
R6RS: Scheme
Version 9.0.0.10

December 15, 2025

The The Revised6 Report on the Algorithmic Language Scheme defines a dialect of Scheme.
We use R6RS to refer to both the standard and the language defined by the standard. See §23 “Dialects

of Racket and
Scheme” for
general information
about different
dialects of Scheme
within Racket.

R6RS defines both libraries and top-level programs. Both correspond to Racket modules
(see §6 “Modules”). That is, although R6RS defines top-level programs as entry points, you
can just as easily treat a library as an entry point when using Racket. The only difference is
that an R6RS top-level program cannot export any bindings to other modules.

1

r6rs-std/index.html

Contents

1 Using R6RS with DrRacket 4

2 Running Top-Level Programs 5

3 Installing Libraries 6

4 R6RS Module Language 8

4.1 Using R6RS . 8

4.2 The Implementation of R6RS . 8

5 Libraries and Collections 9

6 Language Interoperability 10

7 R6RS Conformance 11

8 R6RS Libraries 13

8.1 (rnrs base (6)): Base . 13

8.2 (rnrs unicode (6)): Unicode . 13

8.3 (rnrs bytevectors (6)): Bytevectors 13

8.4 (rnrs lists (6)): List utilities . 13

8.5 (rnrs sorting (6)): Sorting . 13

8.6 (rnrs control (6)): Control Structures 13

8.7 (rnrs records syntactic (6)): Records: Syntactic 14

8.8 (rnrs records procedural (6)): Records: Procedural 14

8.9 (rnrs records inspection (6)): Records: Inspection 14

8.10 (rnrs exceptions (6)): Exceptions 14

2

8.11 (rnrs conditions (6)): Conditions 14

8.12 (rnrs io ports (6)): I/O: Ports . 14

8.13 (rnrs io simple (6)): I/O: Simple 15

8.14 (rnrs files (6)): File System . 15

8.15 (rnrs programs (6)): Command-line Access and Exit Values 15

8.16 (rnrs arithmetic fixnums (6)): Arithmetic: Fixnums 15

8.17 (rnrs arithmetic flonums (6)): Arithmetic: Flonums 15

8.18 (rnrs arithmetic bitwise (6)): Arithmetic: Bitwise 15

8.19 (rnrs syntax-case (6)): Syntax-Case 16

8.20 (rnrs hashtables (6)): Hashtables 16

8.21 (rnrs enums (6)): Enumerations . 16

8.22 (rnrs eval (6)): Eval . 16

8.23 (rnrs mutable-pairs (6)): Mutable Pairs 16

8.24 (rnrs mutable-strings (6)): Mutable Strings 16

8.25 (rnrs r5rs (6)): R5RS Compatibility 17

Index 18

Index 18

3

1 Using R6RS with DrRacket

To run an R6RS program with DrRacket choose Use language declared in source from the
language dialog box and add the following line to the top of your program. #!r6rs.

Here is a small example R6RS program that will work in DrRacket.

#!r6rs
(import (rnrs lists (6))

(rnrs base (6))
(rnrs io simple (6)))

(display (find even? '(3 1 4 1 5 9)))

4

2 Running Top-Level Programs

To run a top-level program, either:

• Use the plt-r6rs executable, supplying the file that contains the program on the
command line:

plt-r6rs ⟨program-file⟩
Additional command-line arguments are propagated as command-line arguments to
the program (accessed via command-line).

To compile the file to bytecode (to speed future runs of the program), use plt-r6rs
with the --compile flag:

plt-r6rs --compile ⟨program-file⟩
The bytecode file is written in a "compiled" sub-directory next to ⟨program-file⟩.
For example, if "hi.sps" contains

(import (rnrs))
(display "hello\n")

then

plt-r6rs hi.sps

prints “hello.”

• Prefix the program with #!r6rs, which counts as a comment from the R6RS perspec-
tive, but is a synonym for #lang r6rs from the Racket perspective. Such files can be
run like any other Racket module, such as using racket:

racket ⟨program-file⟩
or using DrRacket. The file can also be compiled to bytecode using raco make:

raco make ⟨program-file⟩
For example, if "hi.sps" contains

#!r6rs
(import (rnrs))
(display "hello\n")

then

racket hi.sps

prints “hello.” Similarly, opening "hi.sps" in DrRacket and clicking Run prints
“hello” within the DrRacket interactions window.

5

3 Installing Libraries

To reference an R6RS library from a top-level program or another library, it must be installed
as a collection-based library in Racket.

One way to produce an R6RS installed library is to create in a collection a file that starts with
#!r6rs and that contains a library form. For example, the following file might be created
in a "hello.sls" file within a "examples" collection directory:

#!r6rs
(library (examples hello)

(export greet)
(import (rnrs))

(define (greet)
(display "hello\n")))

Alternately, the plt-r6rs executable with the --install flag accepts a sequence of li-
brary declarations and installs them into separate files in a collection directory, based on
the declared name of each library:

plt-r6rs --install ⟨libraries-file⟩

By default, libraries are installed into the user-specific collection directory (see find-user-
collects-dir). The --all-users flag causes the libraries to be installed into the main
installation, instead (see find-collects-dir):

plt-r6rs --install --all-users ⟨libraries-file⟩

You may as well specify an arbitrary collections directory by using the --collections
flag:

plt-r6rs --install --collections ⟨directory⟩ ⟨libraries-file⟩

See §5 “Libraries and Collections” for information on how R6RS library names are turned
into collection-based module paths, which determines where the files are written. Libraries
installed by plt-r6rs --install are automatically compiled to bytecode form.

One final option is to supply a ++path flag to plt-r6rs. A path added with ++path
extends the set of directories that are searched to find a collection (i.e., it sets current-
library-collection-paths). If ⟨dir⟩ contains "duck" and "cow" sub-directories with
"duck/feather.sls" and "cow/bell.sls", and if each file is an R6RS library prefixed
with #!r6rs, then plt-r6rs ++path ⟨dir⟩ directs the R6RS library references (duck
feather) and (cow bell) to the files. Note that this technique does not support accessing
"duck.sls" directly within ⟨dir⟩, since the library reference (duck) is treated like (duck
main) for finding the library, as explained in §5 “Libraries and Collections”. Multiple paths

6

can be provided with multiple uses of ++path; the paths are searched in order, and before
the installation’s collections.

7

4 R6RS Module Language

#lang r6rs package: r6rs-lib

The r6rs language is usually used in the form #!r6rs, which is equivalent to #lang r6rs
and is also valid R6RS syntax.

4.1 Using R6RS

See §1 “Using R6RS with DrRacket”, §2 “Running Top-Level Programs”, and §3 “Installing
Libraries” for more information on writing and running R6RS programs with Racket.

4.2 The Implementation of R6RS

The R6RS language is itself implemented as a module within Racket. The details of that
implementation, as provided in this section, are not normally relevant to programmers using
R6RS; see the links in §4.1 “Using R6RS”, instead. The details may be relevant to program-
mers who are developing new tools or deriving variants of R6RS within Racket.

As a Racket module, the r6rs module language provides only a #%module-begin binding,
which is used to process the entire body of a Racket module (see module). The #%module-
begin binding from r6rs allows the body of a module to use the syntax of either a R6RS
library or a R6RS top-level program.

(#%module-begin
(library library-name

(export export-spec ...)
(import import-spec ...)
library-body ...))

(#%module-begin
(import import-spec ...)
program-body ...)

An r6rs module that contains a single library form defines an R6RS library, while a
module body that starts with an import form defined an R6RS top-level program.

The library, export, and import identifiers are not exported by the r6rs library; they
are recognized through equivalence to unbound identifiers.

8

https://pkgs.racket-lang.org/package/r6rs-lib

5 Libraries and Collections

An R6RS library name is sequence of symbols, optionally followed by a version as a se-
quence of exact, non-negative integers. Roughly, such a name is converted to a Racket
module pathname (see §6.3 “Module Paths”) by concatenating the symbols with a / separa-
tor, and then appending the version integers each with a preceding -. As a special case, when
an R6RS path contains a single symbol (optionally followed by a version), a main symbol is
effectively inserted after the initial symbol. See below for further encoding considerations.

When an R6RS library or top-level program refers to another library, it can supply version
constraints rather than naming a specific version. Version constraints are always resolved at
compile time by searching the set of installed files.

In addition, when an R6RS library path is converted, a file extension is selected at com-
pile time based on installed files. The search order for file extensions is ".mzscheme.ss",
".mzscheme.sls", ".ss", ".sls", and ".rkt". When resolving version constraints,
these extensions are all tried when looking for matches.

To ensure that all R6RS library names can be converted to a unique and distinct library
module path, the following conversions are applied to each symbol before concatenating
them:

• The symbol is encoded using UTF-8, and the resulting bytes are treated as Latin-1
encoded characters. ASCII letters, digits, +, -, and _ are left as-is; other characters
are replaced by % followed by two lowercase hexadecimal digits. Note that UTF-8
encodes ASCII letters, digits, etc. as themselves, so typical library names correspond
to readable module paths.

• If the R6RS library reference has two symbol elements and the second one is main
followed by any number of underscores, then an extra underscore is added to that
symbol. This conversion avoids a collision between an explicit main and the implicit
main when a library path has a single symbol element.

Examples (assuming a typical Racket installation):

(rnrs io simple (6)) means (lib "rnrs/io/simple-6.rkt")
(rnrs) means (lib "rnrs/main-6.rkt")
(rnrs main) means (lib "rnrs/main_.rkt")
(rnrs (6)) means (lib "rnrs/main-6.rkt")
(racket base) means (lib "racket/base.rkt")
(achtung!) means (lib "achtung%21/main.rkt")
(funco new-𝜆) means (lib "funco/new-%ce%bb.rkt")

9

6 Language Interoperability

Using the conversion rules in §5 “Libraries and Collections”, and R6RS library can refer
to modules that are implemented in other dialects supported by Racket, and other Racket
modules can refer to libraries that are implemented in R6RS.

Beware that a pair in R6RS corresponds to a mutable pair in racket/base. Otherwise,
R6RS libraries and racket/base share the same datatype for numbers, characters, strings,
bytevectors (a.k.a. byte strings), vectors, and so on. Hash tables are different. Input and
output ports from racket/base can be used directly as binary ports with R6RS libraries,
and all R6RS ports can be used as ports in racket/base programs, but only textual ports
created via R6RS libraries can be used by other R6RS operations that expect textual ports.

10

7 R6RS Conformance

Racket’s R6RS support does not conform with the standard in several known ways:

• When guard catches an exception that no clause matches, the exception is re-raiseed
without restoring the continuation to the one that raised the exception.

This difference can be made visible using dynamic-wind. According to R6RS, the
following program should print “in” and “out” twice, but each prints once using
Racket:

(guard (exn [(equal? exn 5) 'five])
(guard (exn [(equal? exn 6) 'six])

(dynamic-wind
(lambda () (display "in") (newline))
(lambda () (raise 5))
(lambda () (display "out") (newline)))))

Along similar lines, continuation capture and invocation within an exception handler
is restricted. Unless the exception is raised through raise-continuable, a handler
can escape only through a continuation that is a tail of the current continuation, and a
continuation captured within the handler cannot be invoked after control escapes from
the raise.

The initial exception handler does not return for non-&serious conditions, but raise
and raise-continuable both install an uncaught-exception handler (via parame-
terize and uncaught-exception-handler) to one that returns for non-&serious
conditions.

• Inexact numbers are printed without a precision indicator, and precision indicators are
ignored on input (e.g., 0.5|7 is read the same as 0.5).

• Word boundaries for string-downcase, string-upcase, and string-titlecase
are not determined as specified by Unicode Standard Annex #29.

• A custom textual port must represent positions using integers, and the positions must
correspond to bytes in a UTF-8 encoding of the port’s data. For custom ports (byte or
character) that support both input and output, beware that buffered input can create a
mismatch between the position implemented by the custom procedures and the port’s
current position; the result from a custom position procedure is automatically adjusted
to account for buffering, and setting the port’s position flushes all buffered bytes, but
writing after a read does not automatically reset the port’s position to counteract the
effects of buffering.

• The bindings in a namespace produced by null-environment or scheme-report-
environment correspond to R5RS bindings instead of R6RS bindings. In particular,
=>, else, _, and ... are not bound.

11

• Bindings for #%datum, #%app, #%top, and #%top-interaction are imported into
every library and program, and at every phase level for which the library or program
has imports.

Changed in version 6.0.1.4: When an identifier bound by letrec or letrec* is referenced before it is initialized,
an exception is raised, instead of producing #<undefined>.

12

8 R6RS Libraries

8.1 (rnrs base (6)): Base

(require rnrs/base-6) package: r6rs-lib

Original specification: Base

8.2 (rnrs unicode (6)): Unicode

(require rnrs/unicode-6) package: r6rs-lib

Original specification: Unicode

8.3 (rnrs bytevectors (6)): Bytevectors

(require rnrs/bytevectors-6) package: r6rs-lib

Original specification: Bytevectors

8.4 (rnrs lists (6)): List utilities

(require rnrs/lists-6) package: r6rs-lib

Original specification: List utilities

8.5 (rnrs sorting (6)): Sorting

(require rnrs/sorting-6) package: r6rs-lib

Original specification: Sorting

8.6 (rnrs control (6)): Control Structures

(require rnrs/control-6) package: r6rs-lib

Original specification: Control Structures

13

https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-std/r6rs-Z-H-14.html#node_sec_11.4
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-2.html#node_idx_2
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-3.html#node_idx_62
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-4.html#node_idx_200
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-5.html#node_idx_244
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-6.html#node_idx_252

8.7 (rnrs records syntactic (6)): Records: Syntactic

(require rnrs/records/syntactic-6) package: r6rs-lib

Original specification: Records: Syntactic

8.8 (rnrs records procedural (6)): Records: Procedural

(require rnrs/records/procedural-6) package: r6rs-lib

Original specification: Records: Procedural

8.9 (rnrs records inspection (6)): Records: Inspection

(require rnrs/records/inspection-6) package: r6rs-lib

Original specification: Records: Inspection

8.10 (rnrs exceptions (6)): Exceptions

(require rnrs/exceptions-6) package: r6rs-lib

Original specification: Exceptions

See also §7 “R6RS Conformance”.

8.11 (rnrs conditions (6)): Conditions

(require rnrs/conditions-6) package: r6rs-lib

Original specification: Conditions

8.12 (rnrs io ports (6)): I/O: Ports

(require rnrs/io/ports-6) package: r6rs-lib

Original specification: I/O: Ports

14

https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-7.html#node_idx_286
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-7.html#node_idx_312
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-7.html#node_idx_340
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-8.html#node_idx_364
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-8.html#node_idx_382
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-9.html#node_idx_560

8.13 (rnrs io simple (6)): I/O: Simple

(require rnrs/io/simple-6) package: r6rs-lib

Original specification: I/O: Simple

8.14 (rnrs files (6)): File System

(require rnrs/files-6) package: r6rs-lib

Original specification: File System

8.15 (rnrs programs (6)): Command-line Access and Exit Values

(require rnrs/programs-6) package: r6rs-lib

Original specification: Command-line Access and Exit Values

8.16 (rnrs arithmetic fixnums (6)): Arithmetic: Fixnums

(require rnrs/arithmetic/fixnums-6) package: r6rs-lib

Original specification: Arithmetic: Fixnums

8.17 (rnrs arithmetic flonums (6)): Arithmetic: Flonums

(require rnrs/arithmetic/flonums-6) package: r6rs-lib

Original specification: Arithmetic: Flonums

8.18 (rnrs arithmetic bitwise (6)): Arithmetic: Bitwise

(require rnrs/arithmetic/bitwise-6) package: r6rs-lib

Original specification: Arithmetic: Bitwise

15

https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-9.html#node_idx_766
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-10.html#node_idx_836
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-11.html#node_idx_842
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-12.html#node_idx_854
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-12.html#node_idx_948
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-12.html#node_idx_1062

8.19 (rnrs syntax-case (6)): Syntax-Case

(require rnrs/syntax-case-6) package: r6rs-lib

Original specification: Syntax-Case

8.20 (rnrs hashtables (6)): Hashtables

(require rnrs/hashtables-6) package: r6rs-lib

Original specification: Hashtables

A hashtable is a dictionary in the sense of racket/dict, and hash table operations interact
with threads in the same way for hash tables created with make-hash (e.g., hashtable-ref
and hashtable-set! are thread-safe).

8.21 (rnrs enums (6)): Enumerations

(require rnrs/enums-6) package: r6rs-lib

Original specification: Enumerations

8.22 (rnrs eval (6)): Eval

(require rnrs/eval-6) package: r6rs-lib

Original specification: Eval

8.23 (rnrs mutable-pairs (6)): Mutable Pairs

(require rnrs/mutable-pairs-6) package: r6rs-lib

Original specification: Mutable Pairs

8.24 (rnrs mutable-strings (6)): Mutable Strings

(require rnrs/mutable-strings-6) package: r6rs-lib

Original specification: Mutable Strings

16

https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-13.html#node_idx_1098
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-14.html#node_idx_1164
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-15.html#node_idx_1226
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-17.html#node_idx_1265.5
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-18.html#node_idx_1272
https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-19.html#node_idx_1278

8.25 (rnrs r5rs (6)): R5RS Compatibility

(require rnrs/r5rs-6) package: r6rs-lib

Original specification: R5RS Compatibility

See also §7 “R6RS Conformance”.

17

https://pkgs.racket-lang.org/package/r6rs-lib
r6rs-lib-std/r6rs-lib-Z-H-20.html#node_idx_1284

Index
#%module-begin, 8
&assertion, 14
&condition, 14
&error, 14
&i/o, 14
&i/o-decoding, 14
&i/o-encoding, 14
&i/o-file-already-exists, 14
&i/o-file-does-not-exist, 14
&i/o-file-is-read-only, 14
&i/o-file-protection, 14
&i/o-filename, 14
&i/o-invalid-position, 14
&i/o-port, 14
&i/o-read, 14
&i/o-write, 14
&implementation-restriction, 14
&irritants, 14
&lexical, 14
&message, 14
&no-infinities, 15
&no-nans, 15
&non-continuable, 14
&serious, 14
&syntax, 14
&undefined, 14
&violation, 14
&warning, 14
&who, 14
(rnrs arithmetic bitwise (6)):

Arithmetic: Bitwise, 15
(rnrs arithmetic fixnums (6)):

Arithmetic: Fixnums, 15
(rnrs arithmetic flonums (6)):

Arithmetic: Flonums, 15
(rnrs base (6)): Base, 13
(rnrs bytevectors (6)): Bytevectors,

13
(rnrs conditions (6)): Conditions, 14
(rnrs control (6)): Control Structures,

13

(rnrs enums (6)): Enumerations, 16
(rnrs eval (6)): Eval, 16
(rnrs exceptions (6)): Exceptions, 14
(rnrs files (6)): File System, 15
(rnrs hashtables (6)): Hashtables, 16
(rnrs io ports (6)): I/O: Ports, 14
(rnrs io simple (6)): I/O: Simple, 15
(rnrs lists (6)): List utilities, 13
(rnrs mutable-pairs (6)): Mutable

Pairs, 16
(rnrs mutable-strings (6)): Mutable

Strings, 16
(rnrs programs (6)): Command-line

Access and Exit Values, 15
(rnrs r5rs (6)): R5RS Compatibility,

17
(rnrs records inspection (6)):

Records: Inspection, 14
(rnrs records procedural (6)):

Records: Procedural, 14
(rnrs records syntactic (6)):

Records: Syntactic, 14
(rnrs sorting (6)): Sorting, 13
(rnrs syntax-case (6)): Syntax-Case,

16
(rnrs unicode (6)): Unicode, 13
*, 13
+, 13
++path, 6
-, 13
..., 13
..., 16
/, 13
<, 13
<=, 13
=, 13
=>, 13
=>, 14
>, 13
>=, 13
_, 13
_, 16
abs, 13

18

acos, 13
and, 13
angle, 13
append, 13
apply, 13
asin, 13
assert, 13
assertion-violation, 13
assertion-violation?, 14
assoc, 13
assp, 13
assq, 13
assv, 13
atan, 13
begin, 13
binary-port?, 14
bitwise-and, 15
bitwise-arithmetic-shift, 15
bitwise-arithmetic-shift-left, 15
bitwise-arithmetic-shift-right, 15
bitwise-bit-count, 15
bitwise-bit-field, 15
bitwise-bit-set?, 15
bitwise-copy-bit, 15
bitwise-copy-bit-field, 15
bitwise-first-bit-set, 15
bitwise-if, 15
bitwise-ior, 15
bitwise-length, 15
bitwise-not, 15
bitwise-reverse-bit-field, 15
bitwise-rotate-bit-field, 15
bitwise-xor, 15
boolean=?, 13
boolean?, 13
bound-identifier=?, 16
buffer-mode, 14
buffer-mode?, 14
bytevector->sint-list, 13
bytevector->string, 14
bytevector->u8-list, 13
bytevector->uint-list, 13

bytevector-copy, 13
bytevector-copy!, 13
bytevector-fill!, 13
bytevector-ieee-double-native-ref,

13
bytevector-ieee-double-native-
set!, 13

bytevector-ieee-double-ref, 13
bytevector-ieee-single-native-ref,

13
bytevector-ieee-single-native-
set!, 13

bytevector-ieee-single-ref, 13
bytevector-length, 13
bytevector-s16-native-ref, 13
bytevector-s16-native-set!, 13
bytevector-s16-ref, 13
bytevector-s16-set!, 13
bytevector-s32-native-ref, 13
bytevector-s32-native-set!, 13
bytevector-s32-ref, 13
bytevector-s32-set!, 13
bytevector-s64-native-ref, 13
bytevector-s64-native-set!, 13
bytevector-s64-ref, 13
bytevector-s64-set!, 13
bytevector-s8-ref, 13
bytevector-s8-set!, 13
bytevector-sint-ref, 13
bytevector-sint-set!, 13
bytevector-u16-native-ref, 13
bytevector-u16-native-set!, 13
bytevector-u16-ref, 13
bytevector-u16-set!, 13
bytevector-u32-native-ref, 13
bytevector-u32-native-set!, 13
bytevector-u32-ref, 13
bytevector-u32-set!, 13
bytevector-u64-native-ref, 13
bytevector-u64-native-set!, 13
bytevector-u64-ref, 13
bytevector-u64-set!, 13

19

bytevector-u8-ref, 13
bytevector-u8-set!, 13
bytevector-uint-ref, 13
bytevector-uint-set!, 13
bytevector=?, 13
bytevector?, 13
caar, 13
cadr, 13
call-with-bytevector-output-port,

14
call-with-current-continuation, 13
call-with-input-file, 15
call-with-output-file, 15
call-with-port, 14
call-with-string-output-port, 14
call-with-values, 13
call/cc, 13
car, 13
case, 13
case-lambda, 13
cdddar, 13
cddddr, 13
cdr, 13
ceiling, 13
char->integer, 13
char-alphabetic?, 13
char-ci<=?, 13
char-ci<?, 13
char-ci=?, 13
char-ci>=?, 13
char-ci>?, 13
char-downcase, 13
char-foldcase, 13
char-general-category, 13
char-lower-case?, 13
char-numeric?, 13
char-title-case?, 13
char-titlecase, 13
char-upcase, 13
char-upper-case?, 13
char-whitespace?, 13
char<=?, 13

char<?, 13
char=?, 13
char>=?, 13
char>?, 13
char?, 13
close-input-port, 15
close-output-port, 15
close-port, 14
command-line, 15
complex?, 13
cond, 13
condition, 14
condition-accessor, 14
condition-irritants, 14
condition-message, 14
condition-predicate, 14
condition-who, 14
condition?, 14
cons, 13
cons*, 13
cos, 13
current-error-port, 14
current-input-port, 14
current-output-port, 14
datum->syntax, 16
define, 13
define-condition-type, 14
define-enumeration, 16
define-record-type, 14
define-syntax, 13
delay, 17
delete-file, 15
denominator, 13
display, 15
div, 13
div-and-mod, 13
div0, 13
div0-and-mod0, 13
do, 13
dynamic-wind, 13
else, 13
else, 14

20

endianness, 13
enum-set->list, 16
enum-set-complement, 16
enum-set-constructor, 16
enum-set-difference, 16
enum-set-indexer, 16
enum-set-intersection, 16
enum-set-member?, 16
enum-set-projection, 16
enum-set-subset?, 16
enum-set-union, 16
enum-set-universe, 16
enum-set=?, 16
environment, 16
eof-object, 14
eof-object?, 14
eol-style, 14
eq?, 13
equal-hash, 16
equal?, 13
eqv?, 13
error, 13
error-handling-mode, 14
error?, 14
eval, 16
even?, 13
exact, 13
exact->inexact, 17
exact-integer-sqrt, 13
exact?, 13
exists, 13
exit, 15
exp, 13
expt, 13
fields, 14
file-exists?, 15
file-options, 14
filter, 13
find, 13
finite?, 13
fixnum->flonum, 15
fixnum-width, 15

fixnum?, 15
fl*, 15
fl+, 15
fl-, 15
fl/, 15
fl<=?, 15
fl<?, 15
fl=?, 15
fl>=?, 15
fl>?, 15
flabs, 15
flacos, 15
flasin, 15
flatan, 15
flceiling, 15
flcos, 15
fldenominator, 15
fldiv, 15
fldiv-and-mod, 15
fldiv0, 15
fldiv0-and-mod0, 15
fleven?, 15
flexp, 15
flexpt, 15
flfinite?, 15
flfloor, 15
flinfinite?, 15
flinteger?, 15
fllog, 15
flmax, 15
flmin, 15
flmod, 15
flmod0, 15
flnan?, 15
flnegative?, 15
flnumerator, 15
flodd?, 15
flonum?, 15
floor, 13
flpositive?, 15
flround, 15
flsin, 15

21

flsqrt, 15
fltan, 15
fltruncate, 15
flush-output-port, 14
flzero?, 15
fold-left, 13
fold-right, 13
for-all, 13
for-each, 13
force, 17
free-identifier=?, 16
fx*, 15
fx*/carry, 15
fx+, 15
fx+/carry, 15
fx-, 15
fx-/carry, 15
fx<=?, 15
fx<?, 15
fx=?, 15
fx>=?, 15
fx>?, 15
fxand, 15
fxarithmetic-shift, 15
fxarithmetic-shift-left, 15
fxarithmetic-shift-right, 15
fxbit-count, 15
fxbit-field, 15
fxbit-set?, 15
fxcopy-bit, 15
fxcopy-bit-field, 15
fxdiv, 15
fxdiv-and-mod, 15
fxdiv0, 15
fxdiv0-and-mod0, 15
fxeven?, 15
fxfirst-bit-set, 15
fxif, 15
fxior, 15
fxlength, 15
fxmax, 15
fxmin, 15

fxmod, 15
fxmod0, 15
fxnegative?, 15
fxnot, 15
fxodd?, 15
fxpositive?, 15
fxreverse-bit-field, 15
fxrotate-bit-field, 15
fxxor, 15
fxzero?, 15
gcd, 13
generate-temporaries, 16
get-bytevector-all, 14
get-bytevector-n, 14
get-bytevector-n!, 14
get-bytevector-some, 14
get-char, 14
get-datum, 14
get-line, 14
get-string-all, 14
get-string-n, 14
get-string-n!, 14
get-u8, 14
greatest-fixnum, 15
guard, 14
hashtable-clear!, 16
hashtable-contains?, 16
hashtable-copy, 16
hashtable-delete!, 16
hashtable-entries, 16
hashtable-equivalence-function, 16
hashtable-hash-function, 16
hashtable-keys, 16
hashtable-mutable?, 16
hashtable-ref, 16
hashtable-set!, 16
hashtable-size, 16
hashtable-update!, 16
hashtable?, 16
i/o-decoding-error?, 14
i/o-encoding-error-char, 14
i/o-encoding-error?, 14

22

i/o-error-filename, 14
i/o-error-port, 14
i/o-error-position, 14
i/o-error?, 14
i/o-file-already-exists-error?, 14
i/o-file-does-not-exist-error?, 14
i/o-file-is-read-only-error?, 14
i/o-file-protection-error?, 14
i/o-filename-error?, 14
i/o-invalid-position-error?, 14
i/o-port-error?, 14
i/o-read-error?, 14
i/o-write-error?, 14
identifier-syntax, 13
identifier?, 16
if, 13
imag-part, 13
immutable, 14
implementation-restriction-
violation?, 14

inexact, 13
inexact->exact, 17
inexact?, 13
infinite?, 13
input-port?, 14
Installing Libraries, 6
integer->char, 13
integer-valued?, 13
integer?, 13
irritants-condition?, 14
lambda, 13
Language Interoperability, 10
latin-1-codec, 14
lcm, 13
least-fixnum, 15
length, 13
let, 13
let*, 13
let*-values, 13
let-syntax, 13
let-values, 13
letrec, 13

letrec*, 13
letrec-syntax, 13
lexical-violation?, 14
Libraries and Collections, 9
list, 13
list->string, 13
list->vector, 13
list-ref, 13
list-sort, 13
list-tail, 13
list?, 13
log, 13
lookahead-char, 14
lookahead-u8, 14
magnitude, 13
make-assertion-violation, 14
make-bytevector, 13
make-custom-binary-input-port, 14
make-custom-binary-input/output-
port, 14

make-custom-binary-output-port, 14
make-custom-textual-input-port, 14
make-custom-textual-input/output-
port, 14

make-custom-textual-output-port, 14
make-enumeration, 16
make-eq-hashtable, 16
make-eqv-hashtable, 16
make-error, 14
make-hashtable, 16
make-i/o-decoding-error, 14
make-i/o-encoding-error, 14
make-i/o-error, 14
make-i/o-file-already-exists-
error, 14

make-i/o-file-does-not-exist-
error, 14

make-i/o-file-is-read-only-error,
14

make-i/o-file-protection-error, 14
make-i/o-filename-error, 14
make-i/o-invalid-position-error, 14

23

make-i/o-port-error, 14
make-i/o-read-error, 14
make-i/o-write-error, 14
make-implementation-restriction-
violation, 14

make-irritants-condition, 14
make-lexical-violation, 14
make-message-condition, 14
make-no-infinities-violation, 15
make-no-nans-violation, 15
make-non-continuable-violation, 14
make-polar, 13
make-record-constructor-
descriptor, 14

make-record-type-descriptor, 14
make-rectangular, 13
make-serious-condition, 14
make-string, 13
make-syntax-violation, 14
make-transcoder, 14
make-undefined-violation, 14
make-variable-transformer, 16
make-vector, 13
make-violation, 14
make-warning, 14
make-who-condition, 14
map, 13
max, 13
member, 13
memp, 13
memq, 13
memv, 13
message-condition?, 14
min, 13
mod, 13
mod0, 13
modulo, 17
mutable, 14
nan?, 13
native-endianness, 13
native-eol-style, 14
native-transcoder, 14

negative?, 13
newline, 15
no-infinities-violation?, 15
no-nans-violation?, 15
non-continuable-violation?, 14
nongenerative, 14
not, 13
null-environment, 17
null?, 13
number->string, 13
number?, 13
numerator, 13
odd?, 13
opaque, 14
open-bytevector-input-port, 14
open-bytevector-output-port, 14
open-file-input-port, 14
open-file-input/output-port, 14
open-file-output-port, 14
open-input-file, 15
open-output-file, 15
open-string-input-port, 14
open-string-output-port, 14
or, 13
output-port-buffer-mode, 14
output-port?, 14
pair?, 13
parent, 14
parent-rtd, 14
partition, 13
peek-char, 15
port-eof?, 14
port-has-port-position?, 14
port-has-set-port-position!?, 14
port-position, 14
port-transcoder, 14
port?, 14
positive?, 13
procedure?, 13
protocol, 14
put-bytevector, 14
put-char, 14

24

put-datum, 14
put-string, 14
put-u8, 14
quasiquote, 13
quasisyntax, 16
quote, 13
quotient, 17
r6rs, 8
R6RS Conformance, 11
R6RS Libraries, 13
R6RS Module Language, 8
R6RS: Scheme, 1
raise, 14
raise-continuable, 14
rational-valued?, 13
rational?, 13
rationalize, 13
read, 15
read-char, 15
real->flonum, 15
real-part, 13
real-valued?, 13
real?, 13
record-accessor, 14
record-constructor, 14
record-constructor-descriptor, 14
record-field-mutable?, 14
record-mutator, 14
record-predicate, 14
record-rtd, 14
record-type-descriptor, 14
record-type-descriptor?, 14
record-type-field-names, 14
record-type-generative?, 14
record-type-name, 14
record-type-opaque?, 14
record-type-parent, 14
record-type-sealed?, 14
record-type-uid, 14
record?, 14
remainder, 17
remove, 13

remp, 13
remq, 13
remv, 13
reverse, 13
rnrs/arithmetic/bitwise-6, 15
rnrs/arithmetic/fixnums-6, 15
rnrs/arithmetic/flonums-6, 15
rnrs/base-6, 13
rnrs/bytevectors-6, 13
rnrs/conditions-6, 14
rnrs/control-6, 13
rnrs/enums-6, 16
rnrs/eval-6, 16
rnrs/exceptions-6, 14
rnrs/files-6, 15
rnrs/hashtables-6, 16
rnrs/io/ports-6, 14
rnrs/io/simple-6, 15
rnrs/lists-6, 13
rnrs/mutable-pairs-6, 16
rnrs/mutable-strings-6, 16
rnrs/programs-6, 15
rnrs/r5rs-6, 17
rnrs/records/inspection-6, 14
rnrs/records/procedural-6, 14
rnrs/records/syntactic-6, 14
rnrs/sorting-6, 13
rnrs/syntax-case-6, 16
rnrs/unicode-6, 13
round, 13
Running Top-Level Programs, 5
scheme-report-environment, 17
sealed, 14
serious-condition?, 14
set!, 13
set-car!, 16
set-cdr!, 16
set-port-position!, 14
simple-conditions, 14
sin, 13
sint-list->bytevector, 13
sqrt, 13

25

standard-error-port, 14
standard-input-port, 14
standard-output-port, 14
string, 13
string->bytevector, 14
string->list, 13
string->number, 13
string->symbol, 13
string->utf16, 13
string->utf32, 13
string->utf8, 13
string-append, 13
string-ci-hash, 16
string-ci<=?, 13
string-ci<?, 13
string-ci=?, 13
string-ci>=?, 13
string-ci>?, 13
string-copy, 13
string-downcase, 13
string-fill!, 16
string-foldcase, 13
string-for-each, 13
string-hash, 16
string-length, 13
string-normalize-nfc, 13
string-normalize-nfd, 13
string-normalize-nfkc, 13
string-normalize-nfkd, 13
string-ref, 13
string-set!, 16
string-titlecase, 13
string-upcase, 13
string<=?, 13
string<?, 13
string=?, 13
string>=?, 13
string>?, 13
string?, 13
substring, 13
symbol->string, 13
symbol-hash, 16

symbol=?, 13
symbol?, 13
syntax, 16
syntax->datum, 16
syntax-case, 16
syntax-rules, 13
syntax-violation, 16
syntax-violation-form, 14
syntax-violation-subform, 14
syntax-violation?, 14
tan, 13
textual-port?, 14
The Implementation of R6RS, 8
transcoded-port, 14
transcoder-codec, 14
transcoder-eol-style, 14
transcoder-error-handling-mode, 14
truncate, 13
u8-list->bytevector, 13
uint-list->bytevector, 13
undefined-violation?, 14
unless, 13
unquote, 13
unquote-splicing, 13
unsyntax, 16
unsyntax-splicing, 16
Using R6RS, 8
Using R6RS with DrRacket, 4
utf-16-codec, 14
utf-8-codec, 14
utf16->string, 13
utf32->string, 13
utf8->string, 13
values, 13
vector, 13
vector->list, 13
vector-fill!, 13
vector-for-each, 13
vector-length, 13
vector-map, 13
vector-ref, 13
vector-set!, 13

26

vector-sort, 13
vector-sort!, 13
vector?, 13
violation?, 14
warning?, 14
when, 13
who-condition?, 14
with-exception-handler, 14
with-input-from-file, 15
with-output-to-file, 15
with-syntax, 16
write, 15
write-char, 15
zero?, 13

27

	1 Using R6RS with DrRacket
	2 Running Top-Level Programs
	3 Installing Libraries
	4 R6RS Module Language
	4.1 Using R6RS
	4.2 The Implementation of R6RS

	5 Libraries and Collections
	6 Language Interoperability
	7 R6RS Conformance
	8 R6RS Libraries
	8.1 (rnrs base (6)): Base
	8.2 (rnrs unicode (6)): Unicode
	8.3 (rnrs bytevectors (6)): Bytevectors
	8.4 (rnrs lists (6)): List utilities
	8.5 (rnrs sorting (6)): Sorting
	8.6 (rnrs control (6)): Control Structures
	8.7 (rnrs records syntactic (6)): Records: Syntactic
	8.8 (rnrs records procedural (6)): Records: Procedural
	8.9 (rnrs records inspection (6)): Records: Inspection
	8.10 (rnrs exceptions (6)): Exceptions
	8.11 (rnrs conditions (6)): Conditions
	8.12 (rnrs io ports (6)): I/O: Ports
	8.13 (rnrs io simple (6)): I/O: Simple
	8.14 (rnrs files (6)): File System
	8.15 (rnrs programs (6)): Command-line Access and Exit Values
	8.16 (rnrs arithmetic fixnums (6)): Arithmetic: Fixnums
	8.17 (rnrs arithmetic flonums (6)): Arithmetic: Flonums
	8.18 (rnrs arithmetic bitwise (6)): Arithmetic: Bitwise
	8.19 (rnrs syntax-case (6)): Syntax-Case
	8.20 (rnrs hashtables (6)): Hashtables
	8.21 (rnrs enums (6)): Enumerations
	8.22 (rnrs eval (6)): Eval
	8.23 (rnrs mutable-pairs (6)): Mutable Pairs
	8.24 (rnrs mutable-strings (6)): Mutable Strings
	8.25 (rnrs r5rs (6)): R5RS Compatibility

	Index
	Index

