1.16 Parcheesi— Board Gamel 16
[1.L17 Checkers — Board Game| 17
[LI8 Chat Noir —PuzzleGamel. 17

19

24

27

1.18.5 The Cat’s Path 32

[1.18.6 Drawingthe Catl 34

|[1.18.7 Drawingthe World| 36

[1.18.8 HandlingInputf 41

[CIBY Testd oo 47

[I.18.10 Run, program, run| 63

|1.19 Tally Maze — Maze Enumeration Game| 64
.20 _GCalc — Visual A-Calculusl 65
[1.20.1 The Window Layout| 65

[1.20.2 UserInteractionl. 65

[1.20.3 Cube operations| 66

2 Implementing New Games| 67
owing Scribbled He 68

|4 _Showing Text Help| 69

1 Bundled Games

[
&

L

1.1 * Aces — Solitaire Card Game

Aces is a solitaire card game. The object is to remove all of the cards from the board, except
the four Aces.

Remove a card by clicking it. You may remove a card when two conditions are true. First, it
must be at the bottom of one of the four stacks of cards. Second, either the ace of the same
suit, or a higher card of the same suit must also be at the bottom of one of the four stacks of
cards.

You may also move any card from the bottom of one of the stacks to an empty stack by
clicking it. If there are still cards in the deck on the left, you may click the deck to deal four
new cards, one onto the bottom of each stack.

Good Luck!

:E."

1.2 * 7 Go Fish — Kid’s Card Game

Go Fish is the children’s card game where you try to get rid of all you cards by forming
pairs. You play against two computer players.

On each turn, if you have a match in your hand, drag one of the matching cards to your
numbered box, and the match will move into the box.

After forming matches from your own hand, drag one of your cards to an opponent’s area to
ask the opponent for a matching card:

* If the opponent has a card with the same value as the card that you drag, the opponent
will give you the card, and they’ll go into your match area. Drag another card to an
opponent.

* If the opponent has no matching card, the top card on draw pile will move, indicating
that you must “Go Fish!” Draw a card by dragging it from the draw pile to your hand.
If the drawn card gives you a match, then the match will automatically move into your
match area, and it’s still your turn (so drag another card to one of the opponents).

The game is over when one player runs out of cards. The winner is the one with the most
matches.

To play Aces, run
the PLT Games
program. (Under
Unix, it’s called
plt-games).

To play Go Fish,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

The status line at the bottom of the window provides instructions as you go. The computer
players are not particularly smart.

(1]

LR L
& 4 k¥

1.3 i Crazy 8s — Card Game

Try to get rid of all you cards by matching the value or suit of the top card in the discard pile.
In the default mode, click a card to discard it; you can adjust the options so that you discard
by dragging a card from your hand to the discard pile.

An 8 can be discarded at any time, and in that case, the player who discarded the 8 gets to
pick any suit for it (hence the craziness of 8s). When you discard an 8, a panel of buttons
appears to the right of the discard pile, so you can pick the suit.

A player can choose to draw a card instead of discarding, as long as cards are left in the
draw pile. A player’s turn continues after drawing, so a player can continue drawing to find
something to discard. In the default mode, click the face-down draw pile in the middle of
the table; you can adjust the options to that you draw by dragging it from the draw pile to
your hand.

If no cards are left in the deck, a player may pass instead of discarding. To pass, click the
Pass button.

The status line at the bottom of the window provides instructions as you go.

14 r * Blackjack — 21 Card Game

Standard Blackjack rules with the following specifics:

* 1 player (not counting the dealer).
¢ 4 decks, reshuffled after 3/4 of the cards are used.
¢ Dealer stands on soft 17s.

* Splitting is allowed only on the first two cards, and only if they are equal. 10 and the
face cards are all considered equal for splitting.

* Doubling is allowed on all unsplit hands, not on split hands.

No blackjacks after splitting.

To play Crazy 8s,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

To play Blackjack,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

¢ No surrender.
¢ No insurance.
¢ No maximum under-21 hand size.

* Dealer’s second card is not revealed if the player busts (or both halves of a split hand
bust).

i
e
(T

- ¥ ¥

1.5 i Rummy — Card Game

This is a simple variant of Rummy.

Put all cards in your hand into straights (3 or more cards in the same suit) and 3- or 4-of-
a-kind sets to win. Each card counts for only one set. Aces can be used in both A-2-3
sequences and Q-K-A sequences.

When all of your cards fit into sets (the game detects this automatically), you win.

On each turn, you can either draw from the deck or from the top of the discard pile (drag
from either to your hand), then you must discard one of your own cards (by dragging from
your hand to the discard pile).

The status line at the bottom of the window provides instructions as you go. The computer
player is fairly smart.

1.6 ' Spider — Solitaire Card Game

Spider is a solitaire card game played with 104 cards. The cards can include either a single
suit, two suits, or four suites. (Choose your variant through the Options item in the Edit
menu.)

Terminology:

e Tableau: one of the ten stacks of cards in the play area. The game starts with six cards
in the first four tableaus, and five cards in the rest; only the topmost card is face up,
and others are revealed when they become the topmost card of the tableau.

* Sequence: a group of cards on the top of a tableau that are in the same suit, and that
are in sequence, with the lowest numbered card topmost (i.e., closer to the bottom of
the screen). King is high and ace is low.

To play Rummy,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

To play Spider, run
the PLT Games
program. (Under
Unix, it’s called
plt-games).

The object of the game is to create a sequence with ace through king, at which point the
sequence is removed from play. Create eight such sequences to win the game.

On each move, you can take one of the following actions:

* Move a sequence from any tableau to one whose topmost card (i.e., closest to the
bottom of the screen) has a value that’s one more than the sequence’s value. Note that
if the top card of the target tableau has the same suit as the sequence, a larger sequence
is formed, but the target tableau’s card is not required to have the same suit.

* Move a sequence to an empty tableau.

* Deal ten cards from the deck (in the upper left corder), one to each tableau. This move
is allowed only if no tableau is empty.

To move a sequence, either drag it to the target tableau, or click the sequence and then click
the top card of the target tableau (or the place where a single card would be for an empty
tableau). Click a select card to de-select it. Clicking a card that is not a valid target for the
currently selected sequence causes the clicked card’s sequence to be selected (if the card is
face up in a sequence).

To deal, click the deck.

To undo a move, use Undo from the Edit menu.

|
*|l
1.7 Il Memory — Kid’s Game

Flip two cards in a row that have the same picture, and the cards are removed. If the two
cards don’t match, they are flipped back over, and you try again. Each card has a single
match on the board. The game is over and the clock stops when all cards are removed.

1.8 u Slidey — Picture Puzzle

Click a tile to slide it into the adjacent space, and keep shifting tiles that way to repair the
picture.

To play Memory,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

To play Slidey, run
the PLT Games
program. (Under
Unix, it’s called
plt-games).

-
1.9 ... Same — Dot-Removing Game

To play Same, run
the PLT Games
The object of Same is to score points by removing blobs from the board. program. (Under
Unix, it’s called
plt-games).

1.9.1 The Rules

To remove a blob, click on it. As long the blob is not just a simple circle, it will disappear.
After the blob disappears, the remaining pieces of the board shift around, breaking up blobs
into new blobs as pieces of the old blobs fall down to fill in the empty space. If an entire
column is wiped out, all of the blobs from the right will slide left to take up the empty
column’s space.

As an example, imagine a board looked like this:

There are two places where we can click, on the green blob or on the purple one. Clicking
on the green one results in this board:

Notice the new horizontal blue blob that has appeared. That appears because the blue ball
falls down into the vacated space and joins into the two adjacent blue balls.

Next, if we ignore that new blue blob and click the purple one, we get this board:

The blue circle has continued falling, which breaks up our blue blob and no new one appears
because the blue circle is now next to brown circles.

If, however, we had clicked on blue blob before clicking on the purple one, we would get
this board:

and then clicking the purple one would produce this board:

Note that the purple blob was the only blob in its column, so clicking on it shifts all of the
columns to the right over to eliminate the empty space.

1.9.2 Scoring

Your score increases for each ball removed from the board, in two ways. First, when you
remove a blob, you get as many points as the square of the number of cells the blob occupied,
so removing bigger blobs is better. Second, if there are fewer than 50 cells occupied on the
board, you get a bonus. Specifically if you have 49 cells left, you get a 100 point bonus, 48
cells left yields a 200 point bonus, 47 cells a 300 point bonus etc., and if there are no cells
left, you get a 5000 point bonus.

Click the New Game button to play again.

1.10 ‘ Minesweeper — Logic Game

Remove all the tiles that have no bomb underneath. When you remove such a tile, a number
appears that indicates how many of the surrounding squares (up to 8) have a bomb; a blank
means zero bombs, and the game automatically uncovers all surrounding tiles in that case.

Right- or Control-click to flag a tile that you think has a bomb, so that you cannot acciden-
tally uncover it. Right- or Control-click again to remove the flag.

You don’t have to use flags. When all of the non-bomb tiles are removed, the game is over,
and the clock stops.

231
Z Ha

| |
1.11 ZEE Paint By Numbers — Logic Game

The object of Paint By Numbers is to discover which cells should be colored blue and which
should be colored white. Initially, all squares are grey, indicating that the correct colors are
not known. The lists of numbers to the left and above the grid are your clues to the correct
color of each square. Each list of numbers specifies the pattern of blue squares in the row
beside it or the column below it. Each number indicates the length of a group of blue squares.
For example, if the list of numbers beside the first row is 2 3 then you know that there is a
contiguous block of two blue squares followed by a contiguous block of three blue squares
with at least one white square between them. The label does not tell you where the blue
squares are, only their shapes. The trick is to gather as much information as you can about
each row, and then use that information to determine more about each column. Eventually
you should be able to fill in the entire puzzle.

Click on a square to toggle it between blue and gray. Hold down a modifier key (shift,
command, meta, or alt depending on the platform) to toggle a square between white and

10

To play
Minesweeper, run
the PLT Games
program. (Under
Unix, it’s called
plt-games).

To play Paint By
Numbers, run the
PLT Games
program. (Under
Unix, it’s called
plt-games).

gray. The third button under unix and the right button under windows also toggles between
white and gray.

For some puzzles, hints are available. Choose the Nongram|Show Mistakes menu item to
receive the hints. This will turn all incorrectly colored squares red.

Thanks to Shoichiro Hattori for his puzzles! Visit him on the web at:
http://hattori.m78.com/puzzle/

Thanks also to many of the contributors to the Kajitani web site for permission to re-
distribute their puzzles. Visit them online at:

http://nonogram.freehostia.com/pbn/index.html

The specific contributors who have permitted their puzzles to be redistributed are:

snordmey /at/ dayton <dot> net

jtraub /at/ dragoncat <dot> net

e0gb258s /at/ mail <dot> erin <dot> utoronto <dot> ca
mattingly /at/ bigfoot <dot> com

jennifer <dot> forman /at/ umb <dot> edu
karen <dot> hoover /at/ bigfoot <dot> com
sssstree /at/ ix <dot> netcom <dot> com
we_bakers_3 /at/ earthlink <dot> net
bbart /at/ cs <dot> sfu <dot> ca

jonesjk /at/ thegrid <dot> net

rrichard /at/ lexitech <dot> ca

helena <dot> montauban /at/ auroraenergy <dot> com <dot> au
barblane /at/ ionsys <dot> com

mbrammy /at/ maaleb <dot> com

nmbauer /at/ sprynet <dot> com

ncfrench /at/ aol <dot> com

km29 /at/ drexel <dot> edu

jjl /at/ stanford <dot> edu

disneyfanl3 /at/ hotmail <dot> com
richard /at/ condor-post <dot> com
lady_tabitha /at/ yahoo <dot> com

vaa /at/ psulias <dot> psu <dot> edu
kimbhall /at/ yahoo <dot> com

kcottam /at/ cusa <dot> com

karganov /at/ hotmail <dot> com
jdmaynard /at/ excite <dot> com

mnemoy /at/ gameworks <dot> com

arrelless /at/ jayco <dot> net

11

http://hattori.m78.com/puzzle/
http://nonogram.freehostia.com/pbn/index.html

azisi /at/ skiathos <dot> physics <dot> auth <dot> gr
whoaleo /at/ hotmail <dot> com

tucker1999 /at/ earthlink <dot> net

bergles /at/ yahoo <dot> com

elisabeth <dot> springfelter /at/ lanab <dot> amv <dot> se
ewhaynes /at/ mit <dot> edu

mjcarroll /at/ ccnmail <dot> com

dahu /at/ netcourrier <dot> com

joy /at/ dcs <dot> gla <dot> ac <dot> uk
piobst /at/ wam <dot> umd <dot> edu

dani6é81 /at/ aol <dot> com

Talzhemir <pixel /at/ realtime <dot> net>
hkittredge /at/ hotmail <dot> com

allraft /at/ sccoast <dot> net

karlvonl /at/ geocities <dot> com

ailsa /at/ worldonline <dot> nl

Carey Willis <N8NRG /at/ hotmail <dot> com>
citragreen /at/ hotmail <dot> com

dhalayko /at/ cgocable <dot> net

jontivel /at/ elp <dot> rr <dot> com
hublan /at/ rocketmail <dot> com
barbridgway /at/ compuserve <dot> com
mijoy /at/ mailcity <dot> com

joostdh /at/ sci <dot> kun <dot> nl
gossamer_kwaj /at/ hotmail <dot> com
williamson /at/ proaxis <dot> com

vacko_6 /at/ hotmail <dot> com

jojess /at/ earthlink <dot> net

-
1.12 L Lights Out — Logic Game

The object of this game is to turn all of the lights off. Click on a button to turn that light
off, but beware it will also toggle the lights above, below to the left and to the right of that
button.

Good luck.

12

To play Lights
Out, run the PLT
Games program.
(Under Unix, it’s
called plt-games).

1.13 i | Pousse — Tic-Tac-Toe-like Game

Pousse (French for “push,” pronounced “poo-ss”) is a 2 person game, played on an N by N
board (usually 4 by 4). Initially the board is empty, and the players take turns inserting one
marker of their color (X or O) on the board. The color X always goes first. The columns and
rows are numbered from 1 to N, starting from the top left, as in:

1234

1

N

w

Fotot—t-
L
S S .
L
Fotot—t-
(I
Fotot—t-

41 111

Fotot—t-

+ =+ — + — + — +

A marker can only be inserted on the board by sliding it onto a particular row from the left or
from the right, or onto a particular column from the top or from the bottom. So there are 4 *N
possible “moves” (ways to insert a marker). They are named Li, Ri, Ti, and Bi respectively,
where i is the number of the row or column where the insertion takes place.

When a marker is inserted, there may be a marker on the square where the insertion takes
place. In this case, all markers on the insertion row or column from the insertion square up
to the first empty square are moved one square further to make room for the inserted marker.
Note that the last marker of the row or column will be pushed off the board (and must be
removed from play) if there are no empty squares on the insertion row or column.

A row or a column is a straight of a given color if it contains N markers of the given color.

The game ends either when an insertion

 repeats a previous configuration of the board; in this case the player who inserted the
marker LOSES.

* creates a configuration with more straights of one color than straights of the other
color; the player whose color is dominant (in number of straights) WINS.

A game always leads to a win by one of the two players. Draws are impossible.

This game is from the 1998 ICFP programming contest.

13

To play Pousse, run
the PLT Games
program. (Under
Unix, it’s called
plt-games).

1.14

.l Gobblet — Strategy Game

Gobblet! is a board game from Blue Orange Games:

http://www.blueorangegames . com/

Our 3x3 version actually corresponds to Gobblet! Jr., while the 4x4 version matches Gob-

blet!.

The Blue Orange web site provides rules for Gobblet! Jr. and Gobblet!. The rules below
are in our own words; see also the Blue Orange version.

1.14.1 Game Rules

The 3x3 game is a generalization of tic-tac-toe:

The object of the game is to get three in a row of your color, vertically, horizontally,
or diagonally. Size doesn’t matter for determining a winner.

Each player (red or yellow) starts with 6 pieces: two large, two medium, and two
small.

On each turn, a player can either place a new piece on the board, or move a piece
already on the board—from anywhere to anywhere, as long as the “from” and “to” are
different.

A piece can be placed (or moved to) an empty space, or it can be placed/moved on
top of a smaller piece already on the board, “gobbling” the smaller piece. The smaller
piece does not have to be an opponent’s piece, and the smaller piece may itself have
gobbled another piece previously.

Only visible pieces can be moved, and only visible pieces count toward winning. Gob-
bled pieces stay on the board, however, and when a piece is moved, any piece that it
gobbled stays put and becomes visible.

If moving a piece exposes a winning sequence for the opponent, and if the destination
for the move does not cover up one of the other pieces in the sequence, then the
opponent wins—even if the move makes a winning sequence for the moving player.

Technically, if a player touches a piece, then the piece must be moved on that turn. In
other words, you’re not allowed to peek under a piece to remind yourself whether it
gobbled anything. If the piece can’t be moved, the player forfeits. This particular rule
is not enforced by our version — in part because our version supports a rewind button,
which is also not in the official game.

14

To play Gobblet,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

http://www.blueorangegames.com/

The 4x4 game has a few changes:

» The object of the game is to get four in a row of your color.

» Each player (red or yellow) starts with 12 pieces: three large, three medium-large,
three medium-small, and three small.

* Each player’s pieces are initially arranged into three stacks off the board, and only
visible pieces can be moved onto the board. The initial stacks prevent playing a smaller
piece before a corresponding larger piece.

* When a piece is moved from off-board onto the board, it must be moved to either (1) an
empty space, or (2) a space to gobble an opponent’s piece that is part of three in a row
(for the opponent). In other words, a new piece can gobble only an opponent’s piece,
and only to prevent an immediate win on the opponent’s next turn. These restrictions
do not apply when a piece that is already on the board is moved.

1.14.2 Controls

Click and drag pieces in the obvious way to take a turn. The shadow under a piece shows
where it will land when you drop it.

Use the arrow keys on your keyboard to rotate the board. Use the - and = keys to zoom
in and out. Use _ and + to make the game smaller and larger. (Changing the size adjusts
perspective in a slightly different way than zooming.) Depending on how keyboard focus
works on your machine, you may have to click the board area to make these controls work.

The button labeled < at the bottom of the window rewinds the game by one turn. The button
labeled > re-plays one turn in a rewound game. An alternate move can be made at any point
in a rewound game, replacing the old game from that point on.

1.14.3 Auto-Play

Turn on a computer player at any time by checking the Auto-Play Red or Auto-Play Yel-
low checkbox. If you rewind the game, you can choose an alternate move for yourself or
for the auto-player to find out what would have happened. The auto-player is not always
deterministic, so replying the same move might lead to a different result. You can disable an
auto-player at any point by unchecking the corresponding Auto-Play"checkbox.

Important: In the 3x3 game, you cannot win as yellow against the smart auto-player (if the
auto-player is allowed to play red from the start of the game). In other words, red has a
forced win in the 3x3 game, and the smart auto-player knows the path to victory. You might
have a chance to beat the red player in the default mode, though, which is represented by the
Ok choice (instead of Smart) in the Auto-Play Options dialog.

15

Configure the auto-player by clicking the Auto-Play Options button. Currently, there’s no
difference between Smart and Ok in the 4x4 game.

1.15 « Jewel — 3-D Skill Game

The board is an 8 by 8 array of jewels of 7 types. You need to get 3 or more in a row
horizontally or vertically in order to score points. You can swap any two jewels that are next
to each other up and down or left and right. The mechanic is to either:

* Click the mouse on the first one, then drag in the direction for the swap.

* Move a bubble using the arrow keys, lock the bubble to a jewel with the space bar,
and the swap the locked jewel with another by using the arrow keys. Space unlocks a
locked bubble without swapping.

Jewels can only be swapped if after the swap there are at least 3 or more same shape or color
in a row or column. Otherwise the jewels return to their original position. There is a clock
shown on the left. When it counts down to 0 the game is over. Getting 3 in a row adds time
to the clock.

Hit spacebar to start a new game then select the difficulty number by pressing 0, 1, 2, 3, or
0. You can always press ESC to exit. During playing press P to pause the game.

The code is released under the LGPL. The code is a conversion of Dave Ashley’s C program
to Racket with some modifications and enhancements.

Enjoy.

1.16 < Parcheesi — Board Game

Parcheesi is a race game for four players. The goal is for each player to move their pieces
from the starting position (the circles in the corners) to the home square (in the center of the
board), passing a nearly complete loop around the board in the counter-clockwise direction
and then heads up towards the main row. For example, the green player enters from the
bottom right, travels around the board on the light blue squares, passing each of the corners,
until it reaches the middle of the bottom of the board, where it turns off the light blue squares
and heads into the central region.

On each turn, the player rolls two dice and advances the pawn, based on the die rolls. Typ-
ically the players may move a pawn for each die. The pawn moves by the number of pips

16

To play Jewel, run
the PLT Games
program. (Under
Unix, it’s called
plt-games).

To play Parcheesi,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

showing on the die and all of the dice must be used to complete a turn.

There are some exceptions, however:

* You must roll a 5 (either directly or via summing) to enter from the start area to the
main ring.

* If two pieces of the same color occupy a square, no pieces may pass that square.

» If an opponent’s piece lands on your piece, you piece is returned to the starting area
and the opponent receives a bonus of 20 (which is treated just as if they had rolled a
20 on the dice).

* If your piece makes it home (and it must do so by exact count) you get a bonus of 10,
to be used as an additional die roll.

These rules induce a number of unexpected corner cases, but the GUI only lets you make
legal moves. Watch the space along the bottom of the board for reasons why a move is illegal
or why you have not used all of your die rolls.

The automated players are:

¢ Reckless Renee, who tries to maximize the chances that someone else bops her.

* Polite Polly, who tries to minimize the distance her pawns move. (“No, after you. 1
insist.”)

* Amazing Grace, who tries to minimize the chance she gets bopped while moving as
far as possible.

1.17 . Checkers — Board Game

This simple checkers game (with no Al player) is intended as a demonstration use of the
games/gl-board-game library.

1.18 E@: Chat Noir — Puzzle Game

The goal of Chat Noir is to stop the cat from escaping the board. Each turn you click on a
circle, which prevents the cat from stepping on that space, and the cat responds by taking a
step. If the cat is completely boxed in and thus unable reach the border, you win. If the cat
does reach the border, you lose.

17

To play Checkers,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

To start a new game, hit the “n” key (but only after losing or winning a game).

To get some insight into the cat’s behavior, press the “h” key. It will show you the cells that
are on the cat’s shortest path to the edge, assuming that the cell underneath the mouse has
been blocked, so you can experiment to see how the shortest paths change by moving your
mouse around. Note that this slows down the game considerably, so you can turn it back off
by pressing “h” again.

The game was inspired by the one at Game Design| and has essentially the same rules. It
also inspired the final project for the introductory programming course at the University of
Chicago in the fall of 2008.

The remainder of this document explains the implementation of the Chat Noir game in a
Literate Programming|style.

1.18.1 Overview

Chat Noir is implemented using HtDPs universe library: 2htdp/universe (although it
only uses the “world” portions of that library). The program is divided up into a number
of parts: the world data definition, an implementation of breadth-first search, constructing
a graph of where the possible cat moves are on a specific board, finding the best paths for
the cat to take, code that handles drawing of the world and the drawing of the cat, code that
handles user input, and some code that builds an initial world and starts the game.

<main> ::=

(require racket/list racket/math
(for-syntax racket/base))

(require 2htdp/universe 2htdp/image lang/posn racket/contract)

<world>

<breadth-first-search>

<board->graph>

<cats-path>

<drawing-the-cat>

<drawing>

<input>

<initial-world>

<tests>

<go>

Each section also comes with a series of test cases that are collected into the <tests> chunk
at the end of the program.

<tests> ::=

<test-infrastructure>

18

To play Chat Noir,
run the PLT Games
program. (Under
Unix, it’s called
plt-games).

http://www.gamedesign.jp/flash/chatnoir/chatnoir.html
http://www.literateprogramming.com/
http://www.htdp.org/

<world-tests>
<board->graph-tests>
<breadth-first-search-tests>
<cats-path-tests>
<drawing-tests>
<input-tests>

Each test case uses either test, a simple form that accepts two arguments and compares
them with equal?, or test/set which accepts two lists and compares them as if they were
sets.

In general, most of the test cases are left to the end of the document, organized in a series
of chunks that match the functions being tested. Some of the test cases, however, provide
illustrations of the behavior of the function and so are included in the function’s description.

1.18.2 The World

The main data structure for Chat Noir is world. It represents the current state of a game of
Chat Noir, and comes with a few functions that construct empty worlds and test cases for
them.

<world> ::=

<cell-struct> <world-struct> <empty-world> <empty-board>
<blocked-cells> <block-cell>

<world-tests> ::=

<empty-world-test> <empty-board-test> <blocked-cells-tests>

The main structure definition is the world struct.

<world-struct> ::=

(define-struct/contract world ([board (listof cell?)]

[cat posn?]

[state (or/c 'playing
'cat-won
'cat-lost)]

[size (and/c natural-number/c
odd?
(>=/c 3))1]

[mouse-posn (or/c #f posn?)]

[help? boolean?])

#:transparent)

19

It consists of a structure with six fields:

* board: representing the state of the board as a list of cells, one for each circle on the
game.

e cat: a posn indicating the position of the cat (interpreting the posn in the way that
they are interpreted for the board field),

* state: the state of the game, which can be one of
— 'playing, indicating that the game is still going; this is the initial state.

— 'cat-won, indicating that the game is over and the cat won, or

— 'cat-lost, indicating that the game is over and the cat lost.
* size: an odd natural number indicating the size of the board

* mouse-posn: a posn for the location of the mouse (or #£ if the mouse is not in the
window), and

* help?: a boolean indicating if help should be shown.

A cell is a structure with two fields:
<cell-struct> ::=

(define-struct/contract cell ([p posn?]
[blocked? boolean?])
#:transparent)

The coordinates of the posn in the first field indicate a position on the hexagonal grid. This
program reprsents the hexagon grid as a series of rows that are offset from each other by
1/2 the size of the each cell. The y field of the posn refers to the row of the cell, and the
x coordinate the position in the row. This means that, for example, (make-posn 1 0) is
centered above (make-posn 1 0) and (make-posn 1 1).

The boolean in the blocked? field indicates if the cell has been clicked on, thus blocking
the cat from stepping there.

The empty-board function builds a list of cells that correspond to an empty board. For
example, here’s what an empty 7x7 board looks like, as a list of cells.

20

It contains 7 rows and, with the exception of the first and last rows, each row contains 7 cells.
Notice how the even and odd rows are offset from each other by 1/2 of the size of the cell.
The first and last row are missing their left-most cells because those cells are useless, from
the perspective of the gameplay, Specifically, all of the neighbors of the missing cells are
also on the boundary and thus the cat would win if it ever steps on one of those neighboring
cells, ending the game.

The 3x3 board also has the same property that it consists of three rows, each with three cells,
but where the first and last row are missing their left-most cells.

And here is how that board looks as a list of cells.

21

<empty-board-test> ::=

(test (empty-board 3)

(1list
(make-cell (make-posn O 1) #f)
(make-cell (make-posn 1 0) #f)
(make-cell (make-posn 1 1) #f)
(make-cell (make-posn 1 2) #f)
(make-cell (make-posn 2 0) #f)
(make-cell (make-posn 2 1) #f)
(make-cell (make-posn 2 2) #f)))

The empty-board function consists of two (nested) calls to build-1ist that build a list of
lists of cells, one for each pair of coordinates between 0 and board-size. Then, append
flattens the nested lists and the filter expression removes the corners.

<empty-board> ::=

(define/contract (empty-board board-size)
(-> (and/c natural-number/c odd? (>=/c 3))
(listof cell?))
(filter
(not-corner? board-size)
(apply
append
(build-list
board-size
1 (1)
(build-list
board-size
@ G
(make-cell (make-posn i j)

#£))))))))

(define/contract ((not-corner? board-size) c)

(-> (and/c natural-number/c odd? (>=/c 3))

(-> cell?
boolean?))
(not (and (= 0 (posn-x (cell-p c)))
(or (= 0 (posn-y (cell-p ¢)))
(= (- board-size 1)
(posn-y (cell-p ¢)))))))

Building an empty world is simply a matter of building an empty board, finding the initial
position of the cat and filling in all of the fields of the world struct. For example, this is

22

the empty world of size 3. It puts the cat at (make-posn 1 1), sets the state to 'playing,
records the size 3, and sets the current mouse position to #f and the state of the “h” key to
#E.

<empty-world-test> ::=

(test (empty-world 3)
(make-world (empty-board 3)
(make-posn 1 1)
'playing
3
#f
#£))

The empty-world function generalizes the example by computing the cats initial position
as the center spot on the board.

<empty-world> ::=

(define/contract (empty-world board-size)
(-> (and/c natural-number/c odd? (>=/c 3))
world?)

(make-world (empty-board board-size)

(make-posn (quotient board-size 2)
(quotient board-size 2))

'playing
board-size
#t
#£))

The add-n-random-blocked-cells function accepts a list of cells and returns a new list
of cells where n of the unblocked cells in all-cells are now blocked.

If n is zero, of course, no more cells should be blocked, so the result is just all-cells.
Otherwise, the function computes unblocked-cells, a list of all of the unblocked cells
(except the cat’s initial location), and then randomly picks a cell from it, calling block-
cell to actually block that cell.

<blocked-cells> ::=

(define/contract (add-n-random-blocked-cells n all-cells board-
size)
(-> natural-number/c (listof cell?) (and/c natural-
number/c odd? (>=/c 3))
(listof cell?))
(cond

23

[(zero? n) all-cells]
[else
(define unblocked-cells
(filter (1 (x)
(define cat-cell?
(and (= (posn-x (cell-p x))
(quotient board-size 2))
(= (posn-y (cell-p x))
(quotient board-size 2))))
(and (not (cell-blocked? x))
(not cat-cell?)))
all-cells))
(define to-block (list-ref unblocked-
cells (random (length unblocked-cells))))
(add-n-random-blocked-cells
(subl n)
(block-cell (cell-p to-block) all-cells)
board-size)]))

The block-cell function accepts a posn and a list of cell structs and updates the relevant
cell, setting its blocked? field to #t.

<block-cell> ::=

(define/contract (block-cell to-block board)
(-> posn? (listof cell?) (listof cell?))
(for/1list ([c (in-list board)])

(if (equal? to-block (cell-p c))
(make-cell to-block #t)
c)))

1.18.3 Breadth-first Search

The cat’s move decision is based on a breadth-first search of a graph. The graph’s nodes are
the cells on the board plus a special node called 'boundary that is adjacent to every cell on
the boundary of the graph. In addition to the boundary edges, there are edges between each
pair of adjacent cells, unless one of the cells is blocked, in which case it has no edges at all
(even to the boundary).

This section describes the implementation of the breadth-first search, leaving details of how
the graph connectivity is computed from the board to the next section.

<breadth-first-search> ::=

<dist-cell-data-definition>

24

<lookup-in-table>
<build-bfs-table>

<breadth-first-search-tests> ::=

<lookup-in-table-tests>
<build-bfs-table-tests>

The breadth-first function constructs a distance-map, which is a list of dist-cell structs:
<dist-cell-data-definition> ::=

(define-struct/contract dist-cell ([p (or/c 'boundary posn?)]
[n natural-number/c])
#:transparent)

Each p field in the dist-cell is a position on the board and the n field is a natural number,
indicating the distance of the shortest path from the node to some fixed point on the board.

The function lookup-in-table returns the distance from the fixed point to the given posn,
returning ' oo if the posn is not in the table.

<lookup-in-table> ::=

(define/contract (lookup-in-table t p)
(-> (listof dist-cell?) posn?
(or/c 'oo natural-number/c))
(cond
[(empty? t) 'oo]
[else (cond
[(equal? p (dist-cell-p (first t)))
(dist-cell-n (first t))]
[else
(lookup-in-table (rest t) p)1)1))

The build-bfs-table accepts a world and a cell (indicating the fixed point) and returns a
distance map encoding the distance to that cell. For example, here is the distance map for
the distance to the boundary.

<build-bfs-table-tests> ::=

(test/set (build-bfs-table (empty-world 3)
'boundary)
(list
(make-dist-cell 'boundary 0)

25

(make-dist-cell (make-posn 1 0) 1)
(make-dist-cell (make-posn 2 0) 1)

(make-dist-cell (make-posn O 1) 1)
(make-dist-cell (make-posn 1 1) 2)
(make-dist-cell (make-posn 2 1) 1)

(make-dist-cell (make-posn 1 2) 1)
(make-dist-cell (make-posn 2 2) 1)))

The boundary is zero steps away; each of the cells that are on the boundary are one step
away and the center is two steps away.

The core of the breadth-first search is this function, bst. It accepts a queue of the pending
nodes to visit and a dist-table that records the same information as a distance-map, but
in an immutable hash-table. The dist-map is an accumulator, recording the distances to all
of the nodes that have already been visited in the graph, and is used here to speed up the
computation. The queue is represented as a list of vectors of length two. Each element in
the queue contains a posn, or the symbol 'boundary and that posn’s distance.

<bfs> =

(define/contract (bfs queue dist-table)
(-> (listof (vector/c (or/c 'boundary posn?) natural-number/c))
hash?
hash?)
#:freevar neighbors/w (-> (or/c 'boundary posn?)
(listof (or/c 'boundary posn?)))
(cond
[(empty? queue) dist-table]
[else
(define p (vector-ref (first queue) 0))
(define dist (vector-ref (first queue) 1))
(cond
[(hash-ref dist-table p #f)
(bfs (rest queue) dist-table)]
[else
(bfs
(append (rest queue)
(map (1 (p) (vector p (+ dist 1)))
(neighbors/w p)))
(hash-set dist-table p dist))])]1))

If the queue is empty, then the accumulator contains bindings for all of the (reachable) nodes
in the graph, so we just return it. If it isn’t empty, then we extract the first element from the

26

queue and name its consituents p and dist. Next we check to see if the node at the head of
the queue isin dist-table. If it is, we just move on to the next element in the queue. If that
node is not in the dist-table, then we add all of the neighbors to the queue, in the append
expression, and update the dist-table with the distance to this node. Because we always
add the new children to the end of the queue and always look at the front of the queue, we
are guaranteed that the first time we see a node, it will be with the shortest distance.

The build-bfs-table function packages up bfs function. It accepts a world and an initial
position and returns a distance-table.

<build-bfs-table> ::=

(define/contract (build-bfs-table world init-point)
(-> world? (or/c 'boundary posn?)
(listof dist-cell?))
(define neighbors/w (neighbors world))
<bfs>

(hash-map

(bfs (list (vector init-point 0))
(make-immutable-hash '()))

make-dist-cell))

As you can see, the first thing it does is bind the free variable in bfs to the result of calling
the neighbors function (defined in the chunk <neighbors>) and then it has the <bfs>
chunk. In the body it calls the bfs function and then transforms the result, using hash-map,
into a list of cells.

1.18.4 Board to Graph

As far as the build-bfs-table function goes, all of the information specific to Chat Noir
is encoded in the neighbors function. It accepts a world and returns a function that computes
the neighbors of the boundary and of nodes. This section describes how it is implemented.

<board->graph> ::=

<neighbors>
<neighbors-blocked/boundary>
<adjacent>

<in-bounds?>
<on-boundary?>

<board->graph-tests> ::=

<on-boundary?-tests>

27

<in-bounds?-tests>
<adjacent-tests>
<neighbors-tests>

The neighbors functions accepts a world and then returns a function that computes the
neighbors of a posn and of the 'boundary.

For example, (make-posn 1 0) has four neighbors:

<neighbors-tests> ::=

(test ((neighbors (empty-world 7)) (make-posn 1 0))

(list 'boundary

(make-posn 2 0)
(make-posn 0 1)
(make-posn 1 1)))

and (make-posn O 1) has four neighbors:

<neighbors-tests> ::=

(test ((neighbors (empty-world 7)) (make-posn 0 1))

(list 'boundary
(make-posn
(make-posn
(make-posn
(make-posn

1
1
0
1

0)
D)
2)
2)))

as you can see in the earlier pictures of the 7x7 empty board. Also, there are 6 neighbors of

the boundary in the 3x3 board:

<neighbors-tests> ::=

(test ((neighbors (empty-world 3)) 'boundary)

(list (make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

0

N NN = =

1
0)
2)
0)
1)
2)))

This is the neighbors function. After it accepts the world, it builds a list of the blocked cells
in the world and a list of the cells that are on the boundary (and not blocked). Then it returns
a function that is specialized to those values.

<neighbors> ::=

28

(define/contract (neighbors w)
(-> world?
(-> (or/c 'boundary posn?)
(listof (or/c 'boundary posn?))))
(define blocked
(map cell-p
(filter (1 (¢)
(or (cell-blocked? c)
(equal? (cell-p c) (world-mouse-posn w))))
(world-board w))))
(define boundary-cells
(filter (1 (p)
(and (not (member p blocked))
(on-boundary? p (world-size w))))
(map cell-p (world-board w))))
@
(neighbors-blocked/boundary blocked
boundary-cells
(world-size w)

p)))

The neighbors-blocked/boundary function is given next. If p is blocked, it returns the
empty list. If it is on the boundary, the function simply returns boundary-cells. Other-
wise, neighbors-blocked/boundary calls adjacent to compute the posns that are adja-
cent to p, filtering out the blocked posns and binds that to adjacent-posns. It then filters
out the posns that would be outside of the board. If those two lists are the same, then p is
not on the boundary, so we just return in-bounds. If the lists are different, then we know
that p must have been on the boundary, so we add 'boundary to the result list.

<neighbors-blocked/boundary> ::=

(define/contract (neighbors-blocked/boundary blocked
boundary-cells
size
p)

(-> (listof posn?)
(listof posn?)
natural-number/c
(or/c 'boundary posn?)
(listof (or/c 'boundary posn?)))

(cond
[(member p blocked)
"O]
[(equal? p 'boundary)
boundary-cells]

29

[else
(define x (posn-x p))
(define adjacent-posns
(filter (1 (x) (not (member x blocked)))
(adjacent p)))
(define in-bounds
(filter (1 (x) (in-bounds? x size))
adjacent-posns))
(cond
[(equal? in-bounds adjacent-posns)
in-bounds]
[else
(cons 'boundary in-bounds)])]))

There are the three functions that build the basic graph structure from a board as used by
neighbors.

The first function is adjacent. It consumes a posn and returns six posns that indicate
what the neighbors are, without consideration of the size of the board (or the missing corner
pieces).

For example, these are the posns that are adjacent to (make-posn 0 1); note that the first
and the third are not on the board and do not show up in neighbors function example above.

<adjacent-tests> ::=

(test (adjacent (make-posn 0 1))
(list (make-posn 0 0)
(make-posn 1 0)
(make-posn -1 1)
(make-posn 1 1)
(make-posn 0 2)
(make-posn 1 2)))

The adjacent function has two main cases; first when the y coordinate of the posn is even and
second when it is odd. In each case, it is just a matter of looking at the board and calculating
coordinate offsets.

<adjacent> ::=

(define/contract (adjacent p)
(-> posn?
(and/c (listof posn?)
(4 (1) (= 6 (length 1)))))
(define x (posn-x p))
(define y (posn-y p))

30

(cond
[(even? y)

(list (make-posn (- x 1) (- y 1))
(make-posn x (- y 1))
(make-posn (- x 1) y)
(make-posn (+ x 1) y)
(make-posn (- x 1) (+ y 1))
(make-posn x (+ y 1)))]

[else

(1ist (make-posn x (- y 1))
(make-posn (+ x 1) (- y 1))
(make-posn (- x 1) y)
(make-posn (+ x 1) y)
(make-posn x (+ y 1))
(make-posn (+ x 1) (+y 1)))1))

The on-boundary? function returns #t when the posn would be on the boundary of a board
of size board-size. Note that this function does not have to special case the missing posns
from the corners.

<on-boundary?> ::=

(define/contract (on-boundary? p board-size)
(-> posn? natural-number/c
boolean?)
(or (= (posn-x p) 0)
(= (posn-y p) 0)
(= (posn-x p) (- board-size 1))
(= (posn-y p) (- board-size 1))))

The in-bounds? function returns #t when the posn is actually on the board, meaning that
the coordinates of the posn are within the board’s size, and that the posn is not one of the
two corners that have been removed.

<in-bounds?> ::=

(define/contract (in-bounds? p board-size)
(-> posn? natural-number/c
boolean?)
(and (<= 0 (posn-x p) (- board-size 1))
(<= 0 (posn-y p) (- board-size 1))
(not (equal? p (make-posn 0 0)))
(not (equal? p (make-posn O (- board-size 1))))))

31

1.18.5 The Cat’s Path

Once we have a breadth-first search all sorted out, we can use it to build a function that
determines where the shortest paths from the cat’s current position to the boundary are.

<cats-path> ::=
<on-cats-path?>
<+/f>

<cats-path-tests> ::=
<on-cats-path?-tests>

<+/f-tests>

The function on-cats-path? accepts a world and returns a predicate on the posns in the
world. The predicate indicates if the given posn is on the shortest path.

For example, in a world of size 7 with the cat at (make-posn 2 2), the circles with white
centers are on the shortest path to the boundary:

So we can formulate two test cases using this world, one in the white circles and one not:

32

<on-cats-path?-tests> ::=

(let ([on-the-path?
(on-cats-path? (make-world (empty-board 7)
(make-posn 2 2)
'playing
7
#f
#t))1)
(test (on-the-path? (make-posn 1 0))
#t)
(test (on-the-path? (make-posn 4 4))
#£))

The computation of the shortest path to the boundary proceeds by computing two distance
maps; the distance map to the boundary and the distance map to the cat. Then, a node is on
one of the shortest paths if the distance to the cat plus the distance to the boundary is equal
to the distance from the cat to the boundary.

The code is essentially that, plus two other special cases. Specifically if the “h” key is not
pressed down, then we just consider no cells to be on that shortest path. And if the distance
to the cat is 'c0, then again no nodes are on the path. The second situation happens when
the cat is completely boxed in and has lost the game.

<on-cats-path?> ::=

(define/contract (on-cats-path? w)

(-> world? (-> posn? boolean?))

(cond
[(world-help? w)
(define edge-distance-map (build-bfs-table w 'boundary))
(define cat-distance-map (build-bfs-table w (world-cat w)))
(define cat-distance

(lookup-in-table edge-distance-map (world-cat w)))

(cond
[(equal? cat-distance 'o0)
(A (p) #£)]
[else
1 (P

(equal? (+/f (lookup-in-table cat-distance-map p)
(lookup-in-table edge-distance-map p))
cat-distance))])]

[else
1 (p) #£)1))

Finally, the helper function +/f is just like +, except that it returns ' oo if either argument is
'o0.

33

<Hf> =

(define (+/f x y)
(cond
[(or (equal? x 'cw) (equal? y 'o0))
II]
[else

+x 1))

1.18.6 Drawing the Cat

This code is three large, similar constants, bundled up into the cat function. The thinking-
cat is the one that is visible when the game is being played. It differs from the others in that
it does not have a mouth. The mad-cat is the one that you see when the cat loses. It differs
from the others in that its pinks turn pink. Finally, the happy-cat shows up when the cat
wins and it is just like the thinking-cat except it has a smile.

<drawing-the-cat> ::=

(define/contract (cat mode)
(-> (or/c 'mad 'happy 'thinking) image?)
(define face-width 36)
(define face-height 22)

(define face-color
(cond
[(eq? mode 'mad) 'pink]
[else 'lightgrayl))

(define left-ear

(rotate 34 (regular-polygon 8 3 'solid 'black)))
(define right-ear

(rotate -34 (regular-polygon 8 3 'solid 'black)))
(define ear-x-offset 14)
(define ear-y-offset -8)

(define eye (underlay (ellipse 12 8 'solid 'black)
(ellipse 6 4 'solid 'limegreen)))

(define eye-x-offset 8)

(define eye-y-offset -3)

(define nose
(regular-polygon 5 3 'solid 'black))

(define mouth-happy

34

(overlay/align "center" "bottom"
(rectangle 0 8 'solid 'black)
(crop -1/2 4 9 5 (ellipse 8 8 'outline 'black))))

(define mouth-no-expression
(overlay/align "center" "bottom"
(rectangle 0 6 'solid 'black)
(rectangle 8 1 'solid 'black)))

(define mouth
(cond
[(eq? mode 'happy) mouth-happyl
[else mouth-no-expression]))
(define mouth-x-offset 0)
(define mouth-y-offset 5)

(define (whiskers img)
(define img-with-space
(overlay img (rectangle (+ (image-width img) 20)
(image-height img)
"outline" "transparent")))
(define whisker-start-y 17)
(define whisker-start-right-x 32)
(define whisker-start-left-x 24)
(define whisker-width 23)
(define whisker-y-delta 5)
(add-1ine
(add-line
(add-line
(add-line
(add-line
(add-1ine
img-with-space
whisker-start-left-x whisker-start-y
(- whisker-start-left-x whisker-width)
(- whisker-start-y whisker-y-delta) 'black)
whisker-start-left-x whisker-start-y
(- whisker-start-left-x whisker-width) whisker-start-
y 'black)
whisker-start-left-x whisker-start-y
(- whisker-start-left-x whisker-width) (+ whisker-start-
y whisker-y-delta) 'black)
whisker-start-right-x whisker-start-y
(+ whisker-start-right-x whisker-width) (- whisker-start-
y whisker-y-delta) 'black)
whisker-start-right-x whisker-start-y

35

(+ whisker-start-right-x whisker-width) whisker-start-
y 'black)
whisker-start-right-x whisker-start-y
(+ whisker-start-right-x whisker-width) (+ whisker-start-
y whisker-y-delta) 'black))

(whiskers
(underlay/offset
(underlay/offset
(underlay/offset
(underlay/offset
(underlay/offset
(underlay/offset
(ellipse face-width face-height 'solid face-color)
mouth-x-offset mouth-y-offset mouth)
0 0 nose)
(- eye-x-offset) eye-y-offset eye)
eye-x-offset eye-y-offset eye)
ear-x-offset ear-y-offset right-ear)
(- ear-x-offset) ear-y-offset left-ear)))

(define thinking-cat (cat 'thinking))
(define happy-cat (cat 'happy))
(define mad-cat (cat 'mad))

1.18.7 Drawing the World

<drawing> ::=

<constants>
<render-world>
<render-board>
<render-cell>
<crop-whiskers>
<world-width>
<world-height>
<cell-center-x>
<cell-center-y>

<drawing-tests> ::=

<cell-center-x-tests>
<cell-center-y-tests>
<world-size-tests>

36

There are a number of constants that are given names to make the code more readable.

These first two constants give the radius of the circles that are drawn on the board, plus the
radius of an invisible circle that, if they were drawn on top of the circles, would touch each
other. Accordingly, circle-spacing is used when computing the positions of the circles,
but the circles are drawn using circle-radius.

<constants> ::=

(define circle-radius 20)
(define circle-spacing 22)

The other four constants specify the colors of the circles.

<constants> ::=

(define normal-color 'lightskyblue)
(define on-shortest-path-color 'white)
(define blocked-color 'black)

(define under-mouse-color 'black)

The main function for drawing a world is render-world. It is a fairly straightforward
composition of helper functions. First, it builds the image of a board, and then puts the cat
on it. Lastly, since the whiskers of the cat might now hang off of the edge of the board (if the
cat is on a leftmost or rightmost cell), it trims them. This ensures that the image is always
the same size and that the pinhole is always in the upper-left corner of the window.

<render-world> ::=

(define/contract (render-world w)
(-> world? image?)
(define the-cat
(cond
[(equal? (world-state w) 'cat-won) happy-cat]
[(equal? (world-state w) 'cat-lost) mad-cat]
[else thinking-cat]))
(crop-whiskers
W
(underlay/xy (render-board (world-board w)
(world-size w)
(on-cats-path? w)
(world-mouse-posn w))
(- (cell-center-x (world-cat w))
(/ (image-width the-cat) 2))
(- (cell-center-y (world-cat w))
(/ (image-height the-cat) 2))
the-cat)))

37

The render-board function uses for/fold to iterate over all of the cells in cs. It starts
with an empty rectangle and, one by one, puts the cells on image.

<render-board> ::=

(define/contract (render-board cs world-size on-cat-path? mouse)
(-> (listof cell?)
natural-number/c
(-> posn? boolean?)
(or/c #f posn?)
image?)
(for/fold ([image (rectangle (world-width world-size)
(world-height world-size)
'solid
'white)])
([c (in-list cs)])
(underlay/xy image
(- (cell-center-x (cell-p c)) circle-radius)
(- (cell-center-y (cell-p c)) circle-radius)
(render-cell c
(on-cat-path? (cell-p c))
(and (posn? mouse)
(equal? mouse (cell-p ¢)))))))

The render-cell function accepts a cell, a boolean indicating if the cell is on the shortest
path between the cat and the boundary, and a second boolean indicating if the cell is under-
neath the mouse. It returns an image of the cell, with the pinhole placed in such a way that
overlaying the image on an empty image with pinhole in the upper-left corner results in the
cell being placed in the right place.

<render-cell> ::=

(define/contract (render-cell c on-short-path? under-mouse?)
(-> cell? boolean? boolean? image?)
(define x (cell-center-x (cell-p c)))
(define y (cell-center-y (cell-p c¢)))
(define main-circle
(cond
[(cell-blocked? c)
(circle circle-radius 'solid blocked-color)]
[else
(circle circle-radius 'solid normal-color)]))
(cond
[under-mouse?
(underlay main-circle
(circle (quotient circle-radius 2) 'solid under-
mouse-color))]

38

[on-short-path?
(underlay main-circle
(circle (quotient circle-radius 2) 'solid
on-shortest-path-color))]
[else
main-circle]))

The chop-whiskers function ensures that when the cat is near the edge of the board (and
its whiskers would hang off) that the image that the board produces still has the same size
(by clipping away the cat’s whiskers).

<crop-whiskers> ::=

(define/contract (crop-whiskers w img)
(-> world? image? image?)
(define cat-posn (world-cat w))
(define cat-x (posn-x cat-posn))
(define cat-y (posn-y cat-posn))
(define left-edge? (and (even? cat-y) (= cat-x 0)))
(define right-edge? (and (odd? cat-y) (= cat-x (- board-
size 1))))
(define width (world-width (world-size w)))
(define height (world-height (world-size w)))
(cond
[left-edge?
(crop (- (/ (image-width happy-cat) 2) circle-radius)
0
width height img)]
[right-edge? (crop 0 O width height img)]
[else img]))

The world-width function computes the width of the rendered world, given the world’s
size by finding the center of the rightmost posn, and then adding an additional radius.

<world-width> ::=

(define/contract (world-width board-size)
(-> natural-number/c number?)
(define rightmost-posn
(make-posn (- board-size 1) (- board-size 2)))
(+ (cell-center-x rightmost-posn) circle-radius))

Similarly, the world-height function computest the height of the rendered world, given
the world’s size.

<world-height> ::=

39

(define/contract (world-height board-size)
(-> natural-number/c number?)
(define bottommost-posn
(make-posn (- board-size 1) (- board-size 1)))
(ceiling (+ (cell-center-y bottommost-posn)
circle-radius)))

The cell-center-x function returns the x coordinate of the center of the cell specified by
p-

For example, the first cell in the third row (counting from 0) is flush with the edge of the
screen, so its center is just the radius of the circle that is drawn.

<cell-center-x-tests> ::=

(test (cell-center-x (make-posn 0 2))
circle-radius)

The first cell in the second row, in contrast is offset from the third row by circle-spacing.

<cell-center-x-tests> ::=

(test (cell-center-x (make-posn 0 1))
(+ circle-spacing circle-radius))

The definition of cell-center-x multiplies the x coordinate of p by twice circle-
spacing and then adds circle-radius to move over for the first circle. In addition if
the y coordinate is odd, then it adds circle-spacing, shifting the entire line over.

<cell-center-x> ::=

(define/contract (cell-center-x p)

(-> posn? number?)
(define x (posn-x p))
(define y (posn-y p))
(+ circle-radius

(* x circle-spacing 2)

(if (odd? y)

circle-spacing

0

The cell-center-y function computes the y coordinate of a cell’s location on the screen.
For example, the y coordinate of the first row is the radius of a circle, ensuring that the first
row is flush against the top of the screen.

<cell-center-y-tests> ::=

40

(test (cell-center-y (make-posn 1 0))
circle-radius)

Because the grid is hexagonal, the y coordinates of the rows do not have the same spacing
as the x coordinates. In particular, they are off by sin(pi/3). We approximate that by
433/500 in order to keep the computations and test cases simple and using exact numbers.
A more precise approximation would be 0.8660254037844386, but it is not necessary at
the screen resolution.

<cell-center-y> ::=

(define/contract (cell-center-y p)
(-> posn? number?)
(+ circle-radius
(* (posn-y p)
circle-spacing 2
433/500)))

1.18.8 Handling Input

Input handling consists of handling two different kinds of events: key events, and mouse
events, plus various helper functions.

<input> ::=

<change>

<clack>
<update-world-posn>
<player-moved?>
<block-cell/world>
<move-cat>
<find-best-positions>
<lt/f>
<circle-at-point>
<point-in-this-circle?>

<input-tests> ::=

<change-tests>
<point-in-this-circle?-tests>
<circle-at-point-tests>
<lt/f-tests>
<find-best-positions-tests >
<move-cat-tests>

41

<update-world-posn-tests>
<clack-tests>

The change function handles keyboard input. If the input is n and the game is over, then
restart the game. If the input is h then turn on the help and otherwise do nothing.

<change> ::=

(define/contract (change w ke)
(-> world? key-event? world?)
(cond
[(key=7 ke "n")
(if (equal? (world-state w) 'playing)
W
(make-initial-world))]
[(key=7 ke "h")
(make-world (world-board w)
(world-cat w)
(world-state w)
(world-size w)
(world-mouse-posn w)
(not (world-help? w)))]
[else w]))

The clack function handles mouse input. It has three tasks and each corresponds to a helper
function:

¢ block the clicked cell (block-cell/world),
¢ move the cat (move-cat), and

* update the black dot as the mouse moves around (update-world-posn).

The helper functions are combined in the body of clack, first checking to see if the mouse
event corresponds to a player’s move (via the player-moved? function.

<clack> ::=

(define/contract (clack world x y evt)
(-> world? integer? integer? any/c
world?)
(define moved-world
(cond
[(player-moved? world x y evt)

42

=>
(4 (circle)
(move-cat
(block-cell/world circle world)))]
[else world]))
(update-world-posn
moved-world
(and (eq? (world-state moved-world) 'playing)
(not (equal? evt "leave'))
(make-posn x y))))

The player-moved? predicate returns a posn indicating where the player chose to move
when the mouse event corresponds to a player move, and returns #f£. It first checks to see
if the mouse event is a button up event and that the game is not over, and then it just calls
circle-at-point.

<player-moved?> ::=

(define/contract (player-moved? world x y evt)
(-> world? integer? integer? any/c
(or/c posn? #f))
(and (equal? evt "button-up")
(equal? 'playing (world-state world))
(circle-at-point (world-board world) x y)))

The circle-at-point function returns a posn when the coordinate (x,y) is inside an un-
blocked circle on the given board. Instead of computing the nearest circle to the coordinates,
it simply iterates over the cells on the board and returns the posn of the matching cell.

<circle-at-point> ::=

(define/contract (circle-at-point board x y)
(-> (listof cell?) real? real?
(or/c posn? #f))
(ormap (4 (cell)
(and (point-in-this-circle? (cell-p cell) x y)
(not (cell-blocked? cell))
(cell-p cell)))
board))

The point-in-this-circle? function returns #t when the point (x,y) on the screen falls
within the circle located at the posn p.

This is precise about checking the circles. For example, a point that is (14,14) away from
the center of a circle is still in the circle:

43

<point-in-this-circle?-tests> ::=

(test (point-in-this-circle?
(make-posn 1 0)
(+ (cell-center-x (make-posn 1 0)) 14)
(+ (cell-center-y (make-posn 1 0)) 14))
#t)

but one that is (15,15) away is no longer in the circle, since it crosses the boundary away
from a circle of radius 20 at that point.

<point-in-this-circle?-tests> ::=

(test (point-in-this-circle?
(make-posn 1 0)
(+ (cell-center-x (make-posn 1 0)) 15)
(+ (cell-center-y (make-posn 1 0)) 15))
#£)

The implementation of point-in-this-circle? uses complex numbers to represent both
points on the screen and directional vectors. In particular, the variable center is a complex
number whose real part is the x coordinate of the center of the cell at p, and its imaginary part
is y coordinate. Similarly, mp is bound to a complex number corresponding to the position
of the mouse, at (x, y). Then, the function computes the vector between the two points by
subtracting the complex numbers from each other and extracting the magnitude from that
vector.

<point-in-this-circle?> ::=

(define/contract (point-in-this-circle? p x y)
(-> posn? real? real? boolean?)
(define center (+ (cell-center-x p)
(x (sqrt -1)
(cell-center-y p))))
(define mp (+ x (* (sqrt -1) y)))
(<= (magnitude (- center mp))
circle-radius))

In the event that player-moved? returns a posn, the clack function blocks the clicked on
cell using block-cell/world, which simply calls block-cell.
<block-cell/world> ::=

(define/contract (block-cell/world to-block w)

(-> posn? world? world?)

44

(make-world (block-cell to-block (world-board w))
(world-cat w)
(world-state w)
(world-size w)
(world-mouse-posn w)
(world-help? w)))

The move-cat function uses calls build-bfs-table to find the shortest distance from all
of the cells to the boundary, and then uses find-best-positions to compute the list of
neighbors of the cat that have the shortest distance to the boundary. If that list is empty, then
next-cat-position is #f, and otherwise, it is a random element from that list.

<move-cat> ::=

(define/contract (move-cat world)
(-> world? world?)
(define cat-position (world-cat world))
(define table (build-bfs-table world 'boundary))
(define neighbors (adjacent cat-position))
(define next-cat-positions
(find-best-positions neighbors
(map (1 (p) (lookup-in-table table p))

neighbors)))
(define next-cat-position
(cond
[(boolean? next-cat-positions) #f]
[else

(list-ref next-cat-positions
(random (length next-cat-positions)))]))
<moved-cat-world>)

Once next-cat-position has been computed, it is used to update the cat and state
fields of the world, recording the cat’s new position and whether or not the cat won.

<moved-cat-world> ::=

(make-world (world-board world)
(cond
[(boolean? next-cat-position)
cat-position]
[else next-cat-position])

(cond
[(boolean? next-cat-position)
'cat-lost]
[(on-boundary? next-cat-position (world-size world))
'cat-won]

45

[else 'playing])
(world-size world)
(world-mouse-posn world)
(world-help? world))

The find-best-positions function accepts two parallel lists, one of posns, and one of
scores for those posns, and it returns either a non-empty list of posns that have tied for the
best score, or it returns #£, if the best score is ' 0.

<find-best-positions> ::=

(define/contract (find-best-positions posns scores)
(-> (cons/c posn? (listof posn?))
(cons/c (or/c number? 'oo) (listof (or/c number? 'co)))
(or/c (cons/c posn? (listof posn?)) #f))
(define best-score
(for/fold ([sofar (first scores)])
([x (in-list (rest scores))])
(if (<=/f x sofar)
X
sofar)))
(cond
[(symbol? best-score) #f]
[else
(map
second
(filter (1 (x) (equal? (first x) best-score))
(map list scores posns)))]))

This is a helper function that behaves like <=, but is extended to deal properly with ' co.
<ltlff> =

(define/contract (<=/f a b)
(-> (or/c number? 'oo)
(or/c number? 'co)
boolean?)
(cond
[(equal? b 'oo) #t]
[(equal? a 'oo) #f]
[else (<= a b)]))

Finally, to complete the mouse event handling, the update-world-posn function is called
from clack. It updates the mouse-down field of the world. If the p argument is a posn, it
corresponds to the location of the mouse, in graphical coordinates. So, the function converts

46

it to a cell position on the board and uses that. Otherwise, when p is #f, the mouse-down
field is just updated to #f.

<update-world-posn> ::=

(define/contract (update-world-posn w p)
(-> world? (or/c #f posn?)
world?)
(cond
[(posn? p)
(define mouse-spot
(circle-at-point (world-board w)
(posn-x p)
(posn-y p)))
(make-world (world-board w)
(world-cat w)
(world-state w)
(world-size w)
(cond
[(equal? mouse-spot (world-cat w))
#£]
[else
mouse-spot])
(world-help? w))]
[else
(make-world (world-board w)
(world-cat w)
(world-state w)
(world-size w)
#f
(world-help? w))1))

1.18.9 Tests

This section consists of some infrastructure for maintaining tests, plus a pile of additional
tests for the other functions in this document.

The test and test/set macros package up their arguments into thunks and then sim-
ply call test/proc, supplying information about the source location of the test case. The
test/proc function runs the tests and reports the results.

<test-infrastructure> ::=

(define-syntax (test stx)
(syntax-case stx (O

47

[(_ actual expected)
(with-syntax ([line (syntax-line stx)]
[pos (syntax-position stx)])
#' (test/proc (1 () actual)
(1 () expected)
equal?
line
'actual))]))

(define-syntax (test/set stx)
(syntax-case stx O

[(_ actual expected)

(with-syntax ([line (syntax-line stx)]
[pos (syntax-position stx)])

#' (test/proc (1 () actual)

(A1 () expected)
(A1 (x y) (same-sets? x y))
line
'actual))]))

(define test-count 0)

(define (test/proc actual-thunk expected-thunk cmp line sexp)
(set! test-count (+ test-count 1))
(define actual (actual-thunk))
(define expected (expected-thunk))
(unless (cmp actual expected)
(error 'check-expect "test #7a"a\n “s\n
test-count

S\Il"

(if line
(format " on line “a failed:" line)
(format " failed: “s" sexp))

actual

expected)))

(define (same-sets? 11 12)
(and (andmap (4 (el) (member el 12)) 11)
(andmap (1 (e2) (member e2 11)) 12)
#t))

(test (same-sets? (list) (list)) #t)

(test (same-sets? (list) (list 1)) #f)

(test (same-sets? (list 1) (list)) #f)

(test (same-sets? (list 1 2) (list 2 1)) #t)

48

<lookup-in-table-tests> ::=

(test (lookup-in-table empty (make-posn 1 2)) 'c0)
(test (lookup-in-table (list (make-dist-cell (make-posn 1 2) 3))
(make-posn 1 2))
3)
(test (lookup-in-table (list (make-dist-cell (make-posn 2 1) 3))
(make-posn 1 2))
'OC)

<build-bfs-table-tests> ::=

(test/set (build-bfs-table
(make-world (empty-board 3) (make-posn 1 1)
'playing 3 (make-posn O 0) #f)
(make-posn 1 1))
(1list
(make-dist-cell 'boundary 2)

(make-dist-cell (make-posn 1 0) 1)
(make-dist-cell (make-posn 2 0) 1)

(make-dist-cell (make-posn O 1) 1)
(make-dist-cell (make-posn 1 1) 0)
(make-dist-cell (make-posn 2 1) 1)

(make-dist-cell (make-posn 1 2) 1)
(make-dist-cell (make-posn 2 2) 1)))

(test/set (build-bfs-table
(make-world
(list

(make-cell (make-posn O 1) #t)
(make-cell (make-posn 1 0) #t)
(make-cell (make-posn 1 1) #f)
(make-cell (make-posn 1 2) #t)
(make-cell (make-posn 2 0) #t)
(make-cell (make-posn 2 1) #t)
(make-cell (make-posn 2 2) #t))

(make-posn 1 1)
'playing
3
(make-posn 0 0)
#£)
'boundary)

(list

49

(make-dist-cell 'boundary 0)))

(test/set (build-bfs-table
(make-world (empty-board 5)
(make-posn 2 2)

'playing
5
(make-posn 0 0)
#£)
'boundary)
(list

(make-dist-cell

'"boundary 0)

(make-dist-cell (make-posn 1 0) 1)
(make-dist-cell (make-posn 2 0) 1)
(make-dist-cell (make-posn 3 0) 1)
(make-dist-cell (make-posn 4 0) 1)
(make-dist-cell (make-posn O 1) 1)
(make-dist-cell (make-posn 1 1) 2)
(make-dist-cell (make-posn 2 1) 2)
(make-dist-cell (make-posn 3 1) 2)
(make-dist-cell (make-posn 4 1) 1)
(make-dist-cell (make-posn 0 2) 1)
(make-dist-cell (make-posn 1 2) 2)
(make-dist-cell (make-posn 2 2) 3)
(make-dist-cell (make-posn 3 2) 2)
(make-dist-cell (make-posn 4 2) 1)
(make-dist-cell (make-posn 0 3) 1)
(make-dist-cell (make-posn 1 3) 2)
(make-dist-cell (make-posn 2 3) 2)
(make-dist-cell (make-posn 3 3) 2)
(make-dist-cell (make-posn 4 3) 1)
(make-dist-cell (make-posn 1 4) 1)
(make-dist-cell (make-posn 2 4) 1)
(make-dist-cell (make-posn 3 4) 1)
(make-dist-cell (make-posn 4 4) 1)))

(test/set (build-bfs-table
(make-world (block-cell
(make-posn 4 2)
(empty-board 5))
(make-posn 2 2)

50

'playing

5

(make-posn 0 0)

#1)
'boundary)
(list
(make-dist-cell

(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell

(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell

(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell

(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell

(make-dist-cell
(make-dist-cell
(make-dist-cell
(make-dist-cell

'"boundary 0)

(make-posn
(make-posn
(make-posn
(make-posn

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

(make-posn
(make-posn
(make-posn
(make-posn

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

(make-posn
(make-posn
(make-posn
(make-posn

(test/set (build-bfs-table
(make-world (empty-board 5)

(make-posn 2 2)
'playing

5

(make-posn 0 0)
#£)

(make-posn 2 2))

(1list

1
2
3
4

w N = O > W N e O

S W N e O

(make-dist-cell 'boundary 3)

51

0)
0)
0)
0)

D)
D)
D)
D
D

2)
2)
2)
2)

3)
3)
3)
3)
3)

4)
4)
4)
4)

1)
1
1
D

1)
2)
2)
2)
D

1
2)
3)
3)

1)
2)
2)
2)
D)

1
1
D
D)

(make-dist-cell (make-posn 1 0) 2)
(make-dist-cell (make-posn 2 0) 2)
(make-dist-cell (make-posn 3 0) 2)
(make-dist-cell (make-posn 4 0) 3)
(make-dist-cell (make-posn 0 1) 2)
(make-dist-cell (make-posn 1 1) 1)
(make-dist-cell (make-posn 2 1) 1)
(make-dist-cell (make-posn 3 1) 2)
(make-dist-cell (make-posn 4 1) 3)
(make-dist-cell (make-posn 0 2) 2)
(make-dist-cell (make-posn 1 2) 1)
(make-dist-cell (make-posn 2 2) 0)
(make-dist-cell (make-posn 3 2) 1)
(make-dist-cell (make-posn 4 2) 2)
(make-dist-cell (make-posn 0 3) 2)
(make-dist-cell (make-posn 1 3) 1)
(make-dist-cell (make-posn 2 3) 1)
(make-dist-cell (make-posn 3 3) 2)
(make-dist-cell (make-posn 4 3) 3)
(make-dist-cell (make-posn 1 4) 2)
(make-dist-cell (make-posn 2 4) 2)
(make-dist-cell (make-posn 3 4) 2)
(make-dist-cell (make-posn 4 4) 3)))

(test (lookup-in-table
(build-bfs-table (make-world (empty-board 5)
(make-posn 2 2)

'playing

5

(make-posn 0 0)
#£)
(make-posn 2 2))
(make-posn 1 4))
2)

<neighbors-tests> ::=

(test ((neighbors (empty-world 11))
(adjacent (make-posn 1 1)))

(test ((neighbors (empty-world 11)) (make-posn 2 2))
(adjacent (make-posn 2 2)))

(test ((neighbors (empty-world 3)) 'boundary)

(make-posn 1 1))

52

(make-posn 0 0)

#£))

(list (make-posn 0 1)
(make-posn 1 0)
(make-posn 1 2)
(make-posn 2 0)
(make-posn 2 1)
(make-posn 2 2)))
(test ((neighbors (make-world (list
(make-cell (make-posn 0 1) #f)
(make-cell (make-posn 1 0) #f)
(make-cell (make-posn 1 1) #t)
(make-cell (make-posn 1 2) #f)
(make-cell (make-posn 2 0) #f)
(make-cell (make-posn 2 1) #f)
(make-cell (make-posn 2 2) #f))
(make-posn 1 1)
'playing
3
(make-posn 0 0)
#£))
(make-posn 1 1))
")
(test ((neighbors (make-world (list
(make-cell (make-posn 0 1) #f)
(make-cell (make-posn 1 0) #f)
(make-cell (make-posn 1 1) #t)
(make-cell (make-posn 1 2) #f)
(make-cell (make-posn 2 0) #f)
(make-cell (make-posn 2 1) #f)
(make-cell (make-posn 2 2) #f))
(make-posn 1 1)
'playing
3

(make-posn 1 0))
(list 'boundary (make-posn 2 0) (make-posn 0 1)))

<adjacent-tests> ::=

(test (adjacent (make-posn 1 1))

(list (make-posn 1 0)
(make-posn 2 0)
(make-posn 0 1)
(make-posn 2 1)
(make-posn 1 2)
(make-posn 2 2)))

53

(test (adjacent (make-posn 2 2))

(list (make-posn 1 1)
(make-posn 2 1)
(make-posn 1 2)
(make-posn 3 2)
(make-posn 1 3)
(make-posn 2 3)))

<on-boundary?-tests> ::=

(test
(test
(test
(test
(test
(test

<in-bounds ?-tests>

(test
(test
(test
(test
(test
(test
(test
(test
(test
(test

(on-boundary?
(on-boundary?
(on-boundary?
(on-boundary?
(on-boundary?
(on-boundary?

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

0 1) 13) #t)
1 0) 13) #t)
12 1) 13) #t)
1 12) 13) #t)
1 1) 13) #f)
10 10) 13) #f)

(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?
(in-bounds?

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

<on-cats-path?-tests> ::=

0 0) 11) #f)
0 1) 11) #t)
1.0) 11) #t)
10 10) 11) #t)
0 -1) 11) #f)
-1 0) 11) #£)
0 11) 11) #f)
11 0) 11) #f)
10 0) 11) #t)
0 10) 11) #f)

(test ((on-cats-path? (make-world (empty-board

(test ((on-cats-path? (make-world

(make-posn 1 0))

#t)

(make-posn 1
'playing

5

(make-posn 0
#t))

(empty-board
(make-posn 1
'playing

5

(make-posn 0

54

5)
1)

0)

5)
1)

(test ((on-cats-path? (make-world (empty-board 5) (make-posn 1 1)
'playing 5 (make-posn 0 0) #t))

(make-posn 1
#£)

(make-posn 2
#£)

0))

1)

(test ((on-cats-path?

(make-world

<+/f-tests> ::=

(test
(test
(test
(test

(1list
(make-cell
(make-cell
(make-cell

#£))

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

(make-cell
(make-cell
(make-cell
(make-cell
(make-posn 1 1)
'cat-lost
3
(make-posn 0 0)
#t))
(make-posn 0 1))
#£)
(+/f '0 'o0) 'o0)
(+/f 'o0 1) 'o0)
(+/f 1 ') ')
(+/£ 1 2) 3)

<world-size-tests> ::=

(test (world-width 3) 150)
(test (world-height 3) 117)

<cell-center-x-tests> ::=

(test (cell-center-x (make-posn O 0))

circle-radius)

(test (cell-center-x (make-posn 1 0))

(+ (* 2 circle-spacing) circle-radius))

(test (cell-center-x (make-posn 1 1))

(+ (x 3 circle-spacing) circle-radius))

55

NNNNF- - = O

1
0)
D
2)
0)
1
2)

#t)
#t)
#£)
#t)
#t)
#t)
#t))

<cell-center-y-tests> ::=

(test (cell-center-y (make-posn 1 1))
(+ circle-radius (* 2 circle-spacing 433/500)))

<clack-tests> ::=

(test (clack
(make-world '() (make-posn O 0) 'playing 3 #f #f)
1 1 "button-down")
(make-world '() (make-posn 0 0) 'playing 3 #f #£))
(test (clack
(make-world '() (make-posn O 0) 'playing 3 #f #f)
1 1 'drag)
(make-world '() (make-posn 0 0) 'playing 3 #f #£))
(test (clack
(make-world (list (make-cell (make-posn 0 0) #f))
(make-posn 0 1)
'playing
3
#f
#£)
(cell-center-x (make-posn 0 0))
(cell-center-y (make-posn 0 0))
'move)
(make-world
(1ist (make-cell (make-posn O 0) #f))
(make-posn 0 1)
'playing
3
(make-posn 0 0)
#£))

(test (clack
(make-world (1list (make-cell (make-posn 0 0) #f))
(make-posn 0 1)
'playing
3
#f
#£)
(cell-center-x (make-posn 0 0))
(cell-center-y (make-posn 0 0))
'enter)
(make-world
(1ist (make-cell (make-posn 0 0) #f))
(make-posn 0 1)

'playing

56

3
(make-posn 0 0)
#£))
(test (clack
(make-world '() (make-posn O 0)
'playing 3 (make-posn 0 0) #f)
1 1 'leave)
(make-world '() (make-posn O 0) 'playing 3 #f #f))

(test (clack (make-world '() (make-posn O 0)
'playing 3 (make-posn 0 0) #f)
10
10
"button-down")
(make-world '() (make-posn 0 0) 'playing 3 #f #£))

(test (clack (make-world (list (make-cell (make-posn O 0) #f)
(make-cell (make-posn 1 1) #f))
(make-posn 1 1)
'playing
3
(make-posn 0 0)
#£)
(cell-center-x (make-posn 0 0))
(cell-center-y (make-posn 0 0))
"button-up")
(make-world (list (make-cell (make-posn O 0) #t)
(make-cell (make-posn 1 1) #f£))
(make-posn 1 1)
'cat-lost
3
#E
#£))

(test (clack (make-world '() (make-posn O 0)
'cat-lost 3 (make-posn 0 0) #f)
10
10
"button-up")
(make-world '() (make-posn 0 0)
'cat-lost 3 #f #f))
(test (clack
(make-world
(1ist (make-cell (make-posn 1 0) #f)
(make-cell (make-posn 2 0) #t)

57

(make-cell
(make-cell
(make-cell
(make-cell
(make-cell

(make-posn 1 1)

'playing

3

#£f

#£)

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

(cell-center-x (make-posn 1
(cell-center-y (make-posn 1

"button-up")
(make-world
(list (make-cell

(make-cell
(make-cell
(make-cell
(make-cell
(make-cell
(make-cell

(make-posn 1 1)

'cat-lost

3

#£

#£))

(test (clack
(make-world
(list (make-cell

(make-cell
(make-cell
(make-cell
(make-cell
(make-cell
(make-cell

(make-posn 1 1)

'playing

3

#f

#£)

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn
(make-posn

01
1 1)
2 1)
12)
2 2)

0))
0))

0)
0)
1)
1)
1)
2)
2)

N~ NP ON -

0)
0)
1)
1)
1)
2)
2)

NEF,NRFE ON -

(cell-center-x (make-posn 1 0))
(cell-center-y (make-posn 1 0))

"button-up")
(make-world

#t)
#£)
#t)
#t)
#t))

#t)
#t)
#t)
#£)
#t)
#t)
#t))

#1)
#1)
#t)
#1)
#t)
#t)
#t))

(1ist (make-cell (make-posn 1 0) #t)

58

(make-cell (make-posn 2 0) #f)
(make-cell (make-posn O 1) #t)
(make-cell (make-posn 1 1) #f)
(make-cell (make-posn 2 1) #t)
(make-cell (make-posn 1 2) #t)
(make-cell (make-posn 2 2) #t))

(make-posn 2 0)

'cat-won

3

#E

#£))

<update-world-posn-tests> ::=

(test (update-world-posn
(make-world (list (make-cell (make-posn 0 0) #f))
(make-posn 0 1) 'playing 3 #f #f)
(make-posn (cell-center-x (make-posn 0 0))
(cell-center-y (make-posn 0 0))))
(make-world (list (make-cell (make-posn O 0) #f))
(make-posn 0 1) 'playing 3 (make-posn 0 0) #f))

(test (update-world-posn
(make-world (list (make-cell (make-posn O 0) #f))
(make-posn 0 0) 'playing 3 #f #f)
(make-posn (cell-center-x (make-posn 0 0))
(cell-center-y (make-posn O 0))))
(make-world (list (make-cell (make-posn 0 0) #f))
(make-posn 0 0) 'playing 3 #f #f))

(test (update-world-posn
(make-world (list (make-cell (make-posn 0 0) #f))
(make-posn 0 1) 'playing 3 (make-posn O 0) #f)
(make-posn 0 0))
(make-world (list (make-cell (make-posn O 0) #f))
(make-posn 0 1) 'playing 3 #f #f))

<move-cat-tests> ::=

(test
(move-cat
(make-world (list (make-cell (make-posn 1 0) #f)
(make-cell (make-posn 2 0) #f)
(make-cell (make-posn 3 0) #f)
(make-cell (make-posn 4 0) #f)

59

60

(make-cell (make-posn O 1) #f)
(make-cell (make-posn 1 1) #t)
(make-cell (make-posn 2 1) #t)
(make-cell (make-posn 3 1) #f)
(make-cell (make-posn 4 1) #f)
(make-cell (make-posn 0 2) #f)
(make-cell (make-posn 1 2) #t)
(make-cell (make-posn 2 2) #f)
(make-cell (make-posn 3 2) #t)
(make-cell (make-posn 4 2) #f)
(make-cell (make-posn O 3) #f)
(make-cell (make-posn 1 3) #t)
(make-cell (make-posn 2 3) #f)
(make-cell (make-posn 3 3) #f)
(make-cell (make-posn 4 3) #f)
(make-cell (make-posn 1 4) #f)
(make-cell (make-posn 2 4) #f)
(make-cell (make-posn 3 4) #f)
(make-cell (make-posn 4 4) #f))

(make-posn 2 2)

'playing

5

(make-posn 0 0)

#£))

(make-world (list (make-cell (make-posn 1 0) #f)
(make-cell (make-posn 2 0) #f)
(make-cell (make-posn 3 0) #f)
(make-cell (make-posn 4 0) #f)
(make-cell (make-posn O 1) #f)
(make-cell (make-posn 1 1) #t)
(make-cell (make-posn 2 1) #t)
(make-cell (make-posn 3 1) #f)
(make-cell (make-posn 4 1) #f)
(make-cell (make-posn 0 2) #f)
(make-cell (make-posn 1 2) #t)
(make-cell (make-posn 2 2) #f)
(make-cell (make-posn 3 2) #t)
(make-cell (make-posn 4 2) #f)
(make-cell (make-posn O 3) #f)

(make-cell (make-posn 1 3) #t)
(make-cell (make-posn 2 3) #f)
(make-cell (make-posn 3 3) #f)
(make-cell (make-posn 4 3) #f)
(make-cell (make-posn 1 4) #f)
(make-cell (make-posn 2 4) #f)
(make-cell (make-posn 3 4) #f)
(make-cell (make-posn 4 4) #f))

(make-posn 2 3)

'playing

5

(make-posn 0 0)

#£))

<change-tests> ::=

(test (change (make-world '() (make-posn 1 1)
'playing 3 (make-posn O 0) #f)
"h")
(make-world '() (make-posn 1 1)
'playing 3 (make-posn 0 0) #t))
(test (change (make-world '() (make-posn 1 1)
'playing 3 (make-posn 0 0) #t)
"h")
(make-world '() (make-posn 1 1)
'playing 3 (make-posn 0 0) #f))
(test (change (make-world '() (make-posn 1 1)
'playing 3 (make-posn O 0) #f)
"Il")
(make-world '() (make-posn 1 1)
'playing 3 (make-posn 0 0) #f))
(test (world-state (change (make-world '() (make-posn 1 1)
'cat-lost 3 (make-
posn 0 0) #f)
"n"))
'playing)

<point-in-this-circle?-tests> ::=

(test (point-in-this-circle? (make-posn 0 0)
(cell-center-x (make-posn O 0))
(cell-center-y (make-posn 0 0)))
#t)
(test (point-in-this-circle? (make-posn 0 0) O 0)
#1)

61

<find-best-positions-tests > ::=

(test (find-best-positions (list (make-posn 0 0)) (1list 1))
(list (make-posn 0 0)))
(test (find-best-positions (list (make-posn 0 0)) (1list 'c0))
#£)
(test (find-best-positions (list (make-posn 0 0)
(make-posn 1 1))
(list 1 2))
(list (make-posn 0 0)))
(test (find-best-positions (list (make-posn 0 0)
(make-posn 1 1))
(1ist 1 1))
(list (make-posn 0 0)
(make-posn 1 1)))
(test (find-best-positions (list (make-posn 0 0)
(make-posn 1 1))
(list 'oo 2))
(l1ist (make-posn 1 1)))
(test (find-best-positions (list (make-posn 0 0)
(make-posn 1 1))
(list 'oo 'o0))
#£)

<lt/f-tests> ::=

(test (k=/f 1 2) #t)
(test (<=/f 2 1) #f)
(test (<=/f 'oo 1) #f)
(test (<=/f 1 ') #t)
(test (<=/f 'oo 'o0) #t)

<circle-at-point-tests> ::=

(test (circle-at-point empty O 0) #f)
(test (circle-at-point (list (make-cell (make-posn O 0) #f))
(cell-center-x (make-posn 0 0))
(cell-center-y (make-posn 0 0)))
(make-posn 0 0))
(test (circle-at-point (list (make-cell (make-posn O 0) #f)
(make-cell (make-posn 0 1) #f£))
(cell-center-x (make-posn 0 1))
(cell-center-y (make-posn 0 1)))
(make-posn 0 1))
(test (circle-at-point (list (make-cell (make-posn O 0) #f))

62

0 0)
#£)

<blocked-cells-tests> ::=

(test (block-cell (make-posn 1 1)
(1ist (make-cell (make-posn 0 0) #f)
(make-cell (make-posn 1 1) #f)
(make-cell (make-posn 2 2) #f)))
(list (make-cell (make-posn 0 0) #f)
(make-cell (make-posn 1 1) #t)
(make-cell (make-posn 2 2) #f)))

(test (add-n-random-blocked-cells 0 (list (make-cell (make-
posn 0 0)
#t))
3)
(list (make-cell (make-posn O 0) #t)))
(test (add-n-random-blocked-cells 1 (list (make-cell (make-
posn 0 0)
#£))
3)
(list (make-cell (make-posn 0 0) #t)))

1.18.10 Run, program, run

This section contains expressions that start the Chat Noir game going.
First, here is a function to compute the state of the world at the start of a game.
<initial-world> ::=

(define board-size 11)
(define (make-initial-world)
(define initial-board
(add-n-random-blocked-cells
6
(empty-board board-size)
board-size))
(make-world initial-board
(make-posn (quotient board-size 2)
(quotient board-size 2))
'playing
board-size
#f

63

#£))

Finally, we can define and provide a function to start the game by calling big-bang with the
appropriate arguments.

<go> =

(provide main)
(define (main)
(void
(big-bang (make-initial-world)
(on-draw render-world
(world-width board-size)
(world-height board-size))
(on-key change)
(on-mouse clack)
(name "Chat Noir"))))

-

1.19 9 Tally Maze — Maze Enumeration Game

The object of Tally Maze is to help the blue ball reach the exit of the maze without being
caught by the pumpkins.

Control the blue ball with the keyboard:

* the arrow keys move one step in each direction;
* space and . let the pumpkins move without moving the blue ball;
¢ z undoes the most recent move; and

* n changes the maze.

As you can quickly discover, simply moving around in the maze is a recipe for failure. The
pumpkins know the best route in the maze to reach your blue ball and they take it.

The n key, however, adjusts the maze. More precisely, it
moves forward to the next maze in an enumeration of all
254,377,512,893,447,941,210,664,002,794,210,519,990,861,507,330,048 of the mazes
that the game supports. Each maze is only a little bit different from the one before, so you
have to plan ahead in order to understand how the current maze differs from the next one.
(Use the undo key to help you plan.)

64

To play Tally
Maze, run the PLT
Games program.
(Under Unix, it’s
called plt-games).

Beware, however, that planning ahead one maze is not enough; although one pumpkin just
chases you in the current maze, the other pumpkin tries to track where you might go if you
advance to the next maze and to wait for you there. Not all games are winnable (although I
hope most are).

Thanks to Lazy Crazy (http://lazycrazy.deviantart.com) for the blue ball icons and
to YOOtheme (http://www.yootheme. com/icons) for the pumpkin icon.

1.20 ‘; GCalc — Visual 1-Calculus

To play GCalc, run
the PLT Games

GCalc is a system for visually demonstrating the A-Calculus (not really a game). %rogm_m- (U]flldsr
nix, it’s calle

See the following for the principles: plt-ganes).

http://www.grame.fr/Research/GCalcul/Graphic_Calculus.html

ftp://ftp.grame.fr/pub/Documents/ICMCI94LambdaCalc.pdf

1.20.1 The Window Layout

The window is divided into three working areas, each made of cells. Cells hold cube objects,
which can be dragged between cells (with a few exceptions that are listed below). The
working areas are as follows:

* The right side is the storage area. This is used for saving objects — drag any cube
to/from here. Note that cubes can be named for convenience.

* The left side is a panel of basic color cubes. These cells always contain a set of basic
cubes that are used as the primitive building blocks all other values are made of. They
cannot be overwritten. (Note that this includes a transparent cell.)

e The center part is the working panel. This is the main panel where new cubes are
constructed. The center cell is similar to a storage cell, and the surrounding eight cells
all perform some operation on this cell.

1.20.2 User Interaction

Right-click any cell except for the basic colors on the left panel, or hit escape or F10 for a
menu of operations. The menu also includes the keyboard shortcuts for these operations.

65

http://lazycrazy.deviantart.com
http://www.yootheme.com/icons
http://www.grame.fr/Research/GCalcul/Graphic_Calculus.html
ftp://ftp.grame.fr/pub/Documents/ICMC94LambdaCalc.pdf

1.20.3 Cube operations

There are six simple operations that are considered part of the simple graphic cube world.
The operations correspond to six of the operation cells: a left-right composition is built
using the left and the right cells, a top-bottom using the top and the bottom, and a front-
back using the top-left and bottom-right. Dragging a cube to one of these cells will use the
corresponding operator to combine it with the main cell’s cube. Using a right mouse click
on one of these cells can be used to cancel dragging an object to that cell, this is not really
an undo feature: a right-click on the right cell always splits the main cube to two halves and
throws the right side.

The colored cubes and the six basic operators make this simple domain, which is extended
to form a A-Calculus-like language by adding abstractions and applications. Right-clicking
on a basic cube on the left panel creates an abstraction which is actually a lambda expression
except that colors are used instead of syntactic variables. For example, if the main cell
contains R|G (red-green on the left and right), then right-clicking the green cube on the left
panel leaves us with 2 G . R|G, which is visualized as R|G with a green circle. The last two
operator cells are used for application of these abstractions: drag a function to the top-right
to have it applied on the main cube, or to the bottom-left to have the main cube applied to
it. As in the A-Calculus, all abstractions have exactly one variable, use currying for multiple
variables.

So far the result is a domain of colored cubes that can be used in the same way as the
simple A-Calculus. There is one last extension that goes one step further: function cubes can
themselves be combined with other functions using the simple operations. This results in a
form of "spatial functions" that behave differently in different parts of the cube according to
the construction. For example, a left-right construction of two functions f|g operates on a
given cube by applying f on its left part and g on its right part. You can use the preferences
dialog to change a few aspects of the computation.

Use the Open Example menu entry to open a sample file that contains lots of useful objects:
Church numerals, booleans, lists, Y-combinator, etc.

66

2 Implementing New Games

The game-starting console inspects the sub-collections of the "games" collection. If a sub-
collection has an "info.rkt" module (see info), the following fields of the collection’s
"info.rkt" file are used:

* game [required] : used as a module name in the sub-collection to load for the game;
the module must provide a game® unit (see racket/unit) with no particular exports;
the unit is invoked with no imports to start the game.

* name [defaults to the collection name] : used to label the game-starting button in the
game console.

* game-icon [defaults to collection name with " . png"] : used as a path to a bitmap file
that is used for the game button’s label; this image should be 32 by 32 pixels and have
a mask.

e game-set [defaults to "Other Games"] : a label used to group games that declare
themselves to be in the same set.

To implement card games, see games/cards. Card games typically belong in the "Cards"
game set.

67

3 Showing Scribbled Help

(require games/show-scribbling) package: [games

(show-scribbling mod-path section-tag) — (-> void?)
mod-path : module-path?
section-tag : string?

Returns a thunk for opening a Scribbled section in the user’s HTML browser. The mod-
path is the document’s main source module, and section-tag specifies the section in the
document.

68

https://pkgs.racket-lang.org/package/games

4 Showing Text Help

(require games/show-help) package: [games

(show-help coll-path frame-title [verbatim?]) — (-> any)
coll-path : (listof string?)
frame-title : string?
verbatim? : any/c = #f

Returns a thunk for showing a help window based on plain text. Multiple invocations of the
thunk bring the same window to the foreground (until the user closes the window).
The help window displays "doc.txt" from the collection specified by coll-path.
The frame-title argument is used for the help window title.
If verbatim? is true, then "doc.txt" is displayed verbatim, otherwise it is formatted as
follows:

* Any line of the form **....** is omitted.

* Any line that starts with * after whitespace is indented as a bullet point.

* Any line that contains only -s and is as long as the previous line causes the previous
line to be formatted as a title.

* Other lines are paragraph-flowed to fit the window.

69

https://pkgs.racket-lang.org/package/games

	1 Bundled Games
	1.1 Aces --- Solitaire Card Game
	1.2 Go Fish --- Kid's Card Game
	1.3 Crazy 8s --- Card Game
	1.4 Blackjack --- 21 Card Game
	1.5 Rummy --- Card Game
	1.6 Spider --- Solitaire Card Game
	1.7 Memory --- Kid's Game
	1.8 Slidey --- Picture Puzzle
	1.9 Same --- Dot-Removing Game
	1.9.1 The Rules
	1.9.2 Scoring

	1.10 Minesweeper --- Logic Game
	1.11 Paint By Numbers --- Logic Game
	1.12 Lights Out --- Logic Game
	1.13 Pousse --- Tic-Tac-Toe-like Game
	1.14 Gobblet --- Strategy Game
	1.14.1 Game Rules
	1.14.2 Controls
	1.14.3 Auto-Play

	1.15 Jewel --- 3-D Skill Game
	1.16 Parcheesi --- Board Game
	1.17 Checkers --- Board Game
	1.18 Chat Noir --- Puzzle Game
	1.18.1 Overview
	1.18.2 The World
	1.18.3 Breadth-first Search
	1.18.4 Board to Graph
	1.18.5 The Cat's Path
	1.18.6 Drawing the Cat
	1.18.7 Drawing the World
	1.18.8 Handling Input
	1.18.9 Tests
	1.18.10 Run, program, run

	1.19 Tally Maze --- Maze Enumeration Game
	1.20 GCalc --- Visual -Calculus
	1.20.1 The Window Layout
	1.20.2 User Interaction
	1.20.3 Cube operations

	2 Implementing New Games
	3 Showing Scribbled Help
	4 Showing Text Help

