
raco: Racket Command-Line Tools
Version 9.0.0.10

December 15, 2025

The raco program supports various Racket tasks from a command line. The first argument
to raco is always a specific command name. For example, raco make starts a command to
compile a Racket source module to bytecode format.

The set of commands available through raco is extensible. Use raco help to get a com-
plete list of available commands for your installation. This manual covers the commands
that are available in a typical Racket installation.

1

Contents

1 raco make: Compiling Source to Bytecode 7

1.1 Running raco make . 7

1.2 Bytecode Files . 7

1.3 Dependency Files . 9

1.4 API for Making Bytecode . 9

1.5 API for Parallel Builds . 18

1.6 Compilation Manager Hook for Syntax Transformers 20

1.7 API for Simple Bytecode Creation . 20

1.8 API for Bytecode Paths . 21

1.9 Compiling to Raw Bytecode . 22

1.10 API for Raw Compilation . 23

1.10.1 Bytecode Compilation . 23

1.10.2 Recognizing Module Suffixes . 26

1.10.3 Loading Compiler Support . 28

1.10.4 Options for the Compiler . 28

1.10.5 The Compiler as a Unit . 29

1.11 API for Reading Compilation Dependencies 29

2 raco exe: Creating Stand-Alone Executables 31

2.1 API for Creating Executables . 35

2.1.1 Executable Creation Signature . 43

2.1.2 Executable Creation Unit . 43

2.1.3 Finding the Racket Executable . 43

2.2 Installation-Specific Launchers . 44

2

2.2.1 Creating Launchers . 44

2.2.2 Launcher Path and Platform Conventions 48

2.2.3 Launcher Configuration . 52

2.2.4 Launcher Creation Signature . 54

2.2.5 Launcher Creation Unit . 54

2.3 Mac OS Dynamic Library Paths . 54

3 raco distribute: Sharing Stand-Alone Executables 56

3.1 API for Distributing Executables . 57

3.2 API for Bundling Distributions . 58

4 raco planet: Automatic Package Distribution 59

5 raco pkg: Package Management 60

6 raco setup: Installation Management 61

6.1 Running raco setup . 61

6.2 Installing ".plt" Archives . 66

6.3 Controlling raco setup with "info.rkt" Files 66

6.4 "info.rkt" File Format . 73

6.5 Package Dependency Checking . 75

6.5.1 Declaring Build-Time Dependencies 76

6.5.2 How Dependency Checking Works 76

6.6 API for Setup . 76

6.6.1 raco setup Unit . 79

6.6.2 Options Unit . 80

6.6.3 Options Signature . 80

3

6.6.4 Setup Start Module . 85

6.7 API for Installing ".plt" Archives . 85

6.7.1 Non-GUI Installer . 85

6.8 API for Finding Installation Directories 86

6.9 API for Reading "info.rkt" Files . 97

6.10 API for Relative Paths . 99

6.10.1 Representing Collection-Based Paths 100

6.10.2 Representing Paths Relative to "collects" 100

6.10.3 Representing Paths Relative to the Documentation 101

6.10.4 Displaying Paths Relative to a Common Root 101

6.11 API for Collection Names . 103

6.12 API for Collection Searches . 103

6.13 API for Platform Specifications . 104

6.14 API for Cross-Platform Configuration . 105

6.15 API for Cross-References for Installed Manuals 107

6.16 API for Materializing User-Specific Documentation 108

6.17 Layered Installations . 109

6.18 Tethered Installations . 110

7 raco decompile: Decompiling Bytecode 112

7.1 Racket CS Decompilation . 112

7.2 Racket BC Decompilation . 113

7.3 API for Decompiling . 114

7.4 API for Parsing Bytecode . 114

7.5 API for Marshaling Bytecode . 116

7.6 Bytecode Representation . 116

4

7.6.1 Prefix . 117

7.6.2 Forms and Inline Variants . 120

7.6.3 Expressions . 121

7.7 Machine-Independent Linklets . 127

8 raco demod: Demodularizing Programs 130

8.1 Demodularizing Libraries . 131

8.2 Language for Demodularizing . 132

9 raco link: Library Collection Links 135

9.1 API for Collection Links . 136

10 raco pack: Packing Library Collections 138

10.1 Format of ".plt" Archives . 140

10.2 API for Packing . 142

11 raco unpack: Unpacking Library Collections 147

11.1 Unpacking API . 147

12 raco ctool: Working with C Code 150

12.1 Compiling and Linking C Extensions . 150

12.1.1 API for 3m Transformation . 150

12.2 Embedding Modules via C . 151

13 raco test: Run tests 153

13.1 Test Configuration by Submodule . 156

13.2 Test Configuration by "info.rkt" . 156

13.3 Responsible-Party and Varying-Output Logging 158

5

13.4 Logging Test Results . 158

14 raco docs: Documentation Search 160

15 raco expand: Macro Expansion 161

16 raco read: Reading and Pretty-Printing 162

17 raco scribble: Building Documentation 163

18 Adding a raco Command 164

18.1 Command Argument Parsing . 165

18.2 Accessing raco Commands . 166

19 Installation Configuration and Search Paths 167

6

1 raco make: Compiling Source to Bytecode

The raco make command accept filenames for Racket modules to be compiled to bytecode
format. Modules are re-compiled only if the source Racket file is newer than the bytecode file
and has a different SHA-1 hash, or if any imported module is recompiled or has a different
SHA-1 hash for its compiled form plus dependencies.

1.1 Running raco make

The raco make command accepts a few flags:

• -l ⟨path⟩ — Compiles ⟨path⟩ interpreted as a collection-based module path, as for
require.

• -j ⟨n⟩ — Compiles argument modules in parallel, using up to ⟨n⟩ parallel tasks.

• --disable-inline — Disables function inlining while compiling (but does not re-
compile files that are already up-to-date). This flag is often useful to simplify gen-
erated code before decompiling, and it corresponds to setting compile-context-
preservation-enabled to #t.

• --disable-constant — Disables inference of definitions within a module as con-
stant (but does not re-compile files that are already up-to-date). The value associated
with a non-constant definition is never inlined or constant-propagated, either within
its own module or an importing module. This flag corresponds to setting compile-
enforce-module-constants to #f.

• --no-deps — Compiles a non-module file (i.e., one that is run via load instead of
require). See §1.9 “Compiling to Raw Bytecode” for more information.

• -p ⟨file⟩ or --prefix ⟨file⟩ — For use with --no-deps; see §1.9 “Compiling to Raw
Bytecode”.

• -no-prim — For use with --no-deps; see §1.9 “Compiling to Raw Bytecode”.

• -v — Verbose mode, which shows which files are compiled.

• --vv — Very verbose mode, which implies -v and also shows every dependency that
is checked.

1.2 Bytecode Files

A file "⟨name⟩.⟨ext⟩" is compiled to bytecode that is saved as "com-
piled/⟨name⟩_⟨ext⟩.zo" relative to the file. As a result, the bytecode file is normally

7

used automatically when "⟨name⟩.⟨ext⟩" is required as a module, since the underlying
load/use-compiled operation detects such a bytecode file.

For example, in a directory that contains the following files:

• "a.rkt":

#lang racket
(require "b.rkt" "c.rkt")
(+ b c)

• "b.rkt":

#lang racket
(provide b)
(define b 1)

• "c.rkt":

#lang racket
(provide c)
(define c 1)

then

raco make a.rkt

triggers the creation of "compiled/a_rkt.zo", "compiled/b_rkt.zo", and
"compiled/c_rkt.zo". A subsequent

racket a.rkt

loads bytecode from the generated ".zo" files, paying attention to the ".rkt"
sources only to confirm that each ".zo" file has a later timestamp (unless the
PLT_COMPILED_FILE_CHECK environment variable is set to exists, in which case the com-
piled file is used without a timestamp check).

In contrast,

raco make b.rkt c.rkt

would create only "compiled/b_rkt.zo" and "compiled/c_rkt.zo", since neither
"b.rkt" nor "c.rkt" imports "a.rkt".

8

1.3 Dependency Files

In addition to a bytecode file, raco make creates a file "compiled/⟨name⟩_⟨ext⟩.dep"
that records dependencies of the compiled module on other module files and the source
file’s SHA-1 hash. Using this dependency information, a re-compilation request via raco
make can consult both the source file’s timestamp/hash and the timestamps/hashes for the
bytecode of imported modules. Furthermore, imported modules are themselves compiled as
necessary, including updating the bytecode and dependency files for the imported modules,
transitively.

Continuing the raco make a.rkt example from the previous section, the raco
make command creates "compiled/a_rkt.dep", "compiled/b_rkt.dep",
and "compiled/c_rkt.dep" at the same time as the ".zo" files. The
"compiled/a_rkt.dep" file records the dependency of "a.rkt" on "b.rkt", "c.rkt"
and the racket library. If the "b.rkt" file is modified (so that its SHA-1 hash changes),
then running

raco make a.rkt

again rebuilds "compiled/a_rkt.zo" and "compiled/b_rkt.zo".

For module files that are within library collections, raco setup uses the same ".zo" and
".dep" conventions and files as raco make, so the two tools can be used together.

As long as the PLT_COMPILED_FILE_CHECK environment variable is not set or is set to
modify, then raco make updates the timestamp on a compiled bytecode file if it is older
than the source, even if the file does not need to be recompiled.

1.4 API for Making Bytecode

(require compiler/cm) package: base

The compiler/cm module implements the compilation and dependency management used
by raco make and raco setup.

(make-compilation-manager-load/use-compiled-handler
[delete-zos-when-rkt-file-does-not-exist?
#:security-guard security-guard])

Ñ (path? (or/c symbol? #f) . -> . any)
delete-zos-when-rkt-file-does-not-exist? : any/c = #f
security-guard : (or/c security-guard? #f) = #f

Returns a procedure suitable as a value for the current-load/use-compiled parame-
ter. The returned procedure passes its arguments on to the current-load/use-compiled

9

https://pkgs.racket-lang.org/package/base

procedure that is installed when make-compilation-manager-load/use-compiled-
handler is called, but first it automatically compiles a source file to a ".zo" file if

• the file is expected to contain a module (i.e., the second argument to the handler is a
symbol);

• the value of each of (current-eval), (current-load), and (namespace-
module-registry (current-namespace)) is the same as when make-
compilation-manager-load/use-compiled-handler was called;

• the value of use-compiled-file-paths contains the first path that was present
when make-compilation-manager-load/use-compiled-handler was called;

• the value of current-load/use-compiled is the result of this procedure; and

• one of the following holds:

– the source file is newer than the ".zo" file in the first sub-directory listed in
use-compiled-file-paths (at the time that make-compilation-manager-
load/use-compiled-handler was called), and either no ".dep" file exists
or it records a source-file SHA-1 hash that differs from the current version and
source-file SHA-1 hash;

– no ".dep" file exists next to the ".zo" file;

– the version recorded in the ".dep" file does not match the result of (version);

– the target machine recorded in the ".dep" file does not match the result of
(current-compile-target-machine);

– the source hash recorded in the ".dep" file does not match the current source
hash;

– one of the files listed in the ".dep" file has a ".zo" timestamp newer than the
target ".zo" and use-compiled-file-check is set to 'modify-seconds;

– the combined hashes of the dependencies recorded in the ".dep" file does not
match the combined hash recorded in the ".dep" file.

If SHA-1 hashes override a timestamp-based decision to recompile the file, then the target
".zo" file’s timestamp is updated to the current time, unless the use-compiled-file-
check parameter is not set to 'modify-seconds.

After the handler procedure compiles a ".zo" file, it creates a corresponding ".dep" file that
lists the current version and the identification of every file that is directly required by the
module in the compiled file. Additional dependencies can be installed during compilation via
compiler/cm-accomplice. The ".dep" file also records the SHA-1 hash of the module’s
source, and it records a combined SHA-1 hash of all of the dependencies that includes their
recursive dependencies. If a bytecode file is generated by recompiling a bytecode file that
was formerly compiled as machine-independent, then the ".dep" file also records the SHA-
1 hash of the machine-independent form, since the recompiled module’s behavior should be
exactly the same.

10

The special combination of (cross-installation?) or (current-multi-compile-
any) as #t, (current-compile-target-machine) as #f, and (current-compiled-
file-roots) having two or more elements triggers a special compilation mode. Bytecode
specific to the running Racket is written to the directory determined by the first element
of (current-compiled-file-roots). Bytecode specific to either the cross-compilation
target for (cross-installation?) or machine-independent format if (current-multi-
compile-any) is written to the directory determined by the second element of (current-
compiled-file-roots). By configuring (current-compiled-file-roots) so that the
first element is outside a build tree and the second element is inside the build tree, cross-
compilation can create a build tree suitable for the target machine while building and loading
bytecode (for macro expansion, etc.) that is usable on the current machine. This mode works
correctly for a build directory that starts with only source code and machine-independent
bytecode.

The handler caches timestamps when it checks ".dep" files, and the cache is maintained
across calls to the same handler. The cache is not consulted to compare the immediate
source file to its ".zo" file, which means that the caching behavior is consistent with the
caching of the default module name resolver (see current-module-name-resolver).

If use-compiled-file-paths contains an empty list when make-compilation-
manager-load/use-compiled-handler is called, then an exn:fail:contract excep-
tion is raised.

If the delete-zos-when-rkt-file-does-not-exist? argument is a true value, then the
returned handler will delete ".zo" files when there is no corresponding original source file.

If the security-guard argument is supplied, it is used when creating ".zo" files, ".dep"
files, and "compiled/" directories, and when it adjusts the timestamps for existing files. If
it is #f, then the security guard in the current-security-guard when the files are cre-
ated is used (not the security guard at the point make-compilation-manager-load/use-
compiled-handler is called).

The continuation of the compilation of a module is marked with a managed-compiled-
context-key and the module’s source path.

Do not install the result of make-compilation-manager-load/use-compiled-handler
when the current namespace contains already-loaded versions of modules that may need to
be recompiled—unless the already-loaded modules are never referenced by not-yet-loaded
modules. References to already-loaded modules may produce compiled files with inconsis-
tent timestamps and/or ".dep" files with incorrect information.

The handler logs messages to the topic 'compiler/cm at the level 'info. These messages
are instances of a compile-event prefab structure:

(struct compile-event (timestamp path type) #:prefab)

The timestamp field is the time at which the event occurred in milliseconds since the epoch.

11

The path field is the path of a file being compiled for which the event is about. The type
field is a symbol which describes the action the event corresponds to. The currently logged
values are 'locking, 'start-compile, 'finish-compile, and 'already-done.

Changed in version 6.1.1.8 of package base: Added identification of the compilation context via
managed-compiled-context-key.
Changed in version 6.6.0.3: added check on a source’s SHA1 hash to complement the timestamp check, where the
latter can be disabled via use-compile-file-check.

(managed-compile-zo file
[read-src-syntax
#:security-guard security-guard]) Ñ void?

file : path-string?
read-src-syntax : (any/c input-port? . -> . syntax?)

= read-syntax
security-guard : (or/c security-guard? #f) = #f

Compiles the given module source file to a ".zo", installing a compilation-manager han-
dler while the file is compiled (so that required modules are also compiled), and creating a
".dep" file to record the timestamps of immediate files used to compile the source (i.e., files
required in the source).

Compilation is triggered by loading a module into the current namespace, so if a module
that is a dependency of file has already been loaded into the current namespace, then
that module will not necessarily be (re-)compiled. The handler used to trigger compilation
is created with make-compilation-manager-load/use-compiled-handler, so all the
rules and constraints there apply.

If file is compiled from source, then read-src-syntax is used in the same way as read-
syntax to read the source module. The normal read-syntax is used for any required files,
however.

If security-guard is not #f, then the provided security guard is used when creating the
"compiled/" directories, ".dep" and ".zo" files, and when it adjusts the timestamps of
existing files. If it is #f, then the security guard in the current-security-guard when
the files are created is used (not the security guard at the point managed-compile-zo is
called).

While compiling file , the error-display-handler parameter is set to (make-
compilation-context-error-display-handler (error-display-handler)), so
that errors from uncaught exceptions will report the compilation context.

Changed in version 6.1.1.8 of package base: Added error-display-handler configuration.

managed-compiled-context-key : any/c

A key used as a continuation mark key by make-compilation-manager-load/use-

12

compiled-handler for the continuation of a module compilation. The associated value
is a path to the module’s source.

Added in version 6.1.1.8 of package base.

(make-compilation-context-error-display-handler orig-handlers)
Ñ (string? any/c . -> . void?)
orig-handlers : (string? any/c . -> . void?)

Produces a handler suitable for use as an error-display-handler value, given an existing
such value. The generated handler shows information about the compilation context when
the handler’s second argument is an exception whose continuation marks include managed-
compiled-context-key keys.

Added in version 6.1.1.8 of package base.

(trust-existing-zos) Ñ boolean?
(trust-existing-zos trust?) Ñ void?

trust? : any/c

A parameter that is intended for use by raco setup when installing with pre-built ".zo"
files. It causes a compilation-manager load/use-compiled handler to “touch” out-of-date
".zo" files instead of re-compiling from source.

(make-caching-managed-compile-zo
[read-src-syntax
#:security-guard security-guard])

Ñ (path-string? . -> . void?)
read-src-syntax : (any/c input-port? . -> . syntax?)

= read-syntax
security-guard : (or/c security-guard? #f) = #f

Returns a procedure that behaves like managed-compile-zo (providing the same read-
src-syntax each time), but a cache of timestamp information is preserved across calls to
the procedure.

A handler to support compilation is created with make-compilation-manager-
load/use-compiled-handler each time the result of make-caching-managed-
compile-zo is called, so the current namespace and other parameter values are relevant
at that time, not when make-caching-managed-compile-zo is called.

(manager-compile-notify-handler) Ñ (path? . -> . any)
(manager-compile-notify-handler notify) Ñ void?

notify : (path? . -> . any)

A parameter for a procedure of one argument that is called whenever a compilation starts.
The argument to the procedure is the file’s path.

13

(manager-trace-handler) Ñ (string? . -> . any)
(manager-trace-handler notify) Ñ void?

notify : (string? . -> . any)

A parameter for a procedure of one argument that is called to report compilation-manager
actions, such as checking a file. The argument to the procedure is a string.

The default value of the parameter logs the argument, along with current-inexact-
milliseconds, to a logger named 'compiler/cm at the 'debug level.

(manager-skip-file-handler)
Ñ (-> path? (or/c (cons/c number? promise?) #f))

(manager-skip-file-handler proc) Ñ void?
proc : (-> path? (or/c (cons/c number? promise?) #f))

A parameter whose value is called for each file that is loaded and needs recompilation. If the
procedure returns a pair, then the file is skipped (i.e., not compiled); the number in the pair
is used as the timestamp for the file’s bytecode, and the promise may be forced to obtain a
string that is used as hash of the compiled file plus its dependencies. If the procedure returns
#f, then the file is compiled as usual. The default is (lambda (x) #f).

(current-path->mode)
Ñ (or/c #f (-> path? (and/c path? relative-path?)))

(current-path->mode path->mode) Ñ void?
path->mode : (or/c #f (-> path? (and/c path? relative-path?)))

= #f

Used by make-compilation-manager-load/use-compiled-handler and make-
caching-managed-compile-zo to override use-compiled-file-paths for deciding
where to write compiled ".zo" files. If it is #f, then the first element of use-compiled-
file-paths is used. If it isn’t #f, then it is called with the original source file’s location
and its result is treated the same as if it had been the first element of use-compiled-file-
paths.

Note that this parameter is not used by current-load/use-compiled. So if the parameter
causes ".zo" files to be placed in different directories, then the correct ".zo" file must still
be communicated via use-compiled-file-paths, and one way to do that is to override
current-load/use-compiled to delete ".zo" files that would cause the wrong one to be
chosen right before they are loaded.

Added in version 6.4.0.14 of package base.

(file-stamp-in-collection p)
Ñ (or/c (cons/c number? promise?) #f)
p : path?

14

Calls file-stamp-in-paths with p and (current-library-collection-paths).

(file-stamp-in-paths p paths)
Ñ (or/c (cons/c number? promise?) #f)
p : path?
paths : (listof path?)

Returns the file-modification date and delayed hash of p or its bytecode form (i.e., ".zo"
file), whichever exists and is newer, if p is an extension of any path in paths (i.e., exists in
the directory, a subdirectory, etc.). Otherwise, the result is #f.

This function is intended for use with manager-skip-file-handler.

(get-file-sha1 p) Ñ (or/c string? #f)
p : path?

Computes a SHA-1 hash for the file p ; the result is #f if p cannot be opened.

(get-compiled-file-sha1 p) Ñ (or/c string? #f)
p : path?

Computes a SHA-1 hash for the bytecode file p , appending any dependency-describing hash
available from a ".dep" file when available (i.e., the suffix on p is replaced by ".dep" to
locate dependency information). The result is #f if p cannot be opened.

(with-compile-output p proc) Ñ any
p : path-string?
proc : ([port input-port?] [tmp-path path?] . -> . any)

A wrapper on call-with-atomic-output-file that passes along any security guard put
in place by make-compilation-manager-load/use-compiled-handler, etc.

(parallel-lock-client)
Ñ (or/c #f

(->i ([command (or/c 'lock 'unlock)]
[file bytes?])

[res (command) (if (eq? command 'lock)
boolean?
void?)]))

(parallel-lock-client proc) Ñ void?
proc : (or/c #f

(->i ([command (or/c 'lock 'unlock)]
[file bytes?])

[res (command) (if (eq? command 'lock)
boolean?
void?)]))

15

Creates a parallel compilation lock client, which is used by the result of make-
compilation-manager-load/use-compiled-handler to prevent compilation races be-
tween parallel builders.

When proc is #f (the default), no checking for parallel compilation is done (and thus multi-
ple threads or places running compilations via make-compilation-manager-load/use-
compiled-handler will potentially corrupt each other’s ".zo" files).

When proc is a function, its first argument is a command 'lock pr 'unlock, which indi-
cates whether the caller wants to lock or unlock a target zo-path , and the second argument
is the target zo-path (expressed as a byte string).

When proc returns #t for a 'lock command, the current builder has obtained the lock for
zo-path . Once compilation of zo-path is complete, the builder process must release the
lock by calling proc 'unlock with the exact same zo-path .

When proc returns #f for a 'lock command, another parallel builder obtained the lock first
and has already compiled the target. The parallel builder should continue without compiling
zo-path . (In this case, make-compilation-manager-load/use-compiled-handler’s
result will not call proc with 'unlock.)

Example:

> (let* ([lc (parallel-lock-client)]
[zo-name #"collects/racket/compiled/draw_rkt.zo"]
[locked? (and lc (lc 'lock zo-name))]
[ok-to-compile? (or (not lc) locked?)])

(dynamic-wind
(lambda () (void))
(lambda ()

(when ok-to-compile?
(printf "Do compile here ...\n")))

(lambda ()
(when locked?

(lc 'unlock zo-name)))))
Do compile here ...

(compile-lock->parallel-lock-client pc
[cust
current-shutdown-evt])

Ñ (-> (or/c 'lock 'unlock) bytes? boolean?)
pc : place-channel?
cust : (or/c #f custodian?) = #f
current-shutdown-evt : (-> evt?) = (lambda () never-evt)

Returns a function that follows the parallel-lock-client protocol by communicating
over pc , where pc must be a result of make-compile-lock.

16

This communication protocol implementation is not kill-safe when cust is #f. Making the
protocol kill-safe requires a sufficiently powerful custodian (i.e., one that is not subject to
termination unless all of the participants in the compilation are also terminated) supplied
as cust . The given custodian is used to create a thread that monitors the threads that are
perform the compilation. If one of the threads is terminated, the presence of the custodian
lets another one continue. (The custodian is also used to create a thread that manages a
thread-safe table.)

Just checking for thread termination is not always sufficient to release a lock, because a
thread created with thread/suspend-to-kill is merely suspending by removing its abil-
ity to run. The current-shutdown-evt argument returns an synchronizable event that the
monitor thread waits on at the same time as it waits for a thread to terminate. If the event
becomes ready, then the monitor releases a lock the same as if the thread was terminated.
For example, current-shutdown-evt might return a custodian box to detect a custodian
shutdown.

Changed in version 8.1.0.7 of package base: Added the current-shutdown-evt argument.

(make-compile-lock) Ñ place-channel?

Creates a place-channel that can be used with compile-lock->parallel-lock-client
to avoid concurrent compilations of the same Racket source files in multiple places.

(install-module-hashes! bstr [start end]) Ñ void?
bstr : bytes?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Adjusts the bytecode representation in bstr (from bytes start to end) to install a hash
code, including any submodules within the region. The existing representation should have
zero bytes in place of each hash string, which is what write produces for a compiled form.

Added in version 6.3 of package base.

(current-multi-compile-any) Ñ boolean?
(current-multi-compile-any on?) Ñ void?

on? : any/c

A parameter that enables compilation of both current-machine bytecode and machine-
independent bytecode by a handler created with make-compilation-manager-
load/use-compiled-handler.

Added in version 8.1.0.2 of package base.

17

1.5 API for Parallel Builds

(require setup/parallel-build) package: base

The setup/parallel-build library provides the parallel-compilation functionality of
raco setup and raco make.

Both parallel-compile-files and parallel-compile log messages to the topic
'setup/parallel-build at the level 'info. These messages are instances of a
parallel-compile-event prefab structure:

(struct parallel-compile-event (worker event) #:prefab)

The worker field is the index of the worker that the created the event. The event field is a
compile-event as documented in make-compilation-manager-load/use-compiled-
handler.

(parallel-compile-files list-of-files
[#:worker-count worker-count
#:use-places? use-places?
#:handler handler])

Ñ (or/c void? #f)
list-of-files : (listof path-string?)
worker-count : exact-positive-integer? = (processor-count)
use-places? : any/c = #t
handler : (->i ([worker-id exact-integer?]

[handler-type symbol?]
[path path-string?]
[msg string?]
[out string?]
[err string?])

void?)

= void

The parallel-compile-files utility function is used by raco make to compile a list of
paths in parallel. The optional #:worker-count argument specifies the number of compile
workers to spawn during parallel compilation. The compile workers are implemented as
Racket places if use-places? is true, otherwise the compile workers are implemented as
separate Racket processes. The callback, handler , is called with the symbol 'done as the
handler-type argument for each successfully compiled file, 'output when a successful
compilation produces stdout/stderr output, 'error when a compilation error has occurred,
or 'fatal-error when an unrecoverable error occurs. The other arguments give more
information for each status update. The return value is (void) if it was successful, or #f if
there was an error.

(parallel-compile-files
source-files

18

https://pkgs.racket-lang.org/package/base

#:worker-count 4
#:handler
(lambda (type work msg out err)

(match type
['done (when (verbose) (printf " Made ~a\n" work))]
['output (printf " Output from: ~a\n~a~a" work out err)]
[_ (printf " Error compiling ~a\n~a\n~a~a"

work
msg
out
err)])))

Changed in version 7.0.0.19 of package base: Added the #:use-places? argument.

(parallel-compile worker-count
setup-fprintf
append-error
collects-tree

[#:use-places? use-places?]) Ñ (void)
worker-count : non-negative-integer?
setup-fprintf : (->i ([stage string?] [format string?])

()
#:rest (listof any/c) void)

append-error : (->i ([cc cc?]
[prefix string?]
[exn (or/c exn? (cons/c string? string?) #f)]
[out string?]
[err string?]
[message string?])

void?)
collects-tree : (listof any/c)
use-places? : any/c = #t

The parallel-compile function is used by raco setup to compile collections in paral-
lel. The worker-count argument specifies the number of compilation workers to spawn
during parallel compilation. The use-places? argument specified whether to use places,
otherwise separate processes are used. The setup-fprintf and append-error functions
communicate intermediate compilation results and errors. The collects-tree argument
is a compound data structure containing an in-memory tree representation of the collects
directory.

When the exn argument to append-error is a pair of strings, the first string is a long
form of the error message, and the second string is a short form (omitting evaluation context
information, for example).

Changed in version 6.1.1.8 of package base: Changed append-error to allow a pair of error strings.

19

Changed in version 7.0.0.19: Added the #:use-places? argument.

1.6 Compilation Manager Hook for Syntax Transformers

(require compiler/cm-accomplice) package: base

(register-external-file file
[#:indirect? indirect?]) Ñ void?

file : (and path? complete-path?)
indirect? : any/c = #f

Logs a message (see log-message) to the current logger at level 'info with the topic 'cm-
accomplice. The message data is a file-dependency prefab structure type with two
fields; the first field’s value is file and the second field’s value is #f (to indicate a non-
module dependency). If the indirect? argument is true, the data is more specifically an
instance of a file-dependency/options prefab structure type that is a subtype of file-
dependency with one extra field: a hash table mapping 'indirect to #t.

A compilation manager implemented by compiler/cm looks for such messages to register
an external dependency. In response, the compilation manager records (in a ".dep" file) the
path as contributing to the implementation of the module currently being compiled. After-
ward, if the registered file is modified, the compilation manager will know to recompile the
module. An indirect dependency has no effect on recompilation, but it can signal to other
tools, such as a package-dependency checker, that the dependency is indirect (and should
not imply a direct package dependency).

The include macro, for example, calls this procedure with the path of an included file as it
expands an include form.

(register-external-module file
[#:indirect? indirect?]) Ñ void?

file : (and path? complete-path?)
indirect? : any/c = #f

Like register-external-file, but logs a message with a file-dependency prefab
structure type whose second field is #t.

A compilation manager implemented by compiler/cm recognizes the message to register a
dependency on a module (which implies a dependency on all of that module’s dependencies,
etc.).

1.7 API for Simple Bytecode Creation

(require compiler/compile-file) package: base

20

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(compile-file src [dest filter]) Ñ path?
src : path-string?
dest : path-string?

= (let-values ([(base name dir?) (split-path src)])
(build-path base "compiled"

(path-add-suffix name #".zo")))
filter : (any/c . -> . any/c) = values

Compiles the Racket file src and saves the compiled code to dest . If dest is not provided
and the "compiled" subdirectory does not already exist, the subdirectory is created. The
result of compile-file is the destination file’s path.

If the filter procedure is provided, it is applied to each source expression, and the result
is compiled.

Beware that compile-file uses the current reader parameterization to read src . Typi-
cally, compile-file should be called from a thunk passed to with-module-reading-
parameterization so that the source program is parsed in a consistent way and allowing
#lang.

Each expression in src is compiled independently. If src does not contain a single module
expression, then earlier expressions can affect the compilation of later expressions when src
is loaded directly. An appropriate filter can make compilation behave like evaluation, but
the problem is also solved (as much as possible) by the compile-zos procedure.

See also managed-compile-zo.

1.8 API for Bytecode Paths

(require compiler/compilation-path) package: base

Added in version 6.0.1.10 of package base.

(get-compilation-dir+name path
[#:modes modes
#:roots roots
#:default-root default-root])

Ñ path? path?
path : path-string?
modes : (non-empty-listof (and/c path-string? relative-path?))

= (use-compiled-file-paths)
roots : (non-empty-listof (or/c path-string? 'same))

= (current-compiled-file-roots)
default-root : (or/c path-string? 'same) = (car roots)

21

https://pkgs.racket-lang.org/package/base

Determines the directory that holds the bytecode form of path plus the base name of path .

The directory is determined by checking roots in order, and for each element of roots
checking modes in order. The first such directory that contains a file whose name matches
path with ".zo" added (in the sense of path-add-suffix) is reported as the return di-
rectory path. If no such file is found, the result corresponds to the first element of modes
combined with default-root .

Changed in version 7.1.0.9 of package base: Added the #:default-root argument.

(get-compilation-dir path
[#:modes modes
#:roots roots
#:default-root default-root]) Ñ path?

path : path-string?
modes : (non-empty-listof (and/c path-string? relative-path?))

= (use-compiled-file-paths)
roots : (non-empty-listof (or/c path-string? 'same))

= (current-compiled-file-roots)
default-root : (or/c path-string? 'same) = (car roots)

The same as get-compilation-dir+name, but returning only the first result.

Changed in version 7.1.0.9 of package base: Added the #:default-root argument.

(get-compilation-bytecode-file path
[#:modes modes
#:roots roots
#:default-root default-root])

Ñ path?
path : path-string?
modes : (non-empty-listof (and/c path-string? relative-path?))

= (use-compiled-file-paths)
roots : (non-empty-listof (or/c path-string? 'same))

= (current-compiled-file-roots)
default-root : (or/c path-string? 'same) = (car roots)

The same as get-compilation-dir+name, but combines the results and adds a ".zo"
suffix to arrive at a bytecode file path.

Changed in version 7.1.0.9 of package base: Added the #:default-root argument.

1.9 Compiling to Raw Bytecode

The --no-deps mode for raco make is an improverished form of the compilation, because
it does not track import dependencies. It does, however, support compilation of non-module

22

source in a namespace that initially imports scheme.

Outside of a module, top-level define-syntaxes, module, #%require, define-values-
for-syntax, and begin expressions are handled specially by raco make --no-deps: the
compile-time portion of the expression is evaluated, because it might affect later expressions.

For example, when compiling the file containing

(require racket/class)
(define f (class object% (super-new)))

the class form from the racket/class library must be bound in the compilation names-
pace at compile time. Thus, the require expression is both compiled (to appear in the
output code) and evaluated (for further computation).

Many definition forms expand to define-syntaxes. For example, define-signature
expands to define-syntaxes. In --no-deps mode, raco make --no-deps detects
define-syntaxes and other expressions after expansion, so top-level define-signature
expressions affect the compilation of later expressions, as a programmer would expect.

In contrast, a load or eval expression in a source file is compiled—but not evaluated!—as
the source file is compiled. Even if the load expression loads syntax or signature definitions,
these will not be loaded as the file is compiled. The same is true of application expressions
that affect the reader, such as (read-case-sensitive #t). The -p or --prefix flag
for raco make takes a file and loads it before compiling the source files specified on the
command line.

By default, the namespace for compilation is initialized by a require of scheme. If
the --no-prim flag is specified, the namespace is instead initialized with namespace-
require/copy, which allows mutation and redefinition of all initial bindings (other than
syntactic forms, in the case of mutation).

In general, a better solution is to put all code to compile into a module and use raco make
in its default mode.

1.10 API for Raw Compilation

(require compiler/compiler) package: base

The compiler/compiler library provides the functionality of raco make for compilation
to bytecode, but through a Racket API.

1.10.1 Bytecode Compilation

23

https://pkgs.racket-lang.org/package/base

((compile-zos expr
[#:module? module?
#:verbose? verbose?])

racket-files
dest-dir) Ñ void?
expr : any/c
module? : any/c = #f
verbose? : any/c = #f
racket-files : (listof path-string?)
dest-dir : (or/c path-string? #f 'auto)

Supplying just expr returns a compiler that is initialized with the expression expr , as de-
scribed below.

The compiler takes a list of Racket files and compiles each of them to bytecode, placing the
resulting bytecode in a ".zo" file within the directory specified by dest-dir . If dest-dir
is #f, each bytecode result is placed in the same directory as its source file. If dest-dir is
'auto, each bytecode file is placed in a "compiled" subdirectory relative to the source; the
directory is created if necessary.

If expr is anything other than #f, then a namespace is created for compiling the files that
are supplied later, and expr is evaluated to initialize the created namespace. For example,
expr might load a set of macros. In addition, the expansion-time part of each expression
later compiled is evaluated in the namespace before being compiled, so that the effects are
visible when compiling later expressions.

If expr is #f, then no compilation namespace is created (the current namespace is used),
and expressions in the files are assumed to compile independently (so there’s no need to
evaluate the expansion-time part of an expression to compile).

Typically, expr is #f for compiling module files, and it is (void) for compiling files with
top-level definitions and expressions.

If module? is #t, then the given files are read and compiled as modules (so there is no
dependency on the current namespace’s top-level environment).

If verbose? is #t, the output file for each given file is reported through the current output
port.

(compile-collection-zos
collection ...+

[#:skip-path skip-path
#:skip-paths skip-paths
#:skip-doc-sources? skip-docs?
#:managed-compile-zo managed-compile-zo])

Ñ void?
collection : string?

24

skip-path : (or/c path-string? #f) = #f
skip-paths : (listof path-string?) = null
skip-docs? : any/c = #f
managed-compile-zo : (path-string? . -> . void?)

= (make-caching-managed-compile-zo)

Compiles the specified collection’s files to ".zo" files by using managed-compile-zo on
each source file. The ".zo" files are placed into the collection’s "compiled" directory.

By default, all files with the extension ".rkt", ".ss", or ".scm" in a collection are com-
piled, as are all such files within subdirectories; the set of such suffixes is extensible glob-
ally as described in get-module-suffixes, and compile-collection-zos recognizes
suffixes from the 'libs group. However, any file or directory whose path starts with skip-
path or an element of skip-paths is skipped. (“Starts with” means that the simplified
complete path p ’s byte-string form after (simplify-path p #f) starts with the byte-
string form of (simplify-path skip-path #f); not that each skip-path should nor-
mally be a complete path.)

The collection compiler reads the collection’s "info.rkt" file (see §6.4 “"info.rkt" File
Format”) to obtain further instructions for compiling the collection. The following fields are
used:

• name : The name of the collection as a string, used only for status and error reporting.

• compile-omit-paths : Either a list of paths and regexp values or 'all. In a list, a
path is treated as a file that should not be compiled or a directory whose files should
not be compiled and whose "info.rkt" files should be ignored by raco setup; the
paths are relative to the collection (i.e., directory containing the "info.rkt" file) and
can refer to files and directories in subcollections that are that are represented by sub-
directories. A regexp in the list is matched against file and directory paths relative to
the collection (so, for example, start a regexp with ^ to match only paths in the imme-
diate collection and not in subcollections) to exclude those files and directories from
compilation and raco setup. The value 'all is equivalent to specifying all files
and directories in the collection (to effectively ignore the collection for compilation).
Automatically omitted files and directories are "compiled", "doc", and those whose
names start with ..

Files that are required by other files are always compiled in the process of compiling
the requiring file—even when the required file is listed with this field or when the
field’s value is 'all.

• compile-omit-files : A list of filenames (without directory paths) that are not
compiled, in addition to the contents of compile-omit-paths. Do not use this field;
it is for backward compatibility.

• scribblings : A list of lists, each of which starts with a path for documentation
source. See §6.3 “Controlling raco setup with "info.rkt" Files” for more infor-

25

mation. The sources (and the files that they require) are compiled in the same way as
other module files, unless skip-docs? is a true value.

• compile-include-files : A list of filenames (without directory paths) to be com-
piled, in addition to files that are compiled based on the file’s extension, being in
scribblings, or being required by other compiled files.

• module-suffixes and doc-module-suffixes : Used indirectly via get-module-
suffixes.

Changed in version 6.3 of package base: Added support for compile-include-files.
Changed in version 7.8.0.8: Changed “starts with” for skip-path to include an exact match.
Changed in version 8.1.0.5: Added support for regexps in compile-omit-paths.

(compile-directory-zos
path
info

[#:verbose verbose?
#:skip-path skip-path
#:skip-paths skip-paths
#:skip-doc-sources? skip-docs?
#:managed-compile-zo managed-compile-zo])

Ñ void?
path : path-string?
info : procedure?
verbose? : any/c = #f
skip-path : (or/c path-string? #f) = #f
skip-paths : (listof path-string?) = null
skip-docs? : any/c = #f
managed-compile-zo : (path-string? . -> . void?)

= (make-caching-managed-compile-zo)

Like compile-collection-zos, but compiles the given directory rather than a collection.
The info function behaves like the result of get-info to supply "info.rkt" fields, in-
stead of using an "info.rkt" file (if any) in the directory.

Changed in version 7.8.0.8 of package base: Changed info handling to use info for 'compile-omit-paths,
ignoring any "info.rkt" files in parent and child directories.

1.10.2 Recognizing Module Suffixes

(require compiler/module-suffix) package: base

The compiler/module-suffix library provides functions for recognizing file suffixes that
correspond to Racket modules for the purposes of compiling files in a directory, running

26

https://pkgs.racket-lang.org/package/base

tests for files in a directory, and so on. The set of suffixes always includes ".rkt", ".ss",
and ".scm", but it can be extended globally by "info.rkt" configurations in collections.

Added in version 6.3 of package base.

(get-module-suffixes [#:group group
#:mode mode
#:namespace namespace]) Ñ (listof bytes?)

group : (or/c 'all 'libs 'docs) = 'all
mode : (or/c 'preferred 'all-available 'no-planet 'no-user)

= 'preferred
namespace : (or/c #f namespace?) = #f

Inspects "info.rkt" files (see §6.4 “"info.rkt" File Format”) of installed collections to
produce a list of file suffixes that should be recognized as Racket modules. Each suffix is
reported as a byte string that does not include the . that precedes a suffix.

The mode and namespace arguments are propagated to find-relevant-directories to
determine which collection directories might configure the set of suffixes. Consequently,
suffix registrations are found reliably only if raco setup (or package installations or up-
dates that trigger raco setup) is run.

The group argument determines whether the result includes all registered suffixes, only
those that are registered as general library suffixes, or only those that are registered as docu-
mentation suffixes. The set of general-library suffixes always includes ".rkt", ".ss", and
".scm". The set of documentation suffixes always includes ".scrbl".

The following fields in an "info.rkt" file extend the set of suffixes:

• module-suffixes : A list of byte strings that correspond to general-library module
suffixes (without the . that must appear before the suffix). Non-lists or non-byte-string
elements of the list are ignored.

• doc-module-suffixes : A list of byte strings as for module-suffixes, but for
documentation modules.

(get-module-suffix-regexp [#:group group
#:mode mode
#:namespace namespace]) Ñ byte-regexp?

group : (or/c 'all 'libs 'docs) = 'all
mode : (or/c 'preferred 'all-available 'no-planet 'no-user)

= 'preferred
namespace : (or/c #f namespace?) = #f

Returns a regexp value that matches paths ending with a suffix as reported by get-module-
suffixes. The pattern includes a subpatterns for the suffix without its leading .

27

1.10.3 Loading Compiler Support

The compiler unit loads certain tools on demand via dynamic-require and get-info. If
the namespace used during compilation is different from the namespace used to load the
compiler, or if other load-related parameters are set, then the following parameter can be
used to restore settings for dynamic-require.

(current-compiler-dynamic-require-wrapper)
Ñ ((-> any) . -> . any)

(current-compiler-dynamic-require-wrapper proc) Ñ void?
proc : ((-> any) . -> . any)

A parameter whose value is a procedure that takes a thunk to apply. The default wrapper sets
the current namespace (via parameterize) before calling the thunk, using the namespace
in which the compiler/compiler library was originally instantiated.

1.10.4 Options for the Compiler

(require compiler/option) package: base

The compiler/option module provides options (in the form of parameters) that control
the compiler’s behaviors.

More options are defined by the dynext/compile and dynext/link libraries, which con-
trol the actual C compiler and linker that are used for compilation via C.

(somewhat-verbose) Ñ boolean?
(somewhat-verbose on?) Ñ void?

on? : any/c

A #t value for the parameter causes the compiler to print the files that it compiles and
produces. The default is #f.

(verbose) Ñ boolean?
(verbose on?) Ñ void?

on? : any/c

A #t value for the parameter causes the compiler to print verbose messages about its opera-
tions. The default is #f.
(compile-subcollections) Ñ boolean?
(compile-subcollections on?) Ñ void?

on? : any/c

A parameter that specifies whether sub-collections are compiled by compile-collection-
zos. The default is #t.

28

https://pkgs.racket-lang.org/package/base

1.10.5 The Compiler as a Unit

Signatures

(require compiler/sig) package: compiler-lib

compiler^ : signature

Includes all of the names exported by compiler/compiler.

compiler:option^ : signature

Includes all of the names exported by compiler/option.

Main Compiler Unit

(require compiler/compiler-unit) package: compiler-lib

compiler@ : unit?

Provides the exports of compiler/compiler in unit form, where C-compiler operations are
imports to the unit, although they are not used.

The unit imports compiler:option^, dynext:compile^, dynext:link^, and
dynext:file^. It exports compiler^.

Options Unit

(require compiler/option-unit) package: compiler-lib

compiler:option@ : unit?

Provides the exports of compiler/option in unit form. It imports no signatures, and ex-
ports compiler:option^.

1.11 API for Reading Compilation Dependencies

(require compiler/depend) package: base

The compiler/depend module provides a function to inspect and traverse the dependency
information generated by raco make, raco setup, or compiler/cm.

Added in version 6.90.0.13 of package base.

29

https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/base

(module-recorded-dependencies module-file)
Ñ (listof (and path? (complete-path? path?)))
module-file : path?

Given a module-file for a file that has been compiled with raco make, raco setup, or
compiler/cm, returns a list of dependencies for module-file by reading and traversing
dependency-information files left behind by compilation.

30

2 raco exe: Creating Stand-Alone Executables
To achieve a faster
startup time, instead
of trying raco
exe, use a smaller
base
language—such as
#lang
racket/base
instead of #lang
racket. Also,
ensure that
bytecode files are
compiled by using
raco make. For
further
improvements, try
using raco demod.

Compiled code produced by raco make relies on Racket executables to provide run-time
support to the compiled code. However, raco exe can package code together with its run-
time support to form an executable, and raco distribute can package the executable into
a distribution that works on other machines. Running an executable produced by raco exe
will not improve performance over raco make.

The raco exe command embeds a module, from source or byte code, into a copy of the
racket executable. (On Unix, the embedding executable is actually a copy of a wrapper ex-
ecutable.) The created executable invokes the embedded module on startup. The --gui flag
causes the program to be embedded in a copy of the gracket executable. If the embedded
module refers to other modules via require, then the other modules are also included in the
embedding executable.

For example, the command

raco exe --gui hello.rkt

produces either "hello.exe" (Windows), "hello.app" (Mac OS), or "hello" (Unix),
which runs the same as running the "hello.rkt" module in gracket.

Library modules or other files that are referenced dynamically—through eval, load, or
dynamic-require—are not automatically embedded into the created executable. Such
modules can be explicitly included using the ++lib flag to raco exe. Alternately, use
define-runtime-path to embed references to the run-time files in the executable; the
files are then copied and packaged together with the executable when creating a distribu-
tion (as described in §3 “raco distribute: Sharing Stand-Alone Executables”). A sub-
module is included if its enclosing module is included and the submodule contains a sub-
submodule named declare-preserve-for-embedding (where the implementation of the
sub-submodule is ignored).

Language reader modules that are used only via #lang are also not automatically embedded.
To support dynamic use of #lang with a language specification, supply the ++lang flag to
raco exe. The argument after ++lang can be a language name, but more generally it can
be text to appear just after #lang. For example, at-exp racket/base makes sense as
an argument to ++lang to allow at-exp combined with racket/base as a language for
dynamically loaded modules.

Modules that are implemented directly by extensions—i.e., extensions that are automatically
loaded from (build-path "compiled" "native" (system-library-subpath)) to
satisfy a require—are treated like other run-time files: a generated executable uses them
from their original location, and they are copied and packaged together when creating a
distribution.

When a module is embedded in an executable, it gets a symbolic name instead of its original

31

filesystem-based name. The module-name resolver is configured in the embedding exe-
cutable to map collection-based module paths to the embedded symbolic name, but no such
mapping is created for filesystem paths. By default, a module’s symbolic name is generated
in an unspecified but deterministic way where the name starts with #%embedded:, except
that the main module is prefixed with #%mzc:. The relative lack of specification for module
names can be a problem for language constructs that are sensitive to module names, such as
serialization. To take more control over a module’s symbolic name, use the ++named-lib
or ++named-file argument to specify a prefix that is appended before the module’s base
name to generate a symbolic name.

The raco exe command works only with module-based programs. The compiler/embed
library provides a more general interface to the embedding mechanism.

A stand-alone executable is “stand-alone” in the sense that you can run it without starting
racket, gracket, or DrRacket. However, the executable may depend on Racket shared
libraries and possibly other run-time files declared via define-runtime-path. Using
--embed-dlls on Windows or --orig-exe on Unix may produce an executable that is
more stand-alone than otherwise. Options used when building Racket itself affect the degree
to which executables are stand-alone. In any case, the executable can be packaged with sup- Then standard

distribution uses
options that make
executables as
stand-alone as
possible. For a
Unix build,
configuring with
--enable-shared
makes executables
less stand-alone.
For a Mac OS build,
configuring without
--enable-embedfw
makes non-GUI
executables less
stand-alone.

port libraries to create a self-contained distribution using raco distribute, as described
in §3 “raco distribute: Sharing Stand-Alone Executables”.

The raco exe command accepts the following command-line flags:

• -o ⟨file⟩ — create the executable as ⟨file⟩, adding a suffix to ⟨file⟩ as appropriate for
the platform and executable type. On Mac OS in --gui mode, ⟨file⟩ is actually a
bundle directory, but it appears as a file within Finder.

• --gui — create a graphical executable based on gracket instead of racket.

• -l or --launcher — create a launcher (see §2.2 “Installation-Specific Launch-
ers”), instead of a stand-alone executable. Flags such as --config-path,
--collects-path, and --lib have no effect on launchers. Beware that the default
command-line flags to build into the launcher prevent access to packages that are in-
stalled in user scope; use --exf -U to enable access to user-scope packages from the
launcher.

• --embed-dlls — On Windows, for a stand-alone executable, copies any needed
DLLs into the executable. Embedding DLLs makes the resulting executable truly
stand-alone if it does not depend on other external files. Not all DLLs work with em-
bedding, and limitations are mostly related to thread-local storage and resources, but
all DLLs within the main Racket distribution work with --embed-dlls.

• --config-path ⟨path⟩ — set ⟨path⟩ within the executable as the path to the config-
uration directory; if the path is relative, it will be treated as relative to the executable.
The default path is "etc", with the expectation that no such directory will exist at run
time.

32

• --collects-path ⟨path⟩ — set ⟨path⟩ within the executable as the path to the main
collection directory; if the path is relative, it will be treated as relative to the exe-
cutable. The default is to have no path, which means that the current-library-
collection-paths and current-library-collection-links parameters are
initialized as null when the executable starts. Beware that various other directories
are located relative to the main collection directory by default (see §19 “Installation
Configuration and Search Paths”), so that installing ⟨path⟩ may allow other directories
to be found—intentional or not.

• --collects-dest ⟨path⟩ — write modules to be included with the executable
into ⟨path⟩ (relative to the current directory), instead of embedded within the exe-
cutable. The --collects-dest flag normally makes sense only in combination with
--collects-path. This mode currently does not prune unreferenced submodules
(and it pulls along any dependencies of submodules).

• --ico ⟨.ico-path⟩ — on Windows, set the icons for the generated executable to ones
extracted from ⟨.ico-path⟩; see create-embedding-executable’s use of the 'ico
auxiliary association for more information about expected icon sizes and transforma-
tions.

• --icns ⟨.icns-path⟩ — on Mac OS, set the icons for the generated executable to be
the content of ⟨.icns-path⟩.

• --orig-exe — on Unix, generate an executable based on the original racket or
gracket executable, instead of a wrapper executable that redirects to the original.
If the original executable is statically linked to the Racket runtime library, then the
resulting executable is similarly stand-alone. Beware that if the original executable
links to Racket as a shared library, however, then raco distribute cannot work
with executables that are created with --orig-exe (because the wrapper executable
normally takes care of finding the shared libraries when the executable is distributed
to a different machine).

• --cs — generate an executable based on the CS implementation of Racket, which is
the default unless running a raco exe that is based on the BC implementation.

• --3m — generate an executable based on the 3m variant of Racket, which is the default
only when running a raco exe that is based on the 3m variant of the BC implemen-
tation.

• --cgc — generate an executable based on the CGC variant of Racket, which is the
default only when running a raco exe that is based on the CGC variant of the BC
implementation.

• ++aux ⟨file⟩ — attach information to the executable based on ⟨file⟩’s suffix; see
extract-aux-from-path for a list of recognized suffixes and meanings, and see
create-embedding-executable’s use of auxiliary association for more specific in-
formation about how each kind of file is used.

33

• ++lib ⟨module-path⟩ — include ⟨module-path⟩ in the executable, even if it is not
referenced by the main program, so that it is available via dynamic-require.

• ++lang ⟨lang⟩ — include modules needed to load modules starting #lang ⟨lang⟩
dynamically. The ⟨lang⟩ does not have to be a plain language or module name; it
might be a more general text sequence, such as at-exp racket/base to support
language constructors like at-exp. The initial require for a module read as ⟨lang⟩
must be available though the language reader’s get-info function and the 'module-
language key; languages implemented with syntax/module-reader support that
key automatically.

• ++named-lib ⟨prefix⟩ ⟨module-path⟩ — like ++lib, but the embedded module’s
symbolic name is specified to be ⟨prefix⟩ appended before the library file’s base name.
Specifying a module’s symbolic name can be useful with language constructs that de-
pend reflexively on a module name, such as a serialization format (where a module
name is record so that a function can be found later for deserialization).

• ++named-file ⟨prefix⟩ ⟨file-path⟩ — include ⟨file-path⟩ in the executable, even if it
is not referenced by the main program, and use ⟨prefix⟩ before the file’s base name
as the embedded module’s symbolic name. Since the embedded module’s symbolic
name is predictable, the module might be accessed at run time via dynamic-require.
A predictable module name can also help with serialized data in the same way as
++named-lib.

• ++exf ⟨flag⟩ — provide the ⟨flag⟩ command-line argument on startup to the embedded
racket or gracket.

• --exf ⟨flag⟩ — remove ⟨flag⟩ from the command-line arguments to be provided on
startup to the embedded racket or gracket.

• --exf-clear — remove all command-line arguments to be provided on startup to
the embedded racket or gracket.

• --exf-show — show (without changing) the command-line arguments to be provided
on startup to the embedded racket or gracket.

• -v — report progress verbosely.

• --vv — report progress more verbosely than -v.

Changed in version 6.3.0.11: Added support for declare-preserve-for-embedding.
Changed in version 6.90.0.23: Added --embed-dlls.
Changed in version 7.0.0.17: Added ++lang.
Changed in version 7.3.0.6: Added ++named-lib and ++named-file, and changed generation of symbolic names
for embedded modules to make it deterministic.

34

2.1 API for Creating Executables

(require compiler/embed) package: base

The compiler/embed library provides a function to embed Racket code into a copy of
Racket or GRacket, thus creating a stand-alone Racket executable. To package the exe-
cutable into a distribution that is independent of your Racket installation, use assemble-
distribution from compiler/distribute.

Embedding walks the module dependency graph to find all modules needed by some initial
set of top-level modules, compiling them if needed, and combining them into a “module
bundle.” In addition to the module code, the bundle extends the module name resolver, so
that modules can be required with their original names, and they will be retrieved from the
bundle instead of the filesystem.

The create-embedding-executable function combines the bundle with an executable
(Racket or GRacket). The write-module-bundle function prints the bundle to the current
output port, instead; this stream can be loaded directly by a running program, as long as the
read-accept-compiled parameter is true.

(create-embedding-executable
dest
#:modules mod-list

[#:early-literal-expressions early-literal-sexps
#:configure-via-first-module? config-via-first?
#:literal-files literal-files
#:literal-expression literal-sexp
#:literal-expressions literal-sexps
#:cmdline cmdline
#:gracket? gracket?
#:mred? mred?
#:variant variant
#:aux aux
#:collects-path collects-path
#:collects-dest collects-dest
#:launcher? launcher?
#:verbose? verbose?
#:expand-namespace expand-namespace
#:compiler compile-proc
#:src-filter src-filter
#:on-extension ext-proc
#:get-extra-imports extras-proc])

Ñ void?
dest : path-string?

35

https://pkgs.racket-lang.org/package/base

mod-list : (listof (or/c (list/c (or/c symbol? #f #t)
(or/c module-path? path?))

(list/c (or/c symbol? #f #t)
(or/c module-path? path?)
(listof symbol?))))

early-literal-sexps : list? = null
config-via-first? : any/c = #f
literal-files : (listof path-string?) = null
literal-sexp : any/c = #f
literal-sexps : list? = (if literal-sexp

(list literal-sexp)
null)

cmdline : (listof string?) = null
gracket? : any/c = #f
mred? : any/c = #f
variant : (or/c 'cgc '3m 'cs) = (system-type 'gc)
aux : (listof (cons/c symbol? any/c)) = null
collects-path : (or/c #f

path-string?
(listof path-string?))

= #f

collects-dest : (or/c #f path-string?) = #f
launcher? : any/c = #f
verbose? : any/c = #f
expand-namespace : namespace? = (current-namespace)
compile-proc : (any/c . -> . compiled-expression?)

= (lambda (e)
(parameterize ([current-namespace

expand-namespace])
(compile e)))

src-filter : (path? . -> . any) = (lambda (p) #t)
ext-proc : (or/c #f (path-string? boolean? . -> . any)) = #f
extras-proc : (path? compiled-module-expression?

. -> . (listof module-path?))
= (lambda (p m) null)

Copies the Racket (if gracket? and mred? are #f) or GRacket (otherwise) binary, embed-
ding code into the copied executable to be loaded on startup. On Unix, the binary is actually
a wrapper executable that execs the original; see also the 'original-exe? tag for aux .

The embedding executable is written to dest , which is overwritten if it exists already (as a
file or directory).

The embedded code consists of module declarations followed by additional (arbitrary) code.
When a module is embedded, every module that it imports is also embedded. Library mod-
ules are embedded so that they are accessible via their lib paths in the initial namespace.

36

The #:modules argument mod-list designates modules to be embedded, as described
below. The #:early-literal-expressions, #:literal-files, and #:literal-
expressions arguments specify literal code to be copied into the executable: each element
of early-literal-sexps is copied in order, then the content of each file in literal-
files in order (with no intervening spaces), and then each element of literal-sexps .
The literal-files files or early-literal-sexps or literal-sexps lists can con-
tain compiled bytecode, and it’s possible that the content of the literal-files files only
parse when concatenated; the files and expression are not compiled or inspected in any way
during the embedding process. Beware that the initial namespace contains no bindings; use
compiled expressions to bootstrap the namespace. The #:literal-expression (singular)
argument is for backward compatibility.

If the #:configure-via-first-module? argument is specified as true, then the language
of the first module in mod-list is used to configure the run-time environment before the
expressions added by #:literal-files and #:literal-expressions are evaluated, but
after the expressions of #:early-literal-expressions. See also §18.1.5 “Language
Run-Time Configuration”.

The #:cmdline argument cmdline contains command-line strings that are prefixed onto
any actual command-line arguments that are provided to the embedding executable. A
command-line argument that evaluates an expression or loads a file will be executed after
the embedded code is loaded.

Each element of the #:modules argument mod-list is a two- or three-item list, where
the first item is a prefix for the module name, and the second item is a module path datum
(that’s in the format understood by the default module name resolver), and the third is a list
of submodule names to be included if they are available. The prefix can be a symbol, #f to
indicate no prefix, or #t to indicate an auto-generated prefix. For example,

'((#f "m.rkt"))

embeds the module m from the file "m.rkt", without prefixing the name of the module; the
literal-sexpr argument to go with the above might be '(require m). When submod-
ules are available and included, the submodule is given a name by symbol-appending the
write form of the submodule path to the enclosing module’s name.

When an embedded module is not listed in the #:modules argument or not given a prefix
there, a symbolic name for the embedded module is generated automatically. The names
are generated in a deterministic but unspecified way, so that they are not conveniently ac-
cessible. The generated names may depend on the path of the first element of mod-list .
Modules that were included via a collection-based path remain accessible at run time through
their collection-based paths (via a module name resolver that is installed for the embedding
executable).

Modules are normally compiled before they are embedded into the target executable; see
also #:compiler and #:src-filter below. When a module declares run-time paths via

37

define-runtime-path, the generated executable records the path (for use both by imme-
diate execution and for creating a distribution that contains the executable).

If collects-dest is a path instead of #f, then instead of embedding collection-based mod-
ules into the executable, the modules (in compiled form, only) are copied into collections in
the collects-dest directory.

The optional #:aux argument is an association list for platform-specific options (i.e., it is a
list of pairs where the first element of the pair is a key symbol and the second element is the
value for that key). See also build-aux-from-path. The currently supported keys are as
follows:

• 'icns (Mac OS) : An icon file path (suffix ".icns") to use for the executable’s
desktop icon.

• 'ico (Windows) : An icon file path (suffix ".ico") to use for the executable’s desktop
icon.

Changed in version 6.3 of package base: All icons in the executable are replaced with icons from the file,
instead of setting only certain sizes and depths.

• 'creator (Mac OS) : Provides a 4-character string to use as the application signature.

• 'file-types (Mac OS) : Provides a list of association lists, one for each type of
file handled by the application; each association is a two-element list, where the first
(key) element is a string recognized by Finder, and the second element is a plist value
(see xml/plist). See "drracket.filetypes" in the "drracket" collection for
an example.

• 'uti-exports (Mac OS) : Provides a list of association lists, one for each Uniform
Type Identifier (UTI) exported by the executable; each association is a two-element
list, where the first (key) element is a string recognized in a UTI declaration, and the
second element is a plist value (see xml/plist). See "drracket.utiexports" in
the "drracket" collection for an example.

• 'resource-files (Mac OS) : extra files to copy into the "Resources" directory of
the generated executable.

• 'config-dir : A string/path to a directory that contains configuration information,
such as "config.rtkd" (see §19 “Installation Configuration and Search Paths”). If
no value is supplied, the path is left as-is and converted to absolute form as needed.
If #f is supplied, the path is left as-is (in potentially relative form). Note that if
collects-path is provided as an empty list, then the configuration-directory path
is not used by Racket’s start up process (in contrast to a normal Racket start-up, where
the configuration directory is consulted for information about collection link files).

• 'framework-root (Mac OS) : A string to prefix the executable’s path to the Racket
and GRacket frameworks (including a separating slash); note that when the prefix start
"@executable_path/" works for a Racket-based application, the corresponding

38

prefix start for a GRacket-based application is "@executable_path/../../../";
if #f is supplied, the executable’s framework path is left as-is, otherwise the original
executable’s path to a framework is converted to an absolute path if it was relative.

• 'dll-dir (Windows) : A string/path to a directory that contains Racket DLLs needed
by the executable, such as "racket⟨version⟩.dll", or a boolean; a path can be rela-
tive to the executable; if #f is supplied, the path is left as-is; if #t is supplied, the path
is dropped (so that the DLLs must be in the system directory or the user’s PATH); if
no value is supplied the original executable’s path to DLLs is converted to an absolute
path if it was relative.

• 'embed-dlls? (Windows) : A boolean indicating whether to copy DLLs into the
executable, where the default value is #f. Embedded DLLs are instantiated by an
internal linking step that bypasses some operating system facilities, so it will not work
for all Windows DLLs, but typical DLLs will work as embedded.

• 'subsystem (Windows) : A symbol, either 'console for a console application
or 'windows for a consoleless application; the default is 'console for a Racket-
based application and 'windows for a GRacket-based application; see also 'single-
instance?, below.

• 'single-instance? (Windows) : A boolean for GRacket-based apps; the default is
#t, which means that the app looks for instances of itself on startup and merely brings
the other instance to the front; #f means that multiple instances are expected.

• 'forget-exe? (Unix, Windows, Mac OS) : A boolean; #t for a launcher (see
launcher? below) does not preserve the original executable name for (find-
system-path 'exec-file); one consequence is that library collections will be
found relative to the launcher instead of the original executable.

• 'original-exe? (Unix) : A boolean; #t means that the embedding uses the original
Racket or GRacket executable, instead of a wrapper binary that execs the original;
the default is #f.

• 'relative? (Unix, Windows, Mac OS) : A boolean; #t means that, to the degree that
the generated executable must refer to another, it can use a relative path (so the exe-
cutables can be moved together, but not separately), and it implies #f for 'config-
dir, 'framework-dir, and 'dll-dir, unless those are explicitly provided; a #f
value (the default) means that absolute paths should be used (so the generated exe-
cutable can be moved).

• 'wm-class (Unix) : A string; used as the default WM_CLASS program class for the
program’s windows.

If the #:collects-path argument is #f, then the created executable maintains its built-
in (relative) path to the main "collects" directory—which will be the result of (find-
system-path 'collects-dir) when the executable is run—plus a potential list of other

39

directories for finding library collections—which are used to initialize the current-
library-collection-paths list in combination with the PLTCOLLECTS environment
variable. Otherwise, the argument specifies a replacement; it must be either a path, string,
or list of paths and strings. In the last case, the first path or string specifies the main collec-
tion directory, and the rest are additional directories for the collection search path (placed,
in order, after the user-specific "collects" directory, but before the main "collects"
directory; then the search list is combined with PLTCOLLECTS, if it is defined). If the list
is empty, then (find-system-path 'collects-dir) will return the directory of the ex-
ecutable, but current-library-collection-paths is initialized to an empty list, and
use-collection-link-paths is set to false to disable the use of collection links files.

If the #:launcher? argument is #t, then mod-list should be null, literal-files
should be null, and literal-sexp should be #f. The embedding executable is created
in such a way that (find-system-path 'exec-file) produces the source Racket or
GRacket path instead of the embedding executable (but the result of (find-system-path
'run-file) is still the embedding executable), unless 'forget-exe? is associated to a
true value in aux .

The #:variant argument indicates which variant of the original binary to use for embed-
ding. The default is (system-type 'gc); see also current-launcher-variant.

The #:compiler argument is used to compile the source of modules to be included in the
executable (when a compiled form is not already available). It should accept a single ar-
gument that is a syntax object for a module form. The default procedure uses compile
parameterized to set the current namespace to expand-namespace .

The #:expand-namespace argument selects a namespace for expanding extra modules (and
for compiling using the default compile-proc). Extra-module expansion is needed to de-
tect run-time path declarations in included modules, so that the path resolutions can be di-
rected to the current locations (and, ultimately, redirected to copies in a distribution).

The #:src-filter src-filter argument takes a path and returns true if the correspond-
ing file source should be included in the embedding executable in source form (instead of
compiled form), #f otherwise. The default returns #f for all paths. Beware that the current
output port may be redirected to the result executable when the filter procedure is called.
Each path given to src-filter corresponds to the actual file name (e.g., ".ss"/".rkt"
conversions have been applied as needed to refer to the existing file).

If the #:on-extension argument is a procedure, the procedure is called when the traversal
of module dependencies arrives at an extension (i.e., a DLL or shared object). The default,
#f, causes a reference to a single-module extension (in its current location) to be embedded
into the executable. The procedure is called with two arguments: a path for the extension,
and a #f (for historical reasons).

The #:get-extra-imports extras-proc argument takes a source pathname and com-
piled module for each module to be included in the executable. It returns a list of quoted
module paths (absolute, as opposed to relative to the module) for extra modules to be in-

40

cluded in the executable in addition to the modules that the source module requires. For
example, these modules might correspond to reader extensions needed to parse a module
that will be included as source, as long as the reader is referenced through an absolute
module path. Each path given to extras-proc corresponds to the actual file name (e.g.,
".ss"/".rkt" conversions have been applied as needed to refer to the existing file).

Changed in version 6.90.0.23 of package base: Added embed-dlls? as an #:aux key.
Changed in version 7.3.0.6: Changed generation of symbolic names for embedded modules to make it deterministic.

(make-embedding-executable dest
mred?
verbose?
mod-list
literal-files
literal-sexp
cmdline

[aux
launcher?
variant
collects-path]) Ñ void?

dest : path-string?
mred? : any/c
verbose? : any/c
mod-list : (listof (or/c (list/c (or/c symbol? #f #t)

(or/c module-path? path?))
(list/c (or/c symbol? #f #t)

(or/c module-path? path?)
(listof symbol?))))

literal-files : (listof path-string?)
literal-sexp : any/c
cmdline : (listof string?)
aux : (listof (cons/c symbol? any/c)) = null
launcher? : any/c = #f
variant : (or/c 'cgc '3m 'cs) = (system-type 'gc)
collects-path : (or/c #f

path-string?
(listof path-string?))

= #f

Old (keywordless) interface to create-embedding-executable.

(write-module-bundle verbose?
mod-list
literal-files
literal-sexp) Ñ void?

verbose? : any/c

41

mod-list : (listof (or/c (list/c (or/c symbol? #f #t)
(or/c module-path? path?))

(list/c (or/c symbol? #f #t)
(or/c module-path? path?)
(listof symbol?))))

literal-files : (listof path-string?)
literal-sexp : any/c

Like make-embedding-executable, but the module bundle is written to the current output
port instead of being embedded into an executable. The output of this function can be read
to load and instantiate mod-list and its dependencies, adjust the module name resolver
to find the newly loaded modules, evaluate the forms included from literal-files , and
finally evaluate literal-sexpr. The read-accept-compiled parameter must be true to
read the stream.

(embedding-executable-is-directory? mred?) Ñ boolean
mred? : any/c

Indicates whether Racket/GRacket executables for the current platform correspond to direc-
tories from the user’s perspective. The result is currently #f for all platforms.

(embedding-executable-is-actually-directory? mred?) Ñ boolean?
mred? : any/c

Indicates whether Racket/GRacket executables for the current platform actually correspond
to directories. The result is #t on Mac OS when mred? is #t, #f otherwise.

(embedding-executable-put-file-extension+style+filters mred?)
Ñ (or/c string? #f)

(listof (or/c 'packages 'enter-packages))
(listof (list/c string? string?))

mred? : any/c

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively.

If Racket/GRacket launchers for the current platform were directories from the user’s per-
spective, the style result is suitable for use with get-directory, and the extension
result may be a string indicating a required extension for the directory name.

(embedding-executable-add-suffix path
mred?) Ñ path-string?

path : path-string?
mred? : any/c

42

Adds a suitable executable suffix, if it’s not present already.

Changed in version 8.1.0.7 of package base: Changed to actually add a suffix, instead of replacing an existing
suffix.

2.1.1 Executable Creation Signature

(require compiler/embed-sig) package: compiler-lib

compiler:embed^ : signature

Includes the identifiers provided by compiler/embed.

2.1.2 Executable Creation Unit

(require compiler/embed-unit) package: compiler-lib

compiler:embed@ : unit?

A unit that imports nothing and exports compiler:embed^.

2.1.3 Finding the Racket Executable

(require compiler/find-exe) package: base

(find-exe [#:cross? cross?
#:untethered? untethered?
gracket?
variant]) Ñ path?

cross? : any/c = #f
untethered? : any/c = #f
gracket? : any/c = #f
variant : (or/c 'cgc '3m 'cs) = (if cross?

(cross-system-type 'gc)
(system-type 'gc))

Finds the path to the racket or gracket (when gracket? is true) executable.

If cross? is true, the executable is found for the target platform in cross-installation mode.

If untethered? is true, then the original executable is found, instead of an executable that
is tethered to a configuration or addon directory via (find-addon-tethered-console-
bin-dir) and related functions.

43

https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/base

Changed in version 6.2.0.5 of package base: Added the #:untethered? argument.
Changed in version 6.3: Added the #:cross? argument.

2.2 Installation-Specific Launchers

A launcher is similar to a stand-alone executable, but a launcher is usually smaller and can
be created more quickly, because it depends permanently on the local Racket installation
and the program’s sources. In the case of Unix, a launcher is simply a shell script that
runs racket or gracket. Launchers cannot be packaged into a distribution using raco
distribute. The raco exe command creates a launcher when the -l or --launcher flag
is specified.

(require launcher/launcher) package: base

The launcher/launcher library provides functions for creating launchers.

2.2.1 Creating Launchers

(make-gracket-launcher args
dest

[aux
#:tether-mode tether-mode]) Ñ void?

args : (listof string?)
dest : path-string?
aux : (listof (cons/c symbol? any/c)) = null
tether-mode : (or/c 'addon 'config #f) = 'addon

Creates the launcher dest , which starts GRacket with the command-line arguments spec-
ified as strings in args . Extra arguments passed to the launcher at run-time are appended
(modulo special Unix/X flag handling, as described below) to this list and passed on to
GRacket. If dest exists already, as either a file or directory, it is replaced.

The optional aux argument is an association list for platform-specific options (i.e., it is a list
of pairs where the first element of the pair is a key symbol and the second element is the value
for that key). See also build-aux-from-path. See create-embedding-executable for
a list that applies to both stand-alone executables and launchers on Windows and Mac OS
GRacket; the following additional associations apply to launchers:

• 'independent? (Windows) — a boolean; #t creates an old-style launcher that works
with any Racket or GRacket binary, like raco.exe. No other aux associations are
used for an old-style launcher.

• 'exe-name (Mac OS, 'script-3m, 'script-cgc or 'script-cs variant) — pro-
vides the base name for a '3m-/'cgc-/'cs-variant launcher, which the script will call

44

https://pkgs.racket-lang.org/package/base

ignoring args . If this name is not provided, the script will go through the GRacket
executable as usual.

• 'exe-is-gracket (when 'exe-name is used) — indicates that 'exe-name refers to
the GRacket executable, which is potentially in a "lib" subdirectory instead of with
other GUI applications.

• 'relative? (all platforms) — a boolean, where #t means that the generated launcher
should find the base GRacket executable through a relative path.

• 'install-mode (Windows, Unix) — either 'main, 'user, 'config-tethered, or
'addon-tethered, indicates that the launcher is being installed to an installation-
wide place, a user-specific place, an installation-wide place that embeds the con-
figuration path, or a specific place that embeds an addon-directory path; the install
mode, in turn, determines whether and where to record 'start-menu, 'extension-
registry, and/or 'desktop information.

• 'start-menu (Windows) — a boolean or real number; #t indicates that the launcher
should be in the Start menu by an installer that includes the launcher. A number value
is treated like #t, but also requests that the installer automatically start the application,
where the number determines a precedence relative to other launchers that may request
starting. A 'start-menu value is used only when 'install-mode is also specified.

• 'extension-register (Windows) — a list of document types for file-extension reg-
istrations to be performed by an installer. Each document type is described by a list of
six items:

– a human-readable string describing the document type, such as "Racket Doc-
ument";

– a string to use as a key for the document type, such as "Racket.Document";

– a list of strings, where each string is a file extension without the dot, such as
'("rkt" "rktl" "rktd");

– a path to a file that supplies the icon, such as "doc.ico";

– a string to represent the command line to handle a document with a matching
extension, such as "\"%1\"", where the string will be prefixed with a path to the
launcher, and where %1 will be replaced with the document path

An 'extension-registry value is used only when 'install-mode is also speci-
fied.

• 'desktop (Unix) — a string containing the content of a ".desktop" file for the
launcher, where Exec and Icon entries are added automatically. If an Exec entry
exists in the string, and if its value starts with a non-empty sequence of alpha-numeric
ASCII characters followed by a space, then the space and remainder of the value is
appended to the automatically generated value. The ".desktop" file is written to the
directory produced by (find-apps-dir) or (find-user-apps-dir). A 'desktop
value is used only when 'install-mode is also specified.

45

• 'png (Unix) : An icon file path (suffix ".png") to be referenced by a ".desktop" file
(if any); a 'png value takes precedence over a 'ico value, but neither is used unless a
'desktop value is also present.

• 'ico (Unix, in addition to more general Windows use) : An icon file path (suffix
".ico") that is used in the same way as 'png if no 'png value is available.

For Unix/X, the script created by make-mred-launcher detects and handles X Windows
flags specially when they appear as the initial arguments to the script. Instead of appending
these arguments to the end of args , they are spliced in after any X Windows flags already
listed in args . The remaining arguments (i.e., all script flags and arguments after the last X
Windows flag or argument) are then appended after the spliced args .

The tether-mode argument indicates how much to preserve the current installation’s teth-
ering to a configuration directory and/or addon directory based on (find-addon-tether-
console-bin-dir) and (find-config-tether-console-bin-dir). The 'addon
mode allows full tethering, the 'config mode allows only configuration-directory tether-
ing, and the #f mode disables tethering.

Changed in version 6.5.0.2 of package base: Added the #:tether-mode argument.

(make-racket-launcher args dest [aux]) Ñ void?
args : (listof string?)
dest : path-string?
aux : (listof (cons/c symbol? any/c)) = null

Like make-gracket-launcher, but for starting Racket. On Mac OS, the 'exe-name aux
association is ignored.

(make-gracket-program-launcher file
collection
dest) Ñ void?

file : string?
collection : string?
dest : path-string?

Calls make-gracket-launcher with arguments that start the GRacket program imple-
mented by file in collection : (list "-l-" (string-append collection "/"
file)). The aux argument to make-gracket-launcher is generated by stripping the
suffix (if any) from file , adding it to the path of collection , and passing the result to
build-aux-from-path.

(make-racket-program-launcher file
collection
dest) Ñ void?

file : string?

46

collection : string?
dest : path-string?

Like make-gracket-program-launcher, but for make-racket-launcher.

(install-gracket-program-launcher file
collection
name) Ñ void?

file : string?
collection : string?
name : string?

Same as

(make-gracket-program-launcher
file collection
(gracket-program-launcher-path name))

(install-racket-program-launcher file
collection
name) Ñ void?

file : string?
collection : string?
name : string?

Same as

(make-racket-program-launcher
file collection
(racket-program-launcher-path name))

(make-mred-launcher args dest [aux]) Ñ void?
args : (listof string?)
dest : path-string?
aux : (listof (cons/c symbol? any/c)) = null

(make-mred-program-launcher file
collection
dest) Ñ void?

file : string?
collection : string?
dest : path-string?

(install-mred-program-launcher file
collection
name) Ñ void?

file : string?
collection : string?
name : string?

47

Backward-compatible version of make-gracket-launcher, etc., that adds "-I"
"scheme/gui/init" to the start of the command-line arguments.

(make-mzscheme-launcher args dest [aux]) Ñ void?
args : (listof string?)
dest : path-string?
aux : (listof (cons/c symbol? any/c)) = null

(make-mzscheme-program-launcher file
collection
dest) Ñ void?

file : string?
collection : string?
dest : path-string?

(install-mzscheme-program-launcher file
collection
name) Ñ void?

file : string?
collection : string?
name : string?

Backward-compatible version of make-racket-launcher, etc., that adds "-I"
"scheme/init" to the start of the command-line arguments.

2.2.2 Launcher Path and Platform Conventions

(gracket-program-launcher-path name
[#:user? user?
#:tethered? tethered?
#:console? console?]) Ñ path?

name : string?
user? : any/c = #f
tethered? : any/c = #f
console? : any/c = #f

Returns a pathname for an executable called something like name in

• the Racket installation — when user? is #f and tethered? is #f;

• the user’s Racket executable directory — when user? is #t and tethered? is #f;

• an additional executable directory for executables tethered to a particular configuration
directory — when user? is #f and tethered? is #t; or

• an additional executable directory for executables tethered to a particular addon and
configuration directory — when user? is #t and tethered? is #t.

48

For Windows, the ".exe" suffix is automatically appended to name . For Unix, name is
changed to lowercase, whitespace is changed to -, and the path includes the "bin" subdi-
rectory of the Racket installation. For Mac OS, the ".app" suffix is appended to name .

If console? is true, then the path is in the console executable directory, such as the one
reported by (find-console-bin-dir), instead of the GUI executable directory, such as
the one reported by (find-gui-bin-dir).

Changed in version 6.5.0.2 of package base: Added the #:tethered? argument.
Changed in version 6.8.0.2: Added the #:console? argument.

(racket-program-launcher-path name
[#:user? user?
#:tethered? tethered?
#:console? console?]) Ñ path?

name : string?
user? : any/c = #f
tethered? : any/c = #f
console? : any/c = #f

Returns the same path as (gracket-program-launcher-path name #:user? user?
#:tethered tethered? #:console? console?).

Changed in version 6.5.0.2 of package base: Added the #:tethered? argument.
Changed in version 6.8.0.2: Added the #:console? argument.

(gracket-launcher-is-directory?) Ñ boolean?

Returns #t if GRacket launchers for the current platform are directories from the user’s
perspective. For all currently supported platforms, the result is #f.

(racket-launcher-is-directory?) Ñ boolean?

Like gracket-launcher-is-directory?, but for Racket launchers.

(gracket-launcher-is-actually-directory?) Ñ boolean?

Returns #t if GRacket launchers for the current platform are implemented as directories
from the filesystem’s perspective. The result is #t for Mac OS, #f for all other platforms.

(racket-launcher-is-actually-directory?) Ñ boolean?

Like gracket-launcher-is-actually-directory?, but for Racket launchers. The re-
sult is #f for all platforms.

49

(gracket-launcher-add-suffix path-string?) Ñ path?
path-string? : path

Returns a path with a suitable executable suffix added, if it’s not present already.

(racket-launcher-add-suffix path-string?) Ñ path?
path-string? : path

Like gracket-launcher-add-suffix, but for Racket launchers.

(gracket-launcher-put-file-extension+style+filters)
Ñ (or/c string? #f)

(listof (or/c 'packages 'enter-packages))
(listof (list/c string? string?))

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively.

If GRacket launchers for the current platform were directories from the user’s perspective,
the style result is suitable for use with get-directory, and the extension result may be
a string indicating a required extension for the directory name.

(racket-launcher-put-file-extension+style+filters)
Ñ (or/c string? #f)

(listof (or/c 'packages 'enter-packages))
(listof (list/c string? string?))

Like gracket-launcher-get-file-extension+style+filters, but for Racket
launchers.

(mred-program-launcher-path name
[#:user? user?
#:tethered? tethered?]) Ñ path?

name : string?
user? : any/c = #f
tethered? : any/c = #f

(mred-launcher-is-directory?) Ñ boolean?
(mred-launcher-is-actually-directory?) Ñ boolean?
(mred-launcher-add-suffix path-string?) Ñ path?

path-string? : path
(mred-launcher-put-file-extension+style+filters)

Ñ (or/c string? #f)
(listof (or/c 'packages 'enter-packages))
(listof (list/c string? string?))

50

Backward-compatible aliases for gracket-program-launcher-path, etc.

Changed in version 6.5.0.2 of package base: Added the #:tethered? argument.

(mzscheme-program-launcher-path name
[#:user? user?
#:tethered? tethered?]) Ñ path?

name : string?
user? : any/c = #f
tethered? : any/c = #f

(mzscheme-launcher-is-directory?) Ñ boolean?
(mzscheme-launcher-is-actually-directory?) Ñ boolean?
(mzscheme-launcher-add-suffix path-string?) Ñ path?

path-string? : path
(mzscheme-launcher-put-file-extension+style+filters)

Ñ (or/c string? #f)
(listof (or/c 'packages 'enter-packages))
(listof (list/c string? string?))

Backward-compatible aliases for racket-program-launcher-path, etc.

Changed in version 6.5.0.2 of package base: Added the #:tethered? argument.

(installed-executable-path->desktop-path exec-path
user?
tethered?)

Ñ (or/c (and/c path? complete-path?) #f)
exec-path : path-string?
user? : any/c
tethered? : any/c

Returns a path for a ".desktop" file to describe the installed executable at exec-path .
Only the filename part of exec-path is used. The user? argument should be true if exec-
path is installed in a user-specific location (in which case the result path will also be user-
specific). The tethered? argument should be true for a tethered install. The result can be
#f only when tethered? is true and find-addon-tethered-apps-dir (when user? is
true) or find-config-tethered-apps-dir (when user? is #f) returns #f.

Changed in version 8.3.0.11 of package base: Added the tethered? argument.

(installed-desktop-path->icon-path desktop-path
user?
suffix)

Ñ (and/c path? complete-path?)
desktop-path : path-string?
user? : any/c
suffix : bytes?

51

Returns a path for an icon file to be referenced by the "desktop" file at desktop-path .
Only the filename part of desktop-path is used. The user? argument should be true if
desktop-path is installed in a user-specific location (in which case the result path will
also be user-specific). The suffix argument provides the icon-file suffix, normally either
#"png" or #"ico".

2.2.3 Launcher Configuration

(gracket-launcher-up-to-date? dest aux) Ñ boolean?
dest : path-string?
aux : (listof (cons/c symbol? any/c))

Returns #t if the GRacket launcher dest does not need to be updated, assuming that dest
is a launcher and its arguments have not changed.

(racket-launcher-up-to-date? dest aux) Ñ boolean?
dest : path-string?
aux : (listof (cons/c symbol? any/c))

Analogous to gracket-launcher-up-to-date?, but for a Racket launcher.

(build-aux-from-path path) Ñ (listof (cons/c symbol? any/c))
path : path-string?

Creates an association list suitable for use with make-gracket-launcher or create-
embedding-executable. It builds associations by adding to path suffixes, such as
".icns", checking whether such a file exists, and calling extract-aux-from-path if so.
The results from all recognized suffixes are appended together.

(extract-aux-from-path path) Ñ (listof (cons/c symbol? any/c))
path : path-string?

Creates an association list suitable for use with make-gracket-launcher or create-
embedding-executable. It builds associations by recognizing the suffix of path , where
the recognized suffixes are as follows:

• ".icns" Ñ 'icns file for use on Mac OS

• ".ico" Ñ 'ico file for use on Windows or Unix

• ".png" Ñ 'png file for use on Unix

• ".lch" Ñ 'independent? as #t (the file content is ignored) for use on Windows

52

• ".creator" Ñ 'creator as the initial four characters in the file for use on Mac OS

• ".filetypes" Ñ 'file-types as read content (a single S-expression), and
'resource-files as a list constructed by finding "CFBundleTypeIconFile" en-
tries in 'file-types (and filtering duplicates); for use on Mac OS

• ".utiexports" Ñ 'uti-exports as read content (a single S-expression); for use
on Mac OS

• ".wmclass" Ñ 'wm-class as the literal content, removing a trailing newline if any;
for use on Unix

• ".desktop" Ñ 'desktop as the literal content; for use on Unix

• ".startmenu" Ñ 'start-menu as the file content if it reads as a real number, #t
otherwise, for use on Windows

• ".extreg" Ñ 'extension-register as read content (a single S-expression), but
with relative (to the ".extreg" file) paths converted to absolute paths; for use on
Windows

(current-launcher-variant) Ñ symbol?
(current-launcher-variant variant) Ñ void?

variant : symbol?

A parameter that indicates a variant of Racket or GRacket to use for launcher creation and
for generating launcher names. The default is the result of (system-type 'gc). On Unix
and Windows, the possibilities are 'cgc, '3m, and 'cs. On Mac OS, the 'script-cgc,
'script-3m, and 'script-cs variants are also available for GRacket launchers.

(available-gracket-variants) Ñ (listof symbol?)

Returns a list of symbols corresponding to available variants of GRacket in the current
Racket installation. The list normally includes at least one of '3m, 'cgc, or 'cs— whichever
is the result of (system-type 'gc)—and may include the others, as well as 'script-3m,
'script-cgc, and/or 'script-cs on Mac OS.

(available-racket-variants) Ñ (listof symbol?)

Returns a list of symbols corresponding to available variants of Racket in the current Racket
installation. The list normally includes at least one of '3m, 'cgc, or 'cs—whichever is the
result of (system-type 'gc)—and may include the others.

(mred-launcher-up-to-date? dest aux) Ñ boolean?
dest : path-string?
aux : (listof (cons/c symbol? any/c))

53

(mzscheme-launcher-up-to-date? dest aux) Ñ boolean?
dest : path-string?
aux : (listof (cons/c symbol? any/c))

(available-mred-variants) Ñ (listof symbol?)
(available-mzscheme-variants) Ñ (listof symbol?)

Backward-compatible aliases for gracket-launcher-up-to-date?, etc.

2.2.4 Launcher Creation Signature

(require launcher/launcher-sig) package: compiler-lib

launcher^ : signature

Includes the identifiers provided by launcher/launcher.

2.2.5 Launcher Creation Unit

(require launcher/launcher-unit) package: compiler-lib

launcher@ : unit?

A unit that imports nothing and exports launcher^.

2.3 Mac OS Dynamic Library Paths

(require compiler/exe-dylib-path) package: base

The compiler/exe-dylib-path library provides functions for reading and adjusting
dynamic-library references in a Mac OS executable.

Added in version 6.3 of package base.

(find-matching-library-path exe-path
library-str) Ñ (or/c #f string?)

exe-path : path-string?
library-str : string?

Searches dynamic-linking information in exe-path for a library reference whose name
includes library-str and returns the executable’s path to the library for the first match. If
no match is found, the result is #f.

54

https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/base

(update-matching-library-path exe-path
library-str
library-path-str) Ñ void?

exe-path : path-string?
library-str : string?
library-path-str : string?

Searches dynamic-linking information in exe-path for each library reference whose name
includes library-str and replaces the executable’s path to that library with library-
path-str .

A single match is expected, and the update assumes enough space for the new path, perhaps
because the executable is linked with -headerpad_max_install_names.

55

3 raco distribute: Sharing Stand-Alone Executables

The raco distribute command combines a stand-alone executable created by raco exe
with all of the shared libraries that are needed to run it, along with any run-time files declared
via define-runtime-path. The resulting package can be moved to other machines that
run the same operating system. On Windows and

Mac OS, native
libraries tend to be
included with the
output of raco
distribute. On
Unix platforms,
native libraries tend
not to be included,
so system libraries
will be used on the
host machine. The
difference is
whether a Racket
installation itself
includes bundled
native libraries or
relies on
system-installed
libraries. Adding a
symbolic link in
Racket’s "lib"
directory to a
system-installed
library causes that
library to be
included with a
distribution
directory created by
raco
distribute; see
also
define-runtime-path.

After the raco distribute command, supply a directory to contain the combined files for
a distribution. Each command-line argument is an executable to include in the distribution,
so multiple executables can be packaged together. For example, on Windows,

raco distribute greetings hello.exe goodbye.exe

creates a directory "greetings" (if the directory doesn’t exist already), and it copies the
executables "hello.exe" and "goodbye.exe" into "greetings". It also creates a "lib"
sub-directory in "greetings" if needed to contain DLLs, and in that case it adjusts the
copied "hello.exe" and "goodbye.exe" to use the DLLs in "lib".

The number of needed support files depends in part on the way that executables for a distribu-
tion are created. Supplying --embed-dlls or --orig-exe to raco exe reduces the need
for support files, but at the expense of making the distribution larger if it contains multiple
executables.

The layout of files within a distribution directory is platform-specific:

• On Windows, executables are put directly into the distribution directory, and DLLs
and other run-time files go into a "lib" sub-directory.

• On Mac OS, GUI executables go into the distribution directory, other executables go
into a "bin" subdirectory, and frameworks (i.e., shared libraries) go into a "lib"
sub-directory along with other run-time files. As a special case, if the distribution
has a single --gui-exe executable, then the "lib" directory is hidden inside the
application bundle.

• On Unix, executables go into a "bin" subdirectory, shared libraries (if any) go into
a "lib" subdirectory along with other run-time files, and wrapped executables are
placed into a "lib/plt" subdirectory with version-specific names. This layout is
consistent with Unix installation conventions; the version-specific names for shared
libraries and wrapped executables means that distributions can be safely unpacked
into a standard place on target machines without colliding with an existing Racket
installation or other executables created by raco exe.

A distribution also has a "collects" directory that is used as the main library collec-
tion directory for the packaged executables. By default, the directory is empty. Use the
++collects-copy flag of raco distribute to supply a directory whose content is copied

56

into the distribution’s "collects" directory. The ++collects-copy flag can be used mul-
tiple times to supply multiple directories.

When multiple executables are distributed together, then separately creating the executables
with raco exe can generate multiple copies of collection-based libraries that are used by
multiple executables. To share the library code, instead, specify a target directory for library
copies using the --collects-dest flag with raco exe, and specify the same directory for
each executable (so that the set of libraries used by all executables are pooled together). Fi-
nally, when packaging the distribution with raco distribute, use the ++collects-copy
flag to include the copied libraries in the distribution.

3.1 API for Distributing Executables

(require compiler/distribute) package: base

The compiler/distribute library provides a function to perform the same work as raco
distribute.

(assemble-distribution dest-dir
exec-files

[#:executables? executables?
#:relative-base relative-base
#:collects-path path
#:copy-collects dirs]) Ñ void?

dest-dir : path-string?
exec-files : (listof path-string?)
executables? : any/c = #t
relative-base : (or/c path-string? #f) = #f
path : (or/c #f (and/c path-string? relative-path?)) = #f
dirs : (listof path-string?) = null

Copies the executables in exec-files to the directory dest-dir , along with DLLs, frame-
works, shared libraries, and/or runtime files that the executables need to run a different ma-
chine. If executables? is #f, then the exec-files are treated as plain data files, instead
of executables, and they are modified in-place.

The arrangement of the executables and support files in dest-dir depends on the platform.
In general, assemble-distribution tries to do the Right Thing, but a non-#f value for
relative-base specifies a path for reaching the assembled content relative to the exe-
cutable at run time. When executables? is #f, then the default access path is dest-dir ,
with its relativeness preserved.

If a #:collects-path argument is given, it overrides the default location of the main "col-
lects" directory for the packaged executables. It should be relative to the dest-dir direc-
tory (typically inside it).

57

https://pkgs.racket-lang.org/package/base

The content of each directory in the #:copy-collects argument is copied into the main
"collects" directory for the packaged executables.

Changed in version 6.3 of package base: Added the #:executables? and #:relative-base arguments.

3.2 API for Bundling Distributions

(require compiler/bundle-dist) package: compiler-lib

The compiler/bundle-dist library provides a function to pack a directory (usually as-
sembled by assemble-distribution) into a distribution file. On Windows, the result is a
".zip" archive; on Mac OS, it’s a ".dmg" disk image; on Unix, it’s a ".tgz" archive.

(bundle-directory dist-file dir [for-exe?]) Ñ void?
dist-file : file-path?
dir : file-path?
for-exe? : any/c = #f

Packages dir into dist-file . If dist-file has no extension, a file extension is added
automatically (using the first result of bundle-put-file-extension+style+filters).

The created archive contains a directory with the same name as dir—except on Mac OS
when for-exe? is true and dir contains a single a single file or directory, in which case the
created disk image contains just the file or directory. The default for for-exe? is #f.

Archive creation fails if dist-file exists.

(bundle-put-file-extension+style+filters)
Ñ (or/c string? #f)

(listof (or/c 'packages 'enter-packages))
(listof (list/c string? string?))

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively to select a distribution-file name.

58

https://pkgs.racket-lang.org/package/compiler-lib

4 raco planet: Automatic Package Distribution

See PLaneT: Automatic Package Distribution for information on the raco planet com-
mand, which is used for managing packages that can be automatically downloaded and in-
stalled from the PLaneT server.

59

5 raco pkg: Package Management

See Package Management in Racket for information on the raco pkg command, which is
used for managing external code packages.

60

6 raco setup: Installation Management

The raco setup command builds bytecode, documentation, executables, and metadata in-
dexes for all installed collections.

The collections that are built by raco setup can be part of the original Racket distribu-
tion, installed via the package manager (see Package Management in Racket), installed via
PLaneT (see PLaneT: Automatic Package Distribution), linked via raco link, in a direc-
tory that is listed in the PLTCOLLECTS environment variable, or placed into one of the default
collection directories.

The raco setup tool itself does not directly support the installation of collections, except
through the now-discouraged -A flag (see §6.2 “Installing ".plt" Archives”). The raco
setup command is used by installation tools such as the package manager or PLaneT. Pro-
grammers who modify installed collections may find it useful to run raco setup as an
alternative to un-installing and re-installing a set of collections.

6.1 Running raco setup

With no command-line arguments, raco setup finds all of the current collections—see
§18.2 “Libraries and Collections”—and compiles libraries in each collection. (Directories
that are named ".git" or ".svn" are not treated as collections.)

To restrict raco setup to a set of collections, provide the collection names as arguments.
For example, raco setup scribblings/raco would only compile and render the docu-
mentation for raco, which is implemented in a "scribblings/raco" collection.

An optional "info.rkt" within the collection can indicate specifically how the collec-
tion’s files are to be compiled and other actions to take in setting up a collection, such
as creating executables or building documentation. See §6.3 “Controlling raco setup with
"info.rkt" Files” for more information.

The raco setup command accepts the following command-line flags:

• Constraining to specified collections or PLaneT packages:

– --only — restrict setup to specified collections and PLaneT packages, even if
none are specified. This mode is the default if any collection is specified as a
command-line argument or through the -l, --pkgs, or -P flag.

– -l ⟨collection⟩ ... — constrain setup actions to the specified ⟨collection⟩s (i.e.,
the same as providing ⟨collections⟩s without a flag, but with no possibility that a
⟨collection⟩ is interpreted as a flag).

– --pkgs ⟨pkg⟩ ... — constrain setup actions to collections that are within (or
partially within) the named ⟨pkg⟩s.

61

– -P ⟨owner⟩ ⟨package-name⟩ ⟨maj⟩ ⟨min⟩ — constrain setup actions to the spec-
ified PLaneT package, in addition to any other specified PLaneT packages or
collections.

– --doc-index — build collections that implement documentation indexes (when
documentation building is enabled), in addition to specified collections.

– --tidy — remove metadata cache information and documentation for non-
existent collections or documentation to clean up after removal, even when setup
actions are otherwise confined to specified collections. Although tidying is not
confined to specified collections, it can be constrained with --avoid-main or
--no-user.

• Constraining to specific tasks:

– --clean or -c — delete existing ".zo" files, thus ensuring a clean build from
the source files. The exact set of deleted files can be controlled by "info.rkt";
see clean for more information. Unless --no-info-domain or -d is also spec-
ified, the "info.rkt" cache is cleared. Unless --no-docs or -D is also speci-
fied, the documentation-index database is reset.

– --fast-clean — like --clean, but without forcing a bootstrap of raco
setup from source (which means that --fast-clean cannot clean corruption
that affects raco setup itself).

– --no-zo or -n — refrain from compiling source files to ".zo" files.

– --trust-zos — fix timestamps on ".zo" files on the assumption that they are
already up-to-date (unless the PLT_COMPILED_FILE_CHECK environment vari-
able is set to exists, in which case timestamps are ignored).

– --recompile-only — disallow recompilation of modules from source, impos-
ing the constraint that each ".zo" file is up-to-date, needs only a timestamp ad-
justment, or can be recompiled from an existing ".zo" in machine-independent
format (when compiling to a machine-dependent format).

– --recompile-cache ⟨dir⟩ — cache module recompilations (from machine-
independent format to machine-dependent format) in ⟨dir⟩.

– --sync-docs-only — synchronize or move documentation into place to
“build” it, but do not run or render documentation sources.

– --no-launcher or -x — refrain from creating executables or installing man
pages (as specified in "info.rkt"; see §6.3 “Controlling raco setup with
"info.rkt" Files”).

– --no-foreign-libs or -F — refrain from installing foreign libraries (as spec-
ified in "info.rkt"; see §6.3 “Controlling raco setup with "info.rkt"
Files”).

– --only-foreign-libs — disable actions other than installing foreign li-
braries; equivalent to -nxiIdD, except that --only-foreign-libs doesn’t re-
ject (redundant) specification of those individual flags.

62

– --no-install or -i — refrain from running pre-install actions (as specified
in "info.rkt" files; see §6.3 “Controlling raco setup with "info.rkt"
Files”).

– --no-post-install or -I — refrain from running post-install actions (as
specified in "info.rkt" files; see §6.3 “Controlling raco setup with
"info.rkt" Files”).

– --no-info-domain or -d— refrain from building a cache of metadata informa-
tion from "info.rkt" files. This cache is needed by other tools. For example,
raco itself uses the cache to locate plug-in tools.

– --no-docs or -D — refrain from building documentation.

– --doc-pdf ⟨dir⟩ — in addition to building HTML documentation, render doc-
umentation to PDF and place files in ⟨dir⟩.

– --no-pkg-deps or -K — refrain from checking whether dependencies among
libraries are properly reflected by package-level dependency declarations,
whether modules are declared by multiple packages, and whether package ver-
sion dependencies are satisfied. See §6.5 “Package Dependency Checking” for
more information.

– --check-pkg-deps — checks package dependencies (unless explicitly dis-
abled) even when specific collections are provided to raco setup, and even for
packages that have no dependency declarations. See §6.5 “Package Dependency
Checking” for more information.

– --fix-pkg-deps — attempt to correct dependency mismatches by adjusting
package "info.rkt" files (which makes sense only for packages that are in-
stalled as links). See §6.5 “Package Dependency Checking” for more informa-
tion.

– --unused-pkg-deps — attempt to report dependencies that are declared but
are unused. Beware that some package dependencies may be intentionally un-
used (e.g., declared to force installation of other packages as a convenience),
and beware that package dependencies may be reported as unused only because
compilation of relevant modules has been suppressed. See §6.5 “Package De-
pendency Checking” for more information.

• Constraining user versus installation setup:

– --no-user or -U — refrain from any user-specific (as opposed to installation-
specific) setup actions.

– --no-planet — refrain from any setup actions for PLaneT actions; this flag is
implied by --no-user.

– --avoid-main — refrain from any setup actions that affect the installation, as
opposed to user-specific actions.

– --force-user-docs — when building documentation, create a user-specific
documentation entry point even if it has the same content as the main installation.

63

• Selecting parallelism and other build modes:

– --jobs ⟨n⟩, --workers ⟨n⟩, or -j ⟨n⟩ — use up to ⟨n⟩ parallel processes. By
default, raco setup uses (processor-count) jobs, which typically uses all
of the machine’s processing cores.

– --places — use Racket places for parallel jobs; this mode is the default if
Racket places run in parallel.

– --processes— use separate processes for parallel jobs; this mode is the default
if Racket places cannot run in parallel.

– --verbose or -v — more verbose output about raco setup actions.

– --make-verbose or -m — more verbose output about dependency checks.

– --compiler-verbose or -r — even more verbose output about dependency
checks and compilation.

– --mode ⟨mode⟩ — use a ".zo" compiler other than the default compiler, and
put the resulting ".zo" files in a subdirectory (of the usual place) named by
⟨mode⟩. The compiler is obtained by using ⟨mode⟩ as a collection name, finding
a "zo-compile.rkt" module in that collection, and extracting its zo-compile
export. The zo-compile export should be a function like compile; see the
"errortrace" collection for an example.

– --fail-fast — attempt to break as soon as any error is discovered.

– --error-out ⟨file⟩ — handle survivable errors by writing ⟨file⟩ and exiting
as successful, which facilitates chaining multiple raco setup invocations in
combination with --error-in. If there are no errors and ⟨file⟩ already exists, it
is deleted.

– --error-in ⟨file⟩ — treat the existence of ⟨file⟩ as a “errors were reported by
a previous process” error. Typically, ⟨file⟩ is created by previous raco setup
run using --error-out. A file for --error-in is detected before creating a
file via --error-out, so the same file can be used to chain a sequence of raco
setup steps.

– --pause or -p — pause for user input if any errors are reported (so that a user
has time to inspect output that might otherwise disappear when the raco setup
process ends).

• Unpacking ".plt" archives:

– -A ⟨archive⟩ ... — Install each ⟨archive⟩; see §6.2 “Installing ".plt"
Archives”.

– --force — for use with -A, treat version mismatches for archives as mere warn-
ings.

– --all-users or -a — for use with -A, install archive into the installation in-
stead of a user-specific location.

• Bootstrapping:

64

– --boot ⟨module-file⟩ ⟨build-dir⟩ — For use by directly running setup instead
of through raco setup, loads ⟨module-file⟩ in the same way that raco setup
normally loads itself, auto-detecting the need to start from sources and rebuild
the compiled files—even for the compilation manager itself. The ⟨build-dir⟩
path is installed as the only path in current-compiled-file-roots, so all
compiled files go there.

– --chain ⟨module-file⟩ ⟨build-dir⟩ — Like --boot, but adds ⟨build-dir⟩ to
the start of current-compiled-file-roots instead of replacing the current
value, which means that libraries already built in the normal location (including
the compilation manager itself) will be used instead of rebuilt. This mode makes
sense for cross-compilation.

When building racket, flags can be provided to raco setup as run by make install by
setting the PLT_SETUP_OPTIONS makefile variable. For example, the following command
line uses a single process to build collections during an install:

make install PLT_SETUP_OPTIONS="-j 1"

Running raco setup is sensitive to the PLT_COMPILED_FILE_CHECK environment vari-
able in the same way as raco make. Specifically, if PLT_COMPILED_FILE_CHECK is set to
exists, then raco make does not attempt to update a compiled file’s timestamp if the file
is not recompiled.

Some additional environment variables are useful for performance debugging:

• PLT_SETUP_DMS_ARGS triggers a call to dump-memory-stats after each collection
is compiled, where the environment variable’s value is parsed with read to obtain a
list of arguments to dump-memory-stats.

• PLT_SETUP_LIMIT_CACHE (set to anything) avoids caching compiled-file information
across different collections, which is useful to reduce noise when looking for memory
leaks.

• PLT_SETUP_NO_FORCE_GC (set to anything) suppresses a call to collect-garbage
that is issued by default for non-parallel builds after each collection is compiled and
after each document is run or rendered.

• PLT_SETUP_SHOW_TIMESTAMPS (set to anything) appends the current process time
after @ for each status message printed by raco setup.

Changed in version 6.1: Added the --pkgs, --check-pkg-deps, and --fail-fast flags.
Changed in version 6.1.1: Added the --force-user-docs flag.
Changed in version 6.1.1.6: Added the --only-foreign-libs flag.
Changed in version 6.6.0.3: Added support for PLT_COMPILED_FILE_CHECK.
Changed in version 7.0.0.19: Added --places and --processes.
Changed in version 7.2.0.7: Added --error-in and --error-out.

65

Changed in version 7.2.0.8: Added --recompile-only.
Changed in version 7.9.0.3: Added PLT_SETUP_NO_FORCE_GC, PLT_SETUP_SHOW_TIMESTAMPS, and
--sync-docs-only.
Changed in version 8.17.0.2: Added the recompile-cache flag.

6.2 Installing ".plt" Archives

A ".plt" file is a platform-independent distribution archive for software based on Racket.
A typical ".plt" file can be installed as a package using raco pkg (see Package Manage-
ment in Racket), in which case raco pkg supplies facilities for uninstalling the package and
managing dependencies.

An older approach is to supply a ".plt" file to raco setup with the -A flag; the files
contained in the ".plt" archive are unpacked (according to specifications embedded in
the ".plt" file) and only collections specified by the ".plt" file are compiled and setup.
Archives processed in this way can include arbitrary code that is executed at install time, in
addition to any actions triggered by the normal collection-setup part of raco setup.

Finally, the raco unpack (see §11 “raco unpack: Unpacking Library Collections”) com-
mand can list the content of a ".plt" archive or unpack the archive without installing it as
a package or collection.

6.3 Controlling raco setup with "info.rkt" Files

To compile a collection’s files to bytecode, raco setup uses the compile-collection-
zos procedure. That procedure, in turn, consults the collection’s "info.rkt" file, if it ex-
ists, for specific instructions on compiling the collection. See compile-collection-zos
for more information on the fields of "info.rkt" that it uses, and see §6.4 “"info.rkt"
File Format” for information on the format of an "info.rkt" file.

Additional fields are used by the Racket package manager and are documented in §4 “Pack-
age Metadata”. The raco test command also recognizes additional fields, which are doc-
umented in §13.2 “Test Configuration by "info.rkt"”.

Optional "info.rkt" fields trigger additional actions by raco setup:

• scribblings : (listof (cons/c string? list?)) — A list of documents to
build. Each document in the list is itself represented as a list, where each document’s
list starts with a string that is a collection-relative path to the document’s source file.
A document name (which is derived from the source module’s name by default) is
intended to be globally unique in the same way as a package or module name.

More precisely a scribblings entry must be a value that can be generated from an
expression matching the following entry grammar:

66

entry = (list doc ...)

doc = (list src-string)
| (list src-string flags)
| (list src-string flags category)
| (list src-string flags category name)
| (list src-string flags category name out-k)
| (list src-string flags category name out-k order-n)

flags = (list mode-symbol ...)

category = (list category-string-or-symbol)
| (list category-string-or-symbol sort-number)
| (list category-string-or-symbol sort-number lang-fam)

lang-fam = (list string ...)

name = string
| #f

A document’s list optionally continues with information on how to build the docu-
ment. If a document’s list contains a second item, flags , it must be a list of mode
symbols (described below). If a document’s list contains a third item, category , it
must be a list that categorizes the document (described further below). If a document’s
list contains a fourth item, name , it is a name to use for the generated documentation,
instead of defaulting to the source file’s name (sans extension), where #f means to
use the default; a non-#f value for name must fit the grammar of a collection-name
element as checked by collection-name-element?. If a document’s list contains
a fifth item, out-k , it is used a hint for the number of files to use for the document’s
cross-reference information; see below. If a document’s list contains a fourth item,
order-n , it is used a hint for the order of rendering; see below.

Each mode symbol in flags can be one of the following, where only 'multi-page
is commonly used:

– 'multi-page : Generates multi-page HTML output, instead of the default
single-page format.

– 'main-doc : Indicates that the generated documentation should be written into
the main installation directory, instead of to a user-specific directory. This mode
is the default for a collection that is itself located in the main installation.

– 'user-doc : Indicates that the generated documentation should be written a
user-specific directory. This mode is the default for a collection that is not itself
located in the main installation.

– 'depends-all : Indicates that the document should be rebuilt if any other doc-
ument is rebuilt—except for documents that have the 'no-depend-on flag.

67

– 'depends-all-main : Indicates that the document should be rebuilt if any other
document is rebuilt that is installed into the main installation—except for docu-
ments that have the 'no-depend-on flag.

– 'depends-all-user : Indicates that the document should be rebuilt if any other
document is rebuilt that is installed into the user’s space—except for documents
that have the 'no-depend-on flag.

– 'always-run : Build the document every time that raco setup is run, even if
none of its dependencies change.

– 'no-depend-on : Removes the document for consideration for other dependen-
cies. Furthermore, references from the document to other documents are always
direct, instead of potentially indirect (i.e., resolved at document-viewing time
and potentially redirected to a remote site).

– 'main-doc-root : Designates the root document for the main installation. The
document that currently has this mode should be the only one with the mode.

– 'user-doc-root : Designates the root document for the user-specific docu-
mentation directory. The document that currently has this mode should be the
only one with the mode.

– 'keep-style : Leave the document’s style as-is, instead of imposing the docu-
ment style for manuals.

– 'no-search : Build the document without a search box.

– 'every-main-layer : With 'main-doc, indicates that the document should
be rendered separately at every installation layer (see §6.17 “Layered Installa-
tions”).

The category list specifies how to show the document in the root table of contents
and, for the lang-fam part, how to classify the documentation’s content for searching.
The list must start with a category, which determines where the manual appears in the
root documentation page. A category is either a string or a symbol. If it is a string,
then the string is the category label on the root page. If it is a symbol, then a default
category label is used. The available symbols and the order of categories on the root
documentation page is as below:

– 'getting-started : High-level, introductory documentation, typeset at the
same level as other category titles.

– 'language : Documentation for a prominent programming language.

– 'tool : Documentation for an executable.

– 'gui-library : Documentation for GUI and graphics libraries.

– 'net-library : Documentation for networking libraries.

– 'parsing-library : Documentation for parsing libraries.

– 'tool-library : Documentation for programming-tool libraries (i.e., not im-
portant enough for the more prominent 'tool category).

– 'interop : Documentation for interoperability tools and libraries.

68

– All string categories as ordered by string<=?.

– 'library : Documentation for miscellaneous libraries.

– 'drracket-plugin : Documentation for DrRacket Plugins.

– 'legacy : Documentation for deprecated libraries, languages, and tools.

– 'experimental : Documentation for an experimental language or library.

– 'other : Other documentation.

– 'omit : Documentation that should not be listed on the root page or indexed for
searching.

– 'omit-start : Documentation that should not be listed on the root page but
should be indexed for searching.

If the category list is not given, or if the category symbol is unrecognized, the doc-
umentation is added to the Miscellaneous Libraries ('library) category.

If the category list has a second element, sort-number , it must be a real number that
designates the manual’s sorting position with the category; manuals with the same
sorting position are ordered alphabetically. For a pair of manuals with sorting numbers
n and m , the groups for the manuals are separated by space if (truncate (/ n
10))and (truncate (/ m 10)) are different.

If the category list has a third element, lang-fam , then it must be a list of strings,
where each string names a language family. This language family list is used for
index entries that are extracted from the document and used for searching. The docu-
ment, a part within the document, or an individual index entries may specify its own
language family, and lang-fam provides only a default for entries that do not oth-
erwise specify a language family. Alternatively, a document may specify a default
that can be overridden by lang-fam through a 'default-language-family key in
tag-prefix of the document’s part; that specification, in turn, might be supplied in
the document’s source via the #:tag-prefix argument to title.

The out-k specification is a hint on whether to break the document’s cross-reference
information into multiple parts, which can reduce the time and memory use for resolv-
ing a cross-reference into the document. It must be a positive, exact integer, and the
default is 1.

The order-n specification is a hint for ordering document builds, since documenta-
tion references can be mutually recursive. The order hint can be any real number. A
value of -10 or less disables running the document in parallel to other documents. The
main Racket reference is given a value of -11, the search page is given a value of 10,
and the default is 0.

A directory for pre-rendered documentation is computed from the source file name
by starting with the directory of the "info.rkt" file, adding "doc", and then us-
ing the document name (which is usually the source file’s name without a suffix); if
such a directory exists and does not have a "synced.rktd" file, then it is treated as
pre-rendered documentation and moved into place, in which case the documentation
source file need not be present. Moving documentation into place may require no

69

movement at all, depending on the way that the enclosing collection is installed, but
movement includes adding a "synced.rktd" file to represent the installation.

Changed in version 6.4: Allow a category to be a string instead of a symbol.
Changed in version 8.9.0.6: Add the 'drracket-plugin category symbol.
Changed in version 8.14.0.5: Added optional lang-fam within category .

• release-note-files : (listof (cons/c string? (cons/c string?
list?))) — A list of release-notes text files to link from the main documentation
pages. Each note is itself represented as a list, and the list can specify auxiliary notes
that are grouped with the main note.

A release-note-files entry must be a value that can be generated from an expres-
sion matching the following entry grammar:

entry = (list note ...)

doc = (list label-string note-path)
| (list label-string note-path order-integer)
| (list label-string note-path order-integer

(list sub-note ...))

sub-note = (list label-string note-path)

The order-integer is used to order notes and defaults to 0.

• racket-launcher-names : (listof string?) — A list of executable names to
be generated in the installation’s executable directory to run Racket-based programs
implemented by the collection. A parallel list of library names must be provided by
racket-launcher-libraries or racket-launcher-flags.

For each name, a launching executable is set up using make-racket-launcher. The
arguments are -l- and ⟨colls⟩/.../⟨file⟩, where ⟨file⟩ is the file named by racket-
launcher-libraries and ⟨colls⟩/... are the collections (and subcollections) of the
"info.rkt" file.

In addition,

(build-aux-from-path
(build-path (collection-path ⟨colls⟩ ...) ⟨suffixless-file⟩))

is provided for the optional aux argument (for icons, etc.) to make-racket-
launcher, where ⟨suffixless-file⟩ is ⟨file⟩ without its suffix.

If racket-launcher-flags is provided, it is used as a list of command-line argu-
ments passed to racket instead of the above default, allowing arbitrary command-
line arguments. If racket-launcher-flags is specified together with racket-
launcher-libraries, then the flags will override the libraries, but the libraries can
still be used to specify a name for build-aux-from-path (to find related information
like icon files etc).

• racket-launcher-libraries : (listof path-string?) — A list of library
names in parallel to racket-launcher-names.

70

• racket-launcher-flags : (listof string?) — A list of command-line flag
lists, in parallel to racket-launcher-names.

• mzscheme-launcher-names, mzscheme-launcher-libraries, and mzscheme-
launcher-flags — Backward-compatible variant of racket-launcher-names,
etc.

• gracket-launcher-names : (listof string?) — Like racket-launcher-
names, but for GRacket-based executables. The launcher-name list is treated in paral-
lel to gracket-launcher-libraries and gracket-launcher-flags.

• gracket-launcher-libraries : (listof path-string?) — A list of library
names in parallel to gracket-launcher-names.

• gracket-launcher-flags : (listof string?) — A list of command-line flag
lists, in parallel to gracket-launcher-names.

• mred-launcher-names, mred-launcher-libraries, and mred-launcher-
flags — Backward-compatible variant of gracket-launcher-names, etc.

• copy-foreign-libs : (listof (and/c path-string? relative-path?)) —
Files to copy into a directory where foreign libraries are found by ffi-lib. If
install-platform is defined, then the files are copied only if the current platform
matches the definition.

On Mac OS, when a Mach-O file is copied, if the copied file includes a library ref-
erence that starts @loader_path/, and if the referenced library exists in a different
location among the paths listed by (get-lib-search-dirs), then the library refer-
ence is updated to an absolute path.

On Unix, when an ELF file is copied, if the copied file includes an RPATH setting
of $ORIGIN and the file is being installed to a user-specific location, then the file’s
RPATH is adjusted to $ORIGIN: followed by the path to the main installation’s library
directory as reported by (find-lib-dir).

On Windows, deleting a previously installed foreign library may be complicated by a
lock on the file, if it is in use. To compensate, raco setup deletes a foreign-library
file by first renaming the file to have the prefix "raco-setup-delete-"; it then at-
tempts to delete the renamed file and merely issues a warning on a failure to delete the
renamed file. Meanwhile, in modes where raco setup removes uninstalled libraries,
it attempts to delete any file in the foreign-library directory whose name starts with
"raco-setup-delete-" (in an attempt to clean up after previous failures).

• move-foreign-libs : (listof (and/c path-string? relative-path?)) —
Like copy-foreign-libs, but the original file is removed after it is copied (which
makes sense for precompiled packages).

• copy-shared-files : (listof (and/c path-string? relative-path?)) —
Files to copy into a directory where shared files are found. If install-platform is
defined, then the files are copied only if the current platform matches the definition.

71

On Windows, uninstalled files are deleted in the same way as for copy-foreign-
libs, and the name prefix "raco-setup-delete-" is similarly special.

• move-shared-files : (listof (and/c path-string? relative-path?)) —
Like copy-shared-files, but the original file is removed after it is copied (which
makes sense for precompiled packages).

• copy-man-pages : (listof (and/c path-string? relative-path?
filename-extension)) — Files to copy into a man directory. The file suffix
determines its category; for example, .1 should be used for a man page describing an
executable.

On Windows, uninstalled files are deleted in the same way as for copy-foreign-
libs, and the name prefix "raco-setup-delete-" is similarly special.

• move-man-pages : (listof (and/c path-string? relative-path?
filename-extension)) — Like copy-man-pages, but the original file is
removed after it is copied (which makes sense for precompiled packages).

• install-platform : platform-spec? If this specification matches the current plat-
form, the foreign libraries associated with this package are copied or moved into useful
locations. See copy-foreign-libs, move-foreign-libs, copy-shared-files,
and move-shared-files. Also see matching-platform? for information on the
way that the specification is compared to (system-type) and (system-library-
subpath #f).

• install-collection : path-string? — A library module relative to the collec-
tion that provides installer. The installer procedure must accept one, two, three,
or four arguments:

– The first argument is a directory path to the parent of the Racket installation’s
"collects" directory.

– The second argument, if accepted, is a path to the collection’s own directory.

– The third argument, if accepted, is a boolean indicating whether the collection is
installed as user-specific (#t) or installation-wide (#f).

– The fourth argument, if accepted, is a boolean indicating whether the collection
is installed as installation-wide and should nevertheless avoid modifying the in-
stallation; an installer procedure that does not accept this argument is never
called when the argument would be #t. An installer that does accept this argu-
ment is called with #t to that it can perform user-specific work, even though the
collection is installed installation-wide.

• pre-install-collection : path-string? — Like install-collection, ex-
cept that the corresponding installer procedures are called before the normal ".zo"
build, instead of after. The provided procedure is pre-installer, so it can be pro-
vided by the same file that provides an installer procedure.

72

• post-install-collection : path-string? — Like install-collection for
a procedure that is called right after the install-collection procedure is ex-
ecuted. The --no-install flag can be provided to raco setup to disable
install-collection and pre-install-collection, but not post-install-
collection. The post-install-collection function is therefore expected to
perform operations that are always needed, even after an installation that contains pre-
compiled files. The provided procedure is post-installer, so it can be provided by
the same file that provides an installer procedure.

• assume-virtual-sources : any/c — A true value indicates that bytecode files
without a corresponding source file should not be removed from "compiled" direc-
tories, and no files should not be removed when the --clean or -c flag is passed to
raco setup.

• clean : (listof path-string?) — A list of pathnames to be deleted when the
--clean or -c flag is passed to raco setup. The pathnames must be relative to the
collection. If any path names a directory, each of the files in the directory are deleted,
but none of the subdirectories of the directory are checked. If the path names a file,
the file is deleted. The default, if this flag is not specified, is to delete all files in the
"compiled" subdirectory, and all of the files in the platform-specific subdirectory of
the compiled directory for the current platform.

Just as compiling ".zo" files will compile each module used by a compiled module,
deleting a module’s compiled image will delete the ".zo" of each module that is
used by the module. More specifically, used modules are determined when deleting
a ".dep" file, which would have been created to accompany a ".zo" file when the
".zo" was built by raco setup or raco make (see §1.3 “Dependency Files”). If
the ".dep" file indicates another module, that module’s ".zo" is deleted only if it
also has an accompanying ".dep" file. In that case, the ".dep" file is deleted, and
additional used modules are deleted based on the used module’s ".dep" file, etc.
Supplying a specific list of collections to raco setup disables this dependency-based
deletion of compiled files.

• compile-omit-paths, compile-omit-files, and compile-include-files —
Used indirectly via compile-collection-zos.

• module-suffixes and doc-module-suffixes — Used indirectly via get-
module-suffixes.

6.4 "info.rkt" File Format

#lang info package: base
#lang setup/infotab

In each collection, a special module file "info.rkt" provides general information about a
collection for use by various tools. For example, an "info.rkt" file specifies how to build

73

https://pkgs.racket-lang.org/package/base

the documentation for a collection, and it lists plug-in tools for DrRacket or commands for
raco that the collection provides. The fields specified

in an "info.rkt"
file are documented
in §4 “Package
Metadata” for
packages and in
§6.3 “Controlling
raco setup with
"info.rkt" Files”
for collections.

Although an "info.rkt" file contains a module declaration, the declaration has a highly
constrained form. It must match the following grammar of info-module :

info-module = (module info info-mod-path
decl
...)

info-mod-path = info
| setup/infotab
| (lib "info/main.rkt")
| (lib "setup/infotab.ss")
| (lib "setup/infotab.rkt")
| (lib "main.rkt" "info")
| (lib "infotab.rkt" "setup")
| (lib "infotab.ss" "setup")

decl = (define id info-expr)

info-expr = (quote datum)
| (quasiquote datum)
| (if info-expr info-expr info-expr)
| (info-primitive info-expr ...)
| id
| string
| number
| boolean

info-primitive = cons
| car
| cdr
| list
| list*
| reverse
| append
| equal?
| string-append
| make-immutable-hash
| hash
| hash-set
| hash-set*
| hash-remove
| hash-clear
| hash-update

74

| path->string
| build-path
| collection-path
| system-library-subpath
| getenv

For example, the following declaration could be the "info.rkt" library of the "games" col-
lection. It contains definitions for three info tags, name, gracket-launcher-libraries,
and gracket-launcher-names.

#lang info
(define name "Games")
(define gracket-launcher-libraries '("main.rkt"))
(define gracket-launcher-names '("PLT Games"))

As illustrated in this example, an "info.rkt" file can use #lang notation, but only with the
info (or setup/infotab) language.

Although getenv is allowed in an info module, the get-info function loads the module
with an environment that prunes any variable not listed in the PLT_INFO_ALLOW_VARS en-
vironment variable, which holds a list of ;-separated variable names. By default, the set of
allowed environment variables is empty.

See also get-info from setup/getinfo.

Changed in version 6.5.0.2 of package base: Added if, equal?, and getenv.

6.5 Package Dependency Checking

When raco setup is run with no arguments, after building all collections and documenta- Unless
--check-pkg-deps
is specified,
dependency
checking is disabled
if any collection is
specified for raco
setup.

tion, raco setup checks package dependencies. Specifically, it inspects compiled files and
documentation to check that references across package boundaries are reflected by depen-
dency declarations in each package-level "info.rkt" file (see §4 “Package Metadata”).

Dependency checking in raco setup is intended as an aid to package developers to help
them declare dependencies correctly. The raco setup process itself does not depend on
package dependency declarations. Similarly, a package with a missing dependency declara-
tion may install successfully for other users, as long as they happen to have the dependencies
installed already. A missing dependency creates trouble for others who install a package
without having the dependency installed already.

Practically every package depends on the "base" package, which includes the collections
that are in a minimal variant of Racket. Declaring a dependency on "base" may seem
unnecessary, since its collections are always installed. In a future version of Racket, however,
the minimal collections may change, and the new set of minimal collections will then have

75

a package name, such as "base2". Declaring a dependency on "base" ensures forward
compatibility, and raco setup complains if the declaration is missing.

To accommodate the early stages of package development, missing dependencies are not
treated as an error for a package that has no dependency declarations.

6.5.1 Declaring Build-Time Dependencies

A build-time dependency is one that is not present in a package if it is converted to a binary
package (see §5 “Source, Binary, and Built Packages”). For example, "tests" and "scrib-
blings" directories are stripped away in a binary package by default, so cross-package ref-
erences from directories with those names are treated as build dependencies. Similarly, test
and doc submodules are stripped away, so references within those submodules create build
dependencies.

Build-time-only dependencies can be listed as build-deps instead of deps in a package’s
"info.rkt" file. Dependencies listed in deps, meanwhile, are treated as both run-time and
build-time dependencies. The advantage of using build-deps, instead of listing all depen-
dencies in deps, is that a binary version of the package can install with fewer dependencies.

6.5.2 How Dependency Checking Works

Dependency checking uses ".zo" files, associated ".dep" files (see §1.3 “Dependency
Files”), and the documentation index. Dynamic references, such as through dynamic-
require, are not visible to the dependency checker; only dependencies via require,
define-runtime-module-path-index, and other forms that cooperate with raco make
are visible for dependency checking.

Dependency checking is sensitive to whether a dependency is needed only as a build-time
dependency. If raco setup detects that a missing dependency could be added as a build-
time dependency, it will suggest the addition, but raco setup will not suggest converting a
normal dependency to a build-time dependency (since every normal dependency counts as a
build-time dependency, too).

6.6 API for Setup

(require setup/setup) package: base

76

https://pkgs.racket-lang.org/package/base

(setup [#:file file
#:collections collections
#:pkgs pkgs
#:planet-specs planet-specs
#:make-user? make-user?
#:avoid-main? avoid-main?
#:make-docs? make-docs?
#:make-doc-index? make-doc-index?
#:force-user-docs? force-user-docs?
#:check-pkg-deps? check-pkg-deps?
#:fix-pkg-deps? fix-pkg-deps?
#:unused-pkg-deps? unused-pkg-deps?
#:clean? clean?
#:tidy? tidy?
#:recompile-only? recompile-only?
#:recompile-cache recompile-cache
#:jobs jobs
#:fail-fast? fail-fast?
#:get-target-dir get-target-dir]) Ñ boolean?

file : (or/c #f path-string?) = #f
collections : (or/c #f (listof (listof path-string?))) = #f
pkgs : (or/c #f (listof string?)) = #f
planet-specs : (or/c #f

(listof (list/c string?
string?
exact-nonnegative-integer?
exact-nonnegative-integer?)))

= #f
make-user? : any/c = #t
avoid-main? : any/c = #f
make-docs? : any/c = #t
make-doc-index? : any/c = #f
force-user-docs? : any/c = #f
check-pkg-deps? : any/c = #f
fix-pkg-deps? : any/c = #f
unused-pkg-deps? : any/c = #f
clean? : any/c = #f
tidy? : any/c = #f
recompile-only? : any/c = #f
recompile-cache : (or/c path-string? #f) = #f
jobs : exact-nonnegative-integer? = #f
fail-fast? : any/c = #f
get-target-dir : (or/c #f (-> path-string?)) = #f

Runs raco setup with various options:

77

• file — if not #f, installs file as a ".plt" archive.

• collections — if not #f, constrains setup to the named collections (along with
pkgs and planet-specs , if any)

• pkgs — if not #f, constrains setup to the named packages (along with collections
and planet-specs , if any)

• planet-spec — if not #f, constrains setup to the named PLaneT packages (along
with collections and pkgs , if any)

• make-user? — if #f, disables any user-specific setup actions

• avoid-main? — if true, avoids setup actions that affect the main installation, as op-
posed to user directories

• make-docs? — if #f, disables any documentation-specific setup actions

• make-doc-index? — if true, builds documentation index collections in addition to
collections , assuming that documentation is built

• force-user-docs? — if true, then when building documentation, creates a user-
specific documentation entry point even if it has the same content as the installation

• check-pkg-deps? — if true, enables package-dependency checking even when col-
lections , pkgs , or planet-specs is non-#f.

• fix-pkg-deps? — if true, implies check-pkg-deps? and attempts to automatically
correct discovered package-dependency problems

• unused-pkg-deps? — if true, implies check-pkg-deps? and also reports depen-
dencies that appear to be unused

• clean? — if true, enables cleaning mode instead of setup mode

• tidy? — if true, enables global tidying of documentation and metadata indexes even
when collections or planet-specs is non-#f

• recompile-only? — if true, disallows compilation from source, allowing only
timestamp adjustments and recompilation from machine-independent form

• recompile-cache — if not #f, a directory to cache recompilations from machine-
independent form to machine-dependent form

• jobs — if not #f, determines the maximum number of parallel tasks used for setup

• fail-fast? — if true, breaks the current thread as soon as an error is discovered

• get-target-dir — if not #f, treated as a value for current-target-directory-
getter

78

The result is #t if raco setup completes without error, #f otherwise.

Instead of using PLT_COMPILED_FILE_CHECK, setup is sensitive to the use-compiled-
file-check parameter.

Changed in version 6.1 of package base: Added the fail-fast? argument.
Changed in version 6.1.1: Added the force-user-docs? argument.
Changed in version 7.2.0.7: Added the check-pkg-deps?, fix-pkg-deps? , and unused-pkg-deps?
arguments.
Changed in version 7.2.0.8: Added the recompile-only? argument.
Changed in version 8.17.0.2: Added the recompile-cache argument.

6.6.1 raco setup Unit

(require setup/setup-unit) package: compiler-lib

The setup/setup-unit library provides raco setup in unit form. The associated
setup/option-sig and setup/option-unit libraries provides the interface for setting
options for the run of raco setup.

For example, to unpack a single ".plt" archive "x.plt", set the archives parameter to
(list "x.plt") and leave specific-collections as null.

Link the options and setup units so that your option-setting code is initialized between them,
e.g.:

(compound-unit
...
(link ...

[((OPTIONS : setup-option^)) setup:option@]
[() my-init-options@ OPTIONS]
[() setup@ OPTIONS ...])

...)

setup@ : unit?

Imports

• setup-option^

• compiler^

• compiler:option^

• launcher^

79

https://pkgs.racket-lang.org/package/compiler-lib

• dynext:file^

and exports nothing. Invoking setup@ starts the setup process.

6.6.2 Options Unit

(require setup/option-unit) package: compiler-lib

setup:option@ : unit?

Imports nothing and exports setup-option^.

6.6.3 Options Signature

(require setup/option-sig) package: compiler-lib

setup-option^ : signature

Provides parameters used to control raco setup in unit form.

(setup-program-name) Ñ string?
(setup-program-name name) Ñ void?

name : string?

The prefix used when printing status messages. The default is "raco setup".

(setup-compiled-file-paths)
Ñ (or/c #f (listof (and/c path? relative-path?)))

(setup-compiled-file-paths paths) Ñ void?
paths : (or/c #f (listof (and/c path? relative-path?)))

If not #f, supplies a value like the one for use-compiled-file-paths to
control operations such as cleaning, where use-compiled-file-paths may
have been set to null to avoid loading bytecode.

Added in version 1.7 of package compiler-lib.

(verbose) Ñ boolean?
(verbose on?) Ñ void?

on? : any/c

If on, prints messages from make to stderr. The default is #f.

80

https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/compiler-lib

(make-verbose) Ñ boolean?
(make-verbose on?) Ñ void?

on? : any/c

If on, verbose make. The default is #f.

(compiler-verbose) Ñ boolean?
(compiler-verbose on?) Ñ void?

on? : any/c

If on, verbose compiler. The default is #f.

(clean) Ñ boolean?
(clean on?) Ñ void?

on? : any/c

If on, delete ".zo" and ".so"/".dll"/".dylib" files in the specified collec-
tions. The default is #f.

(compile-mode) Ñ (or/c path? #f)
(compile-mode path) Ñ void?

path : (or/c path? #f)

If a path is given, use a ".zo" compiler other than plain compile, and build
to (build-path "compiled" (compile-mode)). The default is #f.

(make-zo) Ñ boolean?
(make-zo on?) Ñ void?

on? : any/c

If on, compile ".zo". The default is #t.

(make-info-domain) Ñ boolean?
(make-info-domain on?) Ñ void?

on? : any/c

If on, update "info-domain/compiled/cache.rkt" for each collection path.
The default is #t.

(make-launchers) Ñ boolean?
(make-launchers on?) Ñ void?

on? : any/c

If on, make collection "info.rkt"-specified launchers and man pages. The
default is #t.

(make-foreign-lib) Ñ boolean?
(make-foreign-lib on?) Ñ void?

on? : any/c

81

If on, install collection "info.rkt"-specified libraries. The default is #t.

(make-docs) Ñ boolean?
(make-docs on?) Ñ void?

on? : any/c

If on, build documentation. The default is #t.

(make-user) Ñ boolean?
(make-user on?) Ñ void?

on? : any/c

If on, build the user-specific collection tree. The default is #t.

(make-planet) Ñ boolean?
(make-planet on?) Ñ void?

on? : any/c

If on, build the planet cache. The default is #t.

(avoid-main-installation) Ñ boolean?
(avoid-main-installation on?) Ñ void?

on? : any/c

If on, avoid building bytecode in the main installation tree when building other
bytecode (e.g., in a user-specific collection). The default is #f.

(make-tidy) Ñ boolean?
(make-tidy on?) Ñ void?

on? : any/c

If on, remove metadata cache information and documentation for non-existent
collections (to clean up after removal) even when specific-collections or
specific-planet-dirs is non-'() or make-only is true. The default is #f.

(call-install) Ñ boolean?
(call-install on?) Ñ void?

on? : any/c

If on, call collection "info.rkt"-specified setup code. The default is #t.

(call-post-install) Ñ boolean?
(call-post-install on?) Ñ void?

on? : any/c

If on, call collection "info.rkt"-specified post-install code. The default is #t.

82

(pause-on-errors) Ñ boolean?
(pause-on-errors on?) Ñ void?

on? : any/c

If on, in the event of an error, prints a summary error and waits for stdin input
before terminating. The default is #f.

(parallel-workers) Ñ exact-nonnegative-integer?
(parallel-workers num) Ñ void?

num : exact-nonnegative-integer?

Determines the number of places to use for compiling bytecode and for building
the documentation. The default is (min (processor-count) 8).

(fail-fast) Ñ boolean?
(fail-fast on?) Ñ void?

on? : any/c

If on, breaks the original thread as soon as an error is discovered. The default is
#f.

Added in version 1.2 of package compiler-lib.

(force-unpacks) Ñ boolean?
(force-unpacks on?) Ñ void?

on? : any/c

If on, ignore version and already-installed errors when unpacking a ".plt"
archive. The default is #f.

(specific-collections) Ñ (listof (listof path-string?))
(specific-collections colls) Ñ void?

colls : (listof (listof path-string?))

A list of collections to set up; the empty list means set-up all collections if the
archives list and specific-planet-dirs is also '(). The default is '().

(specific-planet-dirs)
Ñ (listof (list/c string?

string?
exact-nonnegative-integer?
exact-nonnegative-integer?))

(specific-planet-dirs dir) Ñ void?
dir : (listof (list/c string?

string?
exact-nonnegative-integer?
exact-nonnegative-integer?))

83

A list of planet package version specs to set up; the empty list means to set-up
all planet collections if the archives list and specific-collections is also
'(). The default is '().

(make-only) Ñ boolean?
(make-only on?) Ñ void?

on? : any/c

If true, set up no collections if specific-collections and specific-
planet-dirs are both '().

(archives) Ñ (listof path-string?)
(archives arch) Ñ void?

arch : (listof path-string?)

A list of ".plt" archives to unpack; any collections specified by the archives
are set-up in addition to the collections listed in specific-collections. The default
is null.

(archive-implies-reindex) Ñ boolean?
(archive-implies-reindex on?) Ñ void?

on? : any/c

If on, when archives has a non-empty list of packages, if any documentation
is built, then suitable documentation start pages, search pages, and master index
pages are rebuilt. The default is #t.

(current-target-directory-getter) Ñ (-> path-string?)
(current-target-directory-getter thunk) Ñ void?

thunk : (-> path-string?)

A thunk that returns the target directory for unpacking a relative ".plt"
archive; when unpacking an archive, either this or the procedure in current-
target-plt-directory-getter will be called. The default is current-
directory.

(current-target-plt-directory-getter)
Ñ (path-string?

path-string?
(listof path-string?) . -> . path-string?)

(current-target-plt-directory-getter proc) Ñ void?
proc : (path-string?

path-string?
(listof path-string?) . -> . path-string?)

A procedure that takes a preferred path, a path to the parent of the main "col-
lects" directory, and a list of path choices; it returns a path for a "plt-relative"
install; when unpacking an archive, either this or the procedure in current-
target-directory-getter will be called, and in the former case, this pro-
cedure may be called multiple times. The default is (lambda (preferred
main-parent-dir choices) preferred).

84

6.6.4 Setup Start Module

(require setup) package: base

The setup library implements raco setup, including the part that bootstraps raco setup
if its own implementation needs to be compiled.

When running setup via racket, supply the -N raco to ensure that command-line argu-
ments are parsed the same way as for raco setup, as opposed to a legacy command-line
mode.

6.7 API for Installing ".plt" Archives

The setup/plt-single-installer module provides a function for installing a single
".plt" file.

6.7.1 Non-GUI Installer

(require setup/plt-single-installer) package: base

(run-single-installer
file
get-dir-proc

[#:show-beginning-of-file? show-beginning-of-file?])
Ñ void?
file : path-string?
get-dir-proc : (-> (or/c path-string? #f))
show-beginning-of-file? : any/c = #f

Creates a separate thread and namespace, runs the installer in that thread with the new names-
pace, and returns when the thread completes or dies. It also creates a custodian (see §14.7
“Custodians”) to manage the created thread, sets the exit handler for the thread to shut down
the custodian, and explicitly shuts down the custodian when the created thread terminates or
dies.

The get-dir-proc procedure is called if the installer needs a target directory for installa-
tion, and a #f result means that the user canceled the installation. Typically, get-dir-proc
is current-directory.

If show-beginning-of-file? is a true value and the installation fails, then run-single-
installer prints the first 1,000 characters of the file (in an attempt to help debug the cause
of failures).

85

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(install-planet-package file directory spec) Ñ void?
file : path-string?
directory : path-string?
spec : (list/c string? string?

(listof string?)
exact-nonnegative-integer?
exact-nonnegative-integer?)

Similar to run-single-installer, but runs the setup process to install the archive file
into directory as the PLaneT package described by spec . The user-specific documen-
tation index is not rebuilt, so reindex-user-documentation should be run after a set of
PLaneT packages are installed.

(reindex-user-documentation) Ñ void?

Similar to run-single-installer, but runs only the part of the setup process that rebuilds
the user-specific documentation start page, search page, and master index.

(clean-planet-package directory spec) Ñ void?
directory : path-string?
spec : (list/c string? string?

(listof string?)
exact-nonnegative-integer?
exact-nonnegative-integer?)

Undoes the work of install-planet-package. The user-specific documentation index is
not rebuilt, so reindex-user-documentation should be run after a set of PLaneT pack-
ages are removed.

6.8 API for Finding Installation Directories

(require setup/dirs) package: base

The setup/dirs library provides several procedures for locating installation directories.
Many of these paths can be configured through the configuration directory (see §19 “Instal-
lation Configuration and Search Paths”).

In cross-platform build mode (see §6.14 “API for Cross-Platform Configuration”), the func-
tions provided by setup/dirs generally report target-system paths, instead of current-
system paths. The exceptions are get-lib-search-dirs and find-dll-dir, which re-
port current-system paths while get-cross-lib-search-dirs and find-cross-dll-
dir report target-system paths.

(find-collects-dir) Ñ (or/c path? #f)

86

https://pkgs.racket-lang.org/package/base

Returns a path to the installation’s main "collects" directory, or #f if none can be found.
A #f result is likely only in a stand-alone executable that is distributed without libraries.

(find-user-collects-dir) Ñ path?

Returns a path to the user-specific "collects" directory; the directory indicated by the
returned path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(get-collects-search-dirs) Ñ (listof path?)

Returns the same result as (current-library-collection-paths), which means that
this result is not sensitive to the value of the use-user-specific-search-paths param-
eter.

(get-main-collects-search-dirs) Ñ (listof path?)

Returns a list of paths to installation "collects" directories, normally including the
result of find-collects-dir. These directories are normally included in the result
of (current-library-collection-paths), but a PLTCOLLECTS setting or change to
the parameter may cause them to be omitted. Any other path in (current-library-
collection-paths) is treated as user-specific. The directories indicated by the returned
paths may or may not exist.

The main-collections search path can be configured via 'collects-search-dirs in
"config.rktd" (see §19 “Installation Configuration and Search Paths”).

(find-config-dir) Ñ (or/c path? #f)

Returns a path to the installation’s "etc" directory, which contains configuration and pack-
age information—including configuration of some of the other directories (see §19 “Installa-
tion Configuration and Search Paths”). A #f result indicates that no configuration directory
is available.

(find-links-file) Ñ (or/c path? #f)

Returns a path to the installation’s collection links file. The file indicated by the returned
path may or may not exist. A #f result indicates that no links file is available.

See also 'links-file in §19 “Installation Configuration and Search Paths”.

(find-user-links-file [vers]) Ñ path?
vers : string? = (get-installation-name)

87

Returns a path to the user’s collection links file. The file indicated by the returned path may
or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and vers .

(get-links-search-files) Ñ (listof path?)

Returns a list of paths to installation collection links files to search in order. (Normally,
the result includes the result of (find-links-file), which is where new installation-wide
links are installed by raco link or links.) The result of find-user-links-file is not
added to the returned list. The files indicated by the returned paths may or may not exist.

See also 'links-search-files in §19 “Installation Configuration and Search Paths”.

(find-pkgs-dir) Ñ (or/c path? #f)

Returns a path to the directory containing packages with installation scope; the directory
indicated by the returned path may or may not exist. A #f result indicates that no package-
installation directory is available.

See also 'pkgs-dir in §19 “Installation Configuration and Search Paths”.

(find-user-pkgs-dir [vers]) Ñ path?
vers : string? = (get-installation-name)

Returns a path to the directory containing packages with user-specific scope for installation
name vers ; the directory indicated by the returned path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and vers .

(get-pkgs-search-dirs) Ñ (listof path?)

Returns a list of paths to the directories containing packages in installation scope. (Nor-
mally, the result includes the result of (find-pkgs-dir), which is where new packages are
installed by raco pkg install.) The result of find-user-pkgs-dir is not added to the
returned list. The directories indicated by the returned paths may or may not exist.

See also 'pkgs-search-dirs in §19 “Installation Configuration and Search Paths”.

(find-doc-dir) Ñ (or/c path? #f)

Returns a path to the installation’s "doc" directory. The result is #f if no such directory is
available.

See also 'doc-dir in §19 “Installation Configuration and Search Paths”.

88

(find-user-doc-dir) Ñ path?

Returns a path to a user-specific "doc" directory. The directory indicated by the returned
path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(get-doc-search-dirs) Ñ (listof path?)

Returns a list of paths to search for documentation, not including documentation stored in
individual collections. Unless it is configured otherwise, the result includes any non-#f
result of (find-doc-dir) and (find-user-doc-dir)—but the latter is included only if
the value of the use-user-specific-search-paths parameter is #t.

See also 'doc-search-dirs in §19 “Installation Configuration and Search Paths”.

(get-doc-extra-search-dirs) Ñ (listof path?)

Like get-doc-search-dirs, but refrains from adding (find-doc-dir) and (find-
user-doc-dir) to the underlying 'doc-search-dirs configuration.

Added in version 8.1.0.6 of package base.

(find-lib-dir) Ñ (or/c path? #f)

Returns a path to the installation’s "lib" directory, which contains libraries and other build
information. The result is #f if no such directory is available.

See also 'lib-dir in §19 “Installation Configuration and Search Paths”.

(find-user-lib-dir) Ñ path?

Returns a path to a user-specific "lib" directory; the directory indicated by the returned
path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(get-lib-search-dirs) Ñ (listof path?)

Returns a list of paths to search for foreign libraries.

Unless it is configured otherwise, and except in cross-platform build mode, the result in-
cludes any non-#f result of (find-lib-dir) and (find-user-lib-dir)—but the latter
is included only if the value of the use-user-specific-search-paths parameter is #t.

89

In cross-platform build mode (see §6.14 “API for Cross-Platform Configuration”), get-
lib-search-dirs reports a result suitable for the current system, instead of the target sys-
tem. See also get-cross-lib-search-dirs.

See also 'lib-search-dirs in §19 “Installation Configuration and Search Paths”.

Changed in version 6.1.1.4 of package base: Dropped (find-dll-dir) from the set of paths to explicitly include
in the default.
Changed in version 6.9.0.1: Changed behavior in cross-platform build mode.

(get-cross-lib-search-dirs) Ñ (listof path?)

Like get-lib-search-dirs, but in cross-platform build mode, reports directories for the
target system (including any non-#f result of (find-lib-dir), etc.) instead of the current
system.

Added in version 6.9.0.1 of package base.

(get-cross-lib-extra-search-dirs) Ñ (listof path?)

Like get-cross-lib-search-dirs, but refrains from adding (find-lib-dir) and
(find-user-lib-dir) to the underlying 'lib-search-dirs configuration.

Added in version 8.1.0.6 of package base.

(find-dll-dir) Ñ (or/c path? #f)

Returns a path to the directory that contains DLLs for use with the current executable (e.g.,
"libracket.dll" on Windows). The result is #f if no such directory is available, or if no
specific directory is available (i.e., other than the platform’s normal search path).

In cross-platform build mode (see §6.14 “API for Cross-Platform Configuration”), find-
dll-dir reports a result suitable for the current system, instead of the target system. See
also find-cross-dll-dir.

Changed in version 6.9.0.1 of package base: Changed behavior in cross-platform build mode.

(find-cross-dll-dir) Ñ (or/c path? #f)

Like find-dll-dir, but in cross-platform build mode, reports a directory for the target
system instead of the current system.

Added in version 6.9.0.1 of package base.

(find-share-dir) Ñ (or/c path? #f)

90

Returns a path to the installation’s "share" directory, which contains installed packages
and other platform-independent files. The result is #f if no such directory is available.

See also 'share-dir in §19 “Installation Configuration and Search Paths”.

(find-user-share-dir) Ñ path?

Returns a path to a user-specific "share" directory; the directory indicated by the returned
path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(get-share-search-dirs) Ñ (listof path?)

Returns a list of paths to search for files that are normally in a "share" directory.

Unless it is configured otherwise, the result includes any non-#f result of (find-share-
dir) and (find-user-share-dir)—but the latter is included only if the value of the
use-user-specific-search-paths parameter is #t.

See also 'share-search-dirs in §19 “Installation Configuration and Search Paths”.

Added in version 8.1.0.6 of package base.

(get-share-extra-search-dirs) Ñ (listof path?)

Like get-share-search-dirs, but refrains from adding (find-share-dir) and (find-
user-share-dir) to the underlying 'share-search-dirs configuration.

Added in version 8.1.0.6 of package base.

(find-include-dir) Ñ (or/c path? #f)

Returns a path to the installation’s "include" directory, which contains ".h" files for build-
ing Racket extensions and embedding programs. The result is #f if no such directory is
available.

See also 'include-dir in §19 “Installation Configuration and Search Paths”.

(find-user-include-dir) Ñ path?

Returns a path to a user-specific "include" directory; the directory indicated by the re-
turned path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

91

(get-include-search-dirs) Ñ (listof path?)

Returns a list of paths to search for ".h" files. Unless it is configured otherwise, the result in-
cludes any non-#f result of (find-include-dir) and (find-user-include-dir)—but
the latter is included only if the value of the use-user-specific-search-paths param-
eter is #t.

See also 'include-search-dirs in §19 “Installation Configuration and Search Paths”.

(find-console-bin-dir) Ñ (or/c path? #f)

Returns a path to the installation’s executable directory, where the stand-alone Racket exe-
cutable resides. The result is #f if no such directory is available.

See also 'bin-dir in §19 “Installation Configuration and Search Paths”.

(find-gui-bin-dir) Ñ (or/c path? #f)

Returns a path to the installation’s executable directory, where the stand-alone GRacket
executable resides. The result is #f if no such directory is available.

See also 'gui-bin-dir in §19 “Installation Configuration and Search Paths”.

(find-user-console-bin-dir) Ñ path?

Returns a path to the user’s executable directory; the directory indicated by the returned path
may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(find-user-gui-bin-dir) Ñ path?

Returns a path to the user’s executable directory for graphical programs; the directory indi-
cated by the returned path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(get-console-bin-search-dirs) Ñ (listof path?)

Analogous to get-share-search-dirs, but for paths to search for executables such as
racket.

See also 'bin-search-dirs in §19 “Installation Configuration and Search Paths”.

Added in version 8.1.0.6 of package base.

92

(get-console-bin-extra-search-dirs) Ñ (listof path?)

Analogous to get-share-extra-search-dirs for the underlying 'bin-search-dirs
configuration.

Added in version 8.1.0.6 of package base.

(get-gui-bin-search-dirs) Ñ (listof path?)

Analogous to get-share-search-dirs, but for paths to search for executables such as
gracket.

See also 'gui-bin-search-dirs in §19 “Installation Configuration and Search Paths”.

Added in version 8.1.0.6 of package base.

(get-gui-bin-extra-search-dirs) Ñ (listof path?)

Analogous to get-share-extra-search-dirs for the underlying 'gui-bin-search-
dirs configuration.

Added in version 8.1.0.6 of package base.

(find-apps-dir) Ñ (or/c path? #f)

Returns a path to the installation’s directory ".desktop" files (for Unix). The result is #f
if no such directory exists.

See also 'apps-dir in §19 “Installation Configuration and Search Paths”.

(find-user-apps-dir) Ñ path?

Returns a path to the user’s directory for ".desktop" files (for Unix); the directory indicated
by the returned path may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(find-man-dir) Ñ (or/c path? #f)

Returns a path to the installation’s man-page directory. The result is #f if no such directory
exists. See also 'man-dir in §19 “Installation Configuration and Search Paths”.

(find-user-man-dir) Ñ path?

93

Returns a path to the user’s man-page directory; the directory indicated by the returned path
may or may not exist.

The user-specific path depends on at least (find-system-path 'addon-dir) and (get-
installation-name).

(get-man-search-dirs) Ñ (listof path?)

Analogous to get-share-search-dirs, but for paths to search for man pages.

See also 'man-search-dirs in §19 “Installation Configuration and Search Paths”.

Added in version 8.1.0.6 of package base.

(get-man-extra-search-dirs) Ñ (listof path?)

Analogous to get-share-extra-search-dirs for the underlying 'man-search-dirs
configuration.

Added in version 8.1.0.6 of package base.

(get-info-domain-root) Ñ (or/c #false path?)

Returns #f or a path to be used as a prefix to redirect the paths used for recording and finding
"info.rkt" information via find-relevant-directories.

Added in version 8.10.0.4 of package base.

(get-doc-search-url) Ñ string?

Returns a string that is used by the documentation system, augmented with a version and
search-key query, for remote documentation links.

See also 'doc-search-url in §19 “Installation Configuration and Search Paths”.

(get-doc-open-url) Ñ (or/c string? #f)

Returns #f or a string for a root URL to be used as an alternative to opening a local file
for documentation. A non-#f configuration means that DrRacket, for example, performs
keyword searches for documentation via the specified URL instead of from locally installed
documentation.

See also 'doc-open-url in §19 “Installation Configuration and Search Paths”.

Added in version 6.0.1.6 of package base.

94

(get-installation-name config) Ñ string?
config : (read-installation-configuration-table)

Returns the current installation’s name, which is often (version), but an installation name
can be set through a combination of a 'installation-name value in config plus a user-
specific directory state if (use-user-specific-search-paths) is #t.

A user-specific result depends on whether a directory "other-version" exists within
(find-system-path 'addon-dir). If that directory exists, and it no directory with the
installation’s configured name exists, then "other-version" is used as the installation
name. So, by creating the "other-version" directory, a user can opt into sharing of pack-
ages and collections across installations/versions, while opting out for a specific installa-
tion/version by creating a directory with that installation’s name.

Changed in version 8.4.0.3 of package base: Added the config argument and support for a user-specific installa-
tion name.

(get-build-stamp) Ñ (or/c #f string?)

Returns a string that identifies an installation build, which can be used to augment the Racket
version number to more specifically identify the build. An empty string is normally produced
for a release build. The result is #f if no build stamp is available.

See also 'build-stamp in §19 “Installation Configuration and Search Paths”.

(get-main-language-family) Ñ string?

Returns a string that names the installation’s main language family. A language family is
a classification used in documentation, and the main language family configuration affects
the way that documentation search results are printed. A language family is not merely
a module-based language, but instead stands for a set of languages that share a module-
naming convention; as a rule of thumb, a language family is distinct enough that it might
have its own downloadable distribution. The default is "Racket".

See also 'main-language-family in §19 “Installation Configuration and Search Paths”.

Added in version 8.14.0.5 of package base.

}

(get-base-documentation-packages) Ñ (listof string?)
(get-distribution-documentation-packages) Ñ (listof string?)

Returns a list of package names that represent a distribution’s base-language documentation
and all of the documentation that is part of the distribution, respectively. These lists are

95

used to classify and sort documentation search results. If a package is part of the base
documentation, that classification takes precedence over distribution documentation.

See also 'base-documentation-packages and 'distribution-documentation-
packages in §19 “Installation Configuration and Search Paths”.

Added in version 8.14.0.5 of package base.

(get-absolute-installation?) Ñ boolean?

Returns #t if this installation uses absolute path names for executable and library references,
#f otherwise.

(find-addon-tethered-console-bin-dir) Ñ (or/c #f path?)
(find-addon-tethered-gui-bin-dir) Ñ (or/c #f path?)
(find-addon-tethered-apps-dir) Ñ (or/c #f path?)

Returns a path to a user-specific directory to hold an extra copy of each installed executable
and ".desktop" file (for Unix), where the extra copy is created by raco setup and teth-
ered to a particular result for (find-system-path 'addon-dir) and (find-config-
dir).

Unlike other directories, which are configured via "config.rktd" in the (find-config-
dir) directory (see §19 “Installation Configuration and Search Paths”), these paths are con-
figured via 'addon-tethered-console-bin-dir, 'addon-tethered-gui-bin-dir,
and 'addon-tethered-apps-dir entries in "config.rktd" in (build-path (find-
system-path 'addon-dir) "etc"). If no configuration is present, the result from
the corresponding function, find-addon-tethered-console-bin-dir, find-addon-
tethered-gui-bin-dir, or find-addon-tethered-apps-dir, is #f instead of a path.

See §6.18 “Tethered Installations” for more information.

Added in version 6.5.0.2 of package base.
Changed in version 8.3.0.11: Added find-addon-tethered-apps-dir.

]

(find-config-tethered-console-bin-dir) Ñ (or/c #f path?)
(find-config-tethered-gui-bin-dir) Ñ (or/c #f path?)
(find-config-tethered-apps-dir) Ñ (or/c #f path?)

Similar to find-addon-tethered-console-bin-dir, find-addon-tethered-gui-
bin-dir, and find-addon-tethered-apps-dir, but configured via "config.rktd" in
the (find-config-dir) directory (see §19 “Installation Configuration and Search Paths”)
and triggers executables that are tethered only to a particular value of (find-config-dir).

See §6.18 “Tethered Installations” for more information.

96

Added in version 6.5.0.2 of package base.
Changed in version 8.3.0.11: Added find-addon-tethered-apps-dir.

6.9 API for Reading "info.rkt" Files

(require setup/getinfo) package: base

The setup/getinfo library provides functions for accessing fields in "info.rkt" files.
The file format for "info.rkt" files is documented in §6.4 “"info.rkt" File Format”.

(get-info collection-names
[#:namespace namespace
#:bootstrap? bootstrap?])

Ñ (or/c
((symbol?) ((-> any)) . ->* . any)
#f)

collection-names : (listof string?)
namespace : (or/c namespace? #f) = #f
bootstrap? : any/c = #f

Accepts a list of strings naming a collection or sub-collection, and calls get-info/full
with the full path corresponding to the named collection and the namespace argument.

(get-info/full path
[#:namespace namespace
#:bootstrap? bootstrap?])

Ñ (or/c
((symbol?) ((-> any)) . ->* . any)
#f)

path : path-string?
namespace : (or/c namespace? #f) = #f
bootstrap? : any/c = #f

Accepts a path to a directory. If it finds either a well-formed "info.rkt" file or an
"info.ss" file (with preference for the "info.rkt" file), it returns an info procedure that
accepts either one or two arguments. The first argument to the info procedure is always a
symbolic name, and the result is the value of the name in the "info.rkt" file, if the name
is defined. The optional second argument, thunk , is a procedure that takes no arguments to
be called when the name is not defined; the result of the info procedure is the result of the
thunk in that case. If the name is not defined and no thunk is provided, then an exception
is raised.

The get-info/full function returns #f if there is no "info.rkt" (or "info.ss") file
in the directory. If there is a "info.rkt" (or "info.ss") file that has the wrong shape

97

https://pkgs.racket-lang.org/package/base

(i.e., not a module using info or setup/infotab), or if the "info.rkt" file fails to load,
then an exception is raised. If the "info.rkt" file loaded, get-info/full returns the
info procedure. If the "info.rkt" file does not exist, then get-info/full does the same
checks for the "info.ss" file, either raising an exception or returning the info procedure
from the "info.ss" file.

The "info.rkt" (or "info.ss") module is loaded into namespace if it is not #f, or a
private, weakly-held namespace otherwise.

If bootstrap? is true, then use-compiled-file-paths is set to '() while reading
"info.rkt" (or "info.ss"), in case an existing compiled file is broken. Furthermore,
the info and setup/infotab modules are attached to namespace from the namespace of
get-info/full before attempting to load "info.rkt" (or "info.ss").

As the module is loaded, the environment variable set is pruned to contain only environment
variables that are listed in the PLT_INFO_ALLOW_VARS environment variable, which contains
a ;-separated list of names. By default, the list of allowed variable names is empty.

Changed in version 6.5.0.2 of package base: Added environment-variable pruning and PLT_INFO_ALLOW_VARS
support.

(find-relevant-directories syms [mode]) Ñ (listof path?)
syms : (listof symbol?)
mode : (or/c 'preferred 'all-available 'no-planet 'no-user)

= 'preferred

Returns a list of paths identifying collections and installed PLaneT packages whose
"info.rkt" file defines one or more of the given symbols. The result is based on a cache
that is computed by raco setup.

Note that the cache may be out of date by the time you call get-info/full, so do not
assume that every returned directory’s "info.rkt" file will supply one of the requested
symbols.

The result is in a canonical order (sorted lexicographically by directory name), and the paths
it returns are suitable for providing to get-info/full.

If mode is specified, it must be either 'preferred (the default), 'all-available, 'no-
planet, or 'no-user. If mode is 'all-available, find-relevant-directories re-
turns all installed directories whose info files contain the specified symbols—for instance, all
versions of all installed PLaneT packages will be searched if 'all-available is specified.
If mode is 'preferred, then only a subset of “preferred” packages will be searched: only
the directory containing the most recent version of any PLaneT package will be returned. If
mode is 'no-planet, then PLaneT packages are not included in the search. If mode is 'no-
user, then only installation-wide directories are searched, which means omitting PLaneT
package directories.

98

Regardless of mode , note that find-relevant-directories will not consider package-
level "info.rkt" files for multi-collection packages, since those files are not part of any
collection or PLaneT package. In contrast, a single-collection package’s "info.rkt" file is
part of a collection, and thus will be considered.

Collection links from the installation-wide collection links file or packages with in-
stallation scope are cached with the installation’s main "lib" directory, and links
from the user-specific collection links file and packages are cached with the user-
specific directory (build-path (find-system-path 'addon-dir) "collects") for
all-version cases, and in (build-path (find-system-path 'addon-dir) (version)
"collects") for version-specific cases. These cache paths can be redirected by an 'info-
domain-root entry in "config.rktd" (see §19 “Installation Configuration and Search
Paths”).

(find-relevant-directory-records syms key)
Ñ (listof directory-record?)
syms : (listof symbol?)
key : (or/c 'preferred 'all-available 'no-planet 'no-user)

Like find-relevant-directories, but returns directory-record structs instead of
path?s.

(struct directory-record (maj min spec path syms)
#:extra-constructor-name make-directory-record)

maj : integer?
min : integer?
spec : any/c
path : path?
syms : (listof symbol?)

A struct that records information about a collection or a PLaneT package that has been
installed. Collections will have the major version being 1 and the minor version being 0.
The spec field is a quoted module spec; the path field is where the info.rkt file for this
collection or PLaneT package exists on the filesystem; the syms field holds the identifiers
defined in that file.
(reset-relevant-directories-state!) Ñ void?

Resets the cache used by find-relevant-directories.

6.10 API for Relative Paths

The Racket installation tree can usually be moved around the filesystem. To support this,
care must be taken to avoid absolute paths. The following two APIs cover two aspects of
this: a way to convert a path to a value that is relative to the "collects" tree, and a way to
display such paths (e.g., in error messages).

99

6.10.1 Representing Collection-Based Paths

(require setup/collects) package: base

(path->collects-relative path
[#:cache cache])

Ñ (or/c path-string?
(cons/c 'collects

(cons/c bytes? (non-empty-listof bytes?))))
path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Checks whether path (normalized by path->complete-path and simplify-path with
#f as its second argument) matches the result of collection-file-path. If so, the result
is a list starting with 'collects and containing the relevant path elements as byte strings.
If not, the path is returned as-is.

The cache argument is used with path->pkg, if needed.

(collects-relative->path rel) Ñ path-string?
rel : (or/c path-string?

(cons/c 'collects
(cons/c bytes? (non-empty-listof bytes?))))

The inverse of path->collects-relative: if rel is a pair that starts with 'collects,
then it is converted back to a path using collection-file-path.

(path->module-path path [#:cache cache])
Ñ (or/c path-string? normalized-lib-module-path?)
path : path-string?
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Like path->collects-relative, but the result is either path or a normalized (in the
sense of collapse-module-path) module path.

6.10.2 Representing Paths Relative to "collects"

(require setup/main-collects) package: base

(path->main-collects-relative path)
Ñ (or/c path? (cons/c 'collects (non-empty-listof bytes?)))
path : (or/c bytes? path-string?)

100

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

Checks whether path has a prefix that matches the prefix to the main "collects" directory
as determined by (find-collects-dir). If so, the result is a list starting with 'collects
and containing the remaining path elements as byte strings. If not, the path is returned as-is.

The path argument should be a complete path. Applying simplify-path before path-
>main-collects-relative is usually a good idea.

For historical reasons, path can be a byte string, which is converted to a path using bytes-
>path.

See also collects-relative->path.

(main-collects-relative->path rel) Ñ path?
rel : (or/c bytes?

path-string?
(cons/c 'collects (non-empty-listof bytes?)))

The inverse of path->main-collects-relative: if rel is a pair that starts with 'col-
lects, then it is converted back to a path relative to (find-collects-dir).

6.10.3 Representing Paths Relative to the Documentation

(require setup/main-doc) package: base

(path->main-doc-relative path)
Ñ (or/c path? (cons/c 'doc (non-empty-listof bytes?)))
path : (or/c bytes? path-string?)

Like path->main-collects-relative, except that it checks for a prefix relative to
(find-doc-dir) and returns a list starting with 'doc if so.

(main-doc-relative->path rel) Ñ path>
rel : (or/c bytes?

path-string?
(cons/c 'doc (non-empty-listof bytes?)))

Like path->main-collects-relative, except it is the inverse of path->main-doc-
relative.

6.10.4 Displaying Paths Relative to a Common Root

(require setup/path-to-relative) package: base

101

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(path->relative-string/library path
[default
#:cache cache]) Ñ any/c

path : path-string?
default : (or/c (-> path-string? any/c) any/c)

= (lambda (x) (if (path? x) (path->string x) x))
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

Produces a string suitable for display in error messages. If the path is an absolute one that
is inside a package, the result is a string that begins with "<pkgs>/". If the path is an ab-
solute one that is inside the "collects" tree, the result is a string that begins with "<col-
lects>/". Similarly, a path in the user-specific collects results in a prefix of "<user-
collects>/", a PLaneT path results in "<planet>/", and a path into documentation re-
sults in "<doc>/" or "<user-doc>/".

If cache is not #f, it is used as a cache argument for path->pkg to speed up detection and
conversion of package paths.

If the path is not absolute, or if it is not in any of these, it is returned as-is (converted to
a string if needed). If default is given, it specifies the return value instead: it can be a
procedure that is applied onto the path to get the result, or the result itself.

Note that this function can return a non-string only if default is given and it does not return
a string.

(path->relative-string/setup path
[default
#:cache cache]) Ñ any/c

path : path-string?
default : (or/c (-> path-string? any/c) any/c)

= (lambda (x) (if (path? x) (path->string x) x))
cache : (or/c #f (and/c hash? (not/c immutable?))) = #f

The same as path->relative-string/library, for backward compatibility.

(make-path->relative-string dirs [default])
Ñ (path-string? any/c . -> . any)
dirs : (listof (cons (-> path?) string?))
default : (or/c (-> path-string? any/c) any/c)

= (lambda (x) (if (path? x) (path->string x) x))

This function produces functions like path->relative-string/library and path-
>relative-string/setup.

The dirs argument determines the prefix substitutions. It must be an association list map-
ping a path-producing thunk to a prefix string for paths in the specified path.

102

default determines the default for the resulting function (which can always be overridden
by an additional argument to this function).

6.11 API for Collection Names

(require setup/collection-name) package: base

(collection-name? v) Ñ boolean?
v : any/c

Returns #t if v is a string that is syntactically valid as a collection name, which means that
it is one or more /-separated strings for which collection-name-element? returns true.

(collection-name-element? v) Ñ boolean?
v : any/c

Returns #t if v is a string that is syntactically valid as a top-level collection name or as a
part of a collection name, which means that it is non-empty and contains only ASCII letters,
ASCII digits, -, +, _, and %, where a % is allowed only when followed by two lowercase
hexadecimal digits, and the digits must form a number that is not the ASCII value of a letter,
digit, -, +, or _.

6.12 API for Collection Searches

(require setup/collection-search) package: base

Added in version 6.3 of package base.

(collection-search mod-path
[#:init result
#:combine combine
#:break? break?
#:all-possible-roots? all-possible-roots?])

Ñ any/c
mod-path : normalized-lib-module-path?
result : any/c = #f
combine : (any/c (and/c path? complete-path?) . -> . any/c)

= (lambda (r v) v)
break? : (any/c . -> . any/c) = (lambda (r) #f)
all-possible-roots? : any/c = #f

Generalizes collection-file-path to support folding over all possible locations of
a collection-based file in the current configuration. Unlike collection-file-path,

103

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

collection-search takes the file to location in module-path form, but always as a 'lib
path.

Each possible path for the file (not counting a ".ss" to/from ".rkt" conversion) is provided
as a second argument to the combine function, where the first argument is the current result,
and the value produced by combine becomes the new result. The #:init argument provides
the initial result.

The break? function short-circuits a search based on the current value. For example, it
could be used to short-circuit a search after a suitable path is found.

If all-possible-roots? is #f, then combine is called only on paths within "collects"-
like directories (for the current configuration) where at least a matching collection directory
exists.
(normalized-lib-module-path? v) Ñ boolean?

v : any/c

Returns #t if v is a module path (in the sense of module-path?) of the form '(lib str)
where str contains at least one slash. The collapse-module-path function produces
such module paths for collection-based module references.

6.13 API for Platform Specifications

(require setup/matching-platform) package: base

Added in version 6.0.1.13 of package base.

(platform-spec? v) Ñ boolean?
v : any/c

Returns #t if v is a symbol, string, or regexp value (in the sense of regexp?), #f otherwise.

(matching-platform? spec
[#:cross? cross?
#:system-type sys-type
#:system-library-subpath sys-lib-subpath])

Ñ boolean?
spec : platform-spec?
cross? : any/c = #f
sys-type : (or/c #f symbol?) = (if cross?

(cross-system-type)
(system-type))

sys-lib-subpath : (or/c #f path-for-some-system?)
= (if cross?

(cross-system-library-subpath #f)
(system-library-subpath #f))

104

https://pkgs.racket-lang.org/package/base

Reports whether spec matches sys-type or sys-lib-subpath , where #f values for the
latter are replaced with the default values.

If spec is a symbol, then the result is #t if sys-type is the same symbol, #f otherwise.

If spec is a string, then the result is #t if (path->string sys-lib-subpath) is the same
string, #f otherwise.

If spec is a regexp value, then the result is #t if the regexp matches (path->string sys-
lib-subpath), #f otherwise.

Changed in version 6.3 of package base: Added #:cross? argument and changed the contract on
sys-lib-subpath to accept path-for-some-system? instead of just path?.

6.14 API for Cross-Platform Configuration

See the raco cross documentation for information about raco cross, a tool that is pro-
vided by the "raco-cross" package as a convenient interface to cross-compilation for
Racket. The underlying API documented here supports raco cross and other tools.

(require setup/cross-system) package: base

The setup/cross-system library provides functions for querying the system properties of
a destination platform, which can be different than the current platform in cross-installation
modes.

A Racket installation includes a "system.rktd" file in the directory reported by (find-
lib-dir). When the information in that file does not match the running Racket’s infor-
mation, then the setup/cross-system module infers that Racket is being run in cross-
installation mode.

For example, if an in-place Racket BC installation for a different platform resides at ⟨cross-
dir⟩, then running Racket BC as

racket -C -G ⟨cross-dir⟩/etc -X ⟨cross-dir⟩/collects -l- raco pkg

runs raco pkg using the current platform’s racket executable, but using the collections
and other configuration information of ⟨cross-dir⟩, as well as modifying the packages of
⟨cross-dir⟩. That can work as long as no platform-specific libraries need to run to perform the
requested raco pkg action (e.g., when installing built packages), or as long as the current
platform’s installation already includes those libraries.

For Racket CS, cross compilation is more complicated, because Racket CS ".zo" files are
platform-specific:

• A target installation ⟨cross-dir⟩ is needed that includes cross-compilation support for

105

https://pkgs.racket-lang.org/package/base

the host platform as plug-in within the installation’s "⟨cross-dir⟩/lib" directory.
That installation might be created by compiling from source on the host platform.
Only Racket CS can use a CS cross-compilation plug-in.

When running racket in cross mode, use the --cross-compiler flag to specify the
target machine and path to the "⟨cross-dir⟩/lib" directory.

• A flag combination -MCR with argument "⟨absolute-zo-dir⟩:" is needed to enable
".zo" file creation for both the host platform (which uses the directory before a :)
and the target platform (which uses the normal compiled-file subdirectory when the
path after the : is empty).

The ⟨absolute-zo-dir⟩ can be any absolute path. It generally should be populated by
running raco setup in cross mode before commands like raco pkg.

For example, the raco pkg example for Racket CS is

racket --cross-compiler ⟨target-machine⟩ ⟨cross-dir⟩/lib \
-MCR ⟨absolute-zo-dir⟩: \
-G ⟨cross-dir⟩/etc -X ⟨cross-dir⟩/collects -l- raco pkg

The ⟨target-machine⟩ provided to --cross-compiler should be the same as the target-
machine entry in "⟨cross-dir⟩/lib/systemd.rktd".

The -C flag is shorthand for --cross, -M is short for --compile-any, -R is short for
--compiled, -G is short for --config, -X is short for --collects, and -MCR is short for
-M -C -R.

Added in version 6.3 of package base.

(cross-system-type [mode])
Ñ (or/c symbol? string? bytes? exact-positive-integer? vector?)
mode : (or/c 'os 'os* 'arch 'word 'so-find 'platform

'gc 'vm 'link 'machine 'target-machine
'so-suffix 'so-mode 'fs-change)

= 'os

Like system-type, but for the target platform instead of the current platform in cross-
installation mode. When not in cross-installation mode, the results are the same as for
system-type.

See also 'cross mode for system-type.

(cross-system-library-subpath [mode]) Ñ path-for-some-system?
mode : (or/c 'cgc '3m 'cs #f) = (system-type 'gc)

Like system-library-subpath, but for the target platform instead of the current platform
in cross-installation mode. When not in cross-installation mode, the results are the same as
for system-library-subpath.

106

In cross-installation mode, the target platform may have a different path convention than the
current platform, so the result is path-for-some-system? instead of path?.

(cross-installation?) Ñ boolean?

Returns #t if cross-installation mode has been detected, #f otherwise.

6.15 API for Cross-References for Installed Manuals

(require setup/xref) package: racket-index

(load-collections-xref [on-load]) Ñ xref?
on-load : (-> any/c) = (lambda () (void))

Either creates and caches or returns a cached cross-reference record created with make-
collections-xref. The on-load function is called only when a previously cached record
is not returned.

(make-collections-xref
[#:no-user? no-user?
#:no-main? no-main?
#:doc-db db-path
#:quiet-fail? quiet-fail?
#:register-shutdown! register-shutdown!])

Ñ xref?
no-user? : any/c = #f
no-main? : any/c = #f
db-path : (or/c #f path?) = #f
quiet-fail? : any/c = #f
register-shutdown! : ((-> any) . -> . any) = void

Like load-xref, but automatically finds all cross-reference files for manuals that have
been installed with raco setup. The resulting cross-reference record takes advantage of a
cross-reference database db-path , when support is available, to delay the loading of cross-
reference details until needed.

Cross-reference information is skipped when it is installed in the main installation or in a
user-specific location, respectively, if no-main? or no-user? is #t.

If quiet-fail? is true, then errors are suppressed while loading cross-reference informa-
tion.

The register-shutdown! callback may be called to register a function that closes
database connections when the result of make-collections-xref is no longer needed.
If register-shutdown! is not supplied or if a function sent to register-shutdown! is
never called, database connections will be closed only though a custodian.

107

https://pkgs.racket-lang.org/package/racket-index

(get-rendered-doc-directories no-user?
no-main?) Ñ (listof path?)

no-user? : any/c
no-main? : any/c

Returns a list of directories for all documentation for all installed collections, omitting docu-
mentation that is installed in the main installation or in a user-specific location, respectively,
if no-main? or no-user? is #t.

(get-current-doc-state) Ñ doc-state?

Records the time stamps of files that are touched whenever the documentation is changed.

Added in version 1.2 of package racket-index.

(doc-state-changed? doc-state) Ñ boolean?
doc-state : doc-state?

Returns #t when the time stamps of the files in doc-state changed (or new files appeared)
and #f otherwise.

If the result is #t, then the documentation in this installation of Racket has changed and
otherwise it hasn’t.

Added in version 1.2 of package racket-index.

(doc-state? v) Ñ boolean?
v : any/c

A predicate to recognize the result of get-current-doc-state.

Added in version 1.2 of package racket-index.

6.16 API for Materializing User-Specific Documentation

(require setup/materialize-user-docs)
package: racket-index

Added in version 1.1 of package racket-index.

(materialize-user-docs
[on-setup
#:skip-user-doc-check? skip-user-doc-check?])

108

https://pkgs.racket-lang.org/package/racket-index

Ñ void?
on-setup : ((-> boolean?) . -> . any)

= (lambda (setup) (setup))
skip-user-doc-check? : any/c = #f

Checks whether a user-specific documentation entry point already exists in (find-user-
doc-dir), and if not, runs raco setup in a mode that will create the entry point (to have the
same content as the installation’s documentation entry point.) If skip-user-doc-check?
is not #f, then skips the check for the user-specific documentation entry point.

The run of raco setup is packaged in a thunk that is provided to on-setup , which can
adjust the current output and error ports as appropriate and check the thunk’s result for
success.

The on-setup argument is not called if the documentation entry point already exists in
(find-user-doc-dir).

Changed in version 1.1 of package racket-index: Added the skip-user-doc-check? argument.

6.17 Layered Installations

A typical Racket configuration includes two layers: an installation layer and a user layer.
The intent is that the installation layer is read-only to all users of a system, while the user
layer allows each individual user to install additional packages that extend the installation
layer. The installation layer is intended not only to be read-only, but to not change after
users start installing in their own layers.

In an environment where Racket itself is under development, the installation layer will
change. In that setting, if the user layer is used at all, care must be taken to not create
conflicts for the user layer when modifying the installation layer—or else the user layer
must be repaired on occasion.

By default, raco setup updates both layers whenever it is run; if a user does not have write
permission the installation, raco setup with no arguments is all but certain to report per-
mission errors. The actions of raco setup can be constrained to the user layer by supplying
the --avoid-main argument, or raco setup can be constrained to the installation layer
by using the --no-user argument. When raco pkg performs setup actions, it effectively
supplies one of the other of those based on the package’s scope (and raco pkg refuses to
operate on both scopes/layers at once).

The user layer is always both user- and version-specific. More precisely, it is specific to
the user and an installation’s name, where the installation’s name is typically its version
number. However, the name of an installation can be changed through the 'installation
setting in "config.rktd" (see §19 “Installation Configuration and Search Paths”). Setting
an installation name changes the directory where packages and executables reside within

109

(find-system-path 'addon-dir). The result of (find-system-path 'addon-dir)
itself can be changed through 'addon-dir in "config.rktd".

The installation and user configuration layers can be generalized to multiple layers by setting
search paths in "config.rktd". These search paths essentially treat the layer closest to user
as the installation layer that might be adjusted by raco setup and raco pkg, but search
paths can chain to an existing (unchanging) implementation in much the same way that user
chains to installation. To build a new layer, create new "config.rktd" that is like the
underlying layer’s "config.rktd", but

• each of 'lib-dir, 'share-dir, 'links-file, 'pkgs-dir, 'bin-dir, 'gui-
bin-dir, 'apps-dir, 'doc-dir, and 'man-dir is a new directory or file; and

• the corresponding search lists 'lib-search-dirs, 'share-search-dirs,
'links-search-files, 'pkgs-search-dirs, 'bin-search-dirs, 'gui-
bin-search-dirs, (no 'apps-dir search needed), 'doc-search-dirs, and
'man-search-dirs each add the old directory or file to the search list just after #f;
note that the default for each search list is (list #f).

There is no argument to raco setup that is analogous to --avoid-main to avoid modify-
ing nested layer; instead, nested layers are expected to be fully set up so that raco setup
need not change them. When raco setup would otherwise install an executable into the
directory configured as 'bin-dir, it consults the 'bin-search-dirs list to check whether
the executable is already installed in one of those directories, and if so, it will refrain from
creating a copy in the new layer. The same search-list check also applies to native libraries,
shared files, and man pages, but with the additional check that the file to install matches the
one that is already installed.

The default path to "config.rktd" is hardwired within a racket executable. In some
cases, it can make sense for the innermost layer’s configuration to point to another layer,
perhaps because the filesystem provides an indirection. For example, on Unix, a Racket
installation in "/usr" might reasonably configure the installation layer’s directories to be
in "/usr/local" with "/usr" directories included in the search lists.

To use racket with a new "config.rktd", you can supply the --config or --G flag to
racket or set the PLTCONFIGDIR environment variable to point to the directory containing
"config.rktd". Alternatively, you can create a tethered layer that creates replacement
executables like racket that are hardwired to the layer’s configuration directory.

6.18 Tethered Installations

A tethered installation of Racket is a layer (see §6.17 “Layered Installations”) that includes a
wrapper executable for every executable across the installation’s layers. Each wrapper exe-
cutable points back to the new layer’s "config.rktd" (see §19 “Installation Configuration

110

and Search Paths”) without the use of a PLTCONFIGDIR environment variable or --config
flag. In other words, a tethered installation provides executables such as racket, raco, and
drracket that are tied to the layer. Tethering thus helps to create a layer of installation that
behaves in a more self-contained way, but with minimal duplication of the underlying layers.

Tethering works at either a user or installation layer:

• A user layer with tethering is represented by a fresh directory ⟨addon-dir⟩ and
a "⟨addon-dir⟩/etc/config.rktd" file that maps 'addon-tethered-console-
bin-dir to ⟨tethered-bin-dir⟩, 'addon-tethered-gui-bin-dir to ⟨tethered-gui-
bin-dir⟩, and (optionally) 'addon-tethered-apps-dir to ⟨tethered-apps-dir⟩. Ini-
tialize the tethered layer with

racket -A ⟨addon-dir⟩ -l- raco setup --avoid-main

• An installation layer with tethering is like a one without tethering (see §6.17
“Layered Installations”), but where the layer’s "⟨layer-dir⟩/etc/config.rktd"
file maps 'config-tethered-console-bin-dir to ⟨tethered-bin-dir⟩, 'config-
tethered-gui-bin-dir to ⟨tethered-gui-bin-dir⟩, and (optionally) 'config-
tethered-apps-dir to ⟨tethered-apps-dir⟩. The 'bin-dir and 'gui-bin-dir
configurations can point to the same directories, but executables are not specifically
created there by raco setup. Initialize the tethered layer with

racket -G ⟨layer-dir⟩/etc -l- raco setup

In either case, initialization creates tethered executables in the directories ⟨tethered-bin-dir⟩
and ⟨tethered-gui-bin-dir⟩, writing ".desktop" files (for Unix) in ⟨tethered-apps-dir⟩ (if
specified). Thereafter, tethered executables like ⟨tethered-bin-dir⟩/racket and ⟨tethered-
bin-dir⟩/raco can be used to work with the tethered layer.

111

7 raco decompile: Decompiling Bytecode

The raco decompile command takes the path of a bytecode file (which usually has the file
extension ".zo") or a source file with an associated bytecode file (usually created with raco
make) and converts the bytecode file’s content back to an approximation of Racket code.
When the “bytecode” file contains machine code, as for the CS variant of Racket, then it
cannot be converted back to an approximation of Racket, but installing the "disassemble"
package may enable disassembly of the machine code. Decompilation is mostly useful for
checking the compiler’s transformation and optimization of the source program.

The raco decompile command accepts the following command-line flags:

• --force — skip modification-date comparison on the given file’s path and an associ-
ated ".zo" file (if any)

• -n ⟨n⟩ or --columns ⟨n⟩ — format output for a display with ⟨n⟩ columns

• --linklet — decompile only as far as linklets, instead of decoding linklets to ap-
proximate Racket module forms

• --no-disassemble — show machine code as-is in a byte string, instead of attempt-
ing to disassemble

• --partial-fasl — preserve more of the original structure of the bytecode file, in-
stead of focusing on procedure bodies

Changed in version 1.8: Added --no-disassemble.
Changed in version 1.9: Added --partial-fasl.

7.1 Racket CS Decompilation

Decompilation of Racket CS bytecode mostly shows the structure of a module around
machine-code implementations of procedures.

• A #%machine-code form corresponds to machine code that is not disassembled,
where the machine code is in a byte string.

• A #%assembly-code form corresponds to disassembled machine code, where the
assembly code is shown as a sequence of strings.

• A #%interpret form corresponds to a compiled form of a large procedure, where
only smaller nested procedures are compiled to machine code.

112

7.2 Racket BC Decompilation

Racket BC bytecode has a structure that is close enough to Racket’s core language that it
can more often be converted to an approximation of Racket code. To the degree that it can
be converted back, many forms in the decompiled code have the same meanings as always,
such as module, define, and lambda. Other forms and transformations are specific to the
rendering of bytecode, and they reflect a specific execution model:

• Top-level variables, variables defined within the module, and variables imported from
other modules are prefixed with _, which helps expose the difference between uses of
local variables versus other variables. Variables imported from other modules, more-
over, have a suffix starting with @ that indicates the source module. Finally, imported
variables with constantness have a midfix: :c to indicate constant shape across all
instantiations, :f to indicate a fixed value after initialization, :p to indicate a proce-
dure, :P to indicate a procedure that preserves continuation marks on return, :t to
indicate a structure type, :mk to indicate a structure constructor, :? to indicate a struc-
ture predicate, :ref to indicate a structure accessor, or :set! to indicate a structure
mutator.

Non-local variables are always accessed indirectly though an implicit #%globals or
#%modvars variable that resides on the value stack (which otherwise contains local
variables). Variable accesses are further wrapped with #%checked when the compiler
cannot prove that the variable will be defined before the access.

Uses of core primitives are shown without a leading _, and they are never wrapped
with #%checked.

• Local-variable access may be wrapped with #%sfs-clear, which indicates that the
variable-stack location holding the variable will be cleared to prevent the variable’s
value from being retained by the garbage collector. Variables whose name starts with
unused are never actually stored on the stack, and so they never have #%sfs-clear
annotations. (The bytecode compiler normally eliminates such bindings, but some-
times it cannot, either because it cannot prove that the right-hand side produces the
right number of values, or the discovery that the variable is unused happens too late
with the compiler.)

Mutable variables are converted to explicitly boxed values using #%box, #%unbox,
and #%set-boxes! (which works on multiple boxes at once). A set!-rec-values
operation constructs mutually-recursive closures and simultaneously updates the cor-
responding variable-stack locations that bind the closures. A set!, set!-values, or
set!-rec-values form is always used on a local variable before it is captured by a
closure; that ordering reflects how closures capture values in variable-stack locations,
as opposed to stack locations.

• In a lambda form, if the procedure produced by the lambda has a name (accessible
via object-name) and/or source-location information, then it is shown as a quoted
constant at the start of the procedure’s body. Afterward, if the lambda form captures
any bindings from its context, those bindings are also shown in a quoted constant.

113

Neither constant corresponds to a computation when the closure is called, though the
list of captured bindings corresponds to a closure allocation when the lambda form
itself is evaluated.

A lambda form that closes over no bindings is wrapped with #%closed plus an iden-
tifier that is bound to the closure. The binding’s scope covers the entire decompiled
output, and it may be referenced directly in other parts of the program; the binding
corresponds to a constant closure value that is shared, and it may even contain cyclic
references to itself or other constant closures.

• A form (#%apply-values proc expr) is equivalent to (call-with-values
(lambda () expr) proc), but the run-time system avoids allocating a closure for
expr . Similarly, a #%call-with-immediate-continuation-mark call is equiva-
lent to a call-with-immediate-continuation-mark call, but avoiding a closure
allocation.

• A define-values form may have (begin '%%inline-variant%% expr1
expr2) for its expression, in which case expr2 is the normal result, but expr1 may
be inlined for calls to the definition from other modules. Definitions of functions
without an '%%inline-variant%% are never inlined across modules.

• Function arguments and local bindings that are known to have a particular type have
names that embed the known type. For example, an argument might have a name that
starts argflonum or a local binding might have a name that starts flonum to indicate
a flonum value.

7.3 API for Decompiling

(require compiler/decompile) package: compiler-lib

(decompile top [#:to-linklets? to-linklets?]) Ñ any/c
top : (or/c linkl-directory? linkl-bundle? linkl?

linklet? faslable-correlated-linklet?)
to-linklets? : any/c = #f

Consumes the result of parsing bytecode and returns an S-expression (as described above)
that represents the compiled code.

If to-linklets? is true, then the result S-expression shows raw linklet forms within top
instead of reconstructing a module form.

7.4 API for Parsing Bytecode

(require compiler/zo-parse) package: zo-lib

114

https://pkgs.racket-lang.org/package/compiler-lib
https://pkgs.racket-lang.org/package/zo-lib

The compiler/zo-parse module re-exports compiler/zo-structs in addition to zo-
parse.

(zo-parse [in]) Ñ (or/c linkl-directory? linkl-bundle?)
in : input-port? = (current-input-port)

Parses a port (typically the result of opening a ".zo" file) containing bytecode. Beware
that the structure types used to represent the bytecode are subject to frequent changes across
Racket versions.

The parsed bytecode is returned in a linkl-directory or linkl-bundle structure—the
latter only for the compilation of a module that contains no submodules.

Beyond the linklet bundle or directory structure, the result of zo-parse contains linklets
that depend on the machine for which the bytecode is compiled:

• For a machine-independent bytecode file, a linklet is represented as a faslable-
correlated-linklet.

• For a Racket CS bytecode file, a linklet is opaque, because it is primarily machine
code, but decompile can extract some information and potentially disassemble the
machine code.

• For Racket BC bytecode, the bytecode can be parsed into structures as described be-
low.

The rest of this section is specific to BC bytecode.

Within a linklet, the bytecode representation of an expression is closer to an S-expression
than a traditional, flat control string. For example, an if form is represented by a branch
structure that has three fields: a test expression, a “then” expression, and an “else” expres-
sion. Similarly, a function call is represented by an application structure that has a list of
argument expressions.

Storage for local variables or intermediate values (such as the arguments for a function call)
is explicitly specified in terms of a stack. For example, execution of an application struc-
ture reserves space on the stack for each argument result. Similarly, when a let-one struc-
ture (for a simple let) is executed, the value obtained by evaluating the right-hand side
expression is pushed onto the stack, and then the body is evaluated. Local variables are
always accessed as offsets from the current stack position. When a function is called, its
arguments are passed on the stack. A closure is created by transferring values from the stack
to a flat closure record, and when a closure is applied, the saved values are restored on the
stack (though possibly in a different order and likely in a more compact layout than when
they were captured).

When a sub-expression produces a value, then the stack pointer is restored to its location
from before evaluating the sub-expression. For example, evaluating the right-hand size for

115

a let-one structure may temporarily push values onto the stack, but the stack is restored to
its pre-let-one position before pushing the resulting value and continuing with the body.
In addition, a tail call resets the stack pointer to the position that follows the enclosing
function’s arguments, and then the tail call continues by pushing onto the stack the arguments
for the tail-called function.

Values for global and module-level variables are not put directly on the stack, but instead
stored in “buckets,” and an array of accessible buckets is kept on the stack. When a closure
body needs to access a global variable, the closure captures and later restores the bucket
array in the same way that it captured and restores a local variable. Mutable local variables
are boxed similarly to global variables, but individual boxes are referenced from the stack
and closures.

7.5 API for Marshaling Bytecode

(require compiler/zo-marshal) package: zo-lib

(zo-marshal-to top out) Ñ void?
top : (or/c linkl-directory? linkl-bundle?)
out : output-port?

Consumes a representation of bytecode and writes it to out .

(zo-marshal top) Ñ bytes?
top : (or/c linkl-directory? linkl-bundle?)

Consumes a representation of bytecode and generates a byte string for the marshaled byte-
code.

7.6 Bytecode Representation

(require compiler/zo-structs) package: zo-lib

The compiler/zo-structs library defines the bytecode structures that are produced by
zo-parse and consumed by decompile and zo-marshal.

Warning: The compiler/zo-structs library exposes internals of the Racket
bytecode abstraction. Unlike other Racket libraries, compiler/zo-structs is
subject to incompatible changes across Racket versions.

(struct zo ()
#:extra-constructor-name make-zo
#:prefab)

116

https://pkgs.racket-lang.org/package/zo-lib
https://pkgs.racket-lang.org/package/zo-lib

A supertype for all forms that can appear in compiled code.

7.6.1 Prefix

(struct linkl-directory zo (table)
#:extra-constructor-name make-linkl-directory
#:prefab)

table : (hash/c (listof symbol?) linkl-bundle?)
(struct linkl-bundle zo (table)

#:extra-constructor-name make-linkl-bundle
#:prefab)

table : (hash/c (or/c symbol? fixnum?) (or linkl? any/c))

Wraps compiled code.

Module and top-level compilation produce one or more linklets that represent independent
evaluation in a specific phase. Even a single top-level expression or a module with only run-
time code will generate multiple linklets to implement metadata and syntax data. A module
with no submodules is represented directly by a linkl-bundle, while any other compiled
form is represented by a linkl-directory.

A linklet bundle maps an integer to a linklet representing forms to evaluate at the integer-
indicated phase. Symbols are mapped to metadata, such as a module’s name as compiled
or a linklet implementing literal syntax objects. A linklet directory normally maps '() to
the main linklet bundle for a module or a single top-level form; for a linklet directory that
corresponds to a sequence of top-level forms, however, there is no “main” linklet bundle,
and symbol forms of integers are used to order the linkets.

For a module with submodules, the linklet directory maps submodule paths (as lists of sym-
bols) to linklet bundles for the corresponding submodules.

An individual linklet is represented as a linkl only if the source bytecode file was for
Racket BC. A CS bytecode linklet will be represented by an opaque linklet (in the sense
of linklet? from racket/linklet). A machine-independent linklet is represented as a
faslable-correlated-linklet structure.

(struct linkl zo (name
importss
import-shapess
exports
internals
lifts
source-names
body
max-let-depth
need-instance-access?)

117

#:extra-constructor-name make-linkl
#:prefab)

name : symbol?
importss : (listof (listof symbol?))
import-shapess : (listof (listof (or/c #f 'constant 'fixed

function-shape?
struct-shape?)))

exports : (listof symbol?)
internals : (listof (or/c symbol? #f))
lifts : (listof symbol?)
source-names : (hash/c symbol? symbol?)
body : (listof (or/c form? any/c))
max-let-depth : exact-nonnegative-integer?
need-instance-access? : boolean?

Represents a linklet, which corresponds to a module body or a top-level sequence at a single
phase.

The name of a linklet is for debugging purposes, similar to the inferred name of a lambda
form.

The importss list of lists describes the linklet’s imports. Each of the elements of the out
list corresponds to an import source, and each element of an inner list is the symbolic name
of an export from that source. The import-shapess list is in parallel to imports; it re-
flects optimization assumptions by the compiler that are used by the bytecode validator and
checked when the linklet is instantiated.

The exports list describes the linklet’s defined names that are exported. The internals
list describes additional definitions within the linket, but they are not accessible from the
outside of a linklet or one of its instances; a #f can appear in place of an unreferenced
internal definition that has been removed. The lifts list is an extension of internals for
procedures that are lifted by the compiler; these procedures have certain properties that can
be checked by the bytecode validator.

Each symbol in exports, internals, and lifts must be distinct from any other symbol
in those lists. The source-names table maps symbols in exports, internals, and lifts
to other symbols, potentially not distinct, that correspond to original source names for the
definition. The source-names table is used only for debugging.

When a linklet is instantiated, variables corresponding to the flattening of the lists im-
portss, exports, internals, and lifts are placed in an array (in that order) for ac-
cess via toplevel references. The initial slot is reserved for a variable-like reference that
strongly retains a connection to an instance of its enclosing linklet.

The bodys list is the executable content of the linklet. The value of the last element in bodys
may be returned when the linklet is instantiated, depending on the way that it’s instantiated.

118

The max-let-depth field indicates the maximum size of the stack that will be created by
any body.

The need-instance-access? boolean indicates whether the linklet contains a toplevel
for position 0. A #t is allowed (but suboptimal) if not such reference is present in the linklet
body.

(struct function-shape (arity preserves-marks?)
#:extra-constructor-name make-function-shape
#:prefab)

arity : procedure-arity?
preserves-marks? : boolean?

Represents the shape of an expected import, which should be a function having the arity
specified by arity. The preserves-marks? field is true if calling the function is expected
to leave continuation marks unchanged by the time it returns.

(struct struct-shape ()
#:extra-constructor-name make-struct-shape
#:prefab)

(struct struct-type-shape struct-shape (field-count authentic?)
#:extra-constructor-name make-struct-type-shape
#:prefab)

field-count : exact-nonnegative-integer?
authentic? : boolean?

(struct constructor-shape struct-shape (arity)
#:extra-constructor-name make-constructor-shape
#:prefab)

arity : exact-nonnegative-integer?
(struct predicate-shape struct-shape (authentic?)

#:extra-constructor-name make-predicate-shape
#:prefab)

authentic? : boolean?
(struct accessor-shape struct-shape (field-count authentic?)

#:extra-constructor-name make-accessor-shape
#:prefab)

field-count : exact-nonnegative-integer?
authentic? : boolean?

(struct mutator-shape struct-shape (field-count authentic?)
#:extra-constructor-name make-mutator-shape
#:prefab)

field-count : exact-nonnegative-integer?
authentic? : boolean?

(struct struct-type-property-shape struct-shape (has-guard?)
#:extra-constructor-name make-struct-type-property-shape
#:prefab)

has-guard? : boolean?

119

(struct property-predicate-shape struct-shape ()
#:extra-constructor-name make-property-predicate-shape
#:prefab)

(struct property-accessor-shape struct-shape ()
#:extra-constructor-name make-property-accessor-shape
#:prefab)

(struct struct-other-shape struct-shape ()
#:extra-constructor-name make-struct-other-shape
#:prefab)

Represents the shape of an expected import as a structure-type binding, constructor, etc.

7.6.2 Forms and Inline Variants

(struct form zo ()
#:extra-constructor-name make-form
#:prefab)

A supertype for all forms that can appear in a linklet body (including exprs), except for
literals that are represented as themselves.

(struct def-values form (ids rhs)
#:extra-constructor-name make-def-values
#:prefab)

ids : (listof toplevel?)
rhs : (or/c expr? seq? inline-variant? any/c)

Represents a define-values form. Each element of ids references a defined variable in
the enclosing linklet.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct inline-variant zo (direct inline)
#:extra-constructor-name make-inline-variant
#:prefab)

direct : expr?
inline : expr?

Represents a function that is bound by define-values, where the function has two variants.
The first variant is used for normal calls to the function. The second may be used for cross-
module inlining of the function.

120

7.6.3 Expressions

(struct expr form ()
#:extra-constructor-name make-expr
#:prefab)

A supertype for all expression forms that can appear in compiled code, except for literals
that are represented as themselves.

(struct lam expr (name
flags
num-params
param-types
rest?
closure-map
closure-types
toplevel-map
max-let-depth
body)

#:extra-constructor-name make-lam
#:prefab)

name : (or/c symbol? vector?)
flags : (listof (or/c 'preserves-marks 'is-method 'single-result

'only-rest-arg-not-used 'sfs-clear-rest-args))
num-params : exact-nonnegative-integer?
param-types : (listof (or/c 'val 'ref 'flonum 'fixnum 'extflonum))
rest? : boolean?
closure-map : (vectorof exact-nonnegative-integer?)
closure-types : (listof (or/c 'val/ref 'flonum 'fixnum 'extflonum))
toplevel-map : (or/c #f (set/c exact-nonnegative-integer?))
max-let-depth : exact-nonnegative-integer?
body : (or/c expr? seq? any/c)

Represents a lambda form. The name field is a name for debugging purposes. The num-
params field indicates the number of arguments accepted by the procedure, not counting a
rest argument; the rest? field indicates whether extra arguments are accepted and collected
into a “rest” variable. The param-types list contains num-params symbols indicating the
type of each argument, either 'val for a normal argument, 'ref for a boxed argument
(representing a mutable local variable), 'flonum for a flonum argument, or 'extflonum
for an extflonum argument.

The closure-map field is a vector of stack positions that are captured when evaluating
the lambda form to create a closure. The closure-types field provides a corresponding
list of types, but no distinction is made between normal values and boxed values; also,
this information is redundant, since it can be inferred by the bindings referenced though
closure-map.

121

When a closure captures top-level or module-level variables or refers to a syntax-object
constant, the variables and constants are represented in the closure by capturing a prefix (in
the sense of prefix). The toplevel-map field indicates which top-level variables (i.e.,
linklet imports and definitions) are actually used by the closure (so that variables in a prefix
can be pruned by the run-time system if they become unused) and whether any syntax objects
are used (so that the syntax objects as a group can be similarly pruned). A #f value indicates
either that no prefix is captured or all variables and syntax objects in the prefix should be
considered used. Otherwise, numbers in the set indicate which variables and lifted variables
are used. Variables are numbered consecutively by position in the prefix starting from 0, but
the number equal to the number of non-lifted variables corresponds to syntax objects (i.e.,
the number is include if any syntax-object constant is used). Lifted variables are numbered
immediately afterward—which means that, if the prefix contains any syntax objects, lifted-
variable numbers are shifted down relative to a toplevel by the number of syntax object in
the prefix (which makes the toplevel-map set more compact).

When the function is called, the rest-argument list (if any) is pushed onto the stack, then the
normal arguments in reverse order, then the closure-captured values in reverse order. Thus,
when body is run, the first value on the stack is the first value captured by the closure-map
array, and so on.

The max-let-depth field indicates the maximum stack depth created by body plus the ar-
guments and closure-captured values pushed onto the stack. The body field is the expression
for the closure’s body.

Changed in version 6.1.1.8 of package zo-lib: Added a number to toplevel-map to indicate whether any syntax
object is used, shifting numbers for lifted variables up by one if any syntax object is in the prefix.

(struct closure expr (code gen-id)
#:extra-constructor-name make-closure
#:prefab)

code : lam?
gen-id : symbol?

A lambda form with an empty closure, which is a procedure constant. The procedure con-
stant can appear multiple times in the graph of expressions for bytecode, and the code field
can be a cycle for a recursive constant procedure; the gen-id is different for each such
constant.

(struct case-lam expr (name clauses)
#:extra-constructor-name make-case-lam
#:prefab)

name : (or/c symbol? vector?)
clauses : (listof lam?)

Represents a case-lambda form as a combination of lambda forms that are tried (in order)
based on the number of arguments given.

122

(struct let-one expr (rhs body type unused?)
#:extra-constructor-name make-let-one
#:prefab)

rhs : (or/c expr? seq? any/c)
body : (or/c expr? seq? any/c)
type : (or/c #f 'flonum 'fixnum 'extflonum)
unused? : boolean?

Pushes an uninitialized slot onto the stack, evaluates rhs and puts its value into the slot, and
then runs body. If type is not #f, then rhs must produce a value of the corresponding type,
and the slot must be accessed by localrefs that expect the type. If unused? is #t, then the
slot must not be used, and the value of rhs is not actually pushed onto the stack (but rhs is
constrained to produce a single value).

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs. Note
that the new slot is created before evaluating rhs.

(struct let-void expr (count boxes? body)
#:extra-constructor-name make-let-void
#:prefab)

count : exact-nonnegative-integer?
boxes? : boolean?
body : (or/c expr? seq? any/c)

Pushes count uninitialized slots onto the stack and then runs body. If boxes? is #t, then
the slots are filled with boxes that contain #<undefined>.

(struct install-value expr (count pos boxes? rhs body)
#:extra-constructor-name make-install-value
#:prefab)

count : exact-nonnegative-integer?
pos : exact-nonnegative-integer?
boxes? : boolean?
rhs : (or/c expr? seq? any/c)
body : (or/c expr? seq? any/c)

Runs rhs to obtain count results, and installs them into existing slots on the stack in order,
skipping the first pos stack positions. If boxes? is #t, then the values are put into existing
boxes in the stack slots.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct let-rec expr (procs body)
#:extra-constructor-name make-let-rec
#:prefab)

123

procs : (listof lam?)
body : (or/c expr? seq? any/c)

Represents a letrec form with lambda bindings. It allocates a closure shell for each
lambda form in procs, installs each onto the stack in previously allocated slots in reverse
order (so that the closure shell for the last element of procs is installed at stack position
0), fills out each shell’s closure (where each closure normally references some other just-
created closures, which is possible because the shells have been installed on the stack), and
then evaluates body.

(struct boxenv expr (pos body)
#:extra-constructor-name make-boxenv
#:prefab)

pos : exact-nonnegative-integer?
body : (or/c expr? seq? any/c)

Skips pos elements of the stack, setting the slot afterward to a new box containing the slot’s
old value, and then runs body. This form appears when a lambda argument is mutated using
set! within its body; calling the function initially pushes the value directly on the stack, and
this form boxes the value so that it can be mutated later.

(struct localref expr (unbox? pos clear? other-clears? type)
#:extra-constructor-name make-localref
#:prefab)

unbox? : boolean?
pos : exact-nonnegative-integer?
clear? : boolean?
other-clears? : boolean?
type : (or/c #f 'flonum 'fixnum 'extflonum)

Represents a local-variable reference; it accesses the value in the stack slot after the first pos
slots. If unbox? is #t, the stack slot contains a box, and a value is extracted from the box.
If clear? is #t, then after the value is obtained, the stack slot is cleared (to avoid retaining
a reference that can prevent reclamation of the value as garbage). If other-clears? is #t,
then some later reference to the same stack slot may clear after reading. If type is not #f,
the slot is known to hold a specific type of value.

(struct toplevel expr (depth pos const? ready?)
#:extra-constructor-name make-toplevel
#:prefab)

depth : exact-nonnegative-integer?
pos : exact-nonnegative-integer?
const? : boolean?
ready? : boolean?

124

Represents a reference to an imported or defined variable within a linklet. The depth field
indicates the number of stack slots to skip to reach the prefix array, and pos is the offset into
the array.

When the toplevel is an expression, if both const? and ready? are #t, then the variable
definitely will be defined, its value stays constant, and the constant is effectively the same
for every module instantiation. If only const? is #t, then the value is constant, but it may
vary across instantiations. If only ready? is #t, then the variable definitely will be defined,
but its value may change. If const? and ready? are both #f, then a check is needed to
determine whether the variable is defined.

When the toplevel is the left-hand side for def-values, then const? is #f. If ready? is
#t, the variable is marked as immutable after it is defined.

(struct application expr (rator rands)
#:extra-constructor-name make-application
#:prefab)

rator : (or/c expr? seq? any/c)
rands : (listof (or/c expr? seq? any/c))

Represents a function call. The rator field is the expression for the function, and rands are
the argument expressions. Before any of the expressions are evaluated, (length rands)
uninitialized stack slots are created (to be used as temporary space).

(struct branch expr (test then else)
#:extra-constructor-name make-branch
#:prefab)

test : (or/c expr? seq? any/c)
then : (or/c expr? seq? any/c)
else : (or/c expr? seq? any/c)

Represents an if form.

After test is evaluated, the stack is restored to its depth from before evaluating test.

(struct with-cont-mark expr (key val body)
#:extra-constructor-name make-with-cont-mark
#:prefab)

key : (or/c expr? seq? any/c)
val : (or/c expr? seq? any/c)
body : (or/c expr? seq? any/c)

Represents a with-continuation-mark expression.

After each of key and val is evaluated, the stack is restored to its depth from before evalu-
ating key or val.

125

(struct seq expr (forms)
#:extra-constructor-name make-seq
#:prefab)

forms : (listof (or/c expr? any/c))

Represents a begin form.

After each form in forms is evaluated, the stack is restored to its depth from before evaluat-
ing the form.

(struct beg0 expr (seq)
#:extra-constructor-name make-beg0
#:prefab)

seq : (listof (or/c expr? seq? any/c))

Represents a begin0 expression.

After each expression in seq is evaluated, the stack is restored to its depth from before
evaluating the expression.

Unlike the begin0 source form, the first expression in seq is never in tail position, even if
it is the only expression in the list.

(struct varref expr (toplevel dummy constant? from-unsafe?)
#:extra-constructor-name make-varref
#:prefab)

toplevel : (or/c toplevel? #t #f symbol?)
dummy : (or/c toplevel? #f)
constant? : boolean?
from-unsafe? : boolean?

Represents a #%variable-reference form. The toplevel field is #t if the original ref-
erence was to a constant local binding, #f if the variable reference is for (#%variable-
reference) and does not refer to a specific variable, or a symbol if the variable reference
refers to a primitive variable. The dummy field accesses a variable bucket that strongly refer-
ences its namespace (as opposed to a normal variable bucket, which only weakly references
its namespace); it can be #f.

The value of constant? is true when the toplevel field is not #t but the referenced vari-
able is known to be constant. The value of from-unsafe? is true when the module that
created the reference was compiled in unsafe mode.

(struct assign expr (id rhs undef-ok?)
#:extra-constructor-name make-assign
#:prefab)

126

id : toplevel?
rhs : (or/c expr? seq? any/c)
undef-ok? : boolean?

Represents a set! expression that assigns to a top-level or module-level variable. (Assign-
ments to local variables are represented by install-value expressions.) If undef-ok? is
true, the assignment to id succeeds even if idwas not previously defined (see also compile-
allow-set!-undefined).

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct apply-values expr (proc args-expr)
#:extra-constructor-name make-apply-values
#:prefab)

proc : (or/c expr? seq? any/c)
args-expr : (or/c expr? seq? any/c)

Represents (call-with-values (lambda () args-expr) proc), which is handled
specially by the run-time system.

(struct with-immed-mark expr (key def-val body)
#:extra-constructor-name make-with-immed-mark
#:prefab)

key : (or/c expr? seq? any/c)
def-val : (or/c expr? seq? any/c)
body : (or/c expr? seq? any/c)

Represents a (call-with-immediate-continuation-mark key (lambda (arg)
body) val) expression that is handled specially by the run-time system to avoid a closure
allocation. One initialized slot is pushed onto the stack after expr and val are evaluated
and before body is evaluated.

After each of key and val is evaluated, the stack is restored to its depth from before evalu-
ating key or val.

(struct primval expr (id)
#:extra-constructor-name make-primval
#:prefab)

id : exact-nonnegative-integer?

Represents a direct reference to a variable imported from the run-time kernel.

7.7 Machine-Independent Linklets

(require compiler/faslable-correlated) package: zo-lib

127

https://pkgs.racket-lang.org/package/zo-lib

Warning: The compiler/faslable-correlated library exposes inter-
nals of the Racket bytecode abstraction. Unlike other Racket libraries,
compiler/faslable-correlated is subject to incompatible changes across
Racket versions.

Added in version 1.3 of package zo-lib.

(struct faslable-correlated-linklet (expr name)
#:extra-constructor-name make-faslable-correlated-linklet
#:prefab)

expr : any/c
name : symbol?

A faslable-correlated-linklet structure represents a linklet that has been “compiled”
to machine-independent form, which just contains an S-expression representing the linklet
form. The S-expression is enriched with source-location information by wrapping some
nested S-expressions with faslable-correlated structures.

Since faslable-correlated-linklet is a prefab structure type, the contracts docu-
mented above for its fields are not enforced.

(struct faslable-correlated (e
source
position
line
column
span
props)

#:extra-constructor-name make-faslable-correlated
#:prefab)

e : any/c
source : any/c
position : exact-positive-integer?
line : exact-positive-integer?
column : exact-nonnegative-integer?
span : exact-nonnegative-integer?
props : (hash/c symbol? any/c)

Wraps an S-expression e to give it a source location. The S-expression e may contain nested
faslable-correlated structures, but nesting is expected only within pairs.

Since faslable-correlated is a prefab structure type, the contracts documented above
for its fields are not enforced.

(strip-correlated e) Ñ any/c
e : any/c

128

Recurs through e to strip away any faslable-correlated structures that are reachable
through pairs. The given e must not contain any cycles that are reachable through pairs.

129

8 raco demod: Demodularizing Programs

The raco demodularize command (usually used with the shorthand raco demod) takes a
Racket module and flattens its dependencies into a single compiled module, potentially with
submodules. A file "⟨name⟩.rkt" is demodularized into "⟨name⟩_rkt_merged.zo".

See compiler/demod for an alternative way to use the demodularizer. Using #lang com-
piler/demod can cooperate with tools like raco make and raco setup, which is espe-
cially important for library modules (as opposed to end-user programs).

In its default configuration, raco demod supports flattening a module that represents an
end-user program, so it discards all syntax and compile-time support in the module and its
dependencies. Submodules are preserved, but their syntax and compile-time support are
similarly discarded. The demodularized ".zo" file can be run by passing it as an argument
to the racket command-line program, or it can be turned into an executable with raco exe.

Supply the -s or --syntax flag to preserve syntax and compile-time components of the
module, so that it can be required the same as the original module. In that case, modules
whose instances need to be shared with other libraries should be omitted from the demod-
ularization using -x or --exclude-library. For example, -x racket/base is normally
needed.

A large single module generated by the demodularizer is compiled as if (#%declare
#:unlimited-compile) is specified, so the value of the PLT_CS_COMPILE_LIMIT envi-
ronment variable does not limit compilation of the module.

The raco demod command accepts these flags:

• -o ⟨file⟩ — writes the flattened module to ⟨file⟩ instead of
"⟨name⟩_⟨ext⟩_merged.zo" for an input file "⟨name⟩.⟨ext⟩".

• -x ⟨module-path⟩ or --exclude-library ⟨module-path⟩ — excludes the module in
⟨module-path⟩ from flattening, as well as all of its dependencies. An error is reported
if ⟨module-path⟩ is not a dependency of the input module and has no submodules that
are dependencies.

• -e ⟨path⟩ or --exclude-module ⟨path⟩ — excludes the module in relative-file
⟨path⟩ from flattening, as well as all of its dependencies. An error is reported if
⟨path⟩ is not a dependency of the input module and has no submodules that are
dependencies. For backward compatibility, --exclude-modules is an alias for
--exclude-module.

• -s or --syntax — preserve syntax objects and phase levels greater than the run-time
phase in the flattened result. Otherwise, only the run-time phase is preserved, and
unused (or merely exported) definitions are pruned, since they cannot be referenced
through syntax.

130

• -M or --compile-any— flattens the module to machine-independent form, instead of
recompiling the flattened module to the current platform and Racket virtual machine;
the output generated with -M loads more slowly than a machine-specific form, but
raco decompile can show the flattened module in a format that is closer to source.
See also --dump-mi.

• -r or --recompile — (re)compiles the module to machine-dependent form after
flattening; this mode is the default.

• --work ⟨dir⟩ — uses ⟨dir⟩ to cache compiled modules in an intermediate form for
flattening; using --work with the same ⟨dir⟩ for multiple uses of raco demod can
greatly speed up demodularization, and since the cache is based on raco make, it
works even with different input files or when modules to be flattened have changed
since the last use of the cache.

• -g or --prune-definitions — increases pruning of definitions that are unrefer-
enced on the unsound assumption that the right-hand side of a definition has no side
effect. When syntax is preserved, a definition can be pruned as long as no syntax lit-
eral includes an identifier that is bound to the definition. Since these assumptions are
unchecked, conversion may not preserve the behavior of the input module. For back-
ward compatibility, --garbage-collect is an alias for --prune-definitions.

• --dump ⟨file⟩ — writes an S-expression representation of the module’s content to
⟨file⟩, which can be helpful for understanding the content that is in the compiled flatten
module.

• --dump-mi ⟨file⟩ — writes a machine-independent form of the flattened module to
⟨file⟩, the same as -M would write, but useful when -M is not used.

In addition to preserving submodules or of the source module, demodularization may intro-
duce new submodules to hold portions of the flattening. The introduced submodules have
names demod-pane- followed by an integer.

Changed in version 1.10 of package compiler-lib: Added -M/--compile-any, --work, and support for Racket
CS.
Changed in version 1.15: Added -x/--exclude-library, -s/--syntax, --dump, --dump-mi,
--prune-definitions (as a new name for --garbage-collect), and preservation of submodules.
Changed in version 1.16: Changed to reporting an error when a module named by -x or -e is not a dependency of
the input module.

8.1 Demodularizing Libraries

Demodularization of a library module with compiler/demod can create a module whose
meaning is different than the original, since transitive dependencies (that are not speci-
fied as excluded) are copied into the flattened module. That copying can break sharing as
needed for generated structure types or bindings. As a specific example, separate copies of

131

racket/base will have distinct and incompatible implementations of keyword arguments
for procedures.

To avoid problems, a good general strategy for flattening is

• put all modules to be flattened into an "private/amalgam" subcollection of, where
modules within "private/amalgam" can freely refer to each other;

• create a module "private/amalgam-src.rkt" that requires modules from "pri-
vate/amalgam" that need to be accessible from outside, where submodules in
"private/amalgam-src.rkt" can provided different subsets of bindings from
"private/amalgam";

• create a module "mine/private/amalgam.rkt" as

#lang compiler/demod
"amalgam-src.rkt"
#:include (#:dir "amalgam")

and

• from outside "private/amalgam", use only "private/amalgam.rkt", perhaps via
public modules that reprovide from "private/amalgam.rkt".

8.2 Language for Demodularizing

#lang compiler/demod package: compiler-lib

A module using compiler/demod language compiles to a form that is the flattened (in the
same sense as raco demod) version of a source module. See also §8.1 “Demodularizing
Libraries”.

A #lang compiler/demod module body starts with a module-path to flatten, it may be
followed by options:

module-path
option
...

132

https://pkgs.racket-lang.org/package/compiler-lib

option = mode
| #:include (mod-spec ...)
| #:exclude (mod-spec ...)
| #:submodule-include (submod-spec ...)
| #:submodule-exclude (submod-spec ...)
| #:prune-definitions
| #:dump file
| #:dump-mi file
| #:no-demod

mode = #:exe
| #:dynamic
| #:static

mod-spec = #:module module-path
| #:dir dir-path
| #:collect collect-name

submod-spec = identifier
| (identifier ...)

The default mode is #:dynamic, which preserves syntax objects and compile-time support
(like macros), but does not insist that all modules are copied into the flattened module. For
example, if a module is referenced by a combination of submodules within module-path
and no other module is reached by the same combination, then the benefit of copying the
module into a submodule is limited. The #:static mode is like #:dynamic, but it ensures
that all modules are included unless they are specified as excluded. The #:exe mode dis-
cards syntax and compile-time support, so it may be suitable for flattening a module that
implements an end-user program.

When the #:include option is specified, then only modules covered by a mod-spec will
be included in the flattened form; otherwise, all modules are candidates for inclusion. When
the #:exclude option is specified, the modules covered by the mod-specs are excluded,
even if they would otherwise be included according to a #:include specification. In other
words, #:exclude is applied after #:include. Each mod-spec must name a module by
a filesystem or collection-based path, and it must not name a submodule; any submodule
of the named module is implicitly included or excluded. If a mod-spec in the #:include
or #:exclude list is not a dependency of module-path (and has no submodules that are
dependencies), then an exception is raised.

The #:submodule-include and #:submodule-exclude specifications are analogous to
#:include and #:exclude, but for submodules immediately with module-path . If mode
is #:exe, then the list of inclusions defaults to main and configure-runtime, otherwise
the default is to have no specific inclusions.

A mod-spec either indicates a specific module with #:module or it indicates all modules in

133

a given collection (and its subcollections) with #:collect. A collect-name is always a
string with /-separated components.

If the #:prune-definitions option is specified, then unused definitions from the original
module and its dependencies are more aggressively pruned, but unsoundly. When syntax is
preserved for #:dynamic or #:static mode, then all definitions are normally preserved
from the original module, because they might be reachable via datum->syntax; when
#:prune-definitions is specified, a definition can be pruned if no syntax object literal
includes an identifier bound to the definition. Meanwhile, in all modes including #:exe, a
definition is normally preserved if its right-hand side might have a side effect, but #:prune-
definitions allows pruning on the unchecked assumption that a definition has no side
effect. Due to its unchecked assumptions, #:prune-definitions may not preserve the
behavior of the input module. As an example of

where
#:prune-definitions
can go wrong, a
module could
export a macro that
expands to a use of
syntax-parse,
and that use could
include a :
shorthand to
combine a pattern
variable and a
syntax class (also
defined in the
module) as one
identifier. The
identifier would be
split into variable
and syntax-class
components only
when the macro is
used, so the
shorthand does not
count as a literal
that is bound to the
syntax class. In that
particular situation,
use ~var instead of
the shorthand, and
then the syntax
class is referenced
by its own
identifier.
Meanwhile, a
macro that is not
exported (directly
or indirectly
through another
macro) can safely
use the : shorthand,
since its expansions
are part of the
module’s
implementation.

If the #:no-demod option is specified, then mod-spec is not flattened, after all. Instead, the
new module requires and reprovides mod-spec and each of its submodules. This mode
is always used when a compiler/demod module is expanded, since expansion must produce
syntax instead of a compiled module. This mode also may be useful during for development
to avoid longer compile times from flattening or to check whether copying of modules for
flattening creates any trouble.

A flattened module using compiler/demod has a build dependency on the original mod-
ule, so a tool like raco make or raco setup will trigger reflattening if the source module
changes, but the flattened module does not have a run-time or expand-time dependency on
the original module. Modules excluded from the flattening via #:include and #:exclude
remain as run-time and expand-time dependencies of the flattened module. In the default
#:dynamic mode, additional dependencies may be preserved for modules that cannot be
usefully merged, but #:static or #:exe mode copies even those modules into new sub-
modules.

Compilation and expansion of a compiler/demod module creates a "com-
piled/ephemeral/demod" subdirectory in the same directory as the module. That
subdirectory that holds freshly compiled versions of all dependencies of the flattened
module in a form that is suitable for demodularization. This extra compilation is man-
aged using compiler/cm, so changes to dependencies can be handled incrementally,
but still separate from normal compilation of the dependencies. Detecting that the
compilation of the compiler/demod module is up-to-date does not depend on the "com-
piled/ephemeral/demod" subdirectory, so it can be safely discarded after compilation.

Added in version 1.15 of package compiler-lib.
Changed in version 1.16: Changed to raising an exception when a module listed in #:include or #:iexclude is
not a dependency of module-path.

134

9 raco link: Library Collection Links

The raco link command inspects and modifies a collection links file to display, add, or
remove mappings from collection names to filesystem directories.

Managing links directly is somewhat discouraged. Instead, use the package manager (see
Package Management in Racket), which installs and manages links (i.e., it builds on raco
link) in a way that more gracefully leads to sharing collections with others. Nevertheless,
raco link is available for direct use.

For example, the command

raco link maze

installs a user-specific and version-specific link for the "maze" collection, mapping it to
the "maze" subdirectory of the current directory. Supply multiple directory paths to create
multiple links at once, especially with a command-shell wildcard:

raco link *

By default, the linked collection name is the same as each directory’s name, but the collection
name can be set separately for a single directory with the --name flag.

To remove the link created by the first example above, use

raco link --remove maze

or

raco link -r maze

Like link-adding mode, removing mode accepts multiple directory paths to remove multiple
links, and all links that match any directory are removed. If --name is used with --remove,
then only links matching both the collection name and directory are removed.

Full command-line options:

• -l or --list — Shows the current link table. If any other command-line arguments
are provided that modify the link table, the table is shown after modifications. If no
directory arguments are provided, and if none of -u, --user, -i, --installation,
-f, or --file are specified, then the link table is shown for all user-specific and
installation-wide collection links files.

• -n ⟨name⟩ or --name ⟨name⟩ — Sets the collection name for adding a single link or
removing matching links. By default, the collection name for an added link is derived
from the directory name. When the -r or --remove flag is also used, only links
with a collection name matching ⟨name⟩ are removed, and if no directory arguments

135

are provided, all links with a match to ⟨name⟩ are removed. This flag is mutually
exclusive with -d and --root.

• -d or --root — Treats each directory as a collection root that contains collection
directories, instead of a directory for a specific collection. When the -r or --remove
flag is also used, only collection-root links that match a directory are removed. This
flag is mutually exclusive with -n and --name.

• -D or --static-root — Like -d or --root, but each directory is assumed to have a
constant set of subdirectories (to improve the use of collection-search caches) as long
as the links file itself does not change.

• -x ⟨regexp⟩ or --version-regexp ⟨regexp⟩ — Sets a version regexp that limits the
link to use only by Racket versions (as reported by version) matching ⟨regexp⟩. This
flag is normally used with -u or --user with installations that have different versions
but the same installation name. When the -r or --remove flag is also used, only links
with a version regexp matching ⟨regexp⟩ are removed.

• -r or --remove — Selects remove mode instead of add mode.

• -u or --user — Limits listing and removal of links to the user-specific collection
links file and not the installation-wide collection links file. This flag is mutually ex-
clusive with -i, --installation, -f, and --file.

• -i or --installation — Reads and writes links in installation-wide collection links
file and not the user-specific collection links file. This flag is mutually exclusive with
-u, --user, -f, and --file.

• -f ⟨file⟩ or --file ⟨file⟩ — Reads and writes links in ⟨file⟩ instead of the user-specific
collection links file. This flag is mutually exclusive with -u, --user, -s, --shared,
-i, and --installation.

• -v ⟨vers⟩ or --version ⟨vers⟩ — Selects ⟨vers⟩ as relevant installation name for
operations on the user-specific collection links file.

• --repair— Enables repairs to the existing file content when the content is erroneous.
The file is repaired by deleting individual links when possible.

9.1 API for Collection Links

(require setup/link) package: base

136

https://pkgs.racket-lang.org/package/base

(links dir
...

[#:user? user?
#:user-version user-version
#:file file
#:name name
#:root? root?
#:static-root? static-root?
#:version-regexp version-regexp
#:error error-proc
#:remove? remove?
#:show? show?
#:repair? repair?
#:with-path? with-path?]) Ñ list?

dir : path?
user? : any/c = #t
user-version : string? = (get-installation-name)
file : (or/c path-string? #f) = #f
name : (or/c string? #f) = #f
root? : any/c = #f
static-root? : any/c = #f
version-regexp : (or/c regexp? #f) = #f
error-proc : (symbol? string? any/c -> . any) = error
remove? : any/c = #f
show? : any/c = #f
repair? : any/c = #f
with-path? : any/c = #f

A function version of the raco link command that always works on a single file—either
file if it is a path string, the user–specific collection links file if user? is true, or the
installation-wide collection links file otherwise. If user? is true, then user-version de-
termines the relevant installation name (defaulting to the current installation’s name).

The static-root? flag value is ignored unless root? is true and remove? is false, in which
case each given dir is added as a static root if static-root? is true.

The error-proc argument is called to raise exceptions that would be fatal to the raco
link command.

If remove? is true, the result is a list of entries that were removed from the file. If remove?
is #f but root? is true, the result is a list of paths for collection roots. If remove? and
root? are both #f, the result is a list for top-level collections that are mapped by file and
that apply to the running version of Racket; the list is a list of strings for collection names
if with-path? is #f, or it is a list of pairs of collection-name strings and complete paths if
with-path? is true.

137

10 raco pack: Packing Library Collections

The raco pack command creates an archive of files and directories. Formerly, such
archives were used directly to distribute library files to Racket users, but the package man-
ager (see Package Management in Racket) is now the preferred mechanism for distribution.

A packed archive usually has the suffix ".plt". The raco pkg command recognizes a
".plt" archive for installation as a package. The raco setup command (see §6 “raco
setup: Installation Management”) also supports ".plt" unpacking and installation when
using the -A flag, but such installations do not benefit from the more general management
facilities of raco pkg, while the raco unpack command (see §11 “raco unpack: Un-
packing Library Collections”) unpacks an archive locally without attempting to install it.
DrRacket recognizes the ".plt" and currently treats such an archive in the same way as
raco setup -A.

An archive contains the following elements:

• A set of files and directories to be unpacked, and flags indicating whether they are
to be unpacked relative to the Racket add-ons directory (which is user-specific), the
Racket installation directory, or a user-selected directory.

The files and directories for an archive are provided on the command line to raco
pack, either directly or in the form of collection names when the --collect flag is
used.

The --at-plt flag indicates that the files and directories should be unpacked rela-
tive to the user’s add-ons directory, unless the user specifies the Racket installation
directory when unpacking. The --collection-plt flag implies --at-plt. The
--all-users flag overrides --at-plt, and it indicates that the files and directories
should be unpacked relative to the Racket installation directory, always.

• A flag for each file indicating whether it overwrites an existing file when the archive is
unpacked; the default is to leave the old file in place, but the --replace flag enables
replacing for all files in the archive.

• A list of collections to be set-up (via raco setup) after the archive is unpacked;
the ++setup flag adds a collection name to the archive’s list, but each collection for
--collection-plt is added automatically.

• A name for the archive, which is reported to the user by the unpacking interface; the
--plt-name flag sets the archive’s name, but a default name is determined automati-
cally when using --collect.

• A list of required collections (with associated version numbers) and a list of conflict-
ing collections; the raco pack command always names the "racket" collection in
the required list (using the collection’s pack-time version), raco pack names each
packed collection in the conflict list (so that a collection is not unpacked on top of a

138

different version of the same collection), and raco pack extracts other requirements
and conflicts from the "info.rkt" files of collections when using --collect.

Specify individual directories and files for the archive when not using --collect. Each file
and directory must be specified with a relative path. By default, if the archive is unpacked
with DrRacket, the user will be prompted for a target directory, and if raco setup is used to
unpack the archive, the files and directories will be unpacked relative to the current directory.
If the --at-plt flag is provided, the files and directories will be unpacked relative to the
user’s Racket add-ons directory, instead. Finally, if the --all-users flag is provided, the
files and directories will be unpacked relative to the Racket installation directory, instead.

Use the --collect flag to pack one or more collections; sub-collections can be desig-
nated by using a / as a path separator on all platforms. In this mode, raco pack auto-
matically uses paths relative to the Racket installation or add-ons directory for the archived
files, and the collections will be set-up after unpacking. In addition, raco pack consults
each collection’s "info.rkt" file, as described below, to determine the set of required and
conflicting collections. Finally, raco pack consults the first collection’s "info.rkt" file
to obtain a default name for the archive. For example, the following command creates a
"sirmail.plt" archive for distributing a "sirmail" collection:

raco pack --collect sirmail.plt sirmail

When packing collections, raco pack checks the following fields of each collection’s
"info.rkt" file (see §6.4 “"info.rkt" File Format”):

• requires — A list of the form (list (list coll vers) ...) where each coll
is a non-empty list of relative-path strings, and each vers is a (possibly empty) list
of exact integers. The indicated collections must be installed at unpacking time, with
version sequences that match as much of the version sequence specified in the corre-
sponding vers.

A collection’s version is indicated by a version field in its "info.rkt" file, and the
default version is the empty list. The version sequence generalized major and minor
version numbers. For example, version '(2 5 4 7) of a collection can be used when
any of '(), '(2), '(2 5), '(2 5 4), or '(2 5 4 7) is required.

• conflicts — A list of the form (list coll ...) where each coll is a non-
empty list of relative-path strings. The indicated collections must not be installed at
unpacking time.

For example, the "info.rkt" file in the "sirmail" collection might contain the following
info declaration:

#lang info
(define name "SirMail")
(define mred-launcher-libraries (list "sirmail.rkt"))

139

(define mred-launcher-names (list "SirMail"))
(define requires (list (list "mred")))

Then, the "sirmail.plt" file (created by the command-line example above) will contain
the name “SirMail.” When the archive is unpacked, the unpacker will check that the "mred"
collection is installed, and that "mred" has the same version as when "sirmail.plt" was
created.

10.1 Format of ".plt" Archives

The extension ".plt" is not required for a distribution archive, but the ".plt"-extension
convention helps users identify the purpose of a distribution file.

The raw format of a distribution file is described below. This format is uncompressed and
sensitive to communication modes (text vs. binary), so the distribution format is derived
from the raw format by first compressing the file using gzip, then encoding the gzipped file
with the MIME base64 standard (which relies only the characters A-Z, a-z, 0-9, +, /, and =;
all other characters are ignored when a base64-encoded file is decoded).

The raw format is

• PLT are the first three characters.

• An S-expression matching

(lambda (request failure)
(case request

[(name) name]
[(unpacker) (quote mzscheme)]
[(requires) (quote requires)]
[(conflicts) (quote conflicts)]
[(plt-relative?) plt-relative?]
[(plt-home-relative?) plt-home-relative?]
[(test-plt-dirs) test-dirs]
[else (failure)]))

where the name , requires , etc., meta-variables stand for S-expressions as follows:

– name — a human-readable string describing the archive’s contents. This name
is used only for printing messages to the user during unpacking.

– requires — a list of collections required to be installed before unpacking the
archive, which associated versions; see the documentation of pack for details.

– conflicts — a list of collections required not to be installed before unpacking
the archive.

140

– plt-relative? — a boolean; if true, then the archive’s content should be un-
packed relative to the plt add-ons directory.

– plt-home-relative? — a boolean; if true and if 'plt-relative? is true,
then the archive’s content should be unpacked relative to the Racket installation.

– test-plt-dirs — #f or a 'paths where paths is a list of path strings; in
the latter case, a true value of plt-home-relative? is cancelled if any of the
directories in the list (relative to the Racket installation) is unwritable by the user.

The S-expression is extracted from the archive using read (and the result is not
evaluated).

• An S-expression matching

(unit (import main-collects-parent-dir mzuntar)
(export)
(mzuntar void)
(quote collections))

where collections is a list of collection paths (where each collection path is a list
of strings); once the archive is unpacked, raco setup will compile and setup the
specified collections.

The S-expression is extracted from the archive using read (and the result is not
evaluated).

The archive continues with unpackables. Unpackables are extracted until the end-of-file is
found (as indicated by an = in the base64-encoded input archive).

An unpackable is one of the following:

• The symbol 'dir followed by a list S-expression. The build-path procedure will
be applied to the list to obtain a relative path for the directory (and the relative path is
combined with the target directory path to get a complete path).

The 'dir symbol and list are extracted from the archive using read (and the result is
not evaluated).

• The symbol 'file, a list, a number, an asterisk, and the file data. The list specifies the
file’s relative path, just as for directories. The number indicates the size of the file to
be unpacked in bytes. The asterisk indicates the start of the file data; the next n bytes
are written to the file, where n is the specified size of the file.

The symbol, list, and number are all extracted from the archive using read (and the
result is not evaluated). After the number is read, input characters are discarded until
an asterisk is found. The file data must follow this asterisk immediately.

• The symbol 'file-replace is treated like 'file, but if the file exists on disk al-
ready, the file in the archive replaces the file on disk.

141

10.2 API for Packing

(require setup/pack) package: base

Although the raco pack command can be used to create most ".plt" files, the
setup/pack library provides a more general API for making ".plt" archives.

(pack-collections-plt
dest
name
collections

[#:replace? replace?
#:at-plt-home? at-home?
#:test-plt-collects? test?
#:extra-setup-collections collection-list
#:file-filter filter-proc])

Ñ void?
dest : path-string?
name : string?
collections : (listof (listof path-string?))
replace? : boolean? = #f
at-home? : boolean? = #f
test? : boolean? = #t
collection-list : (listof path-string?) = null
filter-proc : (path-string? . -> . boolean?) = std-filter

Creates the ".plt" file specified by the pathname dest , using the name as the name re-
ported to raco setup as the archive’s description.

The archive contains the collections listed in collections , which should be a list of col-
lection paths; each collection path is, in turn, a list of relative-path strings.

If the #:replace? argument is #f, then attempting to unpack the archive will report an error
when any of the collections exist already, otherwise unpacking the archive will overwrite an
existing collection.

If the #:at-plt-home? argument is #t, then the archived collections will be installed into
the Racket installation directory instead of the user’s directory if the main "collects" di-
rectory is writable by the user. If the #:test-plt-collects? argument is #f (the default
is #t) and the #:at-plt-home? argument is #t, then installation fails if the main "col-
lects" directory is not writable.

The optional #:extra-setup-collections argument is a list of collection paths that are
not included in the archive, but are set-up when the archive is unpacked.

The optional #:file-filter argument is the same as for pack-plt.

142

https://pkgs.racket-lang.org/package/base

(pack-collections dest
name
collections
replace?
extra-setup-collections

[filter
at-plt-home?]) Ñ void?

dest : path-string?
name : string?
collections : (listof (listof path-string?))
replace? : boolean?
extra-setup-collections : (listof path-string?)
filter : (path-string? . -> . boolean?) = std-filter
at-plt-home? : boolean? = #f

Old, keywordless variant of pack-collections-plt for backward compatibility.

(pack-plt dest
name
paths

[#:as-paths as-paths
#:file-filter filter-proc
#:encode? encode?
#:file-mode file-mode-sym
#:unpack-unit unpack-spec
#:collections collection-list
#:plt-relative? plt-relative?
#:at-plt-home? at-plt-home?
#:test-plt-dirs dirs
#:requires mod-and-version-list
#:conflicts mod-list]) Ñ void?

dest : path-string?
name : string?
paths : (listof path-string?)
as-paths : (listof path-string?) = paths
filter-proc : (path-string? . -> . boolean?) = std-filter
encode? : boolean? = #t
file-mode-sym : symbol? = 'file
unpack-spec : any/c = #f
collection-list : (listof path-string?) = null
plt-relative? : any/c = #f
at-plt-home? : any/c = #f
dirs : (or/c (listof path-string?) #f) = #f
mod-and-version-list : (listof (listof path-string?)

(listof exact-integer?))
= null

143

mod-list : (listof (listof path-string?)) = null

Creates the ".plt" file specified by the pathname dest , using the string name as the name
reported to raco setup as the archive’s description. The paths argument must be a list
of relative paths for directories and files; the contents of these files and directories will be
packed into the archive. The optional as-paths list provides the path to be recorded in the
archive for each element of paths (so that the unpacked paths can be different from the
packed paths).

The #:file-filter procedure is called with the relative path of each candidate for packing.
If it returns #f for some path, then that file or directory is omitted from the archive. If it
returns 'file or 'file-replace for a file, the file is packed with that mode, rather than
the default mode. The default is std-filter.

If the #:encode? argument is #f, then the output archive is in raw form, and still must be
gzipped and mime-encoded (in that order). The default value is #t.

The #:file-mode argument must be 'file or 'file-replace, indicating the default
mode for a file in the archive. The default is 'file.

The #:unpack-unit argument is usually #f. Otherwise, it must be an S-expression for the
S-expression that describes unpacking; see §10.1 “Format of ".plt" Archives” more infor-
mation about the unit. If the #:unpack-unit argument is #f, an appropriate S-expression
is generated.

The #:collections argument is a list of collection paths to be compiled after the archive
is unpacked. The default is the null.

If the #:plt-relative? argument is true (the default is #f), the archive’s files and direc-
tories are to be unpacked relative to the user’s add-ons directory or the Racket installation
directories, depending on whether the #:at-plt-home? argument is true and whether di-
rectories specified by #:test-plt-dirs are writable by the user.

If the #:at-plt-home? argument is true (the default is #f), then #:plt-relative? must
be true, and the archive is unpacked relative to the Racket installation directory. In that case,
a relative path that starts with "collects" is mapped to the installation’s main "collects"
directory, and so on, for the following the initial directory names:

• "collects"

• "doc"

• "lib"

• "include"

If #:test-plt-dirs is a list, then #:at-plt-home? must be #t. In that case, when
the archive is unpacked, if any of the relative directories in the #:test-plt-dirs list is

144

unwritable by the current user, then the archive is unpacked in the user’s add-ons directory
after all.

The #:requires argument should have the shape (list (list coll-path version)
...) where each coll-path is a non-empty list of relative-path strings, and each version
is a (possibly empty) list of exact integers. The indicated collections must be installed at
unpacking time, with version sequences that match as much of the version sequence specified
in the corresponding version . A collection’s version is indicated by the version field of
its "info.rkt" file.

The #:conflicts argument should have the shape (list coll-path ...) where each
coll-path is a non-empty list of relative-path strings. The indicated collections must not
be installed at unpacking time.

(pack dest
name
paths
collections

[filter
encode?
file-mode
unpack-unit
plt-relative?
requires
conflicts
at-plt-home?]) Ñ void?

dest : path-string?
name : string?
paths : (listof path-string?)
collections : (listof path-string?)
filter : (path-string? . -> . boolean?) = std-filter
encode? : boolean? = #t
file-mode : symbol? = 'file
unpack-unit : any/c = #f
plt-relative? : boolean? = #t
requires : (listof (listof path-string?)

(listof exact-integer?))
= null

conflicts : (listof (listof path-string?)) = null
at-plt-home? : boolean? = #f

Old, keywordless variant of pack-plt for backward compatibility.

(std-filter p) Ñ boolean?
p : path-string?

Returns #t unless p , after stripping its directory path and converting to a byte string, matches

145

one of the following regular expressions: ^[.]git, ^[.]svn$, ^CVS$, ^[.]cvsignore,
^compiled$, ^doc, ~$, ^#.*#$, ^[.]#, or [.]plt$.

(mztar path
[#:as-path as-path]
output
filter
file-mode) Ñ void?

path : path-string?
as-path : path-string? = path
output : output-port?
filter : (path-string? . -> . boolean?)
file-mode : (or/c 'file 'file-replace)

Called by pack to write one directory/file path to the output port output using the filter
procedure filter (see pack for a description of filter). The path is recorded in the
output as as-path , in case the unpacked path should be different from the original path.
The file-mode argument specifies the default mode for packing a file, either 'file or
'file-replace.

146

11 raco unpack: Unpacking Library Collections

The raco unpack command unpacks a ".plt" archive (see §10 “raco pack: Packing Li-
brary Collections”) to the current directory without attempting to install any collections. Use
raco pkg (see Package Management in Racket) to install a ".plt" archive as a package,
or use raco setup -A (see §6 “raco setup: Installation Management”) to unpack and
install collections from a ".plt" archive.

Command-line flags:

• -l or --list — lists the content of the archive without unpacking it.

• -c or --config — shows the archive configuration before unpacking or listing the
archive content.

• -f or --force — replace files that exist already; files that the archive says should be
replaced will be replaced without this flag.

11.1 Unpacking API

(require setup/unpack) package: base

The setup/unpack library provides raw support for unpacking a ".plt" file.

(unpack archive
[main-collects-parent-dir
print-status
get-target-directory
force?
get-target-plt-directory]) Ñ void?

archive : path-string?
main-collects-parent-dir : path-string? = (current-directory)
print-status : (string? . -> . any)

= (lambda (x) (printf "~a\n" x))
get-target-directory : (-> path-string?)

= (lambda () (current-directory))
force? : any/c = #f
get-target-plt-directory : (path-string?

path-string?
(listof path-string?)
. -> . path-string?)

= (lambda (preferred-dir main-dir options)
preferred-dir)

Unpacks archive .

147

https://pkgs.racket-lang.org/package/base

The main-collects-parent-dir argument is passed along to get-target-plt-
directory .

The print-status argument is used to report unpacking progress.

The get-target-directory argument is used to get the destination directory for unpack-
ing an archive whose content is relative to an arbitrary directory.

If force? is true, then version and required-collection mismatches (comparing information
in the archive to the current installation) are ignored.

The get-target-plt-directory function is called to select a target for installation for
an archive whose is relative to the installation. The function should normally return one if
its first two arguments; the third argument merely contains the first two, but has only one
element if the first two are the same. If the archive does not request installation for all uses,
then the first two arguments will be different, and the former will be a user-specific location,
while the second will refer to the main installation.

(fold-plt-archive archive
on-config-fn
on-setup-unit
on-directory
on-file
initial-value) Ñ any/c

archive : path-string?
on-config-fn : (any/c any/c . -> . any/c)
on-setup-unit : (any/c input-port? any/c . -> . any/c)
on-directory : ((or/c path-string?

(list/c (or/c 'collects 'doc 'lib 'include)
path-string?))

any/c
. -> . any/c)

on-file : (or/c ((or/c path-string?
(list/c (or/c 'collects 'doc 'lib 'include)

path-string?))
input-port?
any/c
. -> . any/c)

((or/c path-string?
(list/c (or/c 'collects 'doc 'lib 'include)

path-string?))
input-port?
(or/c 'file 'file-replace)
any/c
. -> . any/c))

initial-value : any/c

148

Traverses the content of archive , which must be a ".plt" archive that is created with the
default unpacking unit and configuration expression. The configuration expression is not
evaluated, the unpacking unit is not invoked, and files are not unpacked to the filesystem.
Instead, the information in the archive is reported back through on-config, on-setup-
unit , on-directory , and on-file , each of which can build on an accumulated value that
starts with initial-value and whose final value is returned.

The on-config-fn function is called once with an S-expression that represents a function
to implement configuration information. The second argument to on-config is initial-
value , and the function’s result is passed on as the last argument to on-setup-unit .

The on-setup-unit function is called with the S-expression representation of the instal-
lation unit, an input port that points to the rest of the file, and the accumulated value. This
input port is the same port that will be used in the rest of processing, so if on-setup-unit
consumes any data from the port, then that data will not be consumed by the remaining func-
tions. (This means that on-setup-unit can leave processing in an inconsistent state, which is
not checked by anything, and therefore could cause an error.) The result of on-setup-unit
becomes the new accumulated value.

For each directory that would be created by the archive when unpacking normally, on-
directory is called with the directory path (described more below) and the accumulated
value up to that point, and its result is the new accumulated value.

For each file that would be created by the archive when unpacking normally, on-file is
called with the file path (described more below), an input port containing the contents of
the file, an optional mode symbol indicating whether the file should be replaced, and the
accumulated value up to that point; its result is the new accumulated value. The input port
can be used or ignored, and parsing of the rest of the file continues the same either way.
After on-file returns control, however, the input port is drained of its content.

A directory or file path can be a plain path, or it can be a list containing 'collects, 'doc,
'lib, or 'include and a relative path. The latter case corresponds to a directory or file
relative to a target installation’s collection directory (in the sense of find-collects-dir),
documentation directory (in the sense of find-doc-dir), library directory (in the sense of
find-lib-dir), or “include” directory (in the sense of find-include-dir).

149

12 raco ctool: Working with C Code

The raco ctool command works in various modes (as determined by command-line flags)
to support various tasks involving C code.

12.1 Compiling and Linking C Extensions

A dynamic extension is a shared library (a.k.a. DLL) that extends Racket using the C API.
An extension can be loaded explicitly via load-extension, or it can be loaded implicitly
through require or load/use-compiled in place of a source file when the extension is
located at

(build-path "compiled" "native" (system-library-subpath)
(path-add-suffix file (system-type 'so-suffix)))

relative to file .

For information on writing extensions, see Inside: Racket C API. raco ctool is
provided by the
"cext-lib"
package.

Three raco ctool modes help for building extensions:

• --cc : Runs the host system’s C compiler, automatically supplying flags to locate the
Racket header files and to compile for inclusion in a shared library.

• --ld : Runs the host system’s C linker, automatically supplying flags to locate and
link to the Racket libraries and to generate a shared library.

• --xform : Transforms C code that is written without explicit GC-cooperation hooks
to cooperate with Racket’s 3m garbage collector; see §8 “Overview (BC)” in Inside:
Racket C API.

Compilation and linking build on the dynext/compile and dynext/link libraries. The
following raco ctool flags correspond to setting or accessing parameters for those li-
braries: --tool, --compiler, --ccf, --ccf, --ccf-clear, --ccf-show, --linker,
++ldf, --ldf, --ldf-clear, --ldf-show, ++ldl, --ldl-show, ++cppf, ++cppf
++cppf-clear, and --cppf-show.

The --3m flag specifies that the extension is to be loaded into the 3m variant of Racket. The
--cgc flag specifies that the extension is to be used with the CGC. The default depends on
raco: --3m if raco itself is running in 3m, --cgc if raco itself is running in CGC.

12.1.1 API for 3m Transformation

(require compiler/xform) package: cext-lib

150

https://pkgs.racket-lang.org/package/cext-lib

(xform quiet?
input-file
output-file
include-dirs

[#:keep-lines? keep-lines?]) Ñ any/c
quiet? : any/c
input-file : path-string?
output-file : path-string?
include-dirs : (listof path-string?)
keep-lines? : boolean? = #f

Transforms C code that is written without explicit GC-cooperation hooks to cooperate with
Racket’s 3m garbage collector; see §8 “Overview (BC)” in Inside: Racket C API.

The arguments are as for compile-extension; in addition keep-lines? can be #t to
generate GCC-style annotations to connect the generated C code with the original source
locations.

The file generated by xform can be compiled via compile-extension.

12.2 Embedding Modules via C
raco ctool is
provided by the
"cext-lib"
package.

The --c-mods mode for raco ctool takes a set of Racket modules and generates a C
source file that can be used as part of program that embeds the Racket runtime system.
See §9 “Embedding into a Program (BC)” in Inside: Racket C API for an explanation of
embedding programs. The --mods mode is similar, but it generates the raw bytes for the
compiled module without encoding the bytes in C declarations.

The generated source or compiled file embeds the specified modules. Generated C source
defines a declare_modules function that puts the module declarations into a namespace.
Thus, using the output of raco ctool --c-mods, a program can embed Racket with a set
of modules so that it does not need a "collects" directory to load modules at run time.

If the embedded modules refer to runtime files, the files can be gathered by supplying the
--runtime argument to raco ctool --c-mods, specifying a directory ⟨dir⟩ to hold the
files. Normally, ⟨dir⟩ is a relative path, and files are found at run time in ⟨dir⟩ relative
to the executable, but a separate path (usually relative) for run time can be specified with
--runtime-access.

Typically, raco ctool --c-mods is used with ++lib to specify a collection-based module
path. For example,

raco ctool --c-mods base.c ++lib racket/base

151

generates a "base.c" whose declare_modules function makes racket/base available
for use via the scheme_namespace_require or scheme_dynamic_require functions
within the embedding application.

When a module file is provided to raco ctool --c-mods, then declare_modules de-
clares a module with the symbolic name of the module file. For example,

raco ctool --c-mods base.c hello.rkt

creates a declare_modules that defines the module 'hello, which could be required into
the current namespace with (namespace-require ''hello) or similarly at the C level:

p = scheme_make_pair(scheme_intern_symbol("quote"),
scheme_make_pair(scheme_intern_symbol("hello"),

scheme_make_null()));
scheme_namespace_require(p);

152

13 raco test: Run tests

The raco test command requires and runs the (by default) test submodule associated
with each path given on the command line. Command-line flags can control which submod-
ule is run, whether to run the main module if no submodule is found, and whether to run
tests directly, in separate processes (the default), or in separate places. The current directory
is set to a test file’s directory before running the file.

When an argument path refers to a directory, raco test recursively discovers and runs
all files within the directory that end in a module suffix (see get-module-suffixes, but
the suffixes always include ".rkt", ".scrbl", ".ss", and ".scm") or have a (possibly
empty) list of command-line arguments provided by test-command-line-arguments in
an "info.rkt" file, or as directed by test-include-paths in an "info.rkt" file. At the
same time, raco test omits files and directories within a directory as directed by test-
omit-paths in an "info.rkt" file.

A test is counted as failing if it logs a failing test code via test-log!, causes Racket to
exit with a non-zero exit code, or (when -e or --check-stderr is specified) if it produces
output on the error port.

The raco test command accepts several flags:

• -c or --collection — Interprets the arguments as collections whose content should
be tested (in the same way as directory content), and makes --process the default
testing mode.

• -p or --package — Interprets the arguments as packages whose contents should be
tested (in the same way as directory content). All package scopes are searched for the
first, most specific package scope. This flag also makes --process the default testing
mode.

• -l or --lib — Interprets the arguments as libraries that should be tested. Each argu-
ment ⟨arg⟩ is treated as a module path (lib "@nonterm{arg}"). The default testing
mode is --direct if a single module is specified, --process if multiple modules are
specified.

• -m or --modules — Not only interprets the arguments as paths (which is the default
mode), but treats them the same as paths found in a directory, which means ignoring
a file argument that does not have a module extension or is not enabled explicitly
via test-command-line-arguments or test-include-paths in an "info.rkt"
file; meanwhile, paths that are otherwise enabled can be disabled via test-omit-
paths in an "info.rkt" file. The default testing mode is --direct if a single path
is specified, --process if multiple paths are specified.

• --drdr — Configures defaults to imitate the DrDr continuous testing system: ig-
nore non-modules, run tests in separate processes (unless --thread or --direct
is specified) use as many jobs as available processors (unless --jobs is specified),

153

set the default timeout to 90 seconds (unless --timeout is specified), create a fresh
PLTUSERHOME and TMPDIR for each test, count stderr output as a test failure, quiet
program output, provide empty program input, and print a table of results.

• -s ⟨name⟩ or --submodule ⟨name⟩ — Requires the submodule ⟨name⟩ rather than
test. Supply -s or --submodule to run multiple submodules, or combine multi-
ple submodules with --first-avail to run the first available of the listed modules.
Beware that if you use -s multiple times but supply a single module file as an ar-
gument, the default mode is still --direct (which likely means fewer fresh module
instantiations than --process or --place mode).

• -r or --run-if-absent — Requires the top-level module of a file if a relevant sub-
module is not present. This is the default mode.

• -x or --no-run-if-absent — Ignores a file if the relevant submodule is not present.

• --first-avail — When multiple submodule names are provided with -s or
--submodule, runs only the first available submodule.

• --configure-runtime — Run a configure-runtime submodule (if any) of each
specified module before the module or a submodule is run. This mode is the default
when only a single module is provided or when --process or --place mode is
specified, unless a submodule name is provided via -s or --submodule.

• --direct — Runs each test in a thread, using a single namespace’s module registry
to load all tests. This mode is the default if a single file is specified. Multiple tests can
interfere with each other and the overall test run by exiting, using unsafe operations
that block (and thus prevent timeout), and so on.

• --process — Runs each test in a separate operating-system process. This mode is
the default if multiple files are specified or if a directory, collection, or package is
specified.

• --place — Runs each test in a place, instead of in an operating-system process.

• -j ⟨n⟩ or --jobs ⟨n⟩ — Runs up to ⟨n⟩ test files in parallel.

• --timeout ⟨seconds⟩ — Sets the default timeout (after which a test counts as failed)
to ⟨seconds⟩. Use +inf.0 to allow tests to run without limit but allow timeout sub-
submodule configuration. If any test fails due to a timeout, the exit status of raco
test is 2 (as opposed to 1 for only non-timeout failures or 0 for success). The default
timeout corresponds to +inf.0 if not specified via --timeout or --drdr.

• --fresh-user — When running tests in a separate process, creates a fresh directory
and sets PLTUSERHOME and TMPDIR. The PLTADDONDIR environment variable is also
set so that the add-on directory (which is where packages are installed, for example)
does not change for each test process.

• --empty-stdin — Provide an empty stdin to each test program.

154

• -Q or --quiet-program — Suppresses output from each test program.

• -e or --check-stderr — Count any stderr output as a test failure.

• --deps — If considering arguments as packages, also check package dependencies.

• ++ignore-stderr ⟨pattern⟩ — Don’t count stderr output as a test failure if it matches
⟨pattern⟩. This flag can be used multiple times, and stderr output is treated as success
as long as it matches any one ⟨pattern⟩.

• --errortrace — Dynamically loads errortrace before running the tests. Note
that already-compiled files will not include the tracing information.

• -y or --make — Enable automatic generation and update of compiled ".zo" files.
Specifically, the result of (make-compilation-manager-load/use-compiled-
handler) is installed as the value of current-load/use-compiled before module-
loading actions.

• -q or --quiet — Suppresses output of progress information, responsible parties, and
varying output (see §13.3 “Responsible-Party and Varying-Output Logging”).

• --heartbeat — Periodically report that a test is still running after the test has been
running at least 5 seconds.

• --table or -t — Print a summary table after all tests. If a test uses rackunit, or if
a test at least uses test-log! from raco/testing to log successes and failures, the
table reports test and failure counts based on the log.

• ++arg ⟨argument⟩ — Adds ⟨argument⟩ to the list of arguments to the invoked test
module, so that the invoked module sees ⟨argument⟩ in its current-command-
line-arguments. These arguments are combined with any arguments specified in
"info.rkt" by test-command-line-arguments.

• ++args ⟨arguments⟩ — The same as ++arg, but ⟨arguments⟩ is treated as a
whitespace-delimited list of arguments to add. To specify multiple arguments using
this flag within a typical shell, ⟨arguments⟩ must be enclosed in quotation marks.

• --output or -o ⟨file⟩ — Save all stdout and stderr output into ⟨file⟩. The target ⟨file⟩
will be overwritten if it exists already.

Changed in version 1.1 of package compiler-lib: Added --heartbeat.
Changed in version 1.4: Changed recognition of module suffixes to use get-module-suffixes, which implies
recognizing ".ss" and ".rkt".
Changed in version 1.5: Added ++ignore-stderr.
Changed in version 1.6: Added ++arg and ++args.
Changed in version 1.8: Added --output and -o.
Changed in version 1.11: Added --make/-y.
Changed in version 1.12: Added --errortrace.

155

13.1 Test Configuration by Submodule

When raco test runs a test in a submodule, a config sub-submodule can provide addi-
tional configuration for running the test. The config sub-submodule should use the info
module language to define the following identifiers:

• timeout — a real number in seconds to override the default timeout for the test, which
applies only when timeouts are enabled.

• responsible — a string, symbol, or list of symbols and strings identifying a respon-
sible party that should be notified when the test fails. See §13.3 “Responsible-Party
and Varying-Output Logging”.

• lock-name — a string that names a lock file that is used to serialize tests (i.e., tests
that have the same lock name do not run concurrently). The lock file’s location is
determined by the PLTLOCKDIR environment variable or defaults to (find-system-
path 'temp-dir). The maximum time to wait on the lock file is determined by the
PLTLOCKTIME environment variable or defaults to 4 hours.

• ignore-stderr — a string, byte string, or regexp value, as a pattern that causes error
output to not be treated as a failure if the output matches the pattern.

• random? — if true, indicates that the test’s output is expected to vary. See §13.3
“Responsible-Party and Varying-Output Logging”.

In order to prevent evaluation of a file for testing purposes, it suffices to create a submodule
that does not perform any tests and does not trigger the evaluation of the enclosing module.
So, for instance, a file might look like this:

#lang racket

(/ 1 0)

; don't run this file for testing:
(module test racket/base)

Changed in version 1.5 of package compiler-lib: Added ignore-stderr support.

13.2 Test Configuration by "info.rkt"

Submodule-based test configuration is preferred (see §13.1 “Test Configuration by Submod-
ule”). In particular, to prevent raco test from running a particular file, normally the file
should contain a submodule that takes no action.

156

In some cases, however, adding a submodule is inconvenient or impossible (e.g., because
the file will not always compile). Thus, raco test also consults any "info.rkt" file in
the candidate test file’s directory. In the case of a file within a collection, "info.rkt"
files from any enclosing collection directories are also consulted for test-omit-paths and
test-include-paths. Finally, for a file within a package, the package’s "info.rkt" is
consulted for pkg-authors to set the default responsible parties (see §13.3 “Responsible-
Party and Varying-Output Logging”) for all files in the package.

The following "info.rkt" fields are recognized:

• test-omit-paths — a list of path strings (relative to the enclosing directory) and
regexp values (to omit all files within the enclosing directory matching the expression),
or 'all to omit all files within the enclosing directory. When a path string refers to a
directory, all files within the directory are omitted.

• test-include-paths — a list of path strings (relative to the enclosing directory)
and regexp values (to include all files within the enclosing directory matching the
expression), or 'all to include all files within the enclosing directory. When a path
string refers to a directory, all files within the directory are included.

• test-command-line-arguments — a list of (list module-path-string
(list argument-path-string ...)), where current-command-line-
arguments is set to a vector that contains the argument-path-string when
running module-path-string .

• test-timeouts— a list of (list module-path-string real-number) to over-
ride the default timeout in seconds for module-path-string .

• test-responsibles — a list of (list module-path-string party) or (list
'all party) to override the default responsible party for module-path-string
or all files within the directory (except as overridden), respectively. Each party is
a string, symbol, or list of symbols and strings. See §13.3 “Responsible-Party and
Varying-Output Logging”.

• test-lock-names — a list of (list module-path-string lock-string) to
declare a lock file name for module-path-string . See lock-name in §13.1 “Test
Configuration by Submodule”.

• test-ignore-stderrs — a list of (list module-path-string pattern) or
(list 'all pattern) to declare patterns of standard error output that are allowed
a non-failures for module-path-string or all files within the directory. Each pat-
tern must be a string, byte string, or regexp value. See ignore-stderr in §13.1
“Test Configuration by Submodule”.

• test-randoms — a list of path strings (relative to the enclosing directory) for mod-
ules whose output varies. See §13.3 “Responsible-Party and Varying-Output Log-
ging”.

157

• module-suffixes and doc-module-suffixes — Used indirectly via get-
module-suffixes.

Changed in version 1.5 of package compiler-lib: Added test-ignore-stderrs support.

13.3 Responsible-Party and Varying-Output Logging

When a test has a declared responsible party, then the test’s output is prefixed with a

raco test:⟨which⟩ @(test-responsible '⟨responsible⟩)

line, where ⟨which⟩ is a space followed by an exact non-negative number indicating a parallel
task when parallelism is enabled (or empty otherwise), and ⟨responsible⟩ is a string, symbol,
or list datum.

When a test’s output (as written to stdout) is expected to vary across runs—aside from vary-
ing output that has the same form as produced by time—then it should be declared as vary-
ing. In that case, the test’s output is prefixed with a

raco test:⟨which⟩ @(test-random #t)

line.

13.4 Logging Test Results

(require raco/testing) package: compiler-lib

This module provides a general purpose library for tracking test results and displaying a sum-
mary message. The command raco test uses this library to display test results. Therefore,
any testing framework that wants to integrate with raco test should also use this library
to log test results.

Added in version 1.13 of package compiler-lib.

(test-log! result) Ñ void?
result : any/c

Adds a test result to the running log. If result is false, then the test is considered a failure.

(test-report [#:display? display?
#:exit? exit?])

Ñ (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)

display? : any/c = #f

158

https://pkgs.racket-lang.org/package/compiler-lib

exit? : any/c = #f

Processes the running test log. The first integer is the failed tests, the second is the total
tests. If display? is true, then a message is displayed. If there were failures, the message
is printed on (current-error-port). If exit? is true, then if there were failures, calls
(exit 1).

(test-log-enabled?) Ñ boolean?
(test-log-enabled? enabled?) Ñ void?

enabled? : any/c
= #t

When set to #f, test-log! is a no-op. This is useful to dynamically disable certain tests
whose failures are expected and shouldn’t be counted in the test log, such as when testing a
custom check’s failure behavior.

(current-test-invocation-directory) Ñ (or/c #f path?)
(current-test-invocation-directory path) Ñ void?

path : (or/c #f path-string?)
= #f

Contains the directory from which tests were invoked by, e.g., raco test. This may differ
from current-directory when the test runner changes directory before invoking a spe-
cific test file and should be set by test runners to reflect the directory from which they were
originally invoked.

This should be used by test reports to display appropriate path names.

Added in version 1.14 of package compiler-lib.

159

14 raco docs: Documentation Search

The raco docs command searches the documentation for the given identifiers or search
terms.

Command-line flags:

• -h or --help — show help information for this command

• -- — do not treat remaining arguments as switches

160

15 raco expand: Macro Expansion

The raco expand command macro-expands and pretty-prints the contents of the given
source files. See also expand.

Command-line flags:

• -n ⟨n⟩ or --columns ⟨n⟩ — format output for a display with ⟨n⟩ columns

• -h or --help — show help information for this command

• -- — do not treat remaining arguments as switches

161

16 raco read: Reading and Pretty-Printing

The raco read command reads and pretty-prints the contents of the given files. This
command is useful for showing how a #reader or #lang-based reader extension converts
input to an S-expression. It is also useful for pretty-printing a term that is already in S-
expression form.

Command-line flags:

• -n ⟨n⟩ or --columns ⟨n⟩ — format output for a display with ⟨n⟩ columns

• -h or --help — show help information for this command

• -- — do not treat remaining arguments as switches

Added in version 1.3 of package compiler-lib.

162

17 raco scribble: Building Documentation

See Scribble: The Racket Documentation Tool for information on the raco scribble com-
mand, which is used to run and render a Scribble document.

163

18 Adding a raco Command

The set of commands supported by raco can be extended by installed packages, PLaneT
packages, and other collections. A command is added by defining raco-commands in the
"info.rkt" library of a collection (see §6.4 “"info.rkt" File Format”), and then raco
setup (as called directly or as part of a package or PLaneT installation) must index the
"info.rkt" file.

The value bound to raco-commands must be a list of command specifications, where each
specification is a list of four values:

(list command-string
implementation-module-path
description-string
prominence)

The command-string is the command name. Any unambiguous prefix of a command name
can be supplied to raco to invoke the command.

The implementation-module-path names the implementation though a module path
(in the sense of module-path?). The module is loaded and invoked through dynamic-
require to run the command. The module can access command-line arguments through
the current-command-line-arguments parameter, which is adjusted before loading the
command module to include only the arguments to the command. The current-command-
name parameter is also set to the command name used to load the command. When raco
help is used on a command, the command is launched with an initial --help argument in
current-command-line-arguments.

The description-string is a short string used to describe the command in response to
raco help. The description should not be capitalized or end with a period.

The prominence value should be a real number or #f. A #f value means that the command
should not be included in the short list of “frequently used commands.” A number indicates
the relative prominence of the command; the help command has a value of 110, and prob-
ably no command should be more prominent. The pack tool, which is currently ranked as
the least-prominent of the frequently used commands, has a value of 10.

As an example, the "info.rkt" of the "compiler" collection might contain the

(define raco-commands
'(("make" compiler/commands/make "compile source to byte-

code" 100)
("decompile" compiler/commands/decompile "decompile byte-

code" #f)))

so that make is treated as a frequently used command, while decompile is available as an

164

infrequently used command.

18.1 Command Argument Parsing

(require raco/command-name) package: base

The raco/command-name library provides functions to help a raco command identify itself
to users.

(current-command-name) Ñ (or/c string? #f)
(current-command-name name) Ñ void?

name : (or/c string? #f)

The name of the command currently being loaded via dynamic-require, or #f if raco is
not loading any command.

A command implementation can use this parameter to determine whether it was invoked via
raco or through some other means.

(short-program+command-name) Ñ string?

Returns a string that identifies the current command. When current-command-name is a
string, then the result is the short name of the raco executable followed by a space and the
command name. Otherwise, it is the short name of the current executable, as determined by
stripping the path from the result of (find-system-path 'run-file). In either case, on
Windows, an ".exe" extension is removed from the executable name.

The result of this function is suitable for use with command-line. For example, the decom-
pile tool parses command-line arguments with

(define source-files
(command-line
#:program (short-program+command-name)
#:args source-or-bytecode-file
source-or-bytecode-file))

so that raco decompile --help prints

usage: raco decompile [<option> ...] [<source-or-bytecode-file>]
...

<option> is one of

--help, -h

165

https://pkgs.racket-lang.org/package/base

Show this help
--

Do not treat any remaining argument as a switch (at this
level)

Multiple single-letter switches can be combined after
one `-`. For example, `-h-` is the same as `-h --`.

(program+command-name) Ñ string?

Like short-program+command-name, but the path (if any) is not stripped from the current
executable’s name.

18.2 Accessing raco Commands

(require raco/all-tools) package: base

The raco/all-tools library collects the raco-commands specifications for installed pack-
ages, PLaneT packages, and other collections.

(all-tools)
Ñ (hash/c string? (list/c string? module-path? string? (or/c real? #f)))

Returns a hashtable with collection names as keys and command specifications as values.
For example, the following program invokes raco make file.rkt:

(require raco/all-tools)

(define raco-make-spec (hash-ref (all-tools) "make"))

(parameterize ([current-command-line-arguments (vector "file.rkt")])
(dynamic-require (second raco-make-spec) #f))

166

https://pkgs.racket-lang.org/package/base

19 Installation Configuration and Search Paths

A configuration directory path is built into the Racket executable as selected at install time,
and its location can be changed via the PLTCONFIGDIR directory or --config/-G command-
line flag. Use find-config-dir to locate the configuration directory.

Modify the "config.rktd" file in the configuration directory to configure other directo-
ries as described below. Use the setup/dirs library (which combines information from
the configuration files and other sources) to locate configured directories, instead of read-
ing "config.rktd" directly. A "config.rktd" file can also appear in the directory
(build-path (find-system-path 'addon-dir) "etc"), but it controls only the re-
sults of find-addon-tethered-console-bin-dir and find-addon-tethered-gui-
bin-dir.

The path of the main collection directory is built into the Racket executable, and it can be
changed via the --collects/-X flag, so it has no entry in "config.rktd". Most paths that
are specified in "config.rktd" have default values that are relative to the main collection
directory. The paths of the configuration directory and main collection directory thus work
together to determine a Racket configuration.

A "config.rktd" file in the configuration directory should contain a readable hash ta-
ble with any of the following symbolic keys, where a relative path is relative to the main
collection directory:

• 'installation-name — a string for the installation name, which is used to de-
termine user- and version-specific paths, such as the initial path produced by find-
library-collection-paths and the location of packages that are installed in user
package scope. The default is (version).

• 'collects-search-dirs — a list of paths, strings, byte strings, or #f representing
the search path for collections. Each #f in the list, if any, is replaced with the main
collection directory.

• 'lib-dir — a path, string, or byte string for the main library directory. It defaults to
a "lib" sibling directory of the main collection directory.

• 'lib-search-dirs — a list of paths, strings, byte strings, or #f representing the
search path for directories containing foreign libraries. Each #f in the list, if any, is
replaced with the default search path, which is the user- and version-specific "lib"
directory followed by the main library directory.

• 'dll-dir — a path, string, or byte string for a directory containing shared libraries
for the main executable. It defaults to the main library directory.

• 'share-dir — a path, string, or byte string for the main shared-file directory, which
normally includes installed packages. It defaults to a "share" sibling directory of the
main collection directory.

167

• 'share-search-dirs — analogous to 'lib-search-dirs, where #f is replaced
by the default search path, which is a user- and version-specific directory followed by
a directory as potentially configured via 'share-dir.

Added in version 8.1.0.6.

• 'links-file — a path, string, or byte string for the collection links file. It defaults
to a "links.rktd" file in the main shared-file directory.

• 'links-search-files — like 'lib-search-dirs, but for collection links file.
A #f is replaced by the default search path, which has the links file as potentially
configured via 'links-file. A user- and version-specific links file is always added
to the beginning of a search.

• 'pkgs-dir — a path, string, or byte string for packages that have installation
package scope. It defaults to "pkgs" in the main shared-file directory.

• 'pkgs-search-dirs — similar to 'lib-search-dirs, but for packages in roughly
installation package scope. More precisely, a #f value in the list is replaced
with the directory specified by 'pkgs-dir, and that point in the search list corre-
sponds to installation scope. Paths before or after a #f value in the list can be
selected as a scopes to start searches at that path’s point in the list. Directories listed
in 'pkgs-search-dirs typically oblige a corresponding entry in 'links-search-
files, where the corresponding entry is "links.rktd" within the directory.

Changed in version 7.0.0.19: Adapt the package-search path in a general way for a directory scope.

• 'compiled-file-roots — a list of paths and 'same used to initialize current-
compiled-file-roots. A path, which is relative or absolute, can be specified as a
string or byte string that is converted to a path with string->path or bytes->path,
respectively.

Added in version 8.0.0.9.

• 'bin-dir — a path, string, or byte string for the installation’s directory containing
executables. It defaults to a "bin" sibling directory of the main collection directory.

• 'gui-bin-dir — a path, string, or byte string for the installation’s directory contain-
ing GUI executables. It defaults to a the 'bin-dir value, if configured, or otherwise
defaults in a platform-specific way: to the "bin" sibling directory of the main collec-
tion directory on Unix, and to the parent of the main collection directory on Windows
and Mac OS.

Added in version 6.8.0.2.

• 'bin-search-dirs — like 'lib-search-dirs, but for finding executables such as
racket. A #f is replaced by the default search path, which is a user- and version-
specific directory followed by the main console executable directory as potentially
configured via 'bin-dir.

Added in version 8.1.0.6.

168

• 'gui-bin-search-dirs — like 'bin-search-dirs, but for GUI executables, and
defaults to the 'bin-search-dirs value.

Added in version 8.1.0.6.

• 'apps-dir — a path, string, or byte string for the installation’s directory for
".desktop" files. It defaults to a "applications" subdirectory of the main shared-
file directory.

• 'man-dir — a path, string, or byte string for the installation’s man-page directory. It
defaults to a "man" sibling directory of the main shared-file directory.

• 'man-search-dirs — analogous to 'lib-search-dirs, where #f is replaced by
the default search path, which is a user- and version-specific directory followed by a
directory as potentially configured via 'man-dir.

Added in version 8.1.0.6.

• 'doc-dir — a path, string, or byte string for the main documentation directory. The
value defaults to a "doc" sibling directory of the main collection directory.

• 'doc-search-dirs — analogous to 'lib-search-dirs, where #f is replaced by
the default search path, which is a user- and version-specific directory followed by a
directory as potentially configured via 'doc-dir.

• 'doc-search-url — a URL string that is augmented with version and search-tag
queries to form a remote documentation reference.

• 'doc-open-url — a URL string or #f; a string supplies a URL that is used instead of
a local path to search and maybe open documentation pages (which normally makes
sense only in an environment where opening a local HTML file does not work).

• 'include-dir — a path, string, or byte string for the main directory containing C
header files. It defaults to an "include" sibling directory of the main collection
directory.

• 'include-search-dirs — like doc-search-dirs, but for directories containing
C header files.

• 'info-domain-root — a path, string, byte string, of #f; used as a prefix to redi-
rect the paths used for recording and finding "info.rkt" information via find-
relevant-directories. It defaults to #f, which uses paths as-is.

Added in version 8.10.0.4.

• 'catalogs — a list of URL strings used as the search path for resolving package
names. An #f in the list is replaced with the default search path. A string that does not
start with alphabetic characters followed by :// is treated as a path, where a relative
path is relative to the configuration directory.

• 'default-scope — either "user" or "installation", determining the default
package scope for package-management operations.

169

• 'download-cache-dir — a path string used as the location for storing downloaded
package archives. When not specified, packages are cached in a "download-cache"
directory in the user’s cache directory as reported by (find-system-path 'cache-
dir).

• 'download-cache-max-files and 'download-cache-max-bytes — real num-
bers that determine limits on the download cache. When not specified, the cache is
allowed to hold up to 1024 files that total up to 64 MB.

• 'build-stamp — a string that identifies a build, which can be used to augment the
Racket version number to more specifically identify the build. An empty string is
normally appropriate for a release build. The default "banner" also shows the build
stamp when non-empty.

• Changed in version 8.11.1.7: Added build stamp to "banner".

• 'main-language-family — a string that names the main language family. The
default is "Racket".

Added in version 8.14.0.5.

• 'base-documentation-packages — a list of strings, each of which names a pack-
age. Any documentation provided by the package and its dependencies is considered
part of the distribution’s base language. This classification affects the way that docu-
mentation search results are sorted and reported. The default is '("racket-doc").

Added in version 8.14.0.5.

• 'distribution-documentation-packages — like 'base-documentation-
packages, but identifies a larger set of documentation that is considered part of
the distribution beyond (but normally including) the base language. The default is
'("main-distribution").

Added in version 8.14.0.5.

• 'absolute-installation? — a boolean that is #t if the installation uses absolute
path names, #f otherwise.

• 'cgc-suffix — a string used as the suffix (before the actual suffix, such as ".exe")
for a "CGC" executable. Use Windows-style casing, and the string will be downcased
as appropriate (e.g., for a Unix binary name). A #f value means that if the racket
binary identifies itself as CGC, then the suffix is "", otherwise it is "CGC".

• '3m-suffix — analogous to 'cgc-suffix, but for 3m. A #f value means that if the
racket binary identifies itself as 3m, then the suffix is "", otherwise it is "BC".

• 'cs-suffix — analogous to 'cgc-suffix, but for CS. A #f value means that if the
racket binary identifies itself as CS, then the suffix is "", otherwise it is "CS".

• 'config-tethered-console-bin-dir and 'config-tethered-gui-bin-dir
— a path for a directory to hold extra copies of executables that are tied to the
configuration directory (as reported by find-config-dir) that is active at the time

170

the executables are created. See also §6.18 “Tethered Installations”, find-config-
tethered-console-bin-dir, and find-config-tethered-gui-bin-dir.

• 'interactive-file and 'gui-interactive-file — a module path to the
interactive module that runs when the REPL runs on startup, unless the
-q/--no-init-file is provided. Defaults to 'racket/interactive and
'racket/gui/interactive.

171

	1 raco make: Compiling Source to Bytecode
	1.1 Running raco make
	1.2 Bytecode Files
	1.3 Dependency Files
	1.4 API for Making Bytecode
	1.5 API for Parallel Builds
	1.6 Compilation Manager Hook for Syntax Transformers
	1.7 API for Simple Bytecode Creation
	1.8 API for Bytecode Paths
	1.9 Compiling to Raw Bytecode
	1.10 API for Raw Compilation
	1.10.1 Bytecode Compilation
	1.10.2 Recognizing Module Suffixes
	1.10.3 Loading Compiler Support
	1.10.4 Options for the Compiler
	1.10.5 The Compiler as a Unit

	1.11 API for Reading Compilation Dependencies

	2 raco exe: Creating Stand-Alone Executables
	2.1 API for Creating Executables
	2.1.1 Executable Creation Signature
	2.1.2 Executable Creation Unit
	2.1.3 Finding the Racket Executable

	2.2 Installation-Specific Launchers
	2.2.1 Creating Launchers
	2.2.2 Launcher Path and Platform Conventions
	2.2.3 Launcher Configuration
	2.2.4 Launcher Creation Signature
	2.2.5 Launcher Creation Unit

	2.3 Mac OS Dynamic Library Paths

	3 raco distribute: Sharing Stand-Alone Executables
	3.1 API for Distributing Executables
	3.2 API for Bundling Distributions

	4 raco planet: Automatic Package Distribution
	5 raco pkg: Package Management
	6 raco setup: Installation Management
	6.1 Running raco setup
	6.2 Installing ".plt" Archives
	6.3 Controlling raco setup with "info.rkt" Files
	6.4 "info.rkt" File Format
	6.5 Package Dependency Checking
	6.5.1 Declaring Build-Time Dependencies
	6.5.2 How Dependency Checking Works

	6.6 API for Setup
	6.6.1 raco setup Unit
	6.6.2 Options Unit
	6.6.3 Options Signature
	6.6.4 Setup Start Module

	6.7 API for Installing ".plt" Archives
	6.7.1 Non-GUI Installer

	6.8 API for Finding Installation Directories
	6.9 API for Reading "info.rkt" Files
	6.10 API for Relative Paths
	6.10.1 Representing Collection-Based Paths
	6.10.2 Representing Paths Relative to "collects"
	6.10.3 Representing Paths Relative to the Documentation
	6.10.4 Displaying Paths Relative to a Common Root

	6.11 API for Collection Names
	6.12 API for Collection Searches
	6.13 API for Platform Specifications
	6.14 API for Cross-Platform Configuration
	6.15 API for Cross-References for Installed Manuals
	6.16 API for Materializing User-Specific Documentation
	6.17 Layered Installations
	6.18 Tethered Installations

	7 raco decompile: Decompiling Bytecode
	7.1 Racket CS Decompilation
	7.2 Racket BC Decompilation
	7.3 API for Decompiling
	7.4 API for Parsing Bytecode
	7.5 API for Marshaling Bytecode
	7.6 Bytecode Representation
	7.6.1 Prefix
	7.6.2 Forms and Inline Variants
	7.6.3 Expressions

	7.7 Machine-Independent Linklets

	8 raco demod: Demodularizing Programs
	8.1 Demodularizing Libraries
	8.2 Language for Demodularizing

	9 raco link: Library Collection Links
	9.1 API for Collection Links

	10 raco pack: Packing Library Collections
	10.1 Format of ".plt" Archives
	10.2 API for Packing

	11 raco unpack: Unpacking Library Collections
	11.1 Unpacking API

	12 raco ctool: Working with C Code
	12.1 Compiling and Linking C Extensions
	12.1.1 API for 3m Transformation

	12.2 Embedding Modules via C

	13 raco test: Run tests
	13.1 Test Configuration by Submodule
	13.2 Test Configuration by "info.rkt"
	13.3 Responsible-Party and Varying-Output Logging
	13.4 Logging Test Results

	14 raco docs: Documentation Search
	15 raco expand: Macro Expansion
	16 raco read: Reading and Pretty-Printing
	17 raco scribble: Building Documentation
	18 Adding a raco Command
	18.1 Command Argument Parsing
	18.2 Accessing raco Commands

	19 Installation Configuration and Search Paths

