
Package Management in Racket
Version 9.0.0.10

Jay McCarthy ăjay@racket-lang.orgą

December 15, 2025

The Racket package manager lets you install new libraries and collections, and the Racket
package catalog helps other Racket programmers find libraries that you make available.

1

mailto:jay@racket-lang.org


Contents

1 Getting Started with Packages 6

1.1 What is a Package? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Inspecting Your Installation . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Finding Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Installing Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Updating Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Removing Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Creating Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.1 Automatic Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.2 Manual Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.3 Linking and Developing New Packages . . . . . . . . . . . . . . . 11

1.8 Sharing Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8.1 GitHub Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.8.2 Manual Deployment . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8.3 Helping Others Discover Your Package . . . . . . . . . . . . . . . 13

1.8.4 Naming and Designing Packages . . . . . . . . . . . . . . . . . . . 13

1.8.5 Packages Compatible with Racket 5.3.5 and 5.3.6 . . . . . . . . . . 14

2 Package Concepts 16

2.1 Single-collection and Multi-collection Packages . . . . . . . . . . . . . . . 16

2.2 Package Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Package Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Explicit vs. Auto-Installation . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Package Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2



2.6 Package Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Package Scopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Using raco pkg 23

3.1 raco pkg install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 raco pkg update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 raco pkg uninstall . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 raco pkg remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 raco pkg new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 raco pkg show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 raco pkg migrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 raco pkg create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 raco pkg config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.10 raco pkg catalog-show . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.11 raco pkg catalog-copy . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 raco pkg catalog-archive . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 raco pkg archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.14 raco pkg empty-trash . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Package Metadata 41

5 Source, Binary, and Built Packages 44

6 Developing Packages with Git 49

6.1 Linking a Git Checkout as a Directory . . . . . . . . . . . . . . . . . . . . 49

6.2 Linking a Git Checkout as a Clone . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Interactions Between git and raco pkg . . . . . . . . . . . . . . . . . . . 51

3



7 Package APIs 53

7.1 Functions for raco pkg . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Package Management Functions . . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Package Paths and Database . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.4 Package Source Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 Package Catalog Database . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.6 Package Directories Catalog . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.7 Package Management Environment Variables . . . . . . . . . . . . . . . . 83

8 Package Catalog Protocol 84

8.1 Remote and Directory Catalogs . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2 SQLite Catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 PLaneT Compatibility 88

10 FAQ 89

10.1 Are package installations versioned with respect to the Racket version? . . 89

10.2 Where and how are packages installed? . . . . . . . . . . . . . . . . . . . 89

10.3 How are user-specific and installation-wide package scopes related for con-
flict checking? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.4 Do I need to change a package’s version when I update a package with error
fixes, etc.? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.5 How can I specify which version of a package I depend on if its interface
has changed and I need an old version? . . . . . . . . . . . . . . . . . . . 90

10.6 How can I fix my installation to a specific set of package implementations
or checksums? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10.7 How can I install a package without its documentation? . . . . . . . . . . . 91

10.8 Why is the package manager so different than PLaneT? . . . . . . . . . . . 91

4



11 Future Plans 93

11.1 Short Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

11.2 Long Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

12 How Package Installation and Distribution Works 95

12.1 Relative References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

12.2 Separate Documentation Rendering . . . . . . . . . . . . . . . . . . . . . 96

12.3 Cross-Document HTML References . . . . . . . . . . . . . . . . . . . . . 97

12.4 HTML Documentation Searching and Start Page . . . . . . . . . . . . . . 98

5



1 Getting Started with Packages

There are two ways to manage Racket package installations:

• The package manager graphical interface.

Most users access the package manager graphical interface through DrRacket, which
provides a Package Manager... item in the File menu.

You can also install the gui-pkg-manager package, with provides a Racket Pack-
age Manager application (which can be launched as racket-package-manager in
a command-line environment).

• The raco pkg command-line tool.

The raco executable launches various Racket command-line tools, and the raco pkg
command groups various package-management sub-commands. The different raco
pkg sub-commands are documented in §3 “Using raco pkg”.

We’ll use the raco pkg command to describe package-management operations here, but the
graphical interface allows the same operations.

1.1 What is a Package?

A package is not something that you refer to directly in your Racket programs. Instead, a
package is a set of libraries that fit into the collection hierarchy, and you refer to libraries
through their collection-based paths. Libraries that are close in the hierarchy may be pro-
vided by different packages, while a single package may provide libraries that are far from
each other in the hierarchy (but that are conceptually related, somehow).

Racket documentation tells you which package provides a given library. For example, the
documentation for the pict/face library says that it is provided by the pict-lib package. If you’re reading

this in a web
browser, click
pict/face to go
straight to its
documentation.

Over time, packages may be refactored so that a library moves to a different package, but the
original package should continue to provide the library, too, by declaring a dependency on
the new package. More generally, a package is intended to have an interface that only grows
in terms of libraries, bindings, and functionality, which provides a basic level of backward
compatibility. Incompatible changes should be implemented in a new package.

1.2 Inspecting Your Installation

To see the packages that you have installed already, use the raco pkg show subcommand:

raco pkg show

6



Unless you have an especially minimal Racket installation, you will have packages installed
already, probably listed in the “Installation-wide” section. In fact, if you have a typical
Racket installation, then raco pkg show will initially show a main-distribution pack-
age and a racket-lib package:

Installation-wide:
Package Checksum Source
main-distribution 01..........ef (catalog main-distribution)
racket-lib fe..........01 (catalog racket-lib)

User-specific for installation ....:
[none]

The “Checksum” column reports the specific implementation of each package that is in-
stalled. A package can have a version in a more traditional sense, but the checksum is the
“version” as far as the package system is concerned. When you request an update, then a
package installation is updated if the current implementation of the package has a differ-
ent checksum than the installed package, whether or not the package author adjusted the
package’s version.

The “Source” column indicates how each package was installed. A catalog source indi-
cates that the package was installed by consulting a package catalog. The name after cata-
log indicates the name of the package as requested from the catalog, which is normally (but
not necessarily) the name of the package as it exists in your installation. We discuss other
possibilities for “Source” in §1.4 “Installing Packages”.

Neither the main-distribution package nor the racket-lib package actually provides
any libraries on its own, but each declares dependencies on other packages. The racket-
lib package depends on native-library packages, if any, for your platform. The main-
distribution package depends on lots of packages that have been selected for inclusion
in the main Racket distribution. If you provide the --all flag to raco pkg show, then
you can see the packages that were automatically installed as a result of installing main-
distribution and racket-lib (or whatever packages you have explicitly selected for
your installation).

raco pkg show --all

An asterisk appears beside the name of every package that was “auto-installed” to satisfy
a dependency. All auto-installed packages are as available for your use in the same way
as explicitly installed packages, but normally your code should refer only to packages that
you have explicitly installed. The difference between an auto-installed and an explicitly
installed package is how various commands, such as raco pkg show, treat the package. If
you specifically request installation of a package that is auto-installed, then the package is
promoted and thereafter treated as a explicitly installed package.

7



1.3 Finding Packages

The PLT package catalog at

https://pkgs.racket-lang.org

provides a centralized listing of available Racket packages. The PLT package catalog nor-
mally will be the first place you check when looking for a package.

There are other ways to distribute and reference packages. For example, a package can be
installed directly from a ".zip" file—available locally or served from on a web site—or
from a Git repository. Such direct references make sense when a package is not yet ready for
wide distribution or when it will never be of interest to a wide audience. So, you may find
non-catalog references in mailing-list posts, recommended by your friends, or advertised in
e-mail spam.

There may be other package catalog services besides PLT’s. Note that even if you discover
a package name from PLT’s package catalog, your installation may be configured to consult
a different package catalog to locate the package’s implementation (to obtain a pre-built ver-
sion of the package, for example), but you should expect the installation-configured package
catalog to deliver the package that is described on the PLT package catalog.

1.4 Installing Packages

If you find a package by name from a package catalog, then use the package’s name with
raco pkg install:

raco pkg install ⟨pkg-name⟩

If the package depends on other packages that you do not have installed already, then raco
pkg install will alert you and ask whether it should install them, too. Use --auto to skip
the question and make dependencies installed automatically. Either way, packages installed
to satisfy dependencies are marked as auto-installed, which makes them easier to uninstall,
and it also makes them hidden by default for raco pkg show (since packages that are in-
stalled for dependencies are an implementation detail that you usually do not care about).

The argument that you provide to raco pkg install does not have to be a package name
that is recognized by a package catalog. In general, each argument to raco pkg install
is a package source. A package source can refer to a ".zip" file, a ".tar" file, a Git
repository, a directory-structured web site, or a few other possibilities. In each of those
cases, a package name is inferred from the package source. After the package is installed,
you use the package name with other raco pkg commands to refer to the installed package.

In fact, a package catalog does not actually serve package implementations. It simply maps

8

https://pkgs.racket-lang.org


each package name to a package source. When the package manager consults a package cat-
alog, it gets back a package source for the actual package implementation, so each package
installed from a package catalog is actually installed from a ".zip" file, Git repository, etc.
Registering with a package catalog is just a way of making your package easier to find and
update.

1.5 Updating Packages

If your package installations become out of date, you can update packages with raco pkg
update:

raco pkg update ⟨pkg-name⟩

Either specify individual packages to update, or use --all to update all installed packages
for which a new checksum is available.

The way that the package manager finds updates depends on the way that a package was
installed. If it was installed by using a package name that was resolved by a package catalog,
then the package catalog is consulted again to get the current checksum for the package, and
the package is updated if the checksum doesn’t match the current installation. If the package
was installed directly from a Git reference, then the Git repository is consulted to get the
current commit of a particular branch or tag, and the package is updated if the commit
identifier doesn’t match the checksum of the current installation.

In some cases, updating a package may require an update to one of the package’s dependen-
cies. That should happen only when the package requires a new binding, feature, or bug fix
from the dependent package, since packages are meant to evolve in an otherwise backward-
compatible way. Package versions provide a way for package authors to declare (and for the
package manager to check) those dependencies. The end result is that raco pkg update
might report a version-mismatch error that forces you to request more package updates than
you originally requested.

Normally, you provide package names to raco pkg update. More generally, you can
provide a package source to raco pkg update. In that case, a package with the same
name must be installed already, and the installed package is replaced with the specified one.
Replacing a package with a new package source is a generalization of fetching a replacement
package that has a new checksum at a previously specified source.

1.6 Removing Packages

As you might expect, raco pkg remove removes a package:

raco pkg remove ⟨pkg-name⟩

9



If the installation of a package triggered auto-installs of other packages, then removing the
package does not automatically remove the auto-installed packages. Supply the --auto flag
for raco pkg remove, either by itself or when uninstalling packages, to also remove any
auto-installed packages that are left without dependents.

The raco pkg remove command will not remove a package if other installed packages
depend on it, unless you force the removal. If you want to demote a package from explicitly
installed to auto-installed (for clean-up later, perhaps when other packages are removed),
then supply the --demote flag to raco pkg remove.

1.7 Creating Packages

A package normally starts life as a directory containing module files and grows up to become
a Git repository that is registered with a package catalog.

1.7.1 Automatic Creation

As a convenience, raco pkg new can automate the creation of a single-collection package.
To create ⟨pkg-name⟩:

raco pkg new ⟨pkg-name⟩

1.7.2 Manual Creation

To create a package manually, first make a directory and select its name, ⟨pkg-name⟩:

mkdir ⟨pkg-name⟩

Although a package can provide libraries in any number of collections, it’s common for a
package to provide only libraries in a collection that matches the package name. If that’s the
case for your package, then files implementing modules in the ⟨pkg-name⟩ collection will
go directly in the ⟨pkg-name⟩ directory that you have created.

If your package implements multiple collections, then you’ll need to add a basic
"info.rkt" file in the ⟨pkg-name⟩ directory:

cd ⟨pkg-name⟩

echo "#lang info" > info.rkt

echo "(define collection 'multi)" >> info.rkt

The collection definition tells the package manager that the package implements libraries

10



in multiple collections, and each collection is represented by a sub-directory whose name
matches the collection name. Libraries for each collection go in the collection’s directory.

You can start with a single-collection package and later change it to a multi-collection pack-
age by restructuring the package directory, so you don’t have to worry much about the choice
when you get started.

1.7.3 Linking and Developing New Packages

Whether creating a single-collection package or a multi-collection package, the next step is
to link your development directory as a locally installed package. Use raco pkg install
in the ⟨pkg-name⟩ directory:

raco pkg install

If you use raco pkg show at this point, you’ll see a line for ⟨pkg-name⟩. The “Source”
column will show that it’s a linked package, and the “Checksum” column will say #f, which
means that there is no checksum. Sub-commands like raco pkg update will not work
on a linked package, because “updates” to the package happen whenever you modify the
package’s implementation.

Finally, inside the ⟨pkg-name⟩ directory, add directories and/or files to implement the collec-
tions and/or modules that your package provides. For example, the developer of a tic-tac-
toe multi-collection package that provides games/tic-tac-toe/main and data/matrix
libraries might create directories and files like this:

mkdir -p games/tic-tac-toe

touch games/tic-tac-toe/info.rkt

touch games/tic-tac-toe/main.rkt

mkdir -p data

touch data/matrix.rkt

An "info.rkt" file is not necessary for a single-collection package with no dependencies,
but you may wish to create one, anyway, to hold dependency declarations. Every package
at least depends on base, which provides the collections and libraries of a minimal Racket
installation. To make your package work best for other users, you will ultimately need to
declare all dependencies. (Fortunately, raco setup can check dependencies and help you
figure out what dependencies to declare.)

Even for a single-collection package, you may want to create "info.rkt" and include the
definition

(define collection "⟨pkg-name⟩")

11



This definition may seem redundant, since ⟨pkg-name⟩ is available as the name of the en-
closing directory, but declaring the collection name explicitly prevents the meaning of your
package’s implementation from depending on the way that the implementation is referenced.

Finally, in the case of a multi-collection package, note that the "info.rkt" file in ⟨pkg-
name⟩ is for the package, not for a collection. Definitions such as scribblings or raco-
commands work only in a collection’s "info.rkt". For a single-collection package, the
"info.rkt" file serves double-duty for the package and collection.

1.8 Sharing Packages

After your package is ready to deploy, choose either §1.8.1 “GitHub Deployment” or §1.8.2
“Manual Deployment”, and then go on to §1.8.3 “Helping Others Discover Your Package”.

1.8.1 GitHub Deployment

First, create a free account on GitHub, then create a repository for your package. After that,
your package source is:

https://github.com/⟨user⟩/⟨package⟩.git

If you want the package to be at ⟨branch⟩ or ⟨tag⟩ instead of the default branch, then add
"#⟨branch⟩" or "#⟨tag⟩" to the end of the package source. If your package is a subdirectory
⟨path⟩ within the repository, add "?path=⟨path⟩" to the end of the package source.

Whenever you

git push

your changes will automatically be discovered by those who use raco pkg update after
installing from your GitHub-based package source.

Other Git repository services can work just as well as GitHub—including GitLab or Support for services
other than GitHub
requires Racket
version 6.1.1.1 or
later.

BitBucket—as long as the server supports either the HTTP(S) protocol or the native Git
protocol (but use a git:// path for the latter).

The Racket package manager provides more support for Git-based development than just
deployment. See §6 “Developing Packages with Git” for more information.

12

https://github.com/signup/free
https://help.github.com/articles/create-a-repo


1.8.2 Manual Deployment

Alternatively, you can deploy your package by publishing it on a URL you control. If you
do this, it is preferable to create an archive from your package directory first:

raco pkg create ⟨package⟩

Then, upload the archive and its checksum to your site:

scp ⟨package⟩.zip ⟨package⟩.zip.CHECKSUM your-host:public_html/

Your package source is then something like

http://your-host/~⟨user⟩/⟨package⟩.zip

Whenever you want to provide a new release of a package, recreate and reupload the package
archive (and checksum). Your changes will automatically be discovered by those who used
your package source when they use raco pkg update. By default, raco

pkg create
generates a ".zip"
archive. For more
options, refer to the
raco pkg create
documentation. If
you want to
generate an archive
through some other
means, simply
archive what you
made in the first
part of this section.
For more formal
details, refer to the
package definition.

1.8.3 Helping Others Discover Your Package

By using either §1.8.1 “GitHub Deployment” or §1.8.2 “Manual Deployment”, anyone will
be able to install your package by referring to your package source. However, they will not
be able to refer to it by a simple name until it is listed on a package catalog.

If you’d like to use the PLT package catalog, browse to https://pkgs.racket-lang.org/ and
upload a new package. You will need to create an account and log in first.

You only need to go to this site once to list your package. The server will periodically check
the package source you designate for updates.

If you use this server, and if you use a public Git repository for deployment, then you will
never need to open a web browser to update your package for end users. You just need to
push to your Git repository, then within 24 hours, the PLT package catalog will notice, and
raco pkg update will work on your user’s machines.

1.8.4 Naming and Designing Packages

We suggest the following conventions for naming and designing packages:

• Packages should not include the name of the author or organization that produces
them, but be named based on the content of the package. For example, data-
priority-queue is preferred to johns-amazing-queues.

13

https://pkgs.racket-lang.org/


• Packages that provide an interface to a foreign library or service should be named the
same as the service. For example, cairo is preferred to Racket-cairo or a similar
name.

• Packages should not generally contain version-like elements in their names, ini-
tially. Instead, version-like elements should be added when backwards incompatible
changes are necessary. For example, data-priority-queue is preferred to data-
priority-queue1. Exceptions include packages that present interfaces to external,
versioned things, such as sqlite3 or libgtk2.

• A version declaration for a package is used only by other package implementors to
effectively declare dependencies on provided features. Such declarations allow raco
pkg install and raco pkg update to help check dependencies. Declaring and
changing a version is optional, and the package catalog ignores version declarations;
in particular, a package is a candidate for updating when its checksum changes, in-
dependent of whether the package’s version changes or even in which direction the
version changes. We suggest using a version smaller than "1.0" to indicate that a
package’s interface is unstable and changing it to "1.0" when you are ready to com-
mit to backwards compatibility going forward.

• Packages should not combine large sets of utilities libraries with other functionality.
For example, a package that contain many extensions to the "racket" collection,
like "racket/more-lists.rkt" and "racket/more-bools.rkt" should not also
contain complete applications, as other packages interested in the "racket/more-
bools.rkt" library will not wish to depend on in such application.

• Packages should normally include both documentation and implementation. To make
the implementation of a package available separately from its documentation (for use
in environments where local documentation is not useful), define a package ⟨pkg-
name⟩-lib to hold just the implementation, ⟨pkg-name⟩-doc to hold the documenta-
tion, and ⟨pkg-name⟩ that depends on both and that “re-exports” both with an implies
declaration (see §4 “Package Metadata”). If you want to keep tests separate, put them
a ⟨pkg-name⟩-test package that is not a dependency of ⟨pkg-name⟩. Similarly, use
⟨pkg-name⟩-exe for executables.

• Packages should generally provide one collection with a name similar to the name of
the package. For example, libgtk1 should provide a collection named "libgtk".
Exceptions include extensions to existing collection, such as new data-structures for
the "data" collection, DrRacket tools, new games for PLT Games, etc.

1.8.5 Packages Compatible with Racket 5.3.5 and 5.3.6

A beta version of the package system was added to Racket starting in version 5.3.5. By the
time version 6.0 was released, some features were added.

By using only certain older features, it is possible to make a package that can be used with
Racket versions 5.3.5, 5.3.6, 6.0, and newer.

14



In your info.rkt, you should:

• Use #lang setup/infotab (not #lang info).

• Use (define collection 'multi). Even if your package has a single collection,
put it in a subdirectory and make a multi-collection package.

• If you depend on a specific version of another package, state this using the (other-
package-name required-version) form (not the form with #:version).

Finally, when listing your package on https://pkgs.racket-lang.
org, you should supply a GitHub source using the URL format
github://github.com/⟨user⟩/⟨repo⟩/⟨rev⟩[/⟨path⟩] (not the git:// or http://
format).

Version Exceptions

To make supporting multiple versions of Racket easier, the package catalog software sup-
ports version exceptions. Version exceptions allow package authors to specify alternative
package sources to be used when installing a given package using a specific version of
Racket.

For example, a package that uses on Racket 6.0-specific features could provide a version
exception for Racket 5.3.6 using a different branch or tag in the package’s GitHub repository,
or a different zip archive, as package source. Users installing the package from Racket 6.0
will use the default source for the package, while those using Racket 5.3.5 will install from
the alternative branch, tag, or archive.

For more details, see §8 “Package Catalog Protocol”.

15

https://pkgs.racket-lang.org
https://pkgs.racket-lang.org


2 Package Concepts

A package is a set of modules in some number of collections. Modules installed using the
Racket package manager are required like any other modules. For example, if the package
tic-tac-toe contains the module "matrix.rkt" in a "data" collection, then after tic-
tac-toe is installed,

(require data/matrix)

imports the module. The package name is not mentioned with require, because packages
are a way of managing library collections, not a way of referencing them. It is common,
however, for a package to implement a collection whose name is the same as the package
name—in which case a require might appear to be referencing a package, but it is actually
referencing a collection provided by the package.

Each package has associated package metadata:

• a package name — a string made of the characters a through z, A through Z, 0 through
9, _, and -.

• a checksum — a string that identifies different releases of a package. A package can be
updated when its checksum changes, whether or not its version changes. The check-
sum must be computed as the SHA-1 hash (see openssl/sha1) of the package’s
archive when the package is distributed in archive form. A package can be installed
in a way that it has no checksum, but then the package installation does not support
updating.

• a version — a string of the form ⟨maj⟩.⟨min⟩, ⟨maj⟩.⟨min⟩.⟨sub⟩, or
⟨maj⟩.⟨min⟩.⟨sub⟩.⟨rel⟩, where ⟨maj⟩, ⟨min⟩, ⟨sub⟩, and ⟨rel⟩ are all canonical dec- The constraints on

version numbers are
consistent with
version/utils
and force version
numbers to be in a
canonical form. For
example, a
would-be version
string "4.3.0"
must be written
instead as "4.3",
"4.3.1.0" must
be written instead
as "4.3.1", and
"4" must be written
as "4.0".

imal representations of natural numbers, ⟨rel⟩ is not 0, ⟨sub⟩ is not 0 unless ⟨rel⟩ is
supplied, ⟨min⟩ has no more than two digits, and ⟨sub⟩ and ⟨rel⟩ have no more than
three digits. A version is intended to reflect available features of a package, and should
not be confused with different releases of a package as indicated by the checksum.

• a list of dependencies — a list of packages to be installed simultaneously, optionally
with a lower bound on each package’s version.

A package is typically represented by a directory with the same name as the package.
The checksum is typically left implicit. The package directory can contain a file named
"info.rkt" to declare other metadata (see §4 “Package Metadata”).

2.1 Single-collection and Multi-collection Packages

A package can be a single-collection package or a multi-collection package:

16



• A single-collection package’s directory doubles as a collection directory. By default,
the package name also doubles as the collection name, but if the package has an
"info.rkt" file that defines collection to a string, then the string is used as the
name of the package’s collection.

• A multi-collection package’s directory contains subdirectories, each of which is a col-
lection that is provided by the package (where the directory name is used as the col-
lection name). A multi-collection package must have an "info.rkt" file that defines
collection as 'multi.

2.2 Package Sources

A package source identifies a package representation. Each package source type has a dif-
ferent way of storing the checksum and providing the package content (usually with single-
collection package and multi-collection package variants).

The package source types are:

• a local file path naming an archive (as a plain path or file:// URL) — The name of
the package is the basename of the archive file. The checksum for archive "f.⟨ext⟩"
is the archive’s SHA-1 hash (see openssl/sha1), which is optionally recorded in
the file "f.⟨ext⟩.CHECKSUM" (but ultimately checked again the file’s actual hash).
The valid archive formats are (currently) ".zip", ".tar", ".tgz", ".tar.gz", and
".plt". Other than a type query, which affects inference as described below, any
query or fragments parts of a file:// URL are ignored.

For example, "~/tic-tac-toe.zip" is an archive package source, and its checksum
would be optionally recorded inside "~/tic-tac-toe.zip.CHECKSUM".

An archive represents package content analogous to a directory, but if the archive’s
content is contained within a single top-level directory, then the directory’s content (as
opposed to the overall archive content) is used as the package content. The ".plt"
format does not accommodate either an extra directory layer or a single-collection
package representation.

A package source is inferred to refer to an archive file only when it has a suffix match-
ing a valid archive format and when it starts with file:// or does not start with
alphabetic characters followed by ://. In the case that the package source starts with
file://, it must be a URL without a type query or with a type query value of file.
The inferred package name is the filename without its suffix.

Changed in version 6.0.1.12: Changed treatment of an archive that contains all content within a top-level
directory.
Changed in version 6.1.1.5: Changed file:// parsing to accept a general URL, recognize a type query,
and ignore any other query or fragment.

• a local directory (as a plain path or file:// URL) — The name of the package is the
name of the directory. The checksum is not present. Other than a type query, which

17



affects inference as described below, any query or fragments parts of a file:// URL
are ignored.

For example, "~/tic-tac-toe/" is a directory package source.

A package source is inferred to refer to a directory only when it does not have a file-
archive suffix, does not match the grammar of a package name, and either starts with
file:// or does not start with alphabetic characters followed by ://. In the case that
the package source starts with file://, it must be a URL without a type query or
with a type query value of dir, link, or static-link. The inferred package name
is the directory name.

When the package source is a file:// URL with a type query value of link or
static-link, then the package is installed as directory link, the same as if --link
or --static-link is supplied to raco pkg install or raco pkg update.

Changed in version 6.1.1.5: Changed file:// parsing to accept a general URL, recognize a type query,
and ignore any other query or fragment.

• a remote URL naming an archive — This type follows the same rules as a local file
path, but the archive and checksum files are accessed via HTTP(S).

For example, "http://game.com/tic-tac-toe.zip" is a remote URL package
source whose checksum is optionally recorded at "http://game.com/tic-tac-
toe.zip.CHECKSUM".

A package source is inferred to be a URL only when it starts with http:// or
https://, and it is inferred to be a file URL when the URL ends with a path ele-
ment that could be inferred as a file archive. The inferred package name is from the
URL’s file name in the same way as for a file package source.

When a ".CHECKSUM" file for a remote archive is not available, then the archive is
downloaded to compute its checksum. If the remote server provides an ETag header
for the downloaded file and recognizes If-None-Match headers, then the ETag value
can be used as a shortcut to determine that the file’s checksum has not changed.
An ETag-to-checksum mapping is cached in (build-path (find-system-path
'cache-dir) "pkg-etag-checksum.rktd").

Changed in version 8.16.0.4: Changed the checksum for a remote archive to download and use the archive
content when a ".CHECKSUM" file is not available, instead of treating the package as having no checksum.

• a remote URL naming a directory — The remote directory must contain a file named
"MANIFEST" that lists all the contingent files. These are downloaded into a local
directory and then the rules for local directory paths are followed. However, if the
remote directory contains a file named ".CHECKSUM", then it is used to determine the
checksum for the purposes of detecting updates, and there is no constraint on how that
checksum is computed.

For example, "http://game.com/tic-tac-toe/" is a directory URL pack-
age source whose checksum is found at "http://game.com/tic-tac-
toe/.CHECKSUM".

18



A package source is inferred to be a URL the same for a directory or file, and it is
treated as a directory URL when it does not end with a path element that has an archive
file suffix or a ".git" suffix. The inferred package name is the directory name.

Changed in version 6.1.1.1: Added special-casing of the ".git" suffix.

• a remote URL naming a Git repository — The format for such URLs is:

⟨scheme⟩://⟨host⟩/.../⟨repo⟩[.git][/][?path=⟨path⟩][#⟨rev⟩]

where ⟨scheme⟩ is git, http, https, git+http, or git+https, except when
⟨scheme⟩ is git and ⟨host⟩ is github.com (which is treated more specifically as a
GitHub reference). The ⟨path⟩ can contain multiple /-separated elements to form a
path within the repository, and it defaults to the empty path. The ⟨rev⟩ can be a branch,
tag, or commit, and it defaults to using the default branch as reported by the server. Due to properties of

the Git protocol, the
archive might be
accessed more
efficiently when
⟨rev⟩ refers to a
branch or tag (even
if it is written as a
commit). In those
cases, the content
typically can be
obtained without
downloading
irrelevant history.

For example, "http://bitbucket.org/game/tic-tac-toe#main" is a Git pack-
age source.

A checkout of the repository at ⟨rev⟩ provides the content of the package, and
⟨scheme⟩ determines the protocol that is used to clone the repository. The package’s
checksum is the hash identifying ⟨rev⟩ if ⟨rev⟩ is a branch or tag, otherwise ⟨rev⟩ itself
serves as the checksum.

A package source is inferred to be a Git reference when it starts with git:// and the
host is not github.com. A package source is also inferred to be a Git reference when
it starts with http:// or https:// and the last non-empty path element ends in .git;
a .git suffix is added if the source is otherwise specified to be a Git reference. Finally,
a package source is inferred to be a Git reference when it starts with git+https://
or git+http://, in which case no .git suffix in the path is needed to designate
the source as a Git reference (and no .git suffix is implicitly added). The inferred
package name is the last element of ⟨path⟩ if it is non-empty, otherwise the inferred
name is ⟨repo⟩.
Changed in version 6.1.1.1: Added Git repository support.
Changed in version 8.0.0.13: Added git+https:// and git+http:// support.

• a remote URL naming a GitHub repository — The format for such URLs is the same
as for a Git repository reference starting git://, but with github.com as the host:

git://github.com/⟨user⟩/⟨repo⟩[.git][/][?path=⟨path⟩][#⟨rev⟩]

For example, "git://github.com/game/tic-tac-toe#main" is a GitHub pack-
age source. A Github repository

source that starts
with git://
obtains the same
content that would
be accessed if
github.com were
not treated
specially. The
special treatment is
preserved for
historical reasons,
especially in
combination with
PLT_USE_GITHUB_API.

For backward compatibility, an older format is also supported:

github://github.com/⟨user⟩/⟨repo⟩/⟨rev⟩[/⟨path⟩]

The zip-formatted archive for the repository (generated by GitHub for any commit)
is used as a remote URL archive path. The checksum is the hash identifying ⟨rev⟩ if
⟨rev⟩ is a branch or tag, otherwise ⟨rev⟩ itself serves as the checksum.

19



A package source is inferred to be a GitHub reference when it starts with
git://github.com/ or github://; a package source that is otherwise specified
as a GitHub reference is automatically prefixed with git://github.com/. The in-
ferred package name is the last element of ⟨path⟩ if it is non-empty, otherwise the
inferred name is ⟨repo⟩.
If the PLT_USE_GITHUB_API environment variable is set, GitHub packages are ob-
tained using the GitHub API protocol instead of using the Git protocol.

Changed in version 6.3: Changed handling of GitHub sources to use the Git protocol by default.

• a package name — A package catalog is consulted to determine the source and check-
sum for the package.

For example, tic-tac-toe is a package name that can be used as a package source.

A package source is inferred to be a package name when it fits the grammar of package
names, which means that it has only the characters a through z, A through Z, 0 through
9, _, and -.

2.3 Package Catalogs

A package catalog is a server or database that converts package names to other package
sources. A package catalog is identified by a string representing a URL, where a http://
or https:// URL indicates a remote server, and a file:// URL indicates a local catalog
in the form of an SQLite database or a directory tree.

PLT supports two package catalog servers that are enabled by default: https://pkgs.
racket-lang.org for new packages and http://planet-compats.racket-lang.org
for automatically generated packages for old PLaneT packages. Anyone may host a package
catalog, and any file-serving HTTP host can act as a basic package catalog server. See §8
“Package Catalog Protocol” for information on how package information is extracted from
a catalog.

2.4 Explicit vs. Auto-Installation

When a package is installed, the original source of its installation is recorded, as well as
whether the installation was an automatic installation. An automatic installation is one that
was installed because it was a dependency of some other package (as opposed to being
installed explicitly by a user).

2.5 Package Conflicts

Two packages are in conflict if they contain the same module. For example, if the
package tic-tac-toe contains the module file "data/matrix.rkt" and the package

20

https://pkgs.racket-lang.org
https://pkgs.racket-lang.org
http://planet-compats.racket-lang.org


factory-optimize contains the module file "data/matrix.rkt", then tic-tac-toe
and factory-optimize are in conflict.

A package may also be in conflict with Racket itself, if it contains a module file that
is part of the base Racket implementation. For example, any package that contains
"racket/list.rkt" is in conflict with Racket.

For the purposes of conflicts, a module is a file that ends in ".rkt", ".ss", or ".scrbl",
with the exception of files named "info.rkt".

2.6 Package Updates

Package A is a package update of Package B if (1) B is installed, (2) A and B have the same
name, and (3) A’s checksum is different than B’s. A single-collection package can be a
package update of a multi-collection package and vice versa.

Note that a package version is not taken into account when determining a package update,
although a change in a package’s version (in either direction) implies a change in the check-
sum because the checksum is computed from the package source and the meta-data that
specifies the version is part of the source.

2.7 Package Scopes

A package scope determines the effect of package installations, updates, etc., with respect
to different users and Racket installations. The default package scope can be configured,
but it is normally user, which makes actions specific to both the current user and the in-
stallation’s name/version (in the sense of get-installation-name). The installation
scope means that package operations affect all users of the Racket installation.

A directory path can be used as a package scope, in which case package operations affect
the set of packages installations in the directory. An installation can be configured to include
the directory in its search path for installed packages (see §19 “Installation Configuration
and Search Paths”). When a directory path is used as a package scope, operations such as
dependency checking will use all paths in the configured search path starting with the one
that is designed as a package scope; if the designated path is not in the configured search
path, then the directory by itself is used as the search path.

Conflict checking disallows installation of the same or conflicting package in different
scopes, but if such a configuration is forced, collections are found first in packages with
user package scope. Search then proceeds in a configured order, where installation
package scope typically precedes other directory package scopes.

The default package scope is determined by first checking the configuration at 'user scope,

21



and then checking for configuration in wider scopes like 'installation. If the default
package scope is not configured in any scope, then it defaults to 'user.

22



3 Using raco pkg

The raco pkg command provides package-management tools via sub-commands.

3.1 raco pkg install

raco pkg install ⟨option⟩ ... ⟨pkg-source⟩ ... — Installs the given package sources
(eliminating exact-duplicate ⟨pkg-source⟩s). If a given ⟨pkg-source⟩ is auto-installed (to
satisfy some other package’s dependency), then it is promoted to explicitly installed.

If no ⟨pkg-source⟩s are supplied and the --clone flag is not supplied, the current directory
is installed as a link. See the --link flag below for more details.

If no ⟨pkg-source⟩s are supplied and the --clone flag is supplied, then the clone directory’s
name is used as the only ⟨pkg-source⟩ argument. See the --clone flag below for more
details.

The install sub-command accepts the following ⟨option⟩s:

• --type ⟨type⟩ or -t ⟨type⟩ — Specifies an interpretation of the package source, where
⟨type⟩ is either file, dir, file-url, dir-url, git, git-url, github, or name.
The difference between git and git-url is that a .git suffix is added to a http or
https URL for type git, but not for type git-url. The type is normally inferred for
each ⟨pkg-source⟩.

• --name ⟨pkg⟩ or -n ⟨pkg⟩ — Specifies the name of the package, which makes sense
only when a single ⟨pkg-source⟩ is provided. The name is normally inferred for each
⟨pkg-source⟩.

• --checksum ⟨checksum⟩ — Specifies a checksum for the package, which normally
makes sense only when a single ⟨pkg-source⟩ is provided. The use of ⟨checksum⟩
depends on ⟨pkg-source⟩: for a Git or GitHub source, ⟨checksum⟩ selects a checksum;
for a package name, file path, or remote URL as a source, ⟨checksum⟩ specifies an
expected checksum; for a directory path (including a remote directory URL without a
".CHECKSUM" file) as a source, ⟨checksum⟩ assigns a checksum.

• --deps ⟨behavior⟩ — Selects the behavior for dependencies, where ⟨behavior⟩ is one
of

– fail — Cancels the installation if dependencies are uninstalled or version re-
quirements are unmet. This behavior is the default for non-interactive mode.

– force — Installs the package(s) despite missing dependencies or version re-
quirements. Forcing an installation may leave package content in an inconsis-
tent state. Implied packages via implies or update-implies (see §4 “Package
Metadata”) are not updated, even if --ignore-implies is not specified.

23



– search-ask — Looks for dependencies (when uninstalled) or updates (when
version requirements are unmet) via the configured package catalogs, but asks
the user whether packages should be installed or updated. This behavior is the
default in interactive mode.

– search-auto — Like search-ask, but does not ask for permission to install
or update a dependency.

Unless --ignore-implies is specified, when a package is updated or installed, any
package that it implies via implies or update-implies (see §4 “Package Meta-
data”) is automatically updated independent of fail, search-ask, or search-auto,
but implied dependencies are not updated for force behavior.

• --auto — Shorthand for --deps search-auto.

• --update-deps — With search-ask or search-auto dependency behavior,
checks already-installed dependencies transitively for updates (even when not forced
by version requirements, implies, or update-implies), asking or automatically
updating a package when an update is available.

Unless --ignore-implies or --deps force is specified, when a package is up-
dated or installed, any package that it implies implies or update-implies (see §4
“Package Metadata”) is automatically updated independent of the behavior requested
via --update-deps.

• --ignore-implies — Disables special treatment of dependencies that are listed in
implies or update-implies (see §4 “Package Metadata”) for an installed or up-
dated package.

• --link — Implies --type dir and links the existing directory as an installed pack-
age, instead of copying the directory’s content to install. Directory package sources
are treated as links by default, unless --copy is specified or the directory name was
reported by a catalog instead of specified directly.

The package is identified as a single-collection package or a multi-collection package
at the time that it is installed, and that categorization does not change even if the col-
lection definition in "info.rkt" is changed (i.e., the package must be uninstalled
and re-installed for the change to take effect).

• --static-link — Implies --link, and also indicates that subdirectories of the
given directory will not change for each given directory that implements a multi-
collection package.

• --copy — Disables default handling of directory package sources as links, and in-
stead treats them like other sources: package content is copied to install.

• --clone ⟨dir⟩ — A Git or GitHub package source is cloned as ⟨dir⟩ and locally linked
as the package implementation. See also §6.2 “Linking a Git Checkout as a Clone”.

If no ⟨pkg-source⟩ is supplied, then the last path element of ⟨dir⟩ is used as a package
name and used as a ⟨pkg-source⟩ argument.

24



Multiple ⟨pkg-source⟩ arguments make sense only if they all specify the same Git
repository (with different paths into the repository). The --clone flag implies --type
in the sense that each ⟨pkg-source⟩ must be either a Git or GitHub package source or
a package name, where a package name must be mapped by the package catalog to a
Git or GitHub package source.

• --source — Strips built elements of a package before installing, and implies --copy.
See also §5 “Source, Binary, and Built Packages”.

• --binary — Strips source elements of a package before installing, and implies
--copy. See also §5 “Source, Binary, and Built Packages”.

• --binary-lib — Strips source and documentation elements of a package before
installing, and implies --copy. See also §5 “Source, Binary, and Built Packages”.

• --scope ⟨scope⟩ — Selects the package scope for installation, where ⟨scope⟩ is one
of

– installation — Install packages for all users of a Racket installation, rather
than user-specific.

– user — Install packages for the current user and current installation’s
name/version.

The default package scope is normally user, but it can be configured with raco pkg
config --set default-scope ⟨scope⟩. The default installation name is normally
the Racket version, but it can be configured with raco pkg config --set name
⟨name⟩.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Select ⟨dir⟩ as the package scope.

• --catalog ⟨catalog⟩ — Uses ⟨catalog⟩s instead of of the currently configured pack-
age catalogs. This flag can be provided multiple times. The catalogs are tried in the
order provided.

• --skip-installed — Ignores any ⟨pkg-source⟩ whose name corresponds to an
already-installed package, except for promoting auto-installed packages to explicitly
installed.

• --pkgs— Disables default installation of the current directory when no ⟨pkg-source⟩s
are supplied.

• --all-platforms — Considers package dependencies independent of the current
platform (instead of filtering dependencies to platforms other than the current one).

• --force — Ignores module conflicts, including conflicts due to installing a single
package in multiple scopes. Forcing an installation may leave package content in an
inconsistent state. Implies --force-strip.

25



• --force-strip — When using --source, --binary, or --binary-lib, ignore a
mismatch between the package’s state and the requested state.

• --ignore-checksums — Ignores errors verifying package checksums (unsafe).

• --strict-doc-conflicts — Refuses to install in user package scope when
documentation-directory names would conflict with other packages. “Conflicting”
documentation names are normally allowed for installation in user package scope, but
strict checking ensures that installation would succeed in other package scopes.

• --no-cache — Disables use of the download cache.

• --multi-clone ⟨mode⟩ — Specifies the handling of packages that are from the same
Git repository but are installed with different clone-linking modes or different clone
directories. (See also §6 “Developing Packages with Git”.) The following modes are
available:

– convert — Converts non-clone-linked packages (either newly or previously
installed) to clone-linked packages, assuming that the packages that are clone-
linked all use the same clone directory. If clone-linked packages currently use
different clone directories, installation fails.

– ask — In the case when packages can be converted, ask the user whether to con-
vert or allow the different clone-linking modes or clone directories. If converting
is not an option, the installation fails. This clone-handling mode is the default in
interactive mode.

– fail — Reports an error and cancels the installation (the default in non-
interactive mode).

– force — Allows packages to have different clone-linking modes or clone direc-
tories.

• --pull ⟨mode⟩ — Specifies the way that commits are merged to clone-linked pack-
ages (see §6 “Developing Packages with Git”) on installation or update. The following
modes are available:

– ff-only — Commits are merged using --ff-only, and installation fails if the
fast-forward merge fails.

– try — Like ff-only, but if the fast-forward fails, the repository checkout is left
as-is, and installation continues.

– rebase — Commits are merged using git rebase instead of git merge.

• --dry-run — Prevents changes to the current installation. All installation and update
work is staged and checked, but the final installation step is skipped.

• --no-setup — Does not run raco setup after installation. This behavior is also the
case if the environment variable PLT_PKG_NOSETUP is set to any non-empty value.

• --no-docs or -D — Does not render documentation during setup after installation.
This flag has no effect with --no-setup.

26



• --recompile-only —Constrains raco setup to at most recompile a module from
machine-independent form, reporting an error if compilation from source is needed.
This behavior is useful as a sanity check when installing built packages (to ensure
that they are properly built), but if a compilation error is reported, it will be after the
package is installed.

• --recompile-cache ⟨dir⟩ — cache module recompilations (from machine-
independent format to machine-dependent format) in ⟨dir⟩.

• --jobs ⟨n⟩ or -j ⟨n⟩ — Installs and runs raco setup with ⟨n⟩ parallel jobs.

• --batch — Disables interactive mode, suppressing potential prompts for a user (e.g.,
about package dependencies or clone sharing).

• --no-trash — Refrains from moving updated or uninstalled packages to a trash
folder.

• --fail-fast — Breaks raco setup as soon as any error is encountered.

Changed in version 6.1.1.5: Added the --batch, --clone, and --multi-clone flags.
Changed in version 6.1.1.6: Added the --no-trash flag, and changed the --deps default to depend only on
interactive mode.
Changed in version 6.1.1.8: Added the --pull flag.
Changed in version 6.4.0.14: Added the --dry-run flag.
Changed in version 7.2.0.8: Added the --recompile-only flag.
Changed in version 7.4.0.4: Added the --no-docs, -D flags.
Changed in version 7.6.0.14: Allowed multiple --catalog flags.
Changed in version 8.0.0.13: Added git-url as a --type option.
Changed in version 8.17.0.2: Added the --recompile-cache flag.
Changed in version 8.18.0.7: Added the --force-strip flag.

3.2 raco pkg update

raco pkg update ⟨option⟩ ... ⟨pkg-source⟩ ... — Checks the specified package names
for package updates or replaces existing package installations with the given sources. If an
update or replacement cannot be installed (e.g. it conflicts with another installed package),
then this command fails without installing any of the ⟨pkg-source⟩s (or their dependencies).

The treatment of a ⟨pkg-source⟩ depends on the way that it parses:

• When a ⟨pkg-source⟩ parses as a package name, then the named package must be
installed already, and it is checked for updates. The --lookup and --clone flags
change this interpretation of ⟨pkg-source⟩.

• If ⟨pkg-source⟩ parses as a directory package source, and if the named package is
installed as a link to a Git repository clone, then the clone is checked for updates.

27



The --link, --static-link, and --copy flags change this interpretation of ⟨pkg-
source⟩.

• Otherwise, ⟨pkg-source⟩ specifies a package source to replace the current installation
of the named package.

If no ⟨pkg-source⟩, --all or -a flag, or --clone flag is specified, and if the current directory
is within a package, then the enclosing package is updated. If no ⟨pkg-source⟩ is specified,
but --clone is supplied, then the clone directory’s name is used as the only ⟨pkg-source⟩
argument.

If a package scope is not specified, the scope is inferred from the given ⟨pkg-source⟩s.

The update sub-command accepts the following ⟨option⟩s:

• --all or -a — Updates all packages, if no packages are given in the argument list.

• --lookup — Causes a package name as a ⟨pkg-source⟩ to be used as a replacement
that is looked up in a catalog, instead of the name of an installed package that may
have updates from its current source. (If the named package was installed through
a package name, then there’s effectively no difference, unless a different catalog is
used.)

By default, if ⟨pkg-source⟩ refers to a package that is currently linked as a Git reposi-
tory clone, then replacing the installation with a catalog-specified source has the effect
of removing the clone link. However, the --lookup flag can be combined with the
--clone flag (assuming that the catalog maps the package to a Git repository) so that
the resulting installation is a linked repository clone.

• --type ⟨type⟩ or -t ⟨type⟩ — Same as for raco pkg install.

• --name ⟨pkg⟩ or -n ⟨pkg⟩ — Same as for raco pkg install.

• --checksum ⟨checksum⟩ — Same as for raco pkg install.

• --deps ⟨behavior⟩ — Same as for raco pkg install.

• --auto — Shorthand for --deps search-auto plus --update-deps.

• --update-deps — Same as for raco pkg install, but implied by --auto only
for raco pkg update.

• --ignore-implies — Same as for raco pkg install.

• --link — Same as for raco pkg install, but a directory package source is treated
as a link by default only when it does not correspond to a link or a Git repository clone.

• --static-link — Same as for raco pkg install.

• --copy — Same as for raco pkg install.

28



• --clone ⟨dir⟩ — Same as for raco pkg install, except that a ⟨pkg-source⟩ as
a package name is treated as the name of an installed package (unless --lookup
is specified). In that case, the package must be currently installed from a Git or
GitHub source—possibly as directed by a catalog—and that source is used for the
clone (which replaces the existing package installation).

To convert a clone-linked package to a normal installation, use raco pkg update
either with the --lookup flag or with a replacement package source that is not a
package name.

• --unclone — An alias for --lookup, which (absent --clone) has the effect of
replacing a link to a repository clone with a normal package installation.

• --binary — Same as for raco pkg install.

• --source — Same as for raco pkg install.

• --scope ⟨scope⟩ — Selects a package scope, the same as for raco pkg install.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Selects ⟨dir⟩ as the package scope, the same as for raco pkg
install.

• --catalog ⟨catalog⟩ — Same as for raco pkg install.

• --skip-uninstalled — Ignores any ⟨pkg-source⟩ that does not correspond to an
installed package.

• --all-platforms — Same as for raco pkg install.

• --force — Same as for raco pkg install.

• --force-strip — Same as for raco pkg install.

• --ignore-checksums — Same as for raco pkg install.

• --strict-doc-conflicts — Same as for raco pkg install.

• --no-cache — Same as for raco pkg install.

• --multi-clone ⟨mode⟩ — Same as for raco pkg install, except that when
--lookup is specified and --clone is not specified, then conversion goes from
clone to non-clone linking—but only for sharing differences implied by the imme-
diate command-line arguments compared against existing package installations.

• --pull ⟨mode⟩ — Same as for raco pkg install

• --dry-run — Same as for raco pkg install.

• --no-setup — Same as for raco pkg install.

29



• --no-docs or -D — Same as for raco pkg install.

• --recompile-only — Same as for raco pkg install.

• --recompile-cache ⟨dir⟩ — Same as for raco pkg install.

• --jobs ⟨n⟩ or -j ⟨n⟩ — Same as for raco pkg install.

• --batch — Same as for raco pkg install.

• --no-trash — Same as for raco pkg install.

Changed in version 6.1.1.5: Added the --batch, --clone, and --multi-clone flags, and added update of
enclosing package when no arguments are provided.
Changed in version 6.1.1.6: Added the --no-trash flag, and changed the --deps default to depend only on
interactive mode.
Changed in version 6.1.1.8: Added the --skip-uninstalled and --pull flags.
Changed in version 6.4.0.14: Added the --dry-run flag.
Changed in version 6.90.0.27: Added the --unclone flag.
Changed in version 7.2.0.8: Added the --recompile-only flag.
Changed in version 7.4.0.4: Added the --no-docs, -D flags.
Changed in version 7.6.0.14: Allowed multiple --catalog flags.
Changed in version 8.17.0.2: Added the --recompile-cache flag.
Changed in version 8.18.0.7: Added the --force-strip flag.

3.3 raco pkg uninstall

raco pkg uninstall ⟨option⟩ ... ⟨pkg⟩ ... — Attempts to uninstall the given packages. By
default, if a package is the dependency of another package that is not listed, this command
fails without removing any of the ⟨pkg⟩s.

If a package scope is not specified, the scope is inferred from the given ⟨pkg⟩s.

The uninstall sub-command accepts the following ⟨option⟩s:

• --demote — “Uninstalls” explicitly installed packages by demoting them to auto-
installed (leaving auto-installed packages as such). Combined with --auto, uninstalls
packages for which there are no dependencies.

• --force — Ignores dependencies when removing packages.

• --auto — In addition to removing each ⟨pkg⟩, uninstalls auto-installed packages (i.e.,
installed by the search-auto or search-ask dependency behavior, or demoted via
--demote) that are no longer required by any explicitly installed package.

• --scope ⟨scope⟩ — Selects a package scope, the same as for raco pkg install.

30



• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Selects ⟨dir⟩ as the package scope, the same as for raco pkg
install.

• --dry-run — Same as for raco pkg install.

• --no-setup — Same as for raco pkg install.

• --no-docs or -D — Same as for raco pkg install.

• --recompile-only — Same as for raco pkg install.

• --recompile-cache ⟨dir⟩ — Same as for raco pkg install.

• --jobs ⟨n⟩ or -j ⟨n⟩ — Same as for raco pkg install.

• --batch — Same as for raco pkg install.

• --no-trash — Same as for raco pkg install.

Changed in version 6.1.1.5: Added the --batch flag.
Changed in version 6.1.1.6: Added the --no-trash flag.
Changed in version 6.4.0.14: Added the --dry-run flag.
Changed in version 7.2.0.8: Added the --recompile-only flag.
Changed in version 7.4.0.4: Added the --no-docs, -D flags.
Changed in version 8.14.0.2: Renamed from raco pkg remove to raco pkg uninstall.
Changed in version 8.17.0.2: Added the recompile-cache flag.

3.4 raco pkg remove

raco pkg remove — A synonym for raco pkg uninstall.

Changed in version 8.14.0.2: Made raco pkg remove an alias.

3.5 raco pkg new

raco pkg new ⟨pkg⟩ — Populates a directory with the stubs for a new package, where
⟨pkg⟩ is the name of the new package. If ⟨pkg⟩ already exists as a directory in the current
directory, no new package is created.

Added in version 6.1.1.5.

31



3.6 raco pkg show

raco pkg show ⟨option⟩ ... ⟨pkg⟩ ... — Prints information about currently installed pack-
ages.

If ⟨pkg⟩s are specified, then only those packages are shown. By default, packages are shown
for all package scopes, but only for packages not marked as auto-installed. If a package is
explicitly specified, it is shown even if it is marked as auto-installed. Unless -l or --long
is specified, the output is roughly constrained to 80 columns or the number of columns
specified by the COLUMNS environment variable. Unless --full-checksum is specified,
checksums are abbreviated to 8 characters.

The show sub-command accepts the following ⟨option⟩s:

• -a or --all — Includes auto-installed packages in the listing.

• -l or --long — Shows complete columns, instead of abbreviating to a width, and
use a more regular (but less human-readable) format for some columns.

• --rx — Treats the ⟨pkg⟩s as regular expressions for displaying specific packages.

• --full-checksum — Prints the full instead of the abbreviated checksum.

• -d or --dir — Adds a column in the output to show the directory where the package
is installed.

• --scope ⟨scope⟩ — Shows only packages in ⟨scope⟩, which is one of

– installation — Show only installation-wide packages.

– user — Show only user-specific packages for the current installation’s
name/version or the name/version specified with --version or -v.

The default is to show packages for all package scopes.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Shows only packages installed in ⟨dir⟩.

• --version ⟨vers⟩ or -v ⟨vers⟩ — Show only user-specific packages for the installa-
tion name/version ⟨vers⟩.

Changed in version 6.1.1.5: Added -l/--long and COLUMNS support.
Changed in version 6.1.1.6: Added explicit ⟨pkg⟩s and --rx and --full-sha.

32



3.7 raco pkg migrate

raco pkg migrate ⟨option⟩ ... ⟨from-version⟩ — Installs packages that were previously
installed in user package scope for ⟨from-version⟩, where ⟨from-version⟩ is an installation
name/version.

The migrate sub-command accepts the following ⟨option⟩s:

• --deps ⟨behavior⟩ — Same as for raco pkg install, except that search-auto is
the default.

• --auto — Same as for raco pkg install; shorthand for --deps search-auto.

• --source — Same as for raco pkg install.

• --binary — Same as for raco pkg install.

• --binary-lib — Same as for raco pkg install.

• --scope ⟨scope⟩ — Same as for raco pkg install.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Select ⟨dir⟩ as the package scope.

• --catalog ⟨catalog⟩ — Same as for raco pkg install.

• --all-platforms — Same as for raco pkg install.

• --force — Same as for raco pkg install.

• --force-strip — Same as for raco pkg install.

• --ignore-checksums — Same as for raco pkg install.

• --strict-doc-conflicts — Same as for raco pkg install.

• --no-cache — Same as for raco pkg install.

• --dry-run — Same as for raco pkg install.

• --no-setup — Same as for raco pkg install.

• --no-docs or -D — Same as for raco pkg install.

• --recompile-only — Same as for raco pkg install.

• --recompile-cache ⟨dir⟩ — Same as for raco pkg install.

• --jobs ⟨n⟩ or -j ⟨n⟩ — Same as for raco pkg install.

33



Changed in version 6.4.0.14: Added the --dry-run flag.
Changed in version 7.2.0.8: Added the --recompile-only flag.
Changed in version 7.4.0.4: Added the --no-docs, -D flags.
Changed in version 7.6.0.14: Allowed multiple --catalog flags.
Changed in version 8.17.0.2: Added the --recompile-cache flag.
Changed in version 8.18.0.7: Added the --force-strip flag.

3.8 raco pkg create

raco pkg create ⟨option⟩ ... ⟨directory-or-package⟩ — Bundles a package into an
archive. Bundling is not needed for a package that is provided directly from a Git repos-
itory or other non-archive formats. The create sub-command can create an archive from a
directory (the default) or from an installed package. It can also adjust the archive’s content
to include only sources, only compiled bytecode and rendered documentation, or both—but
packages are normally provided as source and converted to binary form by an automatic
service, instead of by a package author.

The create sub-command accepts the following ⟨option⟩s:

• --from-dir — Treats ⟨directory-or-package⟩ as a directory path; this is the default
mode.

• --from-install — Treats ⟨directory-or-package⟩ as the name of an installed pack-
age (instead of a directory).

• --format ⟨format⟩ — Specifies the archive format. The allowed ⟨format⟩s are: zip
(the default), tgz, and plt. This option must be specified if --manifest is not
present.

• --manifest — Creates a manifest file for a directory, rather than an archive.

• --as-is — Bundles all content of the package directory as is, with no filtering of
sources, compiled files, or repository elements.

• --source — Bundles only sources in the package directory; see §5 “Source, Binary,
and Built Packages”.

• --binary — Bundles compiled bytecode and rendered documentation in the package
directory; see §5 “Source, Binary, and Built Packages”.

• --binary-lib — Bundles compiled bytecode only in the package directory; see §5
“Source, Binary, and Built Packages”.

• --built — Bundles compiled sources, bytecode, and rendered documentation in the
package directory, filtering repository elements; see §5 “Source, Binary, and Built
Packages”.

34



• --original ⟨package⟩ — Records ⟨package⟩ as the original source in the package’s
"info.rkt" (but not in --as-is mode, since recording ⟨package⟩ means updating
"info.rkt").

• --dest ⟨dest-dir⟩ — Writes generated bundles to ⟨dest-dir⟩.

Changed in version 8.14.0.2: Added the --original flag.

3.9 raco pkg config

raco pkg config ⟨option⟩ ... [⟨key⟩] ⟨val⟩ ... — Views and modifies the configuration of
the package manager. If ⟨key⟩ is not provided, the values for all recognized keys are shown.
The ⟨val⟩ arguments are allowed only when --set is used, in which case the ⟨val⟩s are used
as the new values for ⟨key⟩.

The config sub-command accepts with the following ⟨option⟩s:

• --set — Sets an option, rather than printing it.

• --scope ⟨scope⟩ — Selects a package scope, the same as for raco pkg install.
A configuration value set at installation scope serves as the default value at user
scope.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Same as for raco pkg install.

The valid ⟨key⟩s and corresponding ⟨val⟩s are:

• name — A string for the installation’s name, which is used by user package scope
and defaults to the Racket version.

• catalogs — A list of URLs for package catalogs. An empty-string ⟨val⟩ is replaced
by the sequence of catalogs for the default configuration. A ⟨val⟩ that does not start
with alphabetic characters followed by :// is treated as a path relative to the configu-
ration directory (as reported by find-config-dir).

• default-scope — Either installation or user. The value of this key at user
scope (possibly defaulting from installation scope) is the default package scope
for raco pkg commands for which a scope is not inferred from a given set of package
names (even for raco pkg config, which is consistent but potentially confusing).

35



• download-cache-dir — A directory that holds copies of downloaded packages,
used to avoid re-downloading if the same URL and checksum combination is re-
quested again. The default cache directory is user-specific (but not specific to a Racket
version or installation name).

• download-cache-max-files — A limit on the number of files to be kept in the
download cache directory.

• download-cache-max-bytes — A limit on the total size of files that are kept in the
download cache directory.

• doc-open-url — A URL to use in place of a local filesystem path for viewing (or
at least searching) documentation; an empty string, which is the default, disables the
URL so that the local filesystem is used. This key can be set only in installation
scope.

• git-checkout-credentials — A list that starts with a format specification
(currently only 'basic is supported), followed by git credentials in the form
⟨username⟩:⟨password⟩ that are tried when downloading packages with git sources
using the HTTP or HTTPS protocols. The credentials are currently stored unen-
crypted on the filesystem.

• trash-max-packages — A limit on the number of package implementations that are
kept in a trash folder when the package is uninstalled or updated.

• trash-max-seconds — A limit on the time since a package is uninstalled or up-
dated that its implementation is kept in the trash folder. Package implementations are
removed from a trash folder only when another package is potentially added to the
trash folder or raco pkg empty-trash is used.

• network-retries — The number of times to retry a network communication that
fails due to a connection error.

• network-timeout — The maximum number of seconds to wait for a network com-
munication to complete, such as a download or a checksum fetch.

Changed in version 6.1.1.6: Added trash-max-packages and trash-max-seconds.
Changed in version 6.3: Added network-retries.
Changed in version 6.6.0.5: Added git-checkout-credentials.
Changed in version 9.0.0.2: Added network-timeout.

3.10 raco pkg catalog-show

raco pkg catalog-show ⟨option⟩ ... ⟨package-name⟩ ... — Consults package catalogs
for a package (that is not necessarily installed) and displays the catalog’s information for the
package, such as its source URL and a checksum.

The catalog-show sub-command accepts the following ⟨option⟩s:

36



• --all — Shows information for all available packages. When using this flag, supply
no ⟨package-name⟩s.

• --only-names — Shows only package names. This option is mainly useful with
--all, but when a ⟨package-name⟩ is provided, catalogs are consulted to ensure that
he package is available.

• --modules — Shows the modules that are implemented by a package.

• --catalog ⟨catalog⟩ — Queries ⟨catalog⟩s instead of the currently configured pack-
age catalogs. This flag can be provided multiple times. The catalogs are tried in the
order provided.

• --version ⟨version⟩ or -v ⟨version⟩ — Queries catalogs for a result specific to
⟨version⟩, instead of the installation’s Racket version.

Changed in version 7.6.0.14: Allowed multiple --catalog flags.

3.11 raco pkg catalog-copy

raco pkg catalog-copy ⟨option⟩ ... ⟨src-catalog⟩ ... ⟨dest-catalog⟩ — Copies infor-
mation from the package catalog named by ⟨src-catalog⟩s to a local database or directory
⟨dest-catalog⟩, which can be used as a new package catalog.

The ⟨src-catalog⟩s can be remote or local, while ⟨dest-catalog⟩ must be local (i.e., a di-
rectory path or a SQLite database path, as inferred from the path). If a ⟨src-catalog⟩ or
⟨dest-catalog⟩ does not start with a URL scheme, it is treated as a filesystem path. Infor-
mation from multiple ⟨src-catalog⟩s is merged, with information from earlier ⟨src-catalog⟩s
taking precedence over later ⟨src-catalog⟩s.

The catalog-copy sub-command accepts the following ⟨option⟩s:

• --from-config — Adds the currently configured package catalogs to the end of the
⟨src-catalog⟩s list.

• --force — Replaces ⟨dest-catalog⟩ if it exists already.

• --merge — Adds to ⟨dest-catalog⟩ if it exists already. By default, information already
in ⟨dest-catalog⟩ takes precedence over new information.

• --override — Changes merging so that new information takes precedence over in-
formation already in ⟨dest-catalog⟩.

• --relative — Writes package sources to ⟨dest-catalog⟩ in relative-path form, when
possible.

• --version ⟨version⟩ or -v ⟨version⟩ — Copies catalog results specific to ⟨version⟩
(for catalogs that make a distinction), instead of the installation’s Racket version.

37



3.12 raco pkg catalog-archive

raco pkg catalog-archive ⟨option⟩ ... ⟨dest-dir⟩ ⟨src-catalog⟩ ... — Copies informa-
tion from the package catalog named by ⟨src-catalog⟩s to a "catalog" directory catalog in
⟨dest-dir⟩, and also copies all package sources to a "pkgs" directory in ⟨dest-dir⟩.

Packages sources are downloaded and repacked as needed, so that all packages are written
to the "pkgs" directory as ".zip" archives. This conversion may change the checksum on
each archived package.

The catalog-archive sub-command accepts the following ⟨option⟩s:

• --from-config — Adds the currently configured package catalogs to the end of the
⟨src-catalog⟩s list.

• --state ⟨state-database⟩ — To enable incremental updating, reads and writes the
database ⟨state-database⟩, which must have the suffix ".sqlite", as the current state
of ⟨dest-dir⟩.

• --relative — Writes package sources to ⟨dest-catalog⟩ in relative-path form.

• --version ⟨version⟩ or -v ⟨version⟩ — Copies catalog results specific to ⟨version⟩
(for catalogs that make a distinction), instead of the installation’s Racket version.

• --pkg-fail ⟨mode⟩ — Determines handling of failure for an individual package,
such as when a ⟨src-catalog⟩ contains a bad package source. The following ⟨mode⟩s
are available:

– fail (the default) — archiving stops and fails;

– skip — the package is skipped and omitted from the archive catalog; or

– continue — like skip, but raco pkg catalog-archive exits with a status
code of 5 if any package was skipped.

• --include ⟨pkg⟩ — Can be specified multiple times. If --include is specified at
least once, then the archive and generated catalog includes only the ⟨pkg⟩s specified
with --include, plus the dependencies of each ⟨pkg⟩ if --include-deps is speci-
fied, modulo packages excluded via --exclude.

• --include-deps — Modifies the --includes ⟨pkg⟩ flag to imply all dependencies
of ⟨pkg⟩.

• --include-deps-platform ⟨sys⟩ ⟨subpath⟩ — Modifies --include-deps to im-
ply only dependencies that match the platform ⟨sys⟩, which should be a possible result
of (system-type), and ⟨subpath⟩, which should be a possible result of (system-
type 'platform)

38



• --exclude ⟨pkg⟩ — Can be specified multiple times. Removes ⟨pkg⟩ from the
set of packages in the archive and generated catalog. If --include is used for
the same ⟨pkg⟩, then --exclude takes precedence. If --include is used with
--include-deps for ⟨pkg⟩ or a package that depends on ⟨pkg⟩, then --exclude
stops the consideration of ⟨pkg⟩’s dependencies (but does not necessarily exclude the
dependencies, because they may be dependencies of an included package).

• --fast-file-copy — Directly copies package files from the ⟨src-catalog⟩s when
available on the local filesystem, instead of extracting and repacking.

Added in version 6.0.17.
Changed in version 7.7.0.1: Added --include, --include-deps, --include-deps-platform, --exclude,
and --fast-file-copy.

3.13 raco pkg archive

raco pkg archive ⟨option⟩ ... ⟨dest-dir⟩ ⟨pkg⟩ ... — Copies information from installed
packages named by ⟨pkgs⟩s to a "catalog" directory catalog in ⟨dest-dir⟩, and also copies
all package sources to a "pkgs" directory in ⟨dest-dir⟩.

Packages sources are copied and repacked as needed, so that all packages are written to the
"pkgs" directory as ".zip" archives. This conversion may change the checksum on each
archived package.

The archive sub-command accepts the following ⟨option⟩s:

• --include-deps — Includes the dependencies of the specified packages in the re-
sulting catalog.

• --exclude ⟨pkg⟩ — Omits the specified ⟨pkg⟩ from the resulting catalog. This also
causes the dependencies of ⟨pkg⟩ to be omitted if --include-deps is specified. This
flag can be provided multiple times.

• --relative — Writes package sources to ⟨dest-catalog⟩ in relative-path form.

Added in version 6.1.0.8.

3.14 raco pkg empty-trash

raco pkg empty-trash ⟨option⟩ ... — Removes or lists package implementations that
were previously uninstalled or updated and are currently in the trash directory for the spec-
ified package scope. The trash-max-packages and trash-max-seconds configuration

39



keys (see raco pkg config) control how many packages are kept in the trash directory
and for how long.

The empty-trash sub-command accepts the following ⟨option⟩s:

• --scope ⟨scope⟩ — Selects a package scope, the same as for raco pkg install.

• -i or --installation — Shorthand for --scope installation.

• -u or --user — Shorthand for --scope user.

• --scope-dir ⟨dir⟩ — Same as for raco pkg install.

• --list or -l — Shows the trash directory path and its content, instead of removing
the current content.

Added in version 6.1.1.6.

40



4 Package Metadata

Package metadata, including dependencies on other packages, is reported by an "info.rkt"
module within the package. This module must be implemented in the info language.

For example, a basic "info.rkt" file might be

#lang info
(define version "1.0")
(define deps (list "base"))

The following "info.rkt" fields are used by the package manager: When a package is
a single collection
package, its
"info.rkt" file
may specify
additional fields
that are used for the
Scribble
documentation
system or other
tools. Many of
these fields are
described in §6.3
“Controlling raco
setup with
"info.rkt"
Files”.

• collection — either 'multi to implement a multi-collection package or a string or
'use-pkg-name to implement a single-collection package. If collection is defined
as a string, then the string is used as the name of the collection implemented by the
package. If collection is defined as 'use-pkg-name, then the package name is
used as the package’s collection name.

Beware that omitting collection or defining it as 'use-pkg-name means that a
package’s content effectively changes with the package’s name. A package’s content
should normally be independent of the package’s name, and so defining collection
to a string is preferable for a single-collection package.

• version — a version string. The default version of a package is "0.0".

• deps — a list of dependencies, where each dependency has one of the following
forms:

– A string for a package source.

– A list of the form

(list package-source-string
keyword-and-spec ...)

where each keyword-and-spec has a distinct keyword in the form
keyword-and-spec = '#:version version-string

| '#:platform platform-spec

platform-spec = string
| symbol
| regexp

A version-string specifies a lower bound on an acceptable version of the
needed package.

41



A platform-spec indicates that the dependency applies only for platforms
with a matching result from (system-type) when platforms-spec is a sym-
bol or (system-type 'platform) when platform-spec is a string or regu-
lar expression. See also matching-platform?. For example, platform-specific
binaries can be placed into their own packages, with one separate package and
one dependency for each supported platform.

– A list of the form

(list package-source-string version-string)

which is deprecated and equivalent to

(list package-source-string '#:version version-string)

Each element of the deps list determines a dependency on the package whose name is
inferred from the package source (i.e., dependencies are on package names, not pack-
age sources), while the package source indicates where to get the package if needed
to satisfy the dependency.

Using the package name "racket" specifies a dependency on the Racket run-time
system, which is potentially useful when a version is included in the dependency. For
most purposes, it’s better to specify a versioned dependency on "base", instead.

See also §6.5 “Package Dependency Checking”.

• build-deps — like deps, but for dependencies that can be omitted from a binary
package, which does not include sources; see §5 “Source, Binary, and Built Pack-
ages” and §6.5 “Package Dependency Checking”. The build-deps and deps lists
are appended, while raco pkg create strips away build-deps when converting a
package for --binary mode.

• implies — a list where each element is either a string or 'core. Each string refers to
a package listed in deps and indicates that a dependency on the current package counts
as a dependency on the named package; for example, the gui package is defined to en-
sure access to all of the libraries provided by gui-lib, so the "info.rkt" file of gui
lists "gui-lib" in implies. Packages listed in implies list are treated specially by
updating: implied packages are automatically updated whenever the implying pack-
age is updated. The special value 'core is intended for use by an appropriate base
package to declare it as the representative of core Racket libraries.

• update-implies — a list of strings. Each string refers to a package listed in deps
or build-deps and indicates that the implied packages are automatically updated
whenever the implying package is updated.

• setup-collects — a list of path strings and/or lists of path strings, which are used
as collection names to set up via raco setup after the package is installed, or 'all to
indicate that all collections need to be setup. By default, only collections included in
the package are set up (plus collections for global documentation indexes and links).

42



• license — a license S-expression specifying the package’s license. A license S-
expression represents an SPDX license expression as a datum with the quoted form:

license-sexp = license-id
| (license-id WITH exception-id)
| (license-sexp AND license-sexp)
| (license-sexp OR license-sexp) See further details

below about
license-id and
the + operator.

where:

– a license-id is a short-form identifier from the SPDX License List, e.g. LGPL-
3.0-or-later, Apache-2.0, or BSD-3-Clause; and

– an exception-id is an identifier from the SPDX License Exceptions list, e.g.
Classpath-exception-2.0.

For example, packages in the main Racket distribution define license as:

(define license
'(Apache-2.0 OR MIT))

The grammar of license S-expressions is designed so that (format "~s" license)
produces a string conforming to the grammar in Annex D and Annex E of the SPDX
Specification v2.2.2, which is specified in terms of character sequences.

If the + operator is used, it must be written as part of the license-id , e.g. AFL-
2.0+. Note that the SPDX Workgroup has deprecated (under “Allowing later versions
of a license”) the use of the + operator with GNU licenses: thus, one writes AFL-2.0
or AFL-2.0+ but GPL-3.0-only or GPL-3.0-or-later (and neither GPL-3.0 nor
GPL-3.0+ are correct).

• distribution-preference — either 'source, 'built, or 'binary, indicating
the most suitable distribution mode for the package (but not a guarantee that it will be
distributed as such). Absence of this definition implies 'binary if the package has
no ".rkt" or ".scrbl" files other than "info.rkt" files, and if it has any ".so",
".dll", ".dylib", or ".framework" files; otherwise, absence implies 'built.

• package-content-state — a list of two items; the first item is 'binary, 'binary-
lib, or 'built, and the second item is either #f or a string to represent a Racket
version for compiled content. This information is used by raco pkg install or
raco pkg update with --source, --binary, or --binary-lib to ensure that the
package content is consistent with the requested conversion; see also §5 “Source,
Binary, and Built Packages”. Absence of this definition is treated the same as (list
'source #f).

Changed in version 6.1.0.5: Added update-implies.
Changed in version 6.1.1.6: Added distribution-preference.
Changed in version 8.2.0.7: Added license.

43

https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/
https://spdx.org/licenses/index.html
https://spdx.org/licenses/exceptions-index.html
https://spdx.github.io/spdx-spec/v2.3/SPDX-license-expressions/
https://spdx.github.io/spdx-spec/v2.3/using-SPDX-short-identifiers-in-source-files/
https://spdx.dev/ids/


5 Source, Binary, and Built Packages

A package, especially in a repository format, normally provides module implementations
and documentation in source form. Such source packages may work with multiple Racket
versions, and modules are compiled to bytecode and documentation is rendered when the
package is installed.

A binary package provides only compiled bytecode and rendered documentation, instead
of package and documentation sources. Since compiled bytecode is specific to a version of
Racket, a binary package is specific to a version of Racket. The benefit of a binary package
is that it can have fewer dependencies (e.g., on Scribble to implement the documentation
or on other packages whose documentation is referenced) and it can be installed faster. A
drawback of a binary package is that it is version-specific and the source code may be less
immediately accessible to other programmers.

A binary library package is like a binary package, but it further omits documentation.

A built package combines source and compiled elements. A built package can be installed
more quickly than source, as long as it is installed for a suitable Racket version, but the
source remains available as a back-up for other programmers to consult or to re-build for a
different Racket version.

Programmers normally supply only source packages, while a package catalog service may
convert each source package to a binary package, binary library package, or built package.
Alternatively, programmers can create binary packages, binary library packages, or built
packages by using the raco pkg create subcommand with --binary, --binary-lib, or
--built. As a convenience, the raco pkg create subcommand can also create any kind
of package from an installed package or repository checkout, dropping repository elements
(such as a ".git" directory) and compiled code. Note that raco pkg create by default
bundles a package directory as-is, with no filtering or annotation.

Although a package can be specifically annotated as a source package, binary package, bi-
nary library package, or built package (see package-content-state in §4 “Package Meta-
data”), the different kinds of packages are primarily just conventions based on the content
of the package. All forms of packages can be mixed in an installation, and a package can
be updated from any form to any other form. Furthermore, raco pkg install and raco
pkg update support --source, --binary, --binary-lib flags to convert to a package
on installation; in that case, the package’s existing annotation is checked to verify that it is
consistent with the requested conversion.

Creating a source package, binary package, binary library package, or built package from a
directory or package installation prunes the following files and directories:

• directories/files named ".svn";

• directories/files whose names start with ".git";

44



• directories/files whose names end with "~"; and

• directories/files whose names start and end with "#"; and

• directories/files named "ephemeral" whose parent is named "compiled".

Changed in version 8.17.0.1 of package base: Added "compiled/ephemeral" directory pruning.

Any of the above can be suppressed, however, by a source-keep-files (for source pack-
age and built package bundling), binary-keep-files (for binary package, binary library
package and built package bundling), or binary-lib-keep-files (for binary library pack-
age bundling) definition in an "info.rkt" in the package or any subdirectory. A source-
keep-files, binary-keep-files, or binary-lib-keep-files definition should bind
the name to a list of paths relative to the "info.rkt" file.

Creating a source package prunes the following additional files and directories:

• directories/files named "compiled";

• directories/files named "doc";

• directories/files named "synced.rktd", which can appear as a marker in rendered
documentation;

• directories/files named in an "info.rkt" file’s source-omit-files definition.

Any of the above removals can be suppressed through source-keep-files—even for files
and directories within an otherwise removed directory.

Creating a binary package prunes the following additional files and directories:

• directories/files with names ending in ".rkt" or ".ss" for which a correspond-
ing compiled bytecode file is present (in a "compiled" subdirectory), not counting
"info.rkt";

• directories/files with names ending in ".scrbl", "_scrbl.zo", or ".dep";

• directories/files ending with ".css" or ".js" immediately within a directory named
"doc";

• directories/files named "tests" or "scribblings" (but see the exception below for
"doc" and "info.rkt");

• directories/files named in an "info.rkt" file’s binary-omit-files definition.

Any of the above removals can be suppressed through binary-keep-files—even files and
directories within an otherwise removed directory. Furthermore, a "doc" or "info.rkt"
directory/file is kept when it is within a "scribblings" directory and not within a "tests"
directory. Creating a binary package further adjusts the following files (when they are not
pruned):

45



• for any file whose name ends in ".zo", submodules named test, doc, or srcdoc are
removed;

• for each ".html" file that refers to a "local-redirect.js" script, the path to the
script is removed;

• each "info.rkt" is adjusted as follows: an assume-virtual-sources definition
is added, any copy-foreign-libs definition is changed to move-foreign-libs,
any copy-shared-files definition is changed to move-shared-files, any copy-
man-pages definition is changed to move-man-pages, any build-deps definition
is removed, any update-implies definition is removed, and a package-content-
state is added to changed to (list 'binary (version)); and

• each collection within the path gets an "info.rkt" if it did not have one already, so
that assume-virtual-sources can be defined.

Creating a binary library package prunes the following additional files and directories and
makes additional adjustments compared to a binary package:

• directories/files named "doc" are removed;

• directories/files named in an "info.rkt" file’s binary-lib-omit-files definition
are removed; and

• each "info.rkt" is adjusted to remove any scribblings definition, and package-
content-state is adjusted to (list 'binary-lib (version)).

Any of the removals can be suppressed through binary-lib-keep-files, in addition to
suppressions through binary-keep-files.

Creating a built package removes any file or directory that would be removed for a source
package and binary package, it performs the ".html" file updating of a binary package,
and the package’s "info.rkt" file (added if it does not exist already) is adjusted to define
package-content-state as (list 'built (version)).

Finally, creating a binary package, binary library package, or built package “unmoves” files
that were installed via move-foreign-libs, move-shared-files, or move-man-pages
definitions in an "info.rkt" file, retrieving them if they are not present at referenced loca-
tion but are present in a user-specific target directory (i.e., the directory reported by find-
user-lib-dir, find-user-share-dir, or find-user-man-dir, respectively). On Mac
OS, when an unmoved file for move-foreign-libs is a Mach-O file that includes a refer-
ence to another library in one of the directories reported by (get-lib-search-dirs), then
the reference is changed to a @loader_path/ reference. On Unix, when an unmoved file
for move-foreign-libs is an ELF file whose RPATH configuration is $ORIGIN: followed
by the path to the main installation’s library directory as reported by (find-lib-dir), then
its RPATH value is set to $ORIGIN.

46



(require pkg/strip) package: base

The pkg/strip module provides support for copying a package-style directory to a given
destination with the same file/directory omissions and updates as raco pkg create.

(generate-stripped-directory mode
src-dir
dest-dir) Ñ void?

mode : (or/c 'source 'binary 'binary-lib 'built)
src-dir : path-string?
dest-dir : path-string?

Copies src-dir to dest-dir with file/directory omissions and updates corresponding to
the creation of a source package, binary package, binary library package, or built package as
indicated by mode . The given src-dir and dest-dir must both exist already. If src-dir
and dest-dir are the same, then src-dir is modified directly, which may involve deleting
files.

Note that generate-stripped-directory does not compile or render source files found
in the src-dir . To perform precompilation or rendering before stripping the source direc-
tory, use raco setup or raco make.

Changed in version 7.2.0.10 of package base: Added support for src-dir and dest-dir as the same path.

(check-strip-compatible mode
pkg-name
dir
error) Ñ any

mode : (or/c 'source 'binary 'binary-lib 'built)
pkg-name : string?
dir : path-string?
error : (string? . -> . any)

Check whether the content of dir is consistent with the given mode conversion according
to the content of a "info.rkt" file in dir . If not, error is called with an error-message
string to describe the mismatch.

(fixup-local-redirect-reference file
js-path) Ñ void?

file : path-string?
js-path : string?

Assuming that file is an HTML file for documentation, adjusts the URL reference to
"local-redirect.js", if any, to use the prefix js-path .

(strip-binary-compile-info) Ñ boolean?
(strip-binary-compile-info compile?) Ñ void?

compile? : any/c

47

https://pkgs.racket-lang.org/package/base


A parameter that determines whether "info.rkt" files are included in bytecode form when
converting package content for a binary packages, binary library packages, and built pack-
ages.

48



6 Developing Packages with Git

When a Git repository is specified as a package source, then a copy of the repository content
is installed as the package implementation. That installation mode is designed for package
consumers, who normally use a package without modifying it. The installed copy of the
package is unsuitable for development by the package author, however, since the installation
is not a full clone of the Git repository. The Racket package manager provides different
installation modes to support package authors who work with Git repository clones.

6.1 Linking a Git Checkout as a Directory

Since a Git repository checkout is a directory, it can be linked as a package as described
in §1.7.3 “Linking and Developing New Packages”. In that case, any modifications made
locally take effect immediately for the package installation, including any updates from a
git pull. The developer must explicitly pull any remote updates to the repository, however,
including when the updates are needed to satisfy the requirements of dependent packages.

In the following section, we describe an alternative that makes raco pkg update aware
of the checkout directory’s status as a repository clone. Furthermore, a directory-linked
package can be promoted to a clone-linked package with raco pkg update.

6.2 Linking a Git Checkout as a Clone

When a package is installed with

raco pkg install --clone ⟨dir⟩ ⟨git-pkg-source⟩

then instead of installing the package as a mere copy of the repository source, the package
is installed by creating a Git clone of ⟨git-pkg-source⟩ as ⟨dir⟩. The clone’s checkout is
linked in the same way as a directory, but unlike a plain directory link, the Racket package
manager keeps track of the repository connection. The ⟨git-pkg-source⟩ must be a Git or
GitHub package source, or it must be a package name that the catalog maps to a Git or
GitHub package source; if the source URL includes a fragment, it must name a branch or
tag (as opposed to a raw commit). If ⟨git-pkg-source⟩ refers to a repository over HTTPS but
has no .git suffix, use git+https:// to refer to the repository.

When the repository at ⟨git-pkg-source⟩ is changed so that the source has a new check-
sum, then raco pkg update for the package pulls commits from the repository to the local
clone. In other words, raco pkg update works as an alternative to git pull --ff-
only to pull updates for the package. Furthermore, raco pkg update can pull updates to
local package repositories when checking dependencies. For example, raco pkg update
--all pulls updates for all linked package repositories.

49



A package source provided with --clone can include a branch and/or path into the reposi-
tory. The branch specification affects the branch used for the initial checkout, while a non-
empty path causes a subdirectory of the checkout to be linked for the package.

Suppose that a developer works with a large number of packages and develops only a few of
them. The intended workflow is as follows:

• Install all the relevant packages with raco pkg install.

• For each package to be developed out of a particular Git repository named by ⟨pkg-
name⟩, update the installation with

raco pkg update --clone ⟨dir⟩ ⟨pkg-name⟩
which discards the original installation of the package and replaces it with a local
clone as ⟨dir⟩.
As a convenience, when ⟨git-pkg-source⟩ and the last element of ⟨dir⟩ are the same,
then ⟨pkg-name⟩ can be omitted. Put another way, the argument to --clone can be a
path to ⟨pkg-name⟩:

raco pkg update --clone ⟨path-to⟩/⟨pkg-name⟩ As a further
convenience, when
building from
scratch from the
main Racket source
repository, the Git
configuration
ignores a top-level
"extra-pkgs"
directory. The
directory is
intended to be used
as a target for
--clone:

raco pkg
update --clone
extra-pkgs/⟨pkg-
name⟩
which creates the
"extra-pkgs"
subdirectory if it
doesn’t exist.

• If a package’s current installation is not drawn from a Git repository (e.g., it’s drawn
from a catalog of built packages for a distribution or snapshot), then an original Git
package source might be recorded in the package and found by raco pkg update
--clone.

If not, but if ⟨catalog⟩ maps the package name to the right Git repository, then combine
--clone with --lookup and --catalog:

raco pkg update --lookup --catalog ⟨catalog⟩ --clone ⟨path-
to⟩/⟨pkg-name⟩
A suitable ⟨catalog⟩ might be https://pkgs.racket-lang.org.

• A newly cloned package will have the specified (or existing installation’s) repository
as its Git origin. If you want to push and pull updates from a different repository—
for instance, your own fork of the package source—then use git commands to add or
change the origin of your clone to the other repository. For example, the command

git remote set-url origin ⟨url-of-other-repo⟩
in the clone’s directory causes git pull and git push to pull and push to the given
⟨url-of-other-repo⟩. You can preserve

the clone’s
connection to its
central repository
by setting an
upstream remote,
e.g. git remote
add upstream
⟨url-of-central-
repo⟩. This gives
you the option to
periodically pull in
commits from the
central repository
with git pull
--ff-only
upstream.

Alternatively, use git to clone the target ⟨url⟩ first, and then supply the local clone’s
path as ⟨dir⟩ in

raco pkg update --clone ⟨dir⟩ ⟨pkg-name⟩
Either way, when raco pkg update pulls updates to the clone, it will still pull them
from the repository corresponding to ⟨pkg-name⟩’s old source, and not from the git

50

https://pkgs.racket-lang.org


remote ⟨url⟩. Usually, that’s what package developers want; when they’re not ac-
tively modifying a package, other developers’ updates should be pulled from the pack-
age’s main repository. In case where ⟨url⟩ is the preferred source of updates for raco
pkg update, use ⟨url⟩ in

raco pkg update --clone ⟨dir⟩ ⟨url⟩
Beware, however, that raco pkg update may be less able to detect repository shar-
ing among multiple packages (and keep the package installations consistently associ-
ated with a particular clone) when an alternative ⟨url⟩ is provided.

• Manage changes to each of the developed packages in the usual way with git tools,
but raco pkg update is also available for updates, including mass updates.

6.3 Interactions Between git and raco pkg

The git and raco pkg tools interact in specific ways:

• With the link-establishing

raco pkg install --clone ⟨dir⟩ ⟨git-pkg-source⟩
or the same for raco pkg update, if a local repository exists already as ⟨dir⟩, then it
is left in place and any new commits are fetched from ⟨git-pkg-source⟩. The package
manager does not attempt to check whether a pre-existing ⟨dir⟩ is consistent with ⟨git-
pkg-source⟩; it simply starts fetching new commits to ⟨dir⟩, and a later git pull
--ff-only will detect any mismatch.

Multiple ⟨git-pkg-source⟩s can be provided to raco pkg install, which makes
sense when multiple packages are sourced from the same repository and can there-
fore share ⟨dir⟩. Whether through a single raco pkg use or multiple uses with the
same --clone ⟨dir⟩, packages from the same repository should be linked from the
same local clone (assuming that they are in the same repository because they should
be modified together). The package system does not inherently require clone sharing
among the packages, but since non-sharing or inconsistent installation modes could
be confusing, raco pkg install and raco pkg update report non-sharing or in-
consistent installations. In typical cases, the default --multi-clone ask mode can
automatically fix inconsistencies.

• When pulling changes to repositories that have local copies, raco pkg update pulls
changes with the equivalent of git pull --ff-only by default. Supplying --pull
rebase pulls changes with the equivalent of git pull --rebase, instead. Supply-
ing --pull try attempts to pull with git pull --ff-only, but failure is ignored.

• When raco pkg update is given a specific commit as the target of the update,
it uses the equivalent of git merge --ff-only ⟨checksum⟩ or git merge --
rebase ⟨checksum⟩. This approach is intended to preserve any changes to the pack-
age made locally, but it implies that the package cannot be “downgraded” to a older

51



commit simply by specifying the commit for raco pkg update; any newer commits
that are already in the local repository will be preserved.

• The installed-package database records the most recent commit pulled from the source
repository after each installation or update. The current commit in the repository
checkout is consulted only for the purposes of merging onto pulled commits. Thus, af-
ter pushing repository changes with git push, a raco pkg update makes sense to
synchronize the package-installation database with the remote repository state (which
is then the same as the local repository state).

• When checking a raco pkg install or raco pkg update request for dependen-
cies and collisions, the clone directory’s content is used directly only if the current
checkout includes the target commit.

Otherwise, commits are first fetched with git fetch, and an additional local clone
is created in a temporary directory. If the overall installation or update is deemed to
be successful with respect to remote commits (not necessarily the current commit in
each local repository) in that copy, then an update to the linked repository checkout
proceeds. Finally, after all checkouts succeed, other package installations and updates
are completed and recorded. If a checkout fails (e.g., due to a conflict or uncommitted
change), then the repository checkout is left in a failed state, but all package actions
are otherwise canceled.

• Removing a package with raco pkg remove leaves the repository checkout intact
while removing the package link.

52



7 Package APIs

The pkg provides a programmatic interface to the raco pkg commands, but additional li-
braries provide smaller building blocks and local-database support.

7.1 Functions for raco pkg

(require pkg) package: base

The pkg module provides a programmatic interface to the raco pkg sub-subcommands.

Each-long form option of the command-line interface is a keyword argument to the functions
described below. An argument corresponding to --type, --deps, --format, --scope, or
--multi-clone accepts its argument as a symbol, while other flags that take text argu-
ments expect strings, and flags that expect number arguments expect exact integers. An
argument corresponding to --scope is also allowed to be a path string, as would be pro-
vided to --scope-dir. Options without argument correspond to keyword arguments that
accept booleans, where #t is equivalent to the presence of the option. When a flag can be
used multiple times, its keyword-argument form can hold a single value, a list of values, or
#f to indicate the default implied by zero instances of the flag.

The parameters current-pkg-catalogs, current-pkg-scope, current-pkg-scope-
version, and current-pkg-error do not to affect command functions, because the func-
tions explicitly configure parameters based on their arguments.

pkg-install-command : procedure?

Implements raco pkg install.

pkg-update-command : procedure?

Implements raco pkg update.

pkg-uninstall-command : procedure?

Implements raco pkg uninstall.

pkg-remove-command : procedure?

Implements raco pkg remove.

53

https://pkgs.racket-lang.org/package/base


pkg-new-command : procedure?

Implements raco pkg new.

pkg-show-command : procedure?

Implements raco pkg show.

pkg-migrate-command : procedure?

Implements raco pkg migrate.

pkg-config-command : procedure?

Implements raco pkg config.

pkg-create-command : procedure?

Implements raco pkg create.

pkg-catalog-show-command : procedure?

Implements raco pkg catalog-show.

pkg-catalog-copy-command : procedure?

Implements raco pkg catalog-copy.

pkg-catalog-archive-command : procedure?

Implements raco pkg catalog-archive.

Added in version 6.0.17 of package base.

pkg-archive-command : procedure?

54



Implements raco pkg archive.

Added in version 6.1.0.8 of package base.

pkg-empty-trash-command : procedure?

Implements raco pkg empty-trash.

Added in version 6.1.1.6 of package base.

7.2 Package Management Functions

(require pkg/lib) package: base

The pkg/lib library provides building blocks on which the pkg library and raco pkg com-
mands are built. It re-exports the bindings of pkg/path.

(with-pkg-lock body ...+)
(with-pkg-lock/read-only body ...+)

Evaluates the bodys while holding a lock to prevent concurrent modification to the package
database for the current package scope. Use the with-pkg-lock/read-only form for
read-only access. The lock is reentrant but not upgradable from read-only.

Use these form to wrap uses of functions from pkg/lib that are documented to require the
lock. Other functions from pkg/lib take the lock as needed.

(current-pkg-scope) Ñ (or/c 'installation 'user
(and/c path? complete-path?))

(current-pkg-scope scope) Ñ void?
scope : (or/c 'installation 'user

(and/c path? complete-path?))
(current-pkg-scope-version) Ñ string?
(current-pkg-scope-version s) Ñ void?

s : string?

Parameters that determine package scope for management operations and, in the case of
'user scope, the relevant installation name/version.

(current-pkg-lookup-version) Ñ string?
(current-pkg-lookup-version s) Ñ void?

s : string?

Parameter that determines the relevant Racket version for extracting package information
from a catalog.

55

https://pkgs.racket-lang.org/package/base


Added in version 6.0.1.7 of package base.

(current-pkg-error) Ñ procedure?
(current-pkg-error err) Ñ void?

err : procedure?

A parameter whose value is used to report errors that are normally intended for end uses.
The arguments to the procedure are the same as for error, except that an initial symbol
argument is omitted.

The default value uses error with 'pkg as the first argument. The raco pkg command sets
this parameter to use raise-user-error with the sub-command name as its first argument.

(current-pkg-catalogs) Ñ (or/c #f (listof url?))
(current-pkg-catalogs catalogs) Ñ void?

catalogs : (or/c #f (listof url?))

A parameter that determines the package catalogs that are consulted to resolve a package
name. If the parameter’s value is #f, then the result of pkg-config-catalogs is used.

(pkg-config-catalogs) Ñ (listof string?)

Returns a list of URL strings for the user’s configured package catalogs.

(current-pkg-download-cache-dir)
Ñ (or/c #f (and/c path-string? complete-path?))

(current-pkg-download-cache-dir dir) Ñ void?
dir : (or/c #f (and/c path-string? complete-path?))

(current-pkg-download-cache-max-files) Ñ (or/c #f real?)
(current-pkg-download-cache-max-files max-files) Ñ void?

max-files : (or/c #f real?)
(current-pkg-download-cache-max-bytes) Ñ (or/c #f real?)
(current-pkg-download-cache-max-bytes max-bytes) Ñ void?

max-bytes : (or/c #f real?)

Parameters that determine the download cache location and limits. If a parameter’s value is
#f, then the user’s configuration is used.

(current-pkg-trash-max-packages) Ñ (or/c #f real?)
(current-pkg-trash-max-packages max-packages) Ñ void?

max-packages : (or/c #f real?)
(current-pkg-trash-max-seconds) Ñ (or/c #f real?)
(current-pkg-trash-max-seconds max-seconds) Ñ void?

max-seconds : (or/c #f real?)

56



Parameters that determine the trash-directory limits. If a parameter’s value is #f, then the
user’s configuration is used.

Added in version 6.1.1.6 of package base.

(current-pkg-network-retries) Ñ (or/c #f real?)
(current-pkg-network-retries max-retries) Ñ void?

max-retries : (or/c #f real?)

A parameter that determines the number of times to retry a network communication that fails
due to a connection error. If a parameter’s value is #f, then the user’s configuration is used.

Added in version 6.3 of package base.

(current-pkg-network-timeout) Ñ (or/c #f real?)
(current-pkg-network-timeout max-seconds) Ñ void?

max-seconds : (or/c #f real?)

A parameter that determines the number of seconds to wait for a network communication,
such as a download or a checksum fetch. If a parameter’s value is #f, then the user’s con-
figuration is used.

Added in version 9.0.0.2 of package base.

(pkg-directory name [#:cache cache ]) Ñ (or/c path-string? #f)
name : string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Returns the directory that holds the installation of the installed (in any scope) package name ,
or #f if no such package is installed.

For multiple calls to pkg-directory, supply the same equal?-based mutable hash table
(initially empty) as the cache argument. Otherwise, package-installation information must
be re-parsed on every call to pkg-directory.

Changed in version 6.1.1.6 of package base: Added the #:cache argument.

(default-pkg-scope) Ñ (or/c 'installation 'user
(and/c path? complete-path?))

Returns the user’s configured default package scope.

(installed-pkg-names #:scope scope) Ñ (listof string?)
scope : (or/c #f 'installation 'user

(and/c path? complete-path?))

Returns a list of installed package names for the given package scope, where #f indicates
the user’s default package scope.

57



(installed-pkg-table #:scope scope)
Ñ (hash/c string? pkg-info?)
scope : (or/c #f 'installation 'user

(and/c path? complete-path?))

Returns a hash table of installed packages for the given package scope, where #f indicates
the user’s default package scope.

(pkg-desc? v) Ñ boolean?
v : any/c

(pkg-desc source
type
name
checksum
auto?

[#:path path ]) Ñ pkg-desc?
source : string?
type : (or/c #f 'name 'file 'dir 'link 'static-link

'file-url 'dir-url 'git 'git-url 'github 'clone)
name : (or/c string? #f)
checksum : (or/c string? #f)
auto? : boolean?
path : (or/c #f path-string?) = #f

A pkg-desc value describes a package source plus details of its intended interpretation,
where the auto? field indicates that the package is should be treated as installed automati-
cally for a dependency.

The optional path argument is intended for use when type is 'clone, in which case it
specifies a directory containing the repository clone (where the repository itself is a directory
within path ).

Changed in version 6.1.1.1 of package base: Added 'git as a type .
Changed in version 6.1.1.5: Added 'clone as a type .
Changed in version 8.0.0.13: Added 'git-url as a type .

58



(pkg-stage desc
[#:checksum checksum
#:in-place? in-place?
#:namespace namespace
#:strip strip
#:force-strip? force-strip?
#:use-cache? use-cache?
#:quiet? quiet?]) Ñ string?

path?
(or/c #f string?)
boolean?
(set/c module-path?)

desc : pkg-desc?
checksum : (or/c #f string?) = #f
in-place? : boolean? = #f
namespace : namespace? = (make-base-namespace)
strip : (or/c #f 'source 'binary 'binary-lib) = #f
force-strip? : boolean? = #f
use-cache? : boolean? = #f
quiet? : boolean? = #t

Locates the implementation of the package specified by desc and downloads and unpacks
it to a temporary directory (as needed).

If desc refers to an existing directory and in-place? is true, then the directory is used in
place.

The namespace argument is passed along to get-info/full when the package’s
"info.rkt" is loaded.

If strip is not #f, then files and directories are removed from the prepared directory the
same as when creating the corresponding kind of package. A directory that is staged in-place
cannot be stripped. If force-strip? is true, then a consistency check (intended to avoid
stripping a source package as binary, for example) is skipped.

If use-cache? is true, then a local cache is consulted before downloading a particular pack-
age with a particular checksum. Note that the default for use-cache? is #f, while the
default is #t for other functions that accept #:use-cache?.

The result is the package name, the directory containing the unpacked package content, the
checksum (if any) for the unpacked package, whether the directory should be removed after
the package content is no longer needed, and a list of module paths provided by the package.

(pkg-config set?
keys/vals

[#:from-command-line? from-command-line?
#:default-scope-scope default-scope-scope ]) Ñ void?

59



set? : boolean?
keys/vals : list?
from-command-line? : boolean? = #f
default-scope-scope : (or/c #f 'installation 'user (and/c path? complete-path?))

= #f

Implements pkg-config-command.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg config.

If default-scope-scope is not #f, then it specifies potentially narrower scope than
(current-pkg-scope) where 'default-scope is configured. That information may trig-
ger output to warn a user that a 'default-scope setting in a wider scope does not have any
effect. See also pkg-config-default-scope-scope.

The package lock must be held (allowing writes if set? is true); see with-pkg-lock.

Changed in version 7.7.0.9 of package base: Added the #:default-scope-scope argument.

(pkg-create format
dir
#:source source
#:mode mode
#:dest dest-dir

[#:original original-source
#:quiet? quiet?
#:from-command-line? from-command-line?]) Ñ void?

format : (or/c 'zip 'tgz 'plt 'MANIFEST)
dir : path-string?
source : (or/c 'dir 'name)
mode : (or/c 'as-is 'source 'binary 'binary-lib 'built)
dest-dir : (or/c (and/c path-string? complete-path?) #f)
original-source : (or/c string? #f) = #f
quiet? : boolean? = #f
from-command-line? : boolean? = #f

Implements pkg-create-command.

Unless quiet? is true, information about the output is reported to the current output port. If
from-command-line? is true, error messages may suggest specific command-line flags for
raco pkg create.

Changed in version 8.14.0.2 of package base: Added the #:original argument.

60



(pkg-install descs
[#:dep-behavior dep-behavior
#:update-deps? update-deps?
#:force? force?
#:ignore-checksums? ignore-checksums?
#:strict-doc-conflicts? strict-doc-conflicts?
#:use-cache? use-cache?
#:quiet? quiet?
#:use-trash? use-trash?
#:from-command-line? from-command-line?
#:strip strip
#:force-strip? force-strip?
#:multi-clone-mode multi-clone-mode
#:pull-mode pull-mode
#:link-dirs? link-dirs?
#:dry-run? dry-run?])

Ñ (or/c 'skip
#f
(listof (or/c path-string?

(non-empty-listof path-string?))))
descs : (listof pkg-desc?)
dep-behavior : (or/c #f 'fail 'force 'search-ask 'search-auto)

= #f
update-deps? : boolean? = #f
force? : boolean? = #f
ignore-checksums? : boolean? = #f
strict-doc-conflicts? : boolean? = #f
use-cache? : boolean? = #t
quiet? : boolean? = #f
use-trash? : boolean? = #f
from-command-line? : boolean? = #f
strip : (or/c #f 'source 'binary 'binary-lib) = #f
force-strip? : boolean? = #f
multi-clone-mode : (or/c 'fail 'force 'convert 'ask) = 'fail
pull-mode : (or/c 'ff-only 'try 'rebase) = 'ff-only
link-dirs? : boolean? = #f
dry-run? : boolean? = #f

Implements pkg-install-command. The result indicates which collections should be setup
via raco setup: 'skip means that no setup is needed, #f means all, and a list means only
the indicated collections.

The link-dirs? argument determines whether package sources inferred to be directory
paths should be treated as links or copied (like other package sources). Note that the default
is #f, unlike the default built into pkg-install-command.

61



A pkg-desc can have the type 'clone and a source with the syntax of a package name,
in which case it refers to a package name that must be mapped to a Git repository by the
package catalog, and in will be installed as a clone.

Status information and debugging details are mostly reported to a logger named 'pkg, but
information that is especially relevant to a user (such as a download action) is reported to the
current output port, unless quiet? is true.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg install.

The package lock must be held; see with-pkg-lock.

Changed in version 6.1.1.5 of package base: Added the #:multi-clone-mode and #:infer-clone-from-dir?
arguments.
Changed in version 6.1.1.6: Added the #:use-trash? argument.
Changed in version 6.1.1.8: Added the #:pull-mode argument.
Changed in version 6.4.0.14: Added the #:dry-run argument.

(pkg-update sources
[#:all? all?
#:dep-behavior dep-behavior
#:update-deps? update-deps?
#:force? force?
#:ignore-checksums? ignore-checksums?
#:strict-doc-conflicts? strict-doc-conflicts?
#:use-cache? use-cache?
#:skip-uninstalled? skip-uninstalled?
#:quiet? quiet?
#:use-trash? use-trash?
#:from-command-line? from-command-line?
#:strip strip
#:force-strip? force-strip?
#:lookup-for-clone? lookup-for-clone?
#:multi-clone-mode multi-clone-mode
#:pull-mode pull-mode
#:link-dirs? link-dirs?
#:infer-clone-from-dir? infer-clone-from-dir?
#:dry-run? dry-run?])

Ñ (or/c 'skip
#f
(listof (or/c path-string?

(non-empty-listof path-string?))))
sources : (listof (or/c string? pkg-desc?))
all? : boolean? = #f
dep-behavior : (or/c #f 'fail 'force 'search-ask 'search-auto)

= #f

62



update-deps? : boolean? = #f
force? : boolean? = #f
ignore-checksums? : boolean? = #f
strict-doc-conflicts? : boolean? = #f
use-cache? : boolean? = #t
skip-uninstalled? : boolean? = #t
quiet? : boolean? = #f
use-trash? : boolean? = #f
from-command-line? : boolean? = #f
strip : (or/c #f 'source 'binary 'binary-lib) = #f
force-strip? : boolean? = #f
lookup-for-clone? : boolean? = #f
multi-clone-mode : (or/c 'fail 'force 'convert 'ask) = 'fail
pull-mode : (or/c 'ff-only 'try 'rebase) = 'ff-only
link-dirs? : boolean? = #f
infer-clone-from-dir? : boolean? = #f
dry-run? : boolean? = #f

Implements pkg-update-command. The result is the same as for pkg-install.

A string in sources refers to an installed package that should be checked for updates. A
pkg-desc in sources indicates a package source that should replace the current installa-
tion; as an exception, if a pkg-desc has the type 'clone and a source with the syntax of a
package name, it refers to an existing package installation that should be converted to a Git
repository clone—unless lookup-for-clone? is true, in which case the package name is
resolved through a catalog to locate a Git repository clone.

The link-dirs? and infer-clone-from-dir? arguments affect how directory paths in
sources are treated. The link-dirs? argument is propagated to package-source-
>name+type, while infer-clone-from-dir? introduces a conversion from a directory
source to a repository-clone source when the directory corresponds to an existing repository-
clone installation.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg update.

The package lock must be held; see with-pkg-lock.

Changed in version 6.1.1.5 of package base: Added the #:multi-clone-mode and #:infer-clone-from-dir?
arguments.
Changed in version 6.1.1.6: Added the #:use-trash? argument.
Changed in version 6.1.1.8: Added the #:skip-uninstalled? and #:pull-mode arguments.
Changed in version 6.4.0.14: Added the #:dry-run argument.

63



(pkg-remove names
[#:demote? demote?
#:auto? auto?
#:force? force?
#:quiet? quiet?
#:use-trash? boolean?
#:from-command-line? from-command-line?
#:dry-run? dry-run?])

Ñ (or/c 'skip
#f
(listof (or/c path-string?

(non-empty-listof path-string?))))
names : (listof string?)
demote? : boolean? = #f
auto? : boolean? = #f
force? : boolean? = #f
quiet? : boolean? = #f
boolean? : use-trash? = #f
from-command-line? : boolean? = #f
dry-run? : boolean? = #f

Implements pkg-remove-command. The result is the same as for pkg-install, indicating
collects that should be setup via raco setup.

If from-command-line? is true, the function pkg-remove may recommend additional in-
structions for removing automatically installed packages in the standard output. The error
messages can also suggest specific command-line flags for raco pkg remove.

When quiet? is true, the messages in the standard output are suppressed.

The package lock must be held; see with-pkg-lock.

Changed in version 6.1.1.6 of package base: Added the #:use-trash? argument.
Changed in version 6.4.0.14: Added the #:dry-run argument.
Changed in version 8.6.0.7: Added the suggestion for removing automatically installed packages.

(pkg-new name) Ñ (void?)
name : path-string?

Implements pkg-new-command.

The name parameter is the name of the new package.

64



(pkg-show indent
pkgs-or-patterns

[#:prefix-line prefix-line
#:auto? auto?
#:rx? rx?
#:long? long?
#:full-checksum? full-checksum?
#:directory show-dir?]) Ñ void?

indent : string?
pkgs-or-patterns : (or/c #f (listof string?))
prefix-line : (or/c #f string?) = #f
auto? : boolean? = #f
rx? : boolean? = #f
long? : boolean? = #f
full-checksum? : boolean? = #f
show-dir? : boolean? = #f

Implements pkg-show-command for a single package scope, printing to the current output
port. If prefix-lines is not #f, it is printed before the output. See also installed-pkg-
names and installed-pkg-table.

If pkgs-or-patterns is #f, then information is shown for all installed packages, otherwise
only matching packages are shown. In rx? is true, then elements of pkgs-or-patterns
are treated as regular expression patterns, otherwise they are treated as package names.

The package lock must be held to allow reads; see with-pkg-lock/read-only.

Changed in version 6.1.1.5 of package base: Added the #:long? argument.
Changed in version 6.1.1.6: Added the #:full-checksum? and #:rx? arguments.
Changed in version 6.5.0.1: Added the #:prefix-line argument.

(pkg-migrate from-version
[#:dep-behavior dep-behavior
#:force? force?
#:use-cache? use-cache?
#:ignore-checksums? ignore-checksums?
#:strict-doc-conflicts? strict-doc-conflicts?
#:quiet? quiet?
#:from-command-line? from-command-line?
#:strip strip
#:force-strip? force-strip?
#:dry-run? dry-run?])

Ñ (or/c 'skip
#f
(listof (or/c path-string?

(non-empty-listof path-string?))))
from-version : string?

65



dep-behavior : (or/c #f 'fail 'force 'search-ask 'search-auto)
= #f

force? : boolean? = #f
use-cache? : boolean? = #t
ignore-checksums? : boolean? = #f
strict-doc-conflicts? : boolean? = #f
quiet? : boolean? = #f
from-command-line? : boolean? = #f
strip : (or/c #f 'source 'binary 'binary-lib) = #f
force-strip? : boolean? = #f
dry-run? : boolean? = #f

Implements pkg-migrate-command. The result is the same as for pkg-install.

If from-command-line? is true, error messages may suggest specific command-line flags
for raco pkg migrate.

The package lock must be held; see with-pkg-lock.

Changed in version 6.4.0.14 of package base: Added the #:dry-run argument.

(pkg-migrate-available-versions) Ñ (listof string?)

Returns a list of versions that are suitable as arguments to pkg-migrate.

Added in version 8.11.1.7 of package base.

(pkg-catalog-show names
[#:all? all?
#:only-names? only-names?
#:modules? modules?]) Ñ void?

names : (listof string?)
all? : boolean? = #f
only-names? : boolean? = #f
modules? : boolean? = #f

Implements pkg-catalog-show-command. If all? is true, then names should be empty.

The current-pkg-lookup-version parameter determines the version included in the cat-
alog query.

Changed in version 6.0.1.7 of package base: Use current-pkg-lookup-version instead of
current-pkg-scope-version.

66



(pkg-catalog-copy sources
dest

[#:from-config? from-config?
#:merge? merge?
#:force? force?
#:override? override?
#:relative-sources? relative-sources?])

Ñ void?
sources : (listof path-string?)
dest : path-string?
from-config? : boolean? = #f
merge? : boolean? = #f
force? : boolean? = #f
override? : boolean? = #f
relative-sources? : boolean? = #f

Implements pkg-catalog-copy-command.

The current-pkg-lookup-version parameter determines the version for extracting ex-
isting catalog information.

Changed in version 6.0.1.7 of package base: Use current-pkg-lookup-version instead of
current-pkg-scope-version.

(pkg-catalog-archive
dest-dir
sources

[#:from-config? from-config?
#:state-catalog state-catalog
#:relative-sources? relative-sources?
#:include includes
#:include-deps? include-deps?
#:include-deps-sys+subtype include-deps-sys+subtype
#:exclude excludes
#:fast-file-copy? fast-file-copy?
#:quiet? quiet?
#:package-exn-handler package-exn-handler ])

Ñ void?
dest-dir : path-string?
sources : (listof path-string?)
from-config? : boolean? = #f
state-catalog : (or/c #f path-string?) = #f
relative-sources? : boolean? = #f
includes : (or/c #f (listof string?)) = #f
include-deps? : boolean? = #f

67



include-deps-sys+subtype : (or/c #f (cons/c symbol?
path-for-some-system?))

= #f
excludes : (listof string?) = '()
fast-file-copy? : boolean? = #f
quiet? : boolean? = #f
package-exn-handler : (string? exn:fail? . -> . any)

= (lambda (pkg-name exn) (raise exn))

Implements pkg-catalog-archive-command.

The package-exn-handler argument handles any exception that is raised while trying to
archive an individual package; the first argument is the package name, and the second is the
exception. The default re-raises the exception, which aborts the archiving process, while a
function that logs the exception message and returns would allow archiving to continue for
other packages.

The current-pkg-lookup-version parameter determines the version for extracting ex-
isting catalog information.

Added in version 6.0.1.7 of package base.
Changed in version 6.0.1.13: Added the #:package-exn-handler argument.
Changed in version 7.7.0.1: Added the #:include, #:include-deps?, #:include-deps-platform,
#:exclude, and #:fast-file-copy? arguments.

(pkg-archive-pkgs dest-dir
pkgs

[#:include-deps? include-deps?
#:exclude exclude
#:relative-sources? relative-sources?
#:quiet? quiet?
#:package-exn-handler package-exn-handler ])

Ñ void?
dest-dir : path-string?
pkgs : (listof path-string?)
include-deps? : boolean? = #f
exclude : (listof string?) = null
relative-sources? : boolean? = #f
quiet? : boolean? = #f
package-exn-handler : (string? exn:fail? . -> . any)

= (lambda (pkg-name exn) (raise exn))

Implements pkg-archive-command.

The package-exn-handler argument handles any exception that is raised while trying to
archive an individual package; the first argument is the package name, and the second is the

68



exception. The default re-raises the exception, which aborts the archiving process, while a
function that logs the exception message and returns would allow archiving to continue for
other packages.

Added in version 6.1.0.8 of package base.

(pkg-empty-trash [#:list? show-list?
#:quiet? quiet?]) Ñ void?

show-list? : boolean? = #f
quiet? : boolean? = #t

Implements pkg-empty-trash.

Added in version 6.1.1.6 of package base.

(pkg-catalog-update-local
[#:catalogs catalogs
#:catalog-file catalog-file
#:quiet? quiet?
#:set-catalogs? set-catalogs?
#:consult-packages? consult-packages?])

Ñ void?
catalogs : (listof string?) = (pkg-config-catalogs)
catalog-file : path-string? = (current-pkg-catalog-file)
quiet? : boolean? = #f
set-catalogs? : boolean? = #t
consult-packages? : boolean? = #f

Consults the package catalogs specified by catalogs (in the same way as pkg-catalog-
copy) and the user’s configured package servers (if consult-packages? is true) to popu-
late the database catalog-file with information about available packages and the modules
that they implement.

The local catalog catalog-file records the set of source catalogs, including catalogs ,
from which its information is drawn. If set-catalogs? is true (which is the default),
then catalogs is recorded as the set of sources, and information from any other catalog is
discarded. If set-catalogs? is #f, then catalogs must be a subset of the source catalogs
already recorded in catalog-file .

Changed in version 6.0.1.6 of package base: Added #:catalogs and #:set-catalogs? arguments.

(pkg-catalog-suggestions-for-module
module-path

[#:catalog-file catalog-file ])
Ñ (listof string?)
module-path : module-path?
catalog-file : path-string? = ....

69



Consults catalog-file and returns a list of available packages that provide the module
specified by module-path .

The default catalog-file is (current-pkg-catalog-file) if that file exists, otherwise
a file in the racket installation is tried.
(get-all-pkg-scopes)

Ñ (listof (or/c 'installation 'user path?))

Obtains a list of all the currently-available package scopes.

Added in version 6.1.0.5 of package base.

(get-all-pkg-names-from-catalogs) Ñ (listof string?)

Consults package catalogs to obtain a list of available package names.

(get-all-pkg-details-from-catalogs)
Ñ (hash/c string? (hash/c symbol? any/c))

Consults package catalogs to obtain a hash table of available package names mapped to
details about the package. Details for a particular package are provided by a hash table that
maps symbols such as 'source, 'checksum, and 'author.

(get-pkg-details-from-catalogs name)
Ñ (or/c #f (hash/c symbol? any/c))
name : string?

Consults package catalogs to obtain information for a single package name, returning #f if
the package name has no resolution. Details for the package are provided in the same form
as from get-all-pkg-details-from-catalogs.

(pkg-single-collection dir
[#:name name
#:namespace namespace ])

Ñ (or/c #f string?)
dir : path-string?
name : string? = (elem "... from "(racket dir)" ...")
namespace : namespace? = (make-base-namespapce)

Returns a string for a collection name if dir represents a single-collection package, or re-
turns #f if dir represents a multi-collection package.

For some single-collection packages, the package’s single collection is the package name; if
the package name is different from the directory name, supply name .

Determining a single-collection package’s collection name may require loading an
"info.rkt" file, in which case namespace is passed on to get-info/full.

70



(get-pkg-content desc
[#:extract-info extract-proc
#:namespace namespace
#:use-cache? use-cache?
#:quiet? quiet?])

Ñ (or/c #f string?)
(listof module-path?)
any/c

desc : pkg-desc?
extract-proc : ((or/c #f

((symbol?) ((-> any)) . ->* . any))
. -> . any)

= (lambda (get-pkg-info) ...)
namespace : namespace? = (make-base-namespace)
use-cache? : boolean? = #f
quiet? : boolean? = #t

Gets information about the content of the package specified by desc . The information is de-
termined inspecting the package—resolving a package name, downloading, and unpacking
into a temporary directory as necessary.

The results are as follows:

• The checksum, if any, for the downloaded package.

• A list of module paths that are provided by the package. Each module path is normal-
ized in the sense of collapse-module-path.

• Information extracted from the package’s metadata. By default, this information is
the package’s dependencies, but in general it is the result of extract-proc , which
receives an information-getting function (or #f) as returned by get-info.

The namespace argument is effectively passed along to get-info/full and/or pkg-
stage for reading package and collection "info.rkt" files.

The use-cache? and quiet? arguments are effectively passed to pkg-stage to control the
use of a download cache and status reporting.

Changed in version 6.1.1.2 of package base: Added the #:use-cache? and #:quiet? arguments.

(extract-pkg-dependencies info
[#:build-deps? build-deps?
#:filter? filter?
#:versions? versions?])

Ñ (listof (or/c string? (cons/c string? list?)))

71



info : (or/c #f (symbol? (-> any/c) . -> . any/c))
build-deps? : boolean? = #t
filter? : boolean? = #f
versions? : boolean? = #f

Returns packages dependencies reported by the info procedure (normally produced by
get-info).

If build-deps? is true, then the result includes both run-time dependencies and build-time
dependencies.

If filter? is true, then platform-specific dependencies are removed from the result list
when they do not apply to the current platform, and other information is stripped so that
the result list is always a list of either strings (when versions? is #f) or a two-element list
containing a string and a version (when versions? is true).

If info is #f, the result is (list).

Changed in version 6.0.1.6 of package base: Added the #:versions? argument.

(pkg-directory->module-paths dir
pkg-name

[#:namespace namespace ])
Ñ (listof module-path?)
dir : path-string?
pkg-name : string
namespace : namespace? = (make-base-namespace)

Returns a list of module paths (normalized in the sense of collapse-module-path) that
are provided by the package represented by dir and named pkg-name .

(pkg-directory->additional-installs
dir
pkg-name

[#:namespace namespace
#:system-type sys-type
#:system-library-subpath sys-lib-subpath ])

Ñ (listof (cons/c symbol? string?))
dir : path-string?
pkg-name : string
namespace : namespace? = (make-base-namespace)
sys-type : (or/c #f symbol?) = (system-type)
sys-lib-subpath : (or/c #f path-for-some-system?)

= (system-library-subpath #f)

Returns a list of pairs for items that are installed by the package represented by dir and
named pkg-name . Installed items can include documentation, executables, foreign libraries,

72



other shared files, and man pages—all as specified by "info.rkt" files. The symbol for
each item gives it a category, such as 'doc or 'exe, and the string part is a normalized name,
such as the destination name for a document or a case-folded executable name without a file
suffix.

The sys-type and sys-lib-subpath arguments are used in the same way as for
matching-platform? to determine platform-specific installations as determined by
install-platform definitions in "info.rkt" files.

Added in version 6.0.1.13 of package base.

(pkg-config-default-scope-scope)
Ñ (or/c #f 'user 'installation (and/c path? complete-path?))

Reports the narrowest scope that is at least as wide as current-pkg-scope and that has a
configuration for 'default-scope. The result can be useful with pkg-config.

The package lock must be held; see with-pkg-lock. Note that pkg-config cannot nec-
essarily call pkg-config-default-scope-scope itself, because it may be called with a
lock that is wider than the narrowest relevant scope.

Added in version 7.7.0.9 of package base.

(call-in-pkg-timeout-sandbox thunk
[#:make-exn make-exn ]) Ñ any

thunk : (-> any)
make-exn : exn:fail

= (string? continuation-mark-set? . -> . any/c)

Calls thunk in a thread and under a custodian that is shutdown when the thread terminates.
If the thread does not terminate within the number of seconds indicated by current-pkg-
network-timeout, the thread is forcibly terminated by shutting down its custodian.

The result of thunk is returned as the result of call-in-pkg-timeout-sandbox. If
the thread raises an exception, the exception is re-raised by call-in-pkg-timeout-
sandbox in the current thread.

The result of make-exn is raised if the thread terminates without returning a result or
throwing an exception and if the timeout expires. If the thread terminates without returning
a result or throwing an exception before the timeout, a “thread terminated” exception is
raised.

Added in version 9.0.0.2 of package base.

73



7.3 Package Paths and Database

(require pkg/path) package: base

The pkg/path library provides utilities for working with package paths and installed-
package databases.

(struct pkg-info (orig-pkg checksum auto?)
#:prefab)

orig-pkg : (or/c (list/c 'catalog string?)
(list/c 'catalog string? string?)
(list/c 'url string?)
(list/c 'git string?)
(list/c 'file string?)
(list/c 'dir string?)
(list/c 'link string?)
(list/c 'static-link string?)
(list/c 'clone string? string?))

checksum : (or/c #f string?)
auto? : boolean?

A structure type that is used to report installed-package information.

The orig-pkg field describes the source of the package as installed, where 'catalog refers
to a package that was installed by consulting a catalog with a package name, and so on. The
two-element 'catalog form records a URL for a Git or GitHub package source when the
catalog reported such a source, and the URL is used for operations that adjust 'clone-form
installations.

The 'git form is used for URLs that start git+https:// or git+http:// or where the
'git-url type was specified for parsing the URL. Other Git references (including ones that
start git://) use 'url.

Changed in version 6.1.1.5 of package base: Added 'clone and two-level 'catalog variants for orig-pkg.
Changed in version 8.0.0.13: Added 'git.

(struct sc-pkg-info pkg-info ())

A structure subtype that represents a package that is installed as single-collection.

(struct pkg-info/alt pkg-info (dir-name))
dir-name : string?

(struct sc-pkg-info/alt sc-pkg-info (dir-name))
dir-name : string?

Structure subtypes that are used when the installation directory for a package does not match

74

https://pkgs.racket-lang.org/package/base


the package name, but is instead dir-name. The directory name always includes a + (which
is disallowed in a package name).

(path->pkg path [#:cache cache ]) Ñ (or/c string? #f)
path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Returns the installed package containing path , if any.

If cache is not #f, then it is consulted and modified to cache installed-package information
across calls to path->pkg (with the assumption that the set of installed packages does not
change across calls that receive the same cache ).

(path->pkg+subpath path [#:cache cache ])
Ñ (or/c string? #f) (or/c path? 'same #f)
path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Like path->pkg, but returns a second value that represents the remainder of path within
the package’s directory.

(path->pkg+subpath+scope path
[#:cache cache ])

Ñ (or/c string? #f)
(or/c path? 'same #f)
(or/c 'installation 'user (and/c path? complete-path?) #f)

path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Like path->pkg+subpath, but returns a third value for the package’s installation scope.

(path->pkg+subpath+collect path
[#:cache cache ])

Ñ (or/c string? #f)
(or/c path? 'same #f)
(or/c string? #f)

path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Like path->pkg+subpath, but returns a third value for a collection name if the package is
a single-collection package, #f otherwise.

(path->pkg+subpath+collect+scope path
[#:cache cache ])

75



Ñ (or/c string? #f)
(or/c path? 'same #f)
(or/c string? #f)
(or/c 'installation 'user (and/c path? complete-path?) #f)

path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Like path->pkg+subpath+collect, but returns a fourth value for the package’s installa-
tion scope.

(get-pkgs-dir scope [user-version ]) Ñ path?
scope : (or/c 'installation 'user

(and/c path? complete-path?))
user-version : string? = (version)

Returns the path of the directory that holds installed packages in the given scope. The user-
version argument is used to generate the result for 'user scope.

(read-pkgs-db scope) Ñ (hash/c string? pkg-info?)
scope : (or/c 'installation 'user

(and/c path? complete-path?))

Returns a hash table representing the currently installed packages in the specified scope.

(read-pkg-file-hash path) Ñ hash?
path : path?

Reads a hash table from path , logging any errors and returning an empty hash table if path
does not exist or if an error is encountered.

7.4 Package Source Parsing

(require pkg/name) package: base

The pkg/name library provides functions for parsing and normalizing a package source,
especially for extracting a package name.

(package-source-format? v) Ñ boolean?
v : any/c

Returns #t if v is 'name , 'file, 'dir, 'git, 'git-url, 'github, 'clone, 'file-url,
'dir-url, 'link, or 'static-link, and returns #f otherwise.

76

https://pkgs.racket-lang.org/package/base


The 'link and 'static-link formats are the same as 'dir in terms of parsing, but they
are treated differently for tasks such as package installation. The 'clone and 'git-url
formats are similarly the same as 'github or 'git in terms of parsing.

Changed in version 6.1.1.1 of package base: Added 'git.
Changed in version 6.1.1.5: Added 'clone.
Changed in version 8.0.0.13: Added 'git-url.

(package-source->name source [type ]) Ñ (or/c #f string?)
source : string?
type : (or/c package-source-format? #f) = #f

Extracts the package name from a package source, where the package source type is inferred
if type is #f. If a valid name cannot be inferred, the result is #f.

(package-source->name+type
source

[type
#:complain complain-proc
#:must-infer-name? must-infer-name?]
#:link-dirs? link-dir?)

Ñ (or/c #f string?)
(or/c package-source-format? #f)

source : string?
type : (or/c package-source-format? #f) = #f
complain-proc : (string? string? . -> . any) = void
must-infer-name? : boolean? = #f
link-dir? : boolean?

Like package-source->name, but also returns the type of the source (which is useful when
the type is inferred). If the source is not well-formed, the second result can be #f.

The complain-proc function is applied when source is ill-formed. The arguments to
complain-proc are source and an error message.

If must-infer-name? is true, then complain-proc is called if a valid name cannot be
inferred from source .

If link-dirs? is true, then a directory path is reported as type 'link instead of 'dir.

(package-source->path source [type ]) Ñ path?
source : string?
type : (or/c #f 'file 'dir 'link 'static-link) = #f

Converts a file or directory package source to a filesystem path.

77



The package-source->path function is different from string->path in the case that
source starts with file://. Also, if type is 'dir, 'link, or 'static-link, then path-
>directory-path is used to ensure that the result path refers to a directory.

Added in version 10.0.1.11 of package base.

7.5 Package Catalog Database

(require pkg/db) package: base

The pkg/db library provides tools for storing and retrieving package catalog information in
a local database.

The functions provided by pkg/db do not actually manage packages; they do not change
or consult the local database of installed modules in any package scope. The functions
provided by pkg/db simply reflect a local copy of the information that a package catalog
and individual package might provide (but with no guarantee of being in sync with an actual
package catalog or package).

The database is implemented as an SQLite database with its own locking, so no additional
locks are needed for database access, but beware of concurrent database changes that could
break your program logic.

(struct pkg (name catalog author source checksum desc)
#:extra-constructor-name make-pkg
#:transparent)

name : string?
catalog : string?
author : string?
source : string?
checksum : string?
desc : string?

Represents a package implementation in the database. The name (package name) and cat-
alog (package catalog, normally a URL) fields are always nonempty strings. Otherwise,
unknown fields are represented by empty strings.

(current-pkg-catalog-file) Ñ path-string?
(current-pkg-catalog-file file) Ñ void?

file : path-string?

A parameter that determines the file path used to hold the SQLite database. The default value
is in the user’s add-on directory as determined by (find-system-path 'addon-dir) and
within a subdirectory determined by get-installation-name.

78

https://pkgs.racket-lang.org/package/base


(call-with-pkgs-transaction proc) Ñ any
proc : (-> any)

Calls proc so that multiple calls to other pkg/db functions are grouped as a database trans-
action, which avoids the overhead of making each individual call its own transaction.

Added in version 6.1.1.5 of package base.

(get-catalogs) Ñ (listof string?)
(set-catalogs! catalogs) Ñ void?

catalogs : (listof string?)

Returns or sets the list of strings for all package catalog represented in the database. (Within
the database, each package catalog gets its own identifying number.) The order of indices in
the list represents a search order.

The set-catalogs! function removes information for any other package catalogs from the
database.

(get-pkgs [#:name name #:catalog catalog ]) Ñ (listof pkg?)
name : (or/c #f string?) = #f
catalog : (or/c #f string?) = #f

Gets a list of package descriptions. If name or catalog is not #f (or if both are not #f),
then the result includes only matching packages.

The result list is ordered by precedence of the package catalog.

(set-pkgs! catalog
pkgs
#:clear-other-checksums? clear-other-checksums?)

Ñ void?
catalog : string?
pkgs : (listof (or/c string? pkg?))
clear-other-checksums? : #t

Sets the list of all packages that are recognized by the package catalog catalog .

Information about any other package for catalog is removed from the database. If a string
is provided for pkgs , it is treated as a package name; if additional information is already
recorded in the database for the package name, then the additional information is preserved.

If clear-other-checksums? is true, then for each element of pkgs that has a given check-
sum other than "", any information in the database specific to another checksum (such as a
list of module paths) is removed from the database.

79



(set-pkg! name
catalog
author
source
checksum
desc
#:clear-other-checksums? clear-other-checksums?)

Ñ void?
name : string?
catalog : string?
author : string?
source : string?
checksum : string?
desc : string?
clear-other-checksums? : (not (equal? checksum ""))

Sets the information for a specific package name as recognized by the package catalog cat-
alog .

If clear-other-checksums? is true, then information (such as a list of module paths) is
removed from the database when it is specific to a checksum other than checksum .

(get-pkg-tags name catalog) Ñ (listof string?)
name : string?
catalog : string?

(set-pkg-tags! name catalog module-paths) Ñ void?
name : string?
catalog : string?
module-paths : (listof string?)

Gets or sets a list of tags for the package name as recognized by the package catalog cata-
log .

(get-pkg-ring name catalog)
Ñ (or/c #f exact-nonnegative-integer?)
name : string?
catalog : string?

(set-pkg-ring! name catalog ring) Ñ void?
name : string?
catalog : string?
ring : (or/c #f exact-nonnegative-integer?)

Gets or sets a ring number for the package name as recognized by the package catalog
catalog .

80



The PLT-supported package catalog reports a curated ring number to reflect advice on pack-
age preference and conflicts, where the set of ring-0 and ring-1 packages are expected to
have no conflicts (that is, no multiply defined modules, document names, etc.). The raco
pkg tool does not pay attention to a package’s ring number, but other uses of a catalog may
consult ring numbers.

Added in version 6.10.0.3 of package base.

(get-pkg-dependencies name catalog checksum) Ñ (listof list?)
name : string?
catalog : string?
checksum : string?

(set-pkg-dependencies! name
catalog
checksum
dependencies) Ñ void?

name : string?
catalog : string?
checksum : string?
dependencies : (listof any/c)

Gets or sets a list of dependencies for the package name as recognized by the package catalog
catalog and for a specific checksum.

The list of dependencies must have the shape described for a deps "info.rkt" field as
described in §4 “Package Metadata”. The result from get-pkg-dependencies is normal-
ized: each dependency is represented by a list, a version in a dependency is always preceded
by '#:version, and if both version and platform specification are included, '#:version
appears before '#:platform.

(get-pkg-modules name catalog checksum) Ñ (listof module-path?)
name : string?
catalog : string?
checksum : string?

(set-pkg-modules! name
catalog
checksum
module-paths) Ñ void?

name : string?
catalog : string?
checksum : string?
module-paths : (listof module-path?)

Gets or sets a list of module paths that are provided for the package name as recognized
by the package catalog catalog and for a specific checksum. The module paths should be
normalized in the sense of collapse-module-path.

81



(get-module-pkgs module-path) Ñ (listof pkg?)
module-path : module-path?

Reports a list of packages that implement the given module-path , which should be normal-
ized in the sense of collapse-module-path.

(get-pkgs-without-modules [#:catalog catalog ]) Ñ (listof pkg?)
catalog : (or/c #f string?) = #f

Returns a list of packages (optionally constrained to catalog ) for which the database has
no modules recorded.

Each resulting pkg has its name, catalog, and checksum field set, but other fields may be
"".

7.6 Package Directories Catalog

(require pkg/dirs-catalog) package: base

The pkg/dirs-catalog module provides create-dirs-catalog, which generates a
package catalog (as a directory) that refers to a set of packages that are found in a given
set of directories. Packages are discovered in the given directory as subdirectories that have
an "info.rkt" file.

For example, the main Racket development repository includes a "pkgs" directory that holds
packages such as base, and create-dirs-catalog constructs a catalog to be used to in-
stall those packages.

When run directly as a program, pkg/dirs-catalog expects a destination catalog followed
by any number paths for directories that hold packages:

racket -l- pkg/dirs-catalog ⟨dest-catalog⟩ ⟨dir⟩ ...

The --immediate, --link, --merge, --check-metadata, and --quiet flags correspond
to optional keyword arguments of create-dirs-catalog.

Added in version 6.1.1.6 of package base.
Changed in version 6.90.0.4: Added --immediate.

(create-dirs-catalog catalog-path
dirs

[#:immediate? immediate?
#:link? link?
#:merge? merge?
#:check-metadata? check-metadata?
#:status-printf status-printf ]) Ñ void?

82

https://pkgs.racket-lang.org/package/base


catalog-path : path-string?
dirs : (listof path-string?)
immediate? : any/c = #f
link? : any/c = #f
merge? : any/c = #f
check-metadata? : any/c = #f
status-printf : (string? any/c ... -> void?) = void

Creates or modifies catalog-path as a directory that works as a catalog (see §8 “Package
Catalog Protocol”) to list the packages that are contained in each directory specified by
dirs . Packages are discovered in dirs as subdirectories that have an "info.rkt" file; if
immediate? is true, then each directory in dirs is checked for an immediate "info.rkt"
file before checking subdirectories.

If link? is true, then the catalog specifies that the package should be installed as a directory
link, as opposed to copies.

If merge? is true, then existing catalog entries in catalog-path are preserved, otherwise
old catalog entries are removed.

To create author and description information for each package in the catalog, create-dirs-
catalog looks for a pkg-authors and pkg-desc definition in each package’s "info.rkt"
file. If either definition is missing and check-metadata? is true, an error is reported.

If a package’s "info.rkt" file defines pkg-name, then the defined name is used as the
package’s name instead of the package directory’s name.

Changed in version 6.90.0.4 of package base: Added the #:immediate argument.
Changed in version 7.3.0.2: Added support for pkg-name to name a package.

7.7 Package Management Environment Variables

If the PLT_PKG_SSL_NO_VERIFY environment variable is set, server certificates are
not validated for HTTPS connections. When accessing Git servers over HTTPS,
GIT_SSL_NO_VERIFY must be set, too, to disable certificate validation.

As noted in the specification of GitHub-repository package sources, if the
PLT_USE_GITHUB_API environment variable is set, GitHub packages are obtained
using the GitHub API protocol instead of using the Git protocol.

83



8 Package Catalog Protocol

A package catalog is specified by a URL in one of three forms:

• http:// or https:// — a remote URL

• file:// ending with .sqlite — a local SQLite database

• file:// without .sqlite — a local directory

8.1 Remote and Directory Catalogs

In the case of a remote URL or a local directory naming a package catalog, the URL/path is
extended as follows to obtain information about packages:

• pkg and ⟨package⟩ path elements, where ⟨package⟩ is a package name, plus a ver-
sion=⟨version⟩ query (where ⟨version⟩ is a Racket version number) in the case of a
remote URL.

This URL/path form is used to obtain information about ⟨package⟩. An HTTP request
for a remote URL should respond with a read-able hash table, as described below. A
path in a local directory formed by adding "pkg" and ⟨package⟩ should refer to a file
that similarly contains a read-able hash table.

The hash table should supply the following keys:

– 'source (required) — a package source string, typically a remote URL. If this
source is a relative URL, then it is treated as relative to the catalog.
Changed in version 6.0.1.7: Added relative-path support to clients of a catalog server.

– 'checksum (required) — a string for a checksum.

– 'name (optional) — a string that is the same as ⟨package⟩.
– 'author (optional) — a string for the author of the package, normally an e-mail

address.

– 'description (optional) — a string describing the package.

– 'tags (optional) — a list of strings that describe the package’s categorization.

– 'dependencies (optional) — a list of dependencies for the package, in the same
shape as a deps "info.rkt" field as described in §4 “Package Metadata”.

– 'modules (optional) — a list of module paths for modules that are provided by
the package; each module path should be normalized in the sense of collapse-
module-path.

84



– 'versions (optional) — a hash table mapping version strings and 'default to
hash tables, where each version-specific hash table provides mappings to over-
ride the ones in the main hash table, and 'default applies to any version not
otherwise mapped.
Clients of a remote catalog may request information for a specific version, but
they should also check for a 'versions entry in a catalog response, in case a
catalog with version-specific mappings is implemented as a directory or by a
file-serving HTTP server. A 'default mapping, meanwhile, allows the main
hash table to provide information that is suitable for clients at version 5.3.6 and
earlier (which do not check for 'versions).

– 'ring (optional) — either #f or a ring number. See get-pkg-ring for more
information.

• pkgs path element: Obtains a list of package names that are mapped by the package
catalog. An HTTP request for a remote URL should respond with a read-able list of
strings. A path in a local directory formed by adding "pkgs" should refer to a file that
similarly contains a read-able list of strings.

This URL/path form is used by raco pkg catalog-copy and tools that allow a user
to browse an catalog.

In the case of a local directory, if no "pkgs" file is available, a list is created by listing
all files in the "pkg" directory.

• pkgs-all path element: Obtains a hash table mapping package names to package
details. An HTTP request for a remote URL should respond with a read-able hash
table mapping strings to hash tables. A path in a local directory formed by adding
"pkgs-all" should refer to a file that similarly contains a read-able hash table.

This URL/path form is a shortcut for a pkgs URL/path form combined with a
pkgs/⟨package⟩ query for each package.

In the case of a local directory, if no "pkgs-all" file is available, a list is created
from files in the "pkg" directory.

Note that a local directory served as files through an HTTP server works as a remote URL,
as long as the "pkgs" and "pkgs-all" files are present (since those are optional for local
but required for HTTP).

The source for the PLT-hosted package catalog is in the pkg-index package.

8.2 SQLite Catalogs

A SQLite database package catalog is meant to be constructed and queries using the pkg/db
library, but the database can be constructed in any way as long as it contains the following
tables:

85

https://pkgs.racket-lang.org/package/pkg-index


• A catalog table with the format

(id SMALLINT,
url TEXT,
pos SMALLINT)

Normally, the only row in this table is (0, "local", 0), but a database that records
the content of a set of other catalogs can also be used as an catalog, in which case each
row represents an catalog; the id field is a unique identifier for each catalog, the url
field is the catalog’s URL, and the pos column orders the catalog relative to others
(where a lower pos takes precedence).

• A pkg table with the format

(name TEXT,
catalog SMALLINT,
author TEXT,
source TEXT,
checksum TEXT,
desc TEXT)

The catalog field is normally 0; in the case that the database reflects multiple other
catalogs, the catalog field indicates the package entry’s source catalog.

The pkg and catalog fields together determine a unique row in the table.

• A tags table with the form

(pkg TEXT,
catalog SMALLINT,
tag TEXT)

where the pkg and catalog combination identifies a unique row in pkg.

• A modules table with the form

(name TEXT,
pkg TEXT,
catalog SMALLINT,
checksum TEXT)

where the pkg and catalog combination identifies a unique row in pkg, and name is
a printed module path.

This table is not currently used by any raco pkg command, but it can be used to
suggest package installations to provide a particular library.

• A dependencies table with the form

(onpkg TEXT,
onversion TEXT,
onplatform TEXT,
pkg TEXT,
catalog SMALLINT,
checksum TEXT)

86



where the pkg and catalog combination identifies a unique row in pkg, and onpkg,
onversion, and onplatform represent the dependency; onversion or onplatform
is an empty string if the dependency has no version or platform specification.

This table is not currently used by any raco pkg command.

• A ring table with the form

(pkg TEXT,
catalog SMALLINT,
ring SMALLINT)

where the pkg and catalog combination identifies a unique row in pkg.

Added in version 6.10.0.3.

87



9 PLaneT Compatibility

PLT maintains a package catalog to serve packages that were developed using the origi-
nal PLaneT package system. This compatibility catalog is at http://planet-compats.racket-
lang.org/, which is included by default in the package-server search path.

Copies of PLaneT packages are automatically created by the server according to the fol-
lowing system: for all packages that are in the 4.x PLaneT repository, the latest minor
version of ⟨user⟩/⟨package⟩.plt/⟨major-version⟩ will be available as planet-⟨user⟩-
⟨package⟩⟨major-version⟩. For example, jaymccarthy/opencl.plt/1 minor version 2,
will be available as planet-jaymccarthy-opencl1.

The contents of these copies is a single collection with the name "⟨user⟩/⟨package⟩⟨major-
version⟩" with all the files from the original PLaneT package in it.

Each file has been transliterated to use direct Racket-style requires rather than PLaneT-style
requires. For example, if any file contains (planet jaymccarthy/opencl/module), then
it is transliterated to jaymccarthy/opencl1/module. This transliteration is purely syntac-
tic and is trivial to confuse, but works for most packages, in practice. Any transliterations
that occurred are automatically added as dependencies for the compatibility package.

We do not intend to improve this compatibility system much more over time, because it is
simply a stop-gap as developers port their PLaneT packages to the new system. Additionally,
the existence of the compatibility server is not meant to imply that we will be removing
PLaneT from existence in the near future.

88

http://planet-compats.racket-lang.org/
http://planet-compats.racket-lang.org/


10 FAQ

This section answers anticipated frequently asked questions about the package manager.

10.1 Are package installations versioned with respect to the Racket
version?

Most Racket installations are configured to that installing a package installs it for a specific
user and a specific version of Racket. That is, the package scope is user- and version-specific.
More precisely, it is user-specific and installation-name-specific, where an installation name
is typically a Racket version.

You can change the default package scope (for a particular Racket installation) with raco
pkg config -i --set default-scope installation, in which case package opera-
tions apply for all users of a Racket installation. You can also use the -i or --installation
flag with a specific raco pkg command, instead of changing the default scope for all uses
of raco pkg. Note that an installation-wide package is not exactly version-specific, because
the version of an installation can change if it corresponds to a source-code checkout that is
periodically updated and rebuilt.

If you change the default package scope, you can use the -u or --user flag with a specific
raco pkg command to perform the command with user-specific package scope.

10.2 Where and how are packages installed?

User-specific and Racket-version-specific packages are in (find-user-pkgs-dir), and
installation-wide packages are in (find-pkgs-dir). They are linked as collections (for
single-collection packages) or collection roots (for multi-collection packages) with raco
link.

10.3 How are user-specific and installation-wide package scopes re-
lated for conflict checking?

User-specific packages are checked against installation-wide packages for package-name
conflicts and provided-module conflicts. Installation-wide packages are checked against
user-specific packages only for provided-module conflicts.

Beware that a conflict-free, installation-wide change by one user can create conflicts for a
different user.

89



10.4 Do I need to change a package’s version when I update a package
with error fixes, etc.?

If you have new code for a package, then it should have a new checksum. When package up-
dates are searched for, the checksum of the installed package is compared with the checksum
of the source, if they are different, then the source is re-installed. This allows code changes
to be distributed. You do not need to declare an update a version number, except to allow
other package implementors to indicate a dependency on particular features (where a bug fix
might be considered a feature, but it is not usually necessary to consider it that way).

10.5 How can I specify which version of a package I depend on if its
interface has changed and I need an old version?

In such a situation, the author of the package has released a backwards incompatible edition
of a package. The package manager provides no help to deal with this situation (other
than, of course, not installing the “update”). Therefore, package authors should not make
backwards incompatible changes to packages. Instead, they should release a new package
with a new name. For example, package libgtk might become libgtk2. These packages
should be designed to not conflict with each other, as well.

10.6 How can I fix my installation to a specific set of package imple-
mentations or checksums?

Packages are updated only when you run a tool such as raco pkg update, so packages
are never updated implicitly. Furthermore, you can snapshot a set of package archives and
install from those archives, instead of relying on package name resolution through a package
catalog.

If you want to control the resolution of package names (including specific checksums) but
not necessary keep a copy of all package code (assuming that old checksums remain avail-
able, such as through GitHub), you can create a snapshot of the package name to package
source mapping by using raco pkg catalog-copy. For example,

raco pkg catalog-copy --from-config /home/joe/snapshot.sqlite

creates a snapshot "/home/joe/snapshot.sqlite" of the current package name resolu-
tion, and then

raco pkg config --set catalogs file:///home/joe/snapshot.sqlite

directs all package-name resolution to the snapshot. You can configure resolution for specific
package names by editing the snapshot.

90



You can go even further with

raco pkg catalog-archive --from-config /home/joe/snapshot/

which not only takes a snapshot of the catalog, but also takes a snapshot of all package
sources (so that you do not depend on the original sources).

10.7 How can I install a package without its documentation?

If package is available in the form of a built package, then you can use raco pkg install
--binary-lib to strip source, tests, and documentation from a package before installing it.

The main package catalog at https://pkgs.racket-lang.org/ refers to source pack-
ages, not built packages. Other catalogs provide built packages:

• For packages associated with a Racket distribution (such as the current release), the
site that hosts the distribution will normally also host built packages—but only for
packages that are already included in the distribution.

• Built variants of the https://pkgs.racket-lang.org/ packages are currently pro-
vided by the catalog https://pkg-build.racket-lang.org/server/built/
catalog/ (for the current release only). See the package-build service for more in-
formation.

Some packages have been split at the source level into separate library, test, and documen-
tation packages. For example, net-lib provides modules such as net/cookie without
documentation, while net-doc provides documentation and net-test provides tests. The
net package depends on net-lib and net-doc, and it implies net-lib, so you can install
net in a minimal Racket distribution to get the libraries with documentation (and lots of
additional packages to support documentation), or install net-lib to get just the libraries.

If you develop a package that is especially widely used or is especially useful in a constrained
installation environment, then splitting your package into -lib, -doc, and -test compo-
nents may be worthwhile. Most likely, you should keep the packages together in a single
source-code repository and use metedata such as implies and update-implies (see §4
“Package Metadata”) so that the packages are updated in sync.

10.8 Why is the package manager so different than PLaneT?

There are two fundamental differences between PLaneT and this package manager.

The first is that PLaneT uses “internal linking” whereas the current package manager uses
“external linking.” For example, an individual module requires a PLaneT package directly

91

https://pkgs.racket-lang.org/
https://pkgs.racket-lang.org/
https://pkg-build.racket-lang.org/server/built/catalog/
https://pkg-build.racket-lang.org/server/built/catalog/
https://pkg-build.racket-lang.org/about.html


in a require statement:

(require (planet game/tic-tac-toe/data/matrix))

whereas using the package manager, the module would simply require the module of interest:

(require data/matrix)

and would rely on the external system having the tic-tac-toe package installed.

This change is good because it makes the origin of modules more flexible—so that code can
migrate in and out of the core, packages can easily be split up, combined, or taken over by
other authors, etc.

This change is bad because it makes the meaning of your program dependent on the state of
the system.

The second major difference is that PLaneT is committed to guaranteeing that packages that
never conflict with one another, so that any number of major and minor versions of the same
package can be installed and used simultaneously. The package manager does not share this
commitment, so package authors and users must be mindful of potential conflicts and plan
around them.

This change is good because it is simpler and lowers the burden of maintenance (provided
most packages don’t conflict.)

The change is bad because users must plan around potential conflicts.

In general, the goal of the package manager is to be a lower-level system, more like the
package systems used by operating systems. The goals of PLaneT are not bad, but we
believe they are needed infrequently and a system like PLaneT could be more easily built
atop the package manager than the reverse.

In particular, our plans to mitigate the downsides of these changes are documented in §11.1
“Short Term”.

92



11 Future Plans

11.1 Short Term

This section lists some short term plans for the package manager. These are important, but
didn’t block its release. The package manager will be considered out of beta when these are
completed.

• The official catalog server will divide packages into three categories: ring-0, ring-1,
and ring-2. The definitions for these categories are:

– ring-2 — No restrictions.

– ring-1 — Must not conflict any package in ring-1 or ring-0.

– ring-0 — Must not conflict any package in ring-1 or ring-0. Must have documen-
tation and tests. The author must be responsive about fixing regressions against
changes in Racket, etc.

These categories will be curated by PLT.

Our goal is for all packages to be in ring-1, with ring-2 as a temporary place while
the curators work with the authors of conflicting packages to determine how modules
should be renamed for unity.

However, before curation is complete, each package will be automatically placed in
ring-2 or ring-1 depending on its conflicts, with preference being given to older pack-
ages. (For example, if a new package B conflicts with an old package A, then A will
be in ring-1, but B will be in ring-2.) During curation, however, it is not necessarily
the case that older packages have preference. (For example, tic-tac-toe should
probably not provide "data/matrix.rkt", but that could be spun off into another
package used by both tic-tac-toe and factory-optimize.)

In contrast, the ring-0 category will be a special category that authors may apply for.
Admission requires a code audit and implies a "stamp of approval" from PLT. In the
future, packages in this category will have more benefits, such as automatic regression
testing on DrDr, testing during releases, provided binaries, and advertisement during
installation.

The PLaneT compatibility packages will also be included in the ring-1 category, auto-
matically.

• In order to mitigate the costs of external linking vis a vis the inability to under-
stand code in isolation, we will create exception printers that search for providers
of modules on the configured package catalogs. For example, if a module requires
"data/matrix.rkt", and it is not available, then the catalog will be consulted to
discover what packages provide it. Only packages in ring-1 or ring-0 will be returned.
(This category restriction ensures that the package to install is unique.)

93



Users can configure their systems to then automatically install the package provided is
has the appropriate category (i.e., some users may wish to automatically install ring-0
packages but not ring-1 packages, while others may not want to install any.)

This feature will be generalized across all package catalogs, so users could maintain
their own category definitions with different policies.

11.2 Long Term

This section lists some long term plans for the package manager. Many of these require a lot
of cross-Racket integration.

• The official catalog server is bare bones. It could conceivably do a lot more: keep track
of more statistics, enable "social" interactions about packages, licenses, etc. Some of
this is easy and obvious, but the community’s needs are unclear.

• It would be nice to encrypt information from the official package catalog with a public
key shipped with Racket, and allow other catalogs to implement a similar security
scheme.

• Packages in the ring-0 category should be tested on DrDr. This would require a way
to communicate information about how they should be run to DrDr. This is currently
done via the "meta/props" script for things in the core. We should generalize this
script to a "meta/props.d" directory so that packages can install DrDr metadata to
it.

• We hope that this package system will encourage more incremental improvements to
pieces of Racket. In particular, it would be wonderful to have a very thorough "data"
collection of different data-structures. However, our existing setup for Scribble would
force each new data structure to have a different top-level documentation manual,
rather than extending the documentation of the existing "data" collection. Similar
issues will exist for the "net" and "file" collections. We should design a way to
have such "documentation plugins" in Scribble and support similar "plugin" systems
elsewhere in the code-base.

• The user interface could be improved. For example, it would be good if DrRacket
would poll for package updates periodically and if when it was first started it would
display available, popular packages.

94



12 How Package Installation and Distribution Works

The package manager builds on three main pieces of infrastructure:

• Collection links files as supported by the Racket runtime system.

Installation of a package installs collection links, so the package’s collections can be
found to compile and load modules that use the package’s modules.

If you use raco link -l to view installed links, you will see links that were put in
place by the package system. Obviously, you should not directly modify those links.

• The raco setup tool for building installed collections, including their documenta-
tion.

The raco setup tool drives raco make to compile Racket sources to bytecode form.
Recompilation is determined by changes to file timestamps, SHA-1 hashes, and de-
pendencies recorded in "dep" files.

Since package installations are reflected as collection links, raco setup operations
on collections implicitly handle packages. The raco setup tool is “aware” of pack-
ages to only a limited extent: it uses functions like path->pkg to print progress in-
formation in terms of packages, and it uses similar package-inspection functions to
connect modules to package and check actual dependencies against declared package
dependencies.

• The racket-index package, which extends raco setup to drive Scribble for
collection-based documentation.

The racket-index package implements the documentation-rendering analogue of
raco make, detecting changes in documentation declarations and re-rendering doc-
uments as needed to pick up cross-reference changes. The racket-index package
also implements special documents for the entry point to HTML-rendered documen-
tation (i.e., the listing of all installed documentation), the HTML search page, the
local-redirection page (which server-search links to locally installed files), and so on.

Each of the three levels accommodate the user and installation package scopes, where
the details in each case often differ between the scopes. Generally, references in the in-
stallation scope must be implemented as relative, so that an in-place installing of Racket
can be moved to a different location. References in the user scope, meanwhile, may refer di-
rectly to the installation at some level; most references are collection-relative or installation-
relative, so package content can be built in user scope and then assembled into a built
package or binary package for installation elsewhere.

12.1 Relative References

Functions like path->collects-relative and path->main-collects-relative are
used to serialize paths into relative form, and then the paths can be deserialized with

95



functions like collects-relative->path and main-collects-relative->path. The
make-path->relative-string function generalizes support for such serialization and de-
serialization relative to a given set of directories.

Dependencies in a raco make-generated ".dep" file use collection-relative paths whenever
possible, and it should always be possible for dependencies within a collection. Similarly,
cross-reference information for documentation uses collection-relative paths when possible.

In a collection links file, paths are relative to the link file’s directory. Installation-wide links
then work when an in-place installation is moved.

In cross-reference information for documentation that installation-wide, paths can be stored
relative to the installation’s "doc" directory. For documentation that is built in user scope,
cross-reference information within the built document is recorded relative to the document’s
directory via the root-path initialization argument to render%; the cross-reference infor-
mation can be unpacked to a different destination, where the use-time path is provided the
#:root argument to load-xref and/or make-data+root structures.

12.2 Separate Documentation Rendering

Unlike module references, which must create no reference cycles, documentation can have
reference cycles. Documentation also tends to be less compact than code, and while we at-
tempt to minimize module dependencies in code, documentation should freely reference any
other documentation that is relevant. Finally, documentation references are less static than
module references; for example, a document references cons by referring to racket/base,
and the documentation system must figure out which other document defines cons. A naive
implementation of documentation rendering would load all documents to render any one
document, which is prohibitively expensive in both time and space.

Scribble supports separate document rendering by marshaling and unmarshaling cross-
reference information. The racket-index extension of raco setup stores a document’s
information in ".sxref" files. Some documents, such as the reference, export a large vol-
ume of cross-reference information, so raco setup breaks up a document’s exported cross-
reference information into multiple "out⟨n⟩.sxref" files. Information about “imported”
cross-reference information—that is, the cross references that were used the last time a doc-
ument was built—is kept in "in.sxref" files. Finally, to detect which "out⟨n⟩.sxref"
files need to be loaded while building a document, a mapping of cross-reference keys to
"out⟨n⟩.sxref" files is kept in a SQLite database, "docindex.sqlite". Lazy loading of
"out⟨n⟩.sxref" files is implemented though the #:demand-source argument to load-
xref, providing a function that consults "docindex.sqlite" to map a key to a cross-
reference file.

Various kinds of paths within cross-reference files are stored with various relative-path con-
ventions. The "docindex.sqlite" file in an installation can be moved unmodified with the
installation. The "docindex.sqlite" file for user-scoped packages is non-portable (and

96



outside any package), while the "in.sxref" and "out⟨n⟩.sxref" files can be included
as-is in a binary package or built package.

12.3 Cross-Document HTML References

The HTML generated for a Scribble document needs relative links. Unlike data that is
unmarshaled by Racket code, however, there is no way to turn paths that are relative to
various installation directories into paths that a browser understands—at least, not using
only HTML. Generated HTML for documentation therefore relies on JavaScript to rewrite
certain references, with a fallback path through a server to make documentation also work
as plain HTML.

References within a single document are rendered as relative links in HTML. A reference
from one document to another is rendered as a query to, say, http://docs.racket-lang.
org/. However, every document also references "local-redirect.js" and (in the case
of documentation for user-specific collections) "local-user-redirect.js". Those frag-
ments of JavaScript dynamically rewrite query references to direct filesystem references—
to installation-wide and user-specific targets, respectively—when local targets are available.
When local targets are not available, the query link is left unmodified to go through a server.

The "local-redirect.js" and "local-user-redirect.js" files map documentation-
directory names to specific paths. Most query references contain a documentation-directory
name and a relative path within the directory, in which case the mapping from direc-
tory names to paths is sufficient. Indirect links, such as those created by (seclink
#:indirect? #t ...), embed a cross-reference key, and so "local-redirect.js" and
"local-user-redirect.js" must also embed a part of the cross-reference database.
(This copy of the database is broken into multiple files, each of which is loaded on demand.)
The "local-redirect.js" and "local-user-redirect.js" files are generated as part
of the special "local-redirect" document that is implemented by the racket-index
package.

The indirection through "local-redirect.js" and "local-user-redirect.js" re-
duces the problem of relative links to the problem of referencing those two files. They are
referenced as absolute paths in a user-specific document build. To create a built package or
binary package that includes documentation, each ".html" file must be modified to remove
the absolute paths, and then each ".html" file must be modified again on installation to put
the target installation’s paths in path.

The racket-index package’s extension of raco setup to build Scribble documentation
puts these indirections in place using the set-external-tag-path method of render-
mixin from scribble/html-render. The http://docs.racket-lang.org/ path is
not hardwired, but instead based on the installation’s configuration as reported by get-
doc-search-url. That configuration, in turn, can be determined when building a Racket
distribution; the main distributions from PLT set the URL to a version-specific site, so that
searches work even after new Racket versions are released, while snapshots similarly set the

97

http://docs.racket-lang.org/
http://docs.racket-lang.org/
http://docs.racket-lang.org/


URL to a snapshot-specific site.

12.4 HTML Documentation Searching and Start Page

The racket-index package provides a special document to implement the initial page for
installed HTML documentation. The document uses "info.rkt"-file scribblings flags
to depend on all documents for their titles.

The racket-index package also provides a special document to implement searching.
The search document uses JavaScript and a copy of the cross-reference database (similar
to "local-redirect.js") to implement interactive searching.

If any user-specific collections have been installed, then racket-index generates two
copies of the start and search documents: one for the installation, and one specific to the
user. The user pages are an extension of the installation pages. The user-specific search
page reads the installation-wide search page’s database, which both avoids duplication and
allows the search to pick up any additions to the installation without requiring a rebuild of
the user-specific search page. The user-specific start page, in contrast, must be rebuilt after
any installation-wide additions to pick up the additions.

When DrRacket or raco docs opens documentation in a browser, it opens the user-specific
start or search page, if it exists. If those pages are visited for any reason, browser local stor-
age or (if local storage is not supported) a cookie is installed. The local-storage key or cookie
is named “PLT_Root.⟨version⟩,” it points to the location of the user-specific documentation.
Thereafter, using the local value of cookie, searching in any documentation page or going to
the “top” page goes to the user-specific page, even from an installation-wide page.

98


	1 Getting Started with Packages
	1.1 What is a Package?
	1.2 Inspecting Your Installation
	1.3 Finding Packages
	1.4 Installing Packages
	1.5 Updating Packages
	1.6 Removing Packages
	1.7 Creating Packages
	1.7.1 Automatic Creation
	1.7.2 Manual Creation
	1.7.3 Linking and Developing New Packages

	1.8 Sharing Packages
	1.8.1 GitHub Deployment
	1.8.2 Manual Deployment
	1.8.3 Helping Others Discover Your Package
	1.8.4 Naming and Designing Packages
	1.8.5 Packages Compatible with Racket 5.3.5 and 5.3.6


	2 Package Concepts
	2.1 Single-collection and Multi-collection Packages
	2.2 Package Sources
	2.3 Package Catalogs
	2.4 Explicit vs. Auto-Installation
	2.5 Package Conflicts
	2.6 Package Updates
	2.7 Package Scopes

	3 Using raco pkg
	3.1 raco pkg install
	3.2 raco pkg update
	3.3 raco pkg uninstall
	3.4 raco pkg remove
	3.5 raco pkg new
	3.6 raco pkg show
	3.7 raco pkg migrate
	3.8 raco pkg create
	3.9 raco pkg config
	3.10 raco pkg catalog-show
	3.11 raco pkg catalog-copy
	3.12 raco pkg catalog-archive
	3.13 raco pkg archive
	3.14 raco pkg empty-trash

	4 Package Metadata
	5 Source, Binary, and Built Packages
	6 Developing Packages with Git
	6.1 Linking a Git Checkout as a Directory
	6.2 Linking a Git Checkout as a Clone
	6.3 Interactions Between git and raco pkg

	7 Package APIs
	7.1 Functions for raco pkg
	7.2 Package Management Functions
	7.3 Package Paths and Database
	7.4 Package Source Parsing
	7.5 Package Catalog Database
	7.6 Package Directories Catalog
	7.7 Package Management Environment Variables

	8 Package Catalog Protocol
	8.1 Remote and Directory Catalogs
	8.2 SQLite Catalogs

	9 PLaneT Compatibility
	10 FAQ
	10.1 Are package installations versioned with respect to the Racket version?
	10.2 Where and how are packages installed?
	10.3 How are user-specific and installation-wide package scopes related for conflict checking?
	10.4 Do I need to change a package's version when I update a package with error fixes, etc.?
	10.5 How can I specify which version of a package I depend on if its interface has changed and I need an old version?
	10.6 How can I fix my installation to a specific set of package implementations or checksums?
	10.7 How can I install a package without its documentation?
	10.8 Why is the package manager so different than PLaneT?

	11 Future Plans
	11.1 Short Term
	11.2 Long Term

	12 How Package Installation and Distribution Works
	12.1 Relative References
	12.2 Separate Documentation Rendering
	12.3 Cross-Document HTML References
	12.4 HTML Documentation Searching and Start Page


