More: Systems Programming with Racket

Version 9.0.0.10

Matthew Flatt

December 15, 2025

In contrast to the impression that Quick: An Introduction to Racket with Pictures may give,
Racket is not just another pretty face. Underneath the graphical facade of DrRacket lies
a sophisticated toolbox for managing threads and processes, which is the subject of this
tutorial.

Specifically, we show how to build a secure, multi-threaded, servlet-extensible, continuation-
based web server. We use much more of the language than in Quick: An Introduction to
Racket with Pictures, and we expect you to click on syntax or function names that you
don’t recognize (which will take you to the relevant documentation). Beware that the last
couple of sections present material that is normally considered difficult. If you’re still new
to Racket and have relatively little programming experience, you may want to skip to The
Racket Guide.

To get into the spirit of this tutorial, we suggest that you set DrRacket aside for a moment,
and switch to raw racket in a terminal. You’ll also need a text editor, such as Emacs, vi,
or even Notepad—any editor will do, but one that supports parenthesis matching would be
helpful. Finally, you’ll need a web client, perhaps Lynx or Firefox.

If you’re already
spoiled, you can
keep using
DrRacket. In that
case, skip

build the
program in
DrRacket’s
definitions window
instead of a
"serve.rkt" file
as described in[§2__]
and click
the Run button
instead of using
enter! as shown in

83 “Gol"]

1 Ready...

Download Racket, install, and then start racket with no command-line arguments:

$ racket
Welcome to Racket v9.0.0.10 [cs].
>

Assuming that you have Editline installed, racket by default supports line editing and
comma-prefixed meta-commands that support exploration and development. See xrepl for
more information.

Set your PATH
environment

yeriplgssquyou can
R aRGE Rtkather

e, set the
sermpKbliofE 1B
Qﬁ%ﬂﬂﬂﬁef}n Mac
OfiB1d0r Seart
geho
i£AgRl 1ﬁ5§%ﬁ§8/ Racket
ﬁgclglg%: 10/bin"
>>

/etc/paths.d/racket’
(assuming that you
have installed
Racket in the
"Applications"
folder). On
Windows: add the
Racket installation
path to Path in
Environment
Variables (under
System
Properties,
Advanced tab).

http://download.racket-lang.org/

2 Set...

In the same directory where you started racket, create a text file "serve.rkt", and start it
like this:

#lang racket

(define (go)
'yep-it-works)
Here’s the whole

program so far in
plain text: step O,

step0.txt

3 Go!

Back in racket, try loading the file and running go: If you use xrepl,
you can use
> (enter! "serve.rkt") ,enter serve.rkt.
[loading serve.rkt]
> (go)

'yep-it-works

Try modifying "serve.rkt", and then run (enter! "serve.rkt") again to re-load the
module, and then check your changes.

4 “Hello World” Server

We’ll implement the web server through a serve function that takes an IP port number for
client connections:

(define (serve port-no)

)

The server accepts TCP connections through a listener, which we create with tcp-listen.
To make interactive development easier, we supply #t as the third argument to tcp-listen,
which lets us re-use the port number immediately, without waiting for a TCP timeout.

(define (serve port-no)
(define listener (tcp-listen port-no 5 #t))
)

The server must loop to accept connections from the listener:

(define (serve port-no)
(define listener (tcp-listen port-no 5 #t))
(define (loop)
(accept-and-handle listener)
(loop))
(loop))

Our accept-and-handle function accepts a connection using tcp-accept, which returns
two values: a stream for input from the client, and a stream for output to the client.

(define (accept-and-handle listener)
(define-values (in out) (tcp-accept listener))
(handle in out)

(close-input-port in)
(close-output-port out))

To handle a connection, for now, we’ll read and discard the request header, and then write a
“Hello, world!” web page as the result:

(define (handle in out)
; Discard the request header (up to blank line):
(regexp-match #rx" (\r\n|~)\r\n" in)
; Send reply:
(display "HTTP/1.0 200 Okay\r\n" out)
(display "Server: k\r\nContent-Type: text/html\r\n\r\n" out)
(display "<html><body>Hello, world!</body></html>" out))

Note that regexp-match operates directly on the input stream, which is easier than bother-
ing with individual lines.

Copy the above three definitions—serve, accept-and-handle, and handle—into
"serve.rkt" and re-load:

> (enter! "serve.rkt")
[re-loading serve.rkt]
> (serve 8080)

Now point your browser to http://localhost: 8080 (assuming that you used 8080 as the
port number, and that the browser is running on the same machine) to receive a friendly
greeting from your web server.

Here’s the whole
program so far in
plain text: step 1.

step1.txt

5 Server Thread

Before we can make the web server respond in more interesting ways, we need to get a

Racket prompt back. Typing Ctl-C in your terminal window interrupts the server loop: In DrRacket,
instead of typing
> (serve 8080) Ctl-C, click the
ACuser break Stop button once.
>

Unfortunately, we cannot now re-start the server with the same port number:

> (serve 8080)
tep-listen: listen on 8080 failed (address already in use)

The problem is that the listener that we created with serve is still listening on the original
port number.

To avoid this problem, let’s put the listener loop in its own thread, and have serve return
immediately. Furthermore, we’ll have serve return a function that can be used to shut down
the server thread and TCP listener:

(define (serve port-no)
(define listener (tcp-listen port-no 5 #t))
(define (loop)
(accept-and-handle listener)
(loop))
(define t (thread loop))
(lambda ()
(kill-thread t)

(tcp-close listener)))
Here’s the whole
program so far in
Try the new one: plain text: [step 2}

> (enter! "serve.rkt")
[re-loading serve.rkt]
> (define stop (serve 8081))

Your server should now respond to http://localhost:8081, but you can shut down and
restart the server on the same port number as often as you like:

(stop)
(define stop (serve 8081))
(stop)
(define stop (serve 8081))
(stop)

V V V V V

step2.txt

6 Connection Threads

In the same way that we put the main server loop into a background thread, we can put each
individual connection into its own thread:

(define (accept-and-handle listener)
(define-values (in out) (tcp-accept listener))
(thread

(lambda ()
(handle in out)
(close-input-port in)
(close-output-port out))))

Here’s the whole
program so far in
With this change, our server can now handle multiple threads at once. The handler is so fast plain text: step 3|

that this fact will be difficult to detect, however, so try inserting (sleep (random 10))
before the handle call above. If you make multiple connections from the web browser at
roughly the same time, some will return soon, and some will take up to 10 seconds. The
random delays will be independent of the order in which you started the connections.

step3.txt

7 Terminating Connections

A malicious client could connect to our web server and not send the HTTP header, in which
case a connection thread will idle forever, waiting for the end of the header. To avoid this
possibility, we’d like to implement a timeout for each connection thread.

One way to implement the timeout is to create a second thread that waits for 10 seconds, and
then kills the thread that calls handle. Threads are lightweight enough in Racket that this
watcher-thread strategy works well:

(define (accept-and-handle listener)
(define-values (in out) (tcp-accept listener))
(define t (thread

(lambda ()
(handle in out)
(close-input-port in)
(close-output-port out))))
; Watcher thread:
(thread (lambda ()
(sleep 10)
(kill-thread t))))

This first attempt isn’t quite right, because when the thread is killed, its in and out streams
remain open. We could add code to the watcher thread to close the streams as well as
kill the thread, but Racket offers a more general shutdown mechanism: custodians. A
custodian is a kind of container for all resources other than memory, and it supports a
custodian-shutdown-all operation that terminates and closes all resources within the
container, whether they’re threads, streams, or other kinds of limited resources.

Whenever a thread or stream is created, it is placed into the current custodian as determined
by the current-custodian parameter. To place everything about a connection into a cus-
todian, we parameterize all the resource creations to go into a new custodian:

(define (accept-and-handle listener)
(define cust (make-custodian))
(parameterize ([current-custodian cust])
(define-values (in out) (tcp-accept listener))
(thread (lambda ()
(handle in out)
(close-input-port in)
(close-output-port out))))
; Watcher thread:
(thread (lambda ()
(sleep 10)
(custodian-shutdown-all cust))))

See §4.13
“Dynamic Binding:
parameterize”
for an introduction
to parameters.

With this implementation, in, out, and the thread that calls handle all belong to cust. In
addition, if we later change handle so that it, say, opens a file, then the file handles will also
belong to cust, so they will be reliably closed when cust is shut down.

In fact, it’s a good idea to change serve so that it uses a custodian, too:

(define (serve port-no)
(define main-cust (make-custodian))
(parameterize ([current-custodian main-cust])
(define listener (tcp-listen port-no 5 #t))
(define (loop)
(accept-and-handle listener)
(loop))
(thread loop))
(lambda ()
(custodian-shutdown-all main-cust)))

That way, the main-cust created in serve not only owns the TCP listener and the main
server thread, it also owns every custodian created for a connection. Consequently, the
revised shutdown procedure for the server immediately terminates all active connections, in
addition to the main server loop.

After updating the serve and accept-and-handle functions as above, here’s how you can
simulate a malicious client:

> (enter! "serve.rkt")

[re-loading serve.rkt]

> (define stop (serve 8081))

> (define-values (cin cout) (tcp-connect "localhost" 8081))

Now wait 10 seconds. If you try reading from cin, which is the stream that sends data from
the server back to the client, you’ll find that the server has shut down the connection:

> (read-line cin)

#<eof>
Alternatively, you don’t have to wait 10 seconds if you explicitly shut down the server:

> (define-values (cin2 cout2) (tcp-connect "localhost" 8081))
> (stop)

> (read-line cin2)

#<eof>

10

Here’s the whole
program so far in
plain text: step 4,

step4.txt

8 Dispatching

It’s finally time to generalize our server’s “Hello, World!” response to something more
useful. Let’s adjust the server so that we can plug in dispatching functions to handle requests
to different URLs.

To parse the incoming URL and to more easily format HTML output, we’ll require two extra
libraries:

(require xml net/url)

The xm1 library gives us xexpr->string, which takes a Racket value that looks like HTML
and turns it into actual HTML:

> (xexpr->string '(html (head (title "Hello")) (body "Hi!")))
"<html><head><title>Hello</title></head><body>Hi!</body></html>"

We’ll assume that our new dispatch function (to be written) takes a requested URL and
produces a result value suitable to use with xexpr->string to send back to the client:

(define (handle in out)
(define req
; Match the first line to extract the request:
(regexp-match #rx"~GET (.+) HTTP/[0-9]+\\.[0-9]+"
(read-line in)))
(when req
; Discard the rest of the header (up to blank line):
(regexp-match #rx" (\r\n|~)\r\n" in)
; Dispatch:
(let ([xexpr (dispatch (list-ref req 1))])
; Send reply:
(display "HTTP/1.0 200 Okay\r\n" out)
(display "Server: k\r\nContent-Type: text/html\r\n\r\n" out)
(display (xexpr->string xexpr) out))))

The net/url library gives us string->url, url-path, path/param-path, and url-
query for getting from a string to parts of the URL that it represents:

> (define u (string->url "http://localhost:8080/foo/bar?x=bye"))
> (url-path u)

(1ist (path/param "foo" '()) (path/param "bar" '()))

> (map path/param-path (url-path u))

1 (llfoo" ||bar||)

> (url-query u)

1 ((X . llbyen))

11

We use these pieces to implement dispatch. The dispatch function consults a hash table

that maps an initial path element, like "foo", to a handler function:

(define (dispatch str-path)
; Parse the request as a URL:
(define url (string->url str-path))
; Extract the path part:
(define path (map path/param-path (url-path url)))
; Find a handler based on the path's first element:
(define h (hash-ref dispatch-table (car path) #f))
(if h
; Call a handler:
(h (url-query url))
; No handler found:
“(html (head (title "Error"))
(body
(font ((color "red"))
"Unknown page:
,str-path)))))

(define dispatch-table (make-hash))

With the new require import and new handle, dispatch, and dispatch-table defini-
tions, our “Hello World!” server has turned into an error server. You don’t have to stop the
server to try it out. After modifying "serve.rkt" with the new pieces, evaluate (enter!
"serve.rkt") and then try again to connect to the server. The web browser should show

an “Unknown page” error in red.
We can register a handler for the "hello" path like this:

(hash-set! dispatch-table "hello"
(lambda (query)
*(html (body "Hello, World!"))))

After adding these lines and evaluating (enter! "serve.rkt"),
http://localhost:8081/hello should produce the old greeting.

12

Here’s the whole
program so far in
opening plain text: step 5|

step5.txt

9 Servlets and Sessions

Using the query argument that is passed to a handler by dispatch, a handler can respond
to values that a user supplies through a form.

The following helper function constructs an HTML form. The label argument is a string
to show the user. The next-url argument is a destination for the form results. The hidden
argument is a value to propagate through the form as a hidden field. When the user responds,
the "number" field in the form holds the user’s value:

(define (build-request-page label next-url hidden)
" (html
(head (title "Enter a Number to Add"))
(body ([bgcolor "white"])
(form ([action ,next-url] [method "get"])
,label
(input ([type "text"] [name "number"]
[value ""]1))
(input ([type "hidden"] [name "hidden"]
[value ,hidden]))
(input ([type "submit"] [name "enter"]
[value "Enter"]))))))

Using this helper function, we can create a servlet that generates as many “hello”s as a user

wants: See §11 “Iterations
and
Comprehensions”
for an introduction
to forms like
for/list.

(define (many query)
(build-request-page "Number of greetings:" "/reply" ""))

(define (reply query)
(define n (string->number (cdr (assq 'number query))))
“(html (body ,@(for/list ([i (in-range n)])
" hello"))))

(hash-set! dispatch-table "many" many)
(hash-set! dispatch-table "reply" reply)
Here’s the whole
program so far in
As usual, once you have added these to your program, update with (enter! plain text: step 6|
"serve.rkt"), and then visit http://localhost:8081/many. Provide a number, and
you’ll receive a new page with that many “hello’’s.

13

step6.txt

10 Limiting Memory Use

With our latest "many" servlet, we seem to have a new problem: a malicious client could
request so many “hello”s that the server runs out of memory. Actually, a malicious client
could also supply an HTTP request whose first line is arbitrarily long.

The solution to this class of problems is to limit the memory use of a connection. Inside
accept-and-handle, after the definition of cust, add the line

(custodian-limit-memory cust (* 50 1024 1024))

We’re assuming that S0MB should be plenty for any servlet. Garbage-collector overhead
means that the actual memory use of the system can be some small multiple of 50 MB.
An important guarantee, however, is that different connections will not be charged for each
other’s memory use, so one misbehaving connection will not interfere with a different one.

So, with the new line above, and assuming that you have a couple of hundred megabytes
available for the racket process to use, you shouldn’t be able to crash the web server by
requesting a ridiculously large number of “hello”s.

Given the "many" example, it’s a small step to a web server that accepts arbitrary Racket
code to execute on the server. In that case, there are many additional security issues besides
limiting processor time and memory consumption. The racket/sandbox library provides
support to managing all those other issues.

14

Here’s the whole
program so far in
plain text: step 7.

step7.txt

11 Continuations

As a systems example, the problem of implementing a web server exposes many system and
security issues where a programming language can help. The web-server example also leads
to a classic, advanced Racket topic: continuations. In fact, this facet of a web server needs
delimited continuations, which Racket provides.

The problem solved by continuations is related to servlet sessions and user input, where a
computation spans multiple client connections [Queinnec00]. Often, client-side computation
(as in AJAX) is the right solution to the problem, but many problems are best solved with a
mixture of techniques (e.g., to take advantage of the browser’s “back’ button).

As the multi-connection computation becomes more complex, propagating arguments
through query becomes increasingly tedious. For example, we can implement a servlet
that takes two numbers to add by using the hidden field in the form to remember the first
number:

(define (sum query)
(build-request-page "First number:" "/one" ""))

(define (one query)
(build-request-page "Second number:"
ll/twoll
(cdr (assq 'number query))))

(define (two query)
(let ([n (string->number (cdr (assq 'hidden query)))]
[m (string->number (cdr (assq 'number query)))])
“(html (body "The sum is " , (number->string (+ m n))))))

(hash-set! dispatch-table "sum" sum)
(hash-set! dispatch-table "one" one)
(hash-set! dispatch-table "two" two)

While the above works, we would much rather write such computations in a direct style:

(define (sum2 query)
(define m (get-number "First number:"))
(define n (get-number "Second number:"))
“(html (body "The sum is " , (number->string (+ m n)))))

(hash-set! dispatch-table "sum2" sum2)

The problem is that get-number needs to send an HTML response back for the current
connection, and then it must obtain a response through a new connection. That is, somehow
it needs to convert the page generated by build-request-page into a query result:

15

Here’s the whole
program so far in
plain text: step 8,

step8.txt

(define (get-number label)
(define query
(build-request-page label ...) ...)
(number->string (cdr (assq 'number query))))

Continuations let us implement a send/suspend operation that performs exactly that oper-
ation. The send/suspend procedure generates a URL that represents the current connec-
tion’s computation, capturing it as a continuation. It passes the generated URL to a procedure
that creates the query page; this query page is used as the result of the current connection,
and the surrounding computation (i.e., the continuation) is aborted. Finally, send/suspend
arranges for a request to the generated URL (in a new connection) to restore the aborted
computation.

Thus, get-number is implemented as follows:

(define (get-number label)
(define query
; Generate a URL for the current computation:
(send/suspend
; Receive the computation-as-URL here:
(lambda (k-url)
; Generate the query-page result for this connection.
; Send the query result to the saved-computation URL:
(build-request-page label k-url ""))))
; We arrive here later, in a new connection
(string->number (cdr (assq 'number query))))

We still have to implement send/suspend. For that task, we import a library of control
operators:

(require racket/control)
Specifically, we need prompt and abort from racket/control. We use prompt to mark

the place where a servlet is started, so that we can abort a computation to that point. Change
handle by wrapping a prompt around the call to dispatch:

(define (handle in out)

.”(iet ([xexpr (prompt (dispatch (list-ref req 1)))]1)
ceal))

Now, we can implement send/suspend. We use call/cc in the guise of let/cc, which
captures the current computation up to an enclosing prompt and binds that computation to
an identifier—Xk, in this case:

16

(define (send/suspend mk-page)
(let/cc k
L))

Next, we generate a new dispatch tag, and we record the mapping from the tag to k:

(define (send/suspend mk-page)
(let/cc k
(define tag (format "k™a" (current-inexact-milliseconds)))
(hash-set! dispatch-table tag k)
.o0))

Finally, we abort the current computation, supplying instead the page that is built by applying
the given mk-page to a URL for the generated tag:

(define (send/suspend mk-page)
(let/cc k
(define tag (format "k"a" (current-inexact-milliseconds)))
(hash-set! dispatch-table tag k)
(abort (mk-page (string-append "/" tag)))))

When the user submits the form, the handler associated with the form’s URL is the old
computation, stored as a continuation in the dispatch table. Calling the continuation (like a
function) restores the old computation, passing the query argument back to that computa-
tion.

In summary, the new pieces are: (require racket/control), adding prompt in-
side handle, the definitions of send/suspend, get-number, and sum2, and (hash-
set! dispatch-table "sum2" sum2). Once you have the server updated, visit
http://localhost:8081/sum2.

17

Here’s the final
program in plain
text: step 9.

step9.txt

12 Where to Go From Here

The Racket distribution includes a production-quality web server that addresses all of the
design points mentioned here and more. To learn more, see the tutorial Continue: Web Ap-
plications in Racket, the Web Applications in Racket documentation, or the research paper
[KrishnamurthiO7].

Otherwise, if you arrived here as part of an introduction to Racket, then your next stop is
probably The Racket Guide.

If the topics covered here are the kind that interest you, see also §11 “Concurrency and
Parallelism” and §14 “Reflection and Security” in The Racket Reference.

Some of this material is based on relatively recent research, and more information can be
found in papers written by the authors of Racket, including papers on GRacket (formerly
“MrEd”) [Flatt99], memory accounting [Wick04], kill-safe abstractions [Flatt04], and de-
limited continuations [Flatt07].

18

Bibliography

[Flatt99] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi,
and Matthias Felleisen, ‘“Programming Languages as Operat-
ing Systems (or Revenge of the Son of the Lisp Machine),”
International Conference on Functional Programming, 1999.

http://www.ccs.neu.edu/scheme/pubs/icfp99-ffkf.pdf
[Flatt04] Matthew Flatt and Robert Bruce Findler, “Kill-Safe Synchronization Ab-

stractions,” Programming Language Design and Implementation, 2004.
http://www.cs.utah.edu/plt/publications/pldiO4-ff.pdf

[FlattO7] Matthew Flatt, Gang Yu, Robert Bruce Findler, and
Matthias Felleisen, “Adding Delimited and Composable
Control to a Production Programming Environment,” In-

ternational Conference on Functional Programming, 2007.
http://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf

[KrishnamurthiO7] Shriram Krishnamurthi, Peter Hopkins, Jay McCarthy,
Paul T. Graunke, Greg Pettyjohn, and Matthias Felleisen,
“Implementation and Use of the PLT Scheme Web
Server,” Higher-Order and Symbolic Computation, 2007.
http://www.cs.brown.edu/ sk/Publications/Papers/Published/khmgpf-
impl-use-plt-web-server-journal/paper.pdf

[Queinnec00] Christian Queinnec, “The Influence of Browsers on Evaluators
or, Continuations to Program Web Servers,” International Confer-
ence on Functional Programming, 2000. http://pagesperso-
systeme.lip6.fr/Christian.Queinnec/PDF/webcont.pdf

[Wick04] Adam Wick and Matthew Flatt, “Memory Accounting without Par-
titions,” International Symposium on Memory Management, 2004.
http://www.cs.utah.edu/plt/publications/ismmO4-wf .pdf

19

http://www.ccs.neu.edu/scheme/pubs/icfp99-ffkf.pdf
http://www.cs.utah.edu/plt/publications/pldi04-ff.pdf
http://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf
http://www.cs.brown.edu/~sk/Publications/Papers/Published/khmgpf-impl-use-plt-web-server-journal/paper.pdf
http://www.cs.brown.edu/~sk/Publications/Papers/Published/khmgpf-impl-use-plt-web-server-journal/paper.pdf
http://pagesperso-systeme.lip6.fr/Christian.Queinnec/PDF/webcont.pdf
http://pagesperso-systeme.lip6.fr/Christian.Queinnec/PDF/webcont.pdf
http://www.cs.utah.edu/plt/publications/ismm04-wf.pdf

	1 Ready...
	2 Set...
	3 Go!
	4 "Hello World" Server
	5 Server Thread
	6 Connection Threads
	7 Terminating Connections
	8 Dispatching
	9 Servlets and Sessions
	10 Limiting Memory Use
	11 Continuations
	12 Where to Go From Here
	Bibliography

