
Slideshow: Figure and Presentation Tools
Version 9.0.0.10

Matthew Flatt
and Robert Bruce Findler

December 15, 2025

Slideshow is a library for creating presentation slides. Unlike Powerpoint, Slideshow pro-
vides no WYSIWYG interface for constructing slides. Instead, like Beamer, a presentation
is generated by a program.

To get started, run the slideshow executable, and click the Run Tutorial link.

To learn more about Slideshow, see also “Slideshow: Functional Presentations” [Findler06].

#lang slideshow package: slideshow-lib

Most of the bindings defined in the manual are provided by the slideshow language, which
also re-exports all of racket except for printable<%> (due to backward-compatibility
issues) and all of pict.

1

http://tug.ctan.org/macros/latex/contrib/beamer/doc/beameruserguide.pdf
https://pkgs.racket-lang.org/package/slideshow-lib

Contents

1 Creating Slide Presentations 4

1.1 Slide Basics . 4

1.2 Staging Slides . 5

1.3 Display Size and Font Selection . 7

1.4 Command-line Options . 7

1.5 Printing . 8

2 Making Slides 9

2.1 Primary Slide Functions . 9

2.2 Slide Registration . 14

2.3 Viewer Control . 15

2.4 Constants and Layout Variables . 16

2.5 Configuration . 19

2.6 Pict-Staging Helper . 22

2.7 Text Formatting Helpers . 23

2.8 Slides to Picts . 24

3 Fullscreen vs. Widescreen Aspect Ratio 26

3.1 Fullscreen Slides . 26

3.2 Widescreen Slides . 27

4 Typesetting Racket Code in Slideshow 30

5 Animations 31

5.1 Generating Animated Slides . 31

2

6 Legacy Libraries 35

Bibliography 36

Index 37

Index 37

3

1 Creating Slide Presentations

The slideshow module acts as a language that includes:

• all of racket except for printable<%>;

• pict-creating functions from pict; and

• slide-composing functions from slideshow/base.

The slideshow and slideshow/base module initialization also check the current-
command-line-arguments parameter to configure the slide mode (e.g., printing).

The rest of this section repeats information that is presented by the tutorial slideshow, which
can be viewed by running the slideshow executable and clicking the Run Tutorial link.

1.1 Slide Basics

The main Slideshow function is slide, which adds a slide to the presentation with a given
content. For example, the “Hello World” presentation can be defined by the following mod-
ule:

#lang slideshow ; or slideshow/widescreen

(slide
#:title "How to Say Hello"
(t "Hello World!"))

The t function in this example creates a pict containing the given text using the default font
and style.

Executing the above module pops up a slide-presentation window. Type Alt-q (or Meta-q)
to end the slides. Here are more controls:

Alt-q, Meta-q, or Cmd-q : end slide show
Esc : if confirmed, end show
Right/Down arrow, Space, f, n, or click : next slide
Left/Up arrow, Backspace, Delete, or b : previous slide
g : last slide
1 : first slide
s : next slide with a different title/name
a : previous slide starting different title/name
Alt-g, Cmd-g, or Meta-g : select a slide
Alt-p, Cmd-p, or Meta-p : show/hide slide number

4

Alt-c, Cmd-c, or Meta-c : show/hide commentary
Alt-d, Cmd-d, or Meta-d : show/hide preview
Alt-m, Cmd-m, or Meta-m : show/hide mouse cursor
Alt-l, Cmd-l, or Meta-l : show/hide “spotlight”
Shift with arrow : move window 1 pixel
Alt, Meta, or Cmd with arrow : move window 10 pixels

The slide function accepts any number of arguments. Each argument is a pict to be centered
on the slide. The picts are stacked vertically with (current-gap-size) separation between
each pict, and the total result is centered (as long as there’s a gap of at least (* 2 (current-
gap-size)) between the title and content).

#lang slideshow

(slide
#:title "How to Say Hello"
(t "Hello World!")
(t "Goodbye Dlrow!"))

Various functions format paragraphs and generate bulleted items for lists. For example, item
creates a bulleted paragraph that spans (by default) the middle 2/3 of the slide:

#lang slideshow

(slide
#:title "How to Say Hello"
(item "If you want to create an example, you"

"can always do something with" (bt "Hello World!"))
(item "It's a bit silly, but a follow-up example"

"could be" (bt "Goodbye Dlrow!")))

As the example illustrates, the item function accepts a mixture of strings and picts, and it
formats them as a paragraph.

Changed in version 1.4: Added support for unmodified Up and Down arrow keys to behave like Left and Right
arrow keys.

1.2 Staging Slides

The slide function creates a slide as a side effect. It can be put inside a function to abstract
over a slide:

#lang slideshow

5

(define (slide-n n)
(slide
#:title "How to Generalize Slides"
(item "This is slide number" (number->string n))))

(slide-n 1)
(slide-n 2)
(slide-n 3)

The slide function also has built-in support for some common multi-slide patterns. Each
element argument to slide is usually a pict, but there are a few other possibilities:

• If an element is 'next, then a slide is generated containing only the preceding ele-
ments, and then the elements are re-processed without the 'next. Multiple 'next
elements generate multiple slides.

• If an element is 'alts, then the next element must be a list of element lists. Each list
up to the last one is appended to the elements before 'alts and the resulting list of
elements is processed. The last list is appended to the preceding elements along with
the remaining elements (after the list of lists) and the result is re-processed.

• A 'nothing element is ignored (useful as a result of a branching expression).

• A 'next! element is like 'next, except that it is preserved when condensing (via the
--condense flag).

• A 'alts~ element is like 'alts, except that it is not preserved when condensing.

• A comment produced by comment is ignored, except when commentary is displayed.

Here’s an example to illustrate how 'next and 'alts work:

#lang slideshow

(slide
#:title "Example"
(item "First step")
'next
(item "Second step")
'next
'alts
(list (list (item "Tentative third step")

'next
(item "This isn't working... back up"))

(list (item "Third step that works")))
'next
(item "Fourth step"))

6

1.3 Display Size and Font Selection

Slideshow is configured for generating slides in either 1024 by 768 for fullscreen (4:3) mode
or 1360 by 766 for widescreen (16:9) mode. When the current display has a different size as
Slideshow is started, the Slideshow display still occupies the entire screen, and pictures are
scaled just before they are displayed. Thus, one picture unit reliably corresponds to a “pixel”
that occupies 1/1024 by 1/768 of the screen or 1/1360 by 1/766 of the screen.

Fullscreen versus widescreen mode is a property of an individual slide that can be selected
using the #:aspect argument to slide, but the default is to adapt to a mode that the user
selects with --widescreen or --fullscreen. See §3 “Fullscreen vs. Widescreen Aspect
Ratio” for more information.

Beware that different font sets on different platforms can change the way a slide is rendered.
For example, the tt font on one platform might be slightly wider than on another, causing
different line breaks, and so on. Beware also of using bitmaps in slides when the presentation
screen’s pixels do not exactly match the slide’s drawing units. In that case, consider using
size-in-pixels (with the caveat that the resulting picture will take up different amounts
of the slide on different displays).

Finally, beware that the text form for generating text pictures attempts to take into account
any expected scaling for the display when measuring text. (All Slideshow text functions,
such as t and item are built on text.) On some devices, scaling the picture potentially
causes a different font size to be used for drawing the slide—rather than bitmap-scaling
the original font—and changing the font size by a factor of k does not necessarily scale all
text dimensions equally by a factor of k. Modern displays and drawing libraries make this
scaling compensation a smaller effect than it used to be, but using current-expected-
text-scale parameter can sometimes improve text scaling.

1.4 Command-line Options

(require slideshow/start) package: slideshow-exe

The slideshow executable instantiates the slideshow/start module, which inspects the
command line as reported by current-command-line-arguments to get another module
to require for the slide content.The slideshow/start module also initializes variables
like printing? and condense? based on flags supplied on the command line.

Thus, if the above example is in "multi-step.rkt", then the command

slideshow multi-step.rkt

runs the slides.

If the module given to slideshow has a slideshow submodule, then slideshow/start

7

https://pkgs.racket-lang.org/package/slideshow-exe

requires the slideshow submodule after requireing the module. If the module has no
slideshow but has a main submodule, then the main submodule is required.

The slideshow executable accepts a number of command-line flags. Use the --help flag
to obtain a list of other flags.

1.5 Printing

The -p or --print command-line flag causes Slideshow to print slides instead of showing
them on the screen using the current platform’s printing system. The -P or --ps generates
PostScript directly, while -D or --pdf generates PDF directly. By default, PS or PDF output
is configured for paper output; use -e or --not-paper to produce output where each page’s
bounding box matches the slide bounds.

PS-to-PDF converters vary on how well they handle landscape mode. Here’s a Ghostscript
command that converts slides reliably (when you replace "src.ps" and "dest.pdf" with
your file names):

gs -q -dAutoRotatePages=/None -dSAFER -dNOPAUSE -dBATCH -
sOutputFile=dest.pdf -sDEVICE=pdfwrite -c .setpdfwrite -c "<</Ori-
entation 3>> setpagedevice" -f src.ps

8

2 Making Slides

(require slideshow/base) package: slideshow-lib

The slideshow/base module, which is re-provided by slideshow, provides the functions
for creating slides.

2.1 Primary Slide Functions

(slide [#:title title
#:name name
#:aspect aspect
#:layout layout
#:gap-size sep-gap-size
#:inset inset
#:timeout secs
#:condense? condense?]
element ...) Ñ void?

title : (or/c #f string? pict?) = #f
name : (or/c #f string?) = title
aspect : aspect? = #f
layout : (or/c 'auto 'center 'top 'tall) = 'auto
sep-gap-size : real? = (current-gap-size)
inset : slide-inset? = (make-slide-inset 0 0 0 0)
secs : (or/c #f real?) = #f
condense? : any/c = (and secs #t)
element : (flat-rec-contract elem/c

(or/c pict-convertible?
'next 'next! 'alts 'alts~ 'nothing
comment?
(listof (listof elem/c))))

Creates and registers a slide. See §1.2 “Staging Slides” for information about elements.
Multiple element picts are separated by sep-gap-size vertical space.

When this function is first called in non-printing mode, then the viewer window is opened.
Furthermore, each call to the function yields, so that the viewer window can be refreshed,
and so the user can step through slides. If the user closes the slide window, then slide
triggers an error unless set-allow-new-slides-after-close! was called with a true
value before the window was closed.

If title is not #f, then a title is shown for the slide. The name is used in the slide-navigation
dialog, and it defaults to title .

9

https://pkgs.racket-lang.org/package/slideshow-lib

If layout is 'top, then the content is top-aligned, with (* 2 sep-gap-size) space be-
tween the title and the content. The 'tall layout is similar, but with only sep-gap-size
space. The 'center mode centers the content (ignoring space consumed by the title). The
'auto mode is like 'center, except when title is non-#f and when the space between
the title and content would be less than (* 2 sep-gap-size), in which case it behaves
like 'top.

The inset argument supplies an inset that makes the slide-viewing window smaller when
showing the slide. See make-slide-inset for more information.

If secs argument for #:timeout is not #f, then the viewer automatically advances from
this slide to the next after secs seconds, and manual advancing skips this slide.

If condense? is true, then in condense mode (as specified by the -c command-line flag),
the slide is not created and registered.

Changed in version 1.5 of package slideshow-lib: Added the #:aspect argument.

(t str) Ñ pict?
str : string?

The normal way to make plain text. Returns (text str (current-main-font)
(current-font-size)).

(it str) Ñ pict?
str : string?

The normal way to make italic text. Returns (text str (cons 'italic (current-
main-font)) (current-font-size)).

(bt str) Ñ pict?
str : string?

The normal way to make bold text. Returns (text str (cons 'bold (current-main-
font)) (current-font-size)).

(bit str) Ñ pict?
str : string?

Bold-italic text. Returns (text str (list* 'bold 'italic (current-main-
font)) (current-font-size)).

(tt str) Ñ pict?
str : string?

The normal way to make monospaced text. Returns (text str (current-tt-font)
(or (current-tt-font-size) (current-font-size))).

10

Changed in version 1.9 of package slideshow-lib: Generalized to use current-tt-font and
current-tt-font-size

(rt str) Ñ pict?
str : string?

The normal way to make serif text. Returns (text str 'roman (current-font-
size)).

(titlet str) Ñ pict?
str : string?

Creates title text. Returns ((current-titlet) str).

(para [#:aspect aspect
#:width width
#:align align
#:fill? fill?
#:decode? decode?]
element ...) Ñ pict?

aspect : aspect? = #f
width : real? = ((get-current-para-width #:aspect aspect))
align : (or/c 'left 'center 'right) = 'left
fill? : any/c = #t
decode? : any/c = #t
element : (flat-rec-contract elem/c

(or/c string? pict-convertible? (listof elem/c)))

Generates a paragraph pict that is no wider than width units, and that is exactly width units
if fill? is true. If fill? is #f, then the result pict is as wide as the widest line.

Each list within elements is spliced into the sequence of string and pict elements. If
decode? is true, then strings among the elements are decoded by performing the following
substitutions: --- Ñ –-, -- Ñ –, `` Ñ “, '' Ñ ”, ' Ñ ’. In addition, to better work with
at-exp notation, if an element is "\n", then it is dropped along with any spaces at the start
of the next element.

Strings are split at spaces for word-wrapping to fit the page, and a space is added between
elements. If a string element starts with one of the following punctuation marks (after de-
coding), however, no space is added before the string:

- ' , . : ; ? !) ” ’

The align argument specifies how to align lines within the paragraph.

See the spacing between lines is determined by the current-line-sep parameter.

Changed in version 1.5 of package slideshow-lib: Added the #:aspect argument.

11

(item [#:aspect aspect
#:width width
#:gap-size sep-gap-size
#:bullet blt
#:align align
#:fill? fill?
#:decode? decode?]
element ...) Ñ pict?

aspect : aspect? = #f
width : real? = ((get-current-para-width #:aspect aspect))
sep-gap-size : real? = (current-gap-size)
blt : pict? = (scale bullet (/ sep-gap-size gap-size))
align : (or/c 'left 'center 'right) = 'left
fill? : any/c = #t
decode? : any/c = #t
element : (flat-rec-contract elem/c

(or/c string? pict-convertible? (listof elem/c)))

Like para, but with blt followed by (/ sep-gap-size 2) space appended horizontally
to the resulting paragraph, aligned with the top line. The paragraph width of blt plus (/
sep-gap-size 2) is subtracted from the maximum width of the paragraph.

Changed in version 1.5 of package slideshow-lib: Added the #:aspect argument.

(subitem [#:aspect aspect
#:width width
#:gap-size sep-gap-size
#:bullet blt
#:align align
#:fill? fill?
#:decode? decode?]
element ...) Ñ pict?

aspect : aspect? = #f
width : real? = ((get-current-para-width #:aspect aspect))
sep-gap-size : real? = (current-gap-size)
blt : pict? = (scale o-bullet (/ sep-gap-size gap-size))
align : (or/c 'left 'center 'right) = 'left
fill? : any/c = #t
decode? : any/c = #t
element : (flat-rec-contract elem/c

(or/c string? pict-convertible? (listof elem/c)))

Like item, but an additional (* 2 sep-gap-size) is subtracted from the paragraph width
and added as space to the left of the pict. Also, o-bullet is the default bullet, instead of
bullet.

12

Changed in version 1.5 of package slideshow-lib: Added the #:aspect argument.

(clickback pict thunk) Ñ pict?
pict : pict?
thunk : (-> any)

Creates a pict that embeds the given one, and is the same size as the given pict, but that when
clicked during a presentation calls thunk .

(interactive pict proc) Ñ pict?
pict : pict?
proc : (frame% . -> . (-> any))

Creates a pict that embeds the given one, but that creates a floating frame at the pict’s location
on the screen during a presentation. After the floating frame is created (and before it is
shown), proc is applied to the frame. The result from proc must be a procedure that is
called when the window is removed (because the slide changes, for example).

(size-in-pixels pict [#:aspect aspect]) Ñ pict?
pict : pict?
aspect : aspect? = #f

Scales pict so that it is displayed on the screen as (pict-width pict) pixels wide and
(pict-height pict) pixels tall. The result is pict when using a 1024 by 768 display
with a fullscreen aspect or when using a 1360 by 766 display with a widescreen aspect.

Changed in version 1.5 of package slideshow-lib: Added the #:aspect argument.

(pict->pre-render-pict pict) Ñ pict?
pict : pict?

Produces a pict that is like pict , but optimized for drawing on some platforms (currently
Mac OS). This function may be useful to reduce drawing times for for large bitmaps or
complex drawings.

Added in version 1.1 of package slideshow-lib.

(make-outline name
title
subitems ...

[#:aspect aspect]) Ñ (symbol? . -> . void?)
name : (or/c symbol? (listof symbol?))
title : (or/c string? pict?)
subitems : (or/c #f null?

(symbol? . -> . pict?))
aspect : aspect? = #f

13

Returns a function that takes a symbol and generates an outline slide.

The ... above applies to all three arguments together. Each trio of arguments defines a
section for the outline:

• The section name is either a symbol or a list of symbols. When the outline func-
tion is called later to make an outline, the given symbol is compared to the section’s
symbol(s), and the section is marked as current if the symbol matches.

• The title is used as the displayed name of the section.

• The subitems are displayed when the section is active. It can be #f or null (for his-
torical reasons) if no subitems are to be displayed. Otherwise, it should be a function
that takes a symbol (the same one passed to the outline maker) and produces a pict.

Changed in version 1.5 of package slideshow-lib: Added the #:aspect argument.

(comment text ...) Ñ comment?
text : (or/c string? pict?)

Combines strings and picts to be used as a slide element for (usually hidden) commentary.
Use the result as an argument to slide.

(comment? v) Ñ boolean?
v : any/c

Returns #t if v is a comment produced by comment.

2.2 Slide Registration

(slide? v) Ñ boolean?
v : any/c

Returns #t if v is a slide produced by most-recent-slide or retract-most-recent-
slide.

(most-recent-slide) Ñ slide?

Returns a slide structure that may be supplied to re-slide to make a copy of the slide or
slide->pict to re-extract the entire slide as a pict.

(retract-most-recent-slide) Ñ slide?

14

Cancels the most recently created slide, and also returns a slide structure that may be supplied
to re-slide to restore the slide (usually in a later position).

(re-slide slide [pict]) Ñ void?
slide : slide?
pict : pict? = (blank)

Re-inserts a slide, lt-superimposeing the given additional pict .

(slide->pict slide) Ñ pict?
slide : slide?

Converts a complete slide to a pict. The bounding box of the result corresponds to the slide
within its margins.

2.3 Viewer Control

(start-at-recent-slide) Ñ void?

Sets the starting slide for the talk to the most recently created slide. If this function is used
multiple times, the last use overrides the earlier uses.

(enable-click-advance! on?) Ñ void?
on? : any/c

Enables or disables slide advance as a result of a mouse click.

(set-use-background-frame! on?) Ñ void?
on? : any/c

Enables or disables the creation of a background frame, which is typically useful only when
make-slide-inset is used. The last enable/disable before the first slide registration takes
effect once and for all.

(set-page-numbers-visible! on?) Ñ void?
on? : any/c

Determines whether slide numbers are initially visible in the viewer.

(current-page-number-font) Ñ (is-a?/c font%)
(current-page-number-font font) Ñ void?

font : (is-a?/c font%)

15

Parameter that determines the font used to draw the page number (if visible).

(current-page-number-color) Ñ (or/c string? (is-a?/c color%))
(current-page-number-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

Parameter that determines the color used to draw the page number (if visible).

(current-page-number-adjust) Ñ (-> number? string? string?)
(current-page-number-adjust proc) Ñ void?

proc : (-> number? string? string?)

Parameter that controls the precise text that appears to indicate the page numbers (if visible).
The input to the function is the default string and the slide number, and the result is what
is drawn in the bottom right corner. The default parameter value just returns its second
argument.

(set-spotlight-style! [#:size size
#:color color]) Ñ void?

size : (or/c #f (>=/c 0)) = #f
color : (or/c #f string? (is-a?/c color%)) = #f

Adjusts the size and color of the “spotlight,” which can be enabled in Slideshow as an al-
ternative to the mouse. Note that the color normally should have alpha value less than 1
(to make it partially transparent). If size or color is #f, the corresponding setting is
unchanged.

(set-allow-new-slides-after-close! on?) Ñ void?
on? : any/c

Sets whether new slides are allowed after the Slideshow window is closed by the user. By
default, an attempt to register a new slide via slide after the window is closed triggers an
error. Calling this function with #t enables new slides to start a new slideshow.

Added in version 1.3 of package slideshow-lib.

2.4 Constants and Layout Variables

(aspect? v) Ñ boolean?
v : any/c

Return #t if v is 'fullscreen, 'widescreen, or #f, otherwise returns #f.

16

A symbolic v selects a specific aspect, while #f as an aspect corresponds to a user-selected
aspect through the --widescreen or --fullscreen flag.

See also §3 “Fullscreen vs. Widescreen Aspect Ratio”.

Added in version 1.5 of package slideshow-lib.

gap-size : 24

A width commonly used for layout.

(current-gap-size) Ñ real?
(current-gap-size sep-gap-size) Ñ void?

sep-gap-size : real?

A parameter whose value is a width used for the separation between items by slide, the
size and spacing of a bullet for item, the space between a slide title and content in 'tall
mode, etc. The default value is gap-size.

bullet : pict?

A filled bullet used by default by item.

It is either (t "‚"), if that character is available in the font that t uses, or it uses an imple-
mentation similar to o-bullet, but not hollow (using disk, not circle).

o-bullet : pict?

A hollow bullet used by default by subitem.

It’s implementation is:

(baseless
(cc-superimpose
(circle (/ gap-size 2))
(blank 0 gap-size)))

client-w
(get-client-w [#:aspect aspect]) Ñ exact-nonnegative-integer?

aspect : aspect? = #f

Produces the width of the display area, minus margins for a given aspect , where client-
w is equivalent to (get-client-w). The result changes if the margin is adjusted via set-
margin!.

Changed in version 1.5 of package slideshow-lib: Added get-client-w.

17

client-h
(get-client-h [#:aspect aspect]) Ñ exact-nonnegative-integer?

aspect : aspect? = #f

Produces the height of the display area, minus margins for a given aspect , where client-
h is equivalent to (get-client-h). The result changes if the margin is adjusted via set-
margin!.

Changed in version 1.5 of package slideshow-lib: Added get-client-h.

full-page
(get-full-page [#:aspect aspect]) Ñ pict?

aspect : aspect? = #f

Produces an empty pict that is the same size as the client area, which is like (blank
client-w client-h). The full-page form is equivalent to (get-full-page).

Changed in version 1.5 of package slideshow-lib: Added get-full-page.

titleless-page
(get-titleless-page [#:aspect aspect]) Ñ pict?

aspect : aspect? = #f

Produces an empty pict that is the same size as the client area minus the title area in
'top layout mode, which is like (blank client-w (- client-h title-h (* 2 gap-
size))). The titleless-page form is equivalent to (get-titleless-page).

Changed in version 1.5 of package slideshow-lib: Added get-titleless-page.

margin

Produces a number that corresponds to the current margin, which surrounds every side of
the slide. The client area for a slide corresponds to the display area (which is either 1024 by
768 or 1360 by 766) minus this margin on each side. The default margin is 20.

The margin can be adjusted via set-margin!.

title-h

Produces a number that corresponds to the height of a title created by titlet.

If titlet is changed via the current-titlet parameter, the title height should be updated
via set-title-h!.

printing? : boolean?

18

The value is #t if slides are being generated for printed output, #f for normal on-screen
display. Printing mode is normally triggered via the --print or --ps command-line flag.

condense? : boolean?

The value is #t if slides are being generated in condensed mode, #f for normal mode.
Condensed mode is normally triggered via the --condense command-line flag.

2.5 Configuration

(current-font-size) Ñ exact-nonnegative-integer?
(current-font-size n) Ñ void?

n : exact-nonnegative-integer?

Parameter that determines the font size used by t, para, etc. The default size is 32.

(current-main-font) Ñ text-style/c
(current-main-font style) Ñ void?

style : text-style/c

Parameter that determines the font used by t, para, etc. The default is platform-specific;
possible initial values include 'swiss, "Verdana", and "Gill Sans".

(current-tt-font) Ñ text-style/c
(current-tt-font style) Ñ void?

style : text-style/c

Parameter that determines the font used by tt. The default is '(bold . modern).

Added in version 1.9 of package slideshow-lib.

(current-tt-font-size) Ñ (or/c #f exact-nonnegative-integer?)
(current-tt-font-size size) Ñ void?

size : (or/c #f exact-nonnegative-integer?)

Parameter that determines the font size used by tt. The default is #f, which causes tt to
use current-font-size.

Added in version 1.9 of package slideshow-lib.

(current-line-sep) Ñ exact-nonnegative-integer?
(current-line-sep n) Ñ void?

n : exact-nonnegative-integer?

19

Parameter that controls the amount of space used between lines by para, item, and
subitem.
(current-para-width) Ñ exact-nonnegative-integer?
(current-para-width n) Ñ void?

n : exact-nonnegative-integer?
(get-current-para-width [#:aspect aspect])

Ñ (parameter/c exact-nonnegative-integer?)
aspect : aspect? = #f

Parameter that controls the width of a pict created by para, item, and subitem. The value
of current-para-width is the same as (get-current-para-width).

Changed in version 1.5 of package slideshow-lib: Added get-current-para-width.

(current-title-color) Ñ (or/c string? (is-a?/c color%))
(current-title-color color) Ñ void?

color : (or/c string? (is-a?/c color%))

Parameter used by the default current-titlet to colorize the title. The default is
"black".
(current-slide-assembler) Ñ ((or/c string? #f)

exact-nonnegative-integer?
pict?
. -> .
pict?)

(current-slide-assembler proc) Ñ void?
proc : ((or/c string? #f)

exact-nonnegative-integer?
pict?
. -> .
pict?)

Parameter whose value is a function for assembling slide content into a single pict. An
assembling function takes: a title, a vertical space amount, and a pict for the slide content
(not counting the title).

The default assembler uses titlet to turn a title string (if any) to a pict and uses the vertical
space to put the title pict above the slide content. See also current-titlet and set-
title-h!.

The result of the assembler is ct-superimposed with the client area, but the resulting pict
might draw outside the client region to paint the screen margins, too.

The slide assembler is not responsible for adding page numbers to the slide; that job belongs
to the viewer. See also current-page-number-font, current-page-number-color,
and set-page-numbers-visible!.

20

(current-titlet) Ñ (string? . -> . pict?)
(current-titlet proc) Ñ void?

proc : (string? . -> . pict?)

Parameter to configure titlet. The default is

(lambda (s)
(colorize (text s (current-main-font) 40)

(current-title-color)))

If this parameter is changed such that the result is a different height, then set-title-h!
should be called to update the value produced by title-h, titleless-page, etc.

(set-margin! amt) Ñ void?
amt : real?

Changes the margin that surrounds the client area. See also margin.

(set-title-h! amt) Ñ void?
amt : real?

Changes the expected height of a title, which adjusts title-h, client-h, full-page, and
titleless-page.

(make-slide-inset left-inset
top-inset
right-inset
bottom-inset) Ñ slide-inset?

left-inset : exact-nonnegative-integer?
top-inset : exact-nonnegative-integer?
right-inset : exact-nonnegative-integer?
bottom-inset : exact-nonnegative-integer?

Creates a slide inset, which describes a number of pixels to inset the viewer for a slide on
each side.

(slide-inset? v) Ñ boolean?
v : any/c

Returns #t if v is a slide inset created by make-slide-inset, #f otherwise.

(commentary-on-slide-font-size) Ñ exact-positive-integer?
(commentary-on-slide-font-size size) Ñ void?

size : exact-positive-integer?

21

The font size used for commentary when passing

--commentary-on-slide

on the command-line.

2.6 Pict-Staging Helper

(require slideshow/step) package: slideshow-lib

The slideshow/step library provides syntax for breaking a complex slide into steps that
are more complex than can be handled with 'next and 'alts in a slide sequence.

(with-steps (id ...) body ...)

Evaluates the bodys once for each id , skipping an id if its name ends with ~ and
condense? is true. The results of the last body for each iteration are collected into a list,
which is the result of the with-steps form.

Within the bodys, several keywords are bound non-hygienically (using the first body ’s lex-
ical context):

• (only? id) — returns #t during the id step (i.e., during the evaluation of the bodys
for id), #f otherwise.

• (vonly id) — returns the identity function during the id step, ghost otherwise.

• (only id then-expr) returns the result of then-expr during the id step, values
otherwise.

• (only id then-expr else-expr) returns the result of then-expr during the id
step, the result of else-expr otherwise.

• (before? id) — returns #t before the id step, #f starting for the id and afterward.

• (vbefore id), (before id then-expr), or (before id then-expr else-
expr) — analogous to vonly and only.

• (after? id) — returns #t after the id step, #f through the id step.

• (vafter id), (after id then-expr), or (after id then-expr else-
expr) — analogous to vonly and only.

• (between? a-id b-id) — returns #t starting from the a-id step through the b-
id step, #f otherwise.

22

https://pkgs.racket-lang.org/package/slideshow-lib

• (vbetween a-id b-id), (between a-id b-id then-expr), or (between a-
id b-id then-expr else-expr) — analogous to vonly and only.

• (between-excel? a-id b-id) — returns #t starting from the a-id step through
steps before the b-id step, #f for the b-id step and afterward.

• (vbetween-excl a-id b-id), (between-excl a-id b-id then-expr), or
(between-excl a-id b-id then-expr else-expr) — analogous to vonly
and only.

(with-steps~ (id ...) body ...)

Like with-steps, but when condense? is true, then expr is evaluated only for the last id
(independent of whether the name of the last id name ends in ~).

2.7 Text Formatting Helpers

(require slideshow/text) package: slideshow-lib

This module provides conveniences functions for formatting text.

(with-size size expr)

Sets current-font-size to size while running expr .

Added in version 1.2 of package slideshow-lib.

(with-scale scale expr)

Multiplies current-font-size by scale while running expr .

Added in version 1.2 of package slideshow-lib.

(big text)
(small text)

Scale current-font-size by 3/2 or 2/3, respectively, while running text .

Added in version 1.2 of package slideshow-lib.

(with-font font expr)

Sets current-main-font to font while running expr .

Added in version 1.2 of package slideshow-lib.

23

https://pkgs.racket-lang.org/package/slideshow-lib

(with-style style expr)

Adds style to current-main-font (via cons) while running expr .

Added in version 1.2 of package slideshow-lib.

(bold text)
(italic text)
(subscript text)
(superscript text)
(caps text)

Adds the attributes for bold, italic, superscript, subscript, or small caps text, respectively, to
current-main-font while running text .

Added in version 1.2 of package slideshow-lib.

(blank-line) Ñ pict?

Adds a blank line of the current font size’s height.

Added in version 1.2 of package slideshow-lib.

2.8 Slides to Picts

(require slideshow/slides-to-picts) package: slideshow-lib

(get-slides-as-picts path
width
height
condense?

[stop-after
#:aspect aspect]) Ñ (listof pict?)

path : path-string?
width : real?
height : real?
condense? : any/c
stop-after : (or/c #f exact-nonnegative-integer?) = #f
aspect : (or/c 'fullscreen 'widescreen) = inferred-aspect

Executes the Slideshow program indicated by path in a fresh namespace, and returns a
list of picts for the slides. Each pict has the given width and height , and condense?
determines whether the Slideshow program is executed in condense mode.

24

https://pkgs.racket-lang.org/package/slideshow-lib

The aspect argument indicates which kinds of slides should full the width be height
area, and slides in the other aspect are scaled to fit; the default for aspect is inferred from
width and height . The aspect argument also sets the default aspect while loading path .

If stop-after is not #f, then the list is truncated after stop-after slides are converted to
picts.

Changed in version 1.8 of package slideshow-lib: Added #:aspect.

25

3 Fullscreen vs. Widescreen Aspect Ratio

Fullscreen (4:3, 1024 by 768) versus widescreen (16:9, 1360 by 766) aspect mode is a prop-
erty of an individual slide that can be selected using the #:aspect argument to slide. The
slideshow/widescreen language provides a variant of slide that makes 'widescreen
the default value of #:aspect, while slideshow/fullscreen provides a variant of slide
that makes 'fullscreen the default.

When a slide’s aspect is not specified, then it adopts an aspect that can be selected via
the --widescreen or --fullscreen flag when Slideshow starts. (That selection can be
made “sticky” as the default for future runs by using the --save-aspect flag.) Selecting
an aspect also affects the values of client-w, client-h, full-page, and titleless-
page from slideshow, but it does not affect the bindings from slideshow/widescreen
or slideshow/fullscreen. Keep in mind that specifying #:aspect for slide does not
affect the value of client-w, etc., for constructing the slide’s content, but you can use
get-client-w, etc., to obtain the aspect-specific metrics.

Use the slideshow language for slides and libraries that are meant to adapt to a user’s
selected aspect, and use slideshow/fullscreen or slideshow/widescreen for slides
and libraries that assume specific values for a slide’s drawing area.

3.1 Fullscreen Slides

#lang slideshow/fullscreen package: slideshow-lib

(require slideshow/fullscreen/base) package: slideshow-lib

The slideshow/fullscreen/base module is reprovided by the
slideshow/fullscreen language along with racket and pict.

Added in version 1.5 of package slideshow-lib.

slide : procedure?

The same as slide from slideshow/base, but with 'fullscreen as the default value of
the #:aspect argument.

para : procedure?

The same as para from slideshow/base, but with 'fullscreen as the default value of
the #:aspect argument.

item : procedure?

26

https://pkgs.racket-lang.org/package/slideshow-lib
https://pkgs.racket-lang.org/package/slideshow-lib

The same as item from slideshow/base, but with 'fullscreen as the default value of
the #:aspect argument.

subitem : procedure?

The same as subitem from slideshow/base, but with 'fullscreen as the default value
of the #:aspect argument.

make-outline : procedure?

The same as make-outline from slideshow/base, but with 'fullscreen as the default
value of the #:aspect argument.

size-in-pixels : procedure?

The same as size-in-pixels from slideshow/base, but with 'fullscreen as the de-
fault value of the #:aspect argument.

client-w

The same as (get-client-w 'fullscreen).

client-h

The same as (get-client-h 'fullscreen).

full-page

The same as (full-page 'fullscreen).

titleless-page

The same as (titleless-page 'fullscreen).

3.2 Widescreen Slides

#lang slideshow/widescreen package: slideshow-lib

27

https://pkgs.racket-lang.org/package/slideshow-lib

(require slideshow/widescreen/base) package: slideshow-lib

The slideshow/widescreen/base module is reprovided by the
slideshow/widescreen language along with racket and pict.

Added in version 1.5 of package slideshow-lib.

slide : procedure?

The same as slide from slideshow/base, but with 'widescreen as the default value of
the #:aspect argument.

para : procedure?

The same as para from slideshow/base, but with 'widescreen as the default value of
the #:aspect argument.

item : procedure?

The same as item from slideshow/base, but with 'widescreen as the default value of
the #:aspect argument.

subitem : procedure?

The same as subitem from slideshow/base, but with 'widescreen as the default value
of the #:aspect argument.

make-outline : procedure?

The same as make-outline from slideshow/base, but with 'widescreen as the default
value of the #:aspect argument.

size-in-pixels : procedure?

The same as size-in-pixels from slideshow/base, but with 'widescreen as the de-
fault value of the #:aspect argument.

client-w

The same as (get-client-w 'widescreen).

28

https://pkgs.racket-lang.org/package/slideshow-lib

client-h

The same as (get-client-h 'widescreen).

full-page

The same as (full-page 'widescreen).

titleless-page

The same as (titleless-page 'widescreen).

29

4 Typesetting Racket Code in Slideshow

(require slideshow/code) package: slideshow-lib

The slideshow/code library provides all of the exports of pict/code and also initializes
get-current-code-font-size to current-font-size.

30

https://pkgs.racket-lang.org/package/slideshow-lib

5 Animations

(require slideshow/play) package: slideshow-lib

The slideshow/play module provides tools for generating animations as multiple, auto-
matically advanced slides.

Many of the tools are based on a function that takes a number between 0.0 and 1.0 inclusive
and produces a pict. The pict produced for the input 0.0 is the starting image of the anima-
tion, and the pict produced for 1.0 is the ending image, while intermediate values produced
intermediate images. For example,

(lambda (n)
(cellophane (t "Hello") n))

corresponds to an animation that fades in the word “Hello.”

5.1 Generating Animated Slides

(play gen
[#:steps steps
#:delay delay-secs
#:skip-first? skip-first?
#:title title
#:name name
#:aspect aspect
#:comment comment
#:layout layout]) Ñ void?

gen : ((real-in 0.0 1.0) . -> . pict?)
steps : exact-positive-integer? = (current-play-steps)
delay-secs : real? = 0.05
skip-first? : any/c = #f
title : (or/c string? pict? #f

((real-in 0.0 1.0) . -> . (or/c string? pict? #f)))
= #f

name : (or/c string? #f
((real-in 0.0 1.0) . -> . (or/c string? #f)))

= title
aspect : aspect? = #f
comment : (or/c comment? #f) = #f
layout : (or/c 'auto 'center 'top 'tall) = 'auto

Generates steps+1 slides by calling gen on equally-spaced values from 0.0 (inclusive) to

31

https://pkgs.racket-lang.org/package/slideshow-lib

1.0 (exclusive). Except for the first of the slides, each slide has a timeout of delay-secs ,
so that the next slide appears automatically.

Normally, play is called via play-n, which effectively calls gen on 1.0 without a timeout
to complete the animation and stop the auto-advance of slides. The play-n function also
manages with multi-step animations.

If skip-first? is #f, then one fewer slide is generated, because gen is not called on 0.0.

The title , name , aspect , and layout arguments are passed on to slide, at least when
title and/or name are not functions. When title or name is a function, the function
is applied to the value used to produce the slide content, and the resulting title or name is
passed on to slide.

The comment argument is used like a comment argument to slide.

In condensed mode (i.e., when condense? is #t), any slide that would be registered with a
timeout is instead skipped.

Changed in version 1.7 of package slideshow-lib: Added the aspect argument.

(play-n gen*
[#:steps steps
#:delay delay-secs
#:skip-first? skip-first?
#:skip-last? skip-last?
#:title title
#:name name
#:aspect aspect
#:comments comment
#:layout layout]) Ñ void?

gen* : (and/c (unconstrained-domain-> pict?)
(𝜆 (x) (number? (procedure-arity x))))

steps : (list*of exact-positive-integer?
(or/c exact-positive-integer? '()))

= (current-play-steps)
delay-secs : real? = 0.05
skip-first? : any/c = #f
skip-last? : any/c = #f
title : (or/c string? pict? #f

((real-in 0.0 1.0) . -> . (or/c string? pict? #f)))
= #f

name : (or/c string? #f
((real-in 0.0 1.0) . -> . (or/c string? #f)))

= title
aspect : aspect? = #f
comment : (list*of comment? (or/c comment? #f '())) = #f

32

layout : (or/c 'auto 'center 'top 'tall) = 'auto

Generates a sequence of slides by calling gen* with, for each of its arguments, numbers
from 0.0 to 1.0. If gen* accepts n arguments, then result is a sequence of animations with
a pause (i.e., not auto-advanced) between each of n segments.

If gen* accepts a single argument, then play-n is like play, except that gen* is also called
with 1.0 to generate a slide with no timeout. If gen* accepts multiple arguments, then slides
are generated by calling gen* with the first argument varying from 0.0 to 1.0 while all other
arguments are 0.0. Then, the first argument is held at 1.0 while the second argument varies
from 0.0 to 1.0, and so on.

For example,

(play-n
(lambda (n1 n2)

(cellophane (t "Hello")
(* n1 (- 1.0 n2)))))

generates an animation to fade in the word “Hello,” and then pauses for a manual advance,
and then fades “Hello” back out.

If skip-first? is #t, then the very first slide of the sequence is skipped. Similarly, if
skip-last? is #t, then the last slide of the sequence is skipped.

The steps argument controls how many steps happen in each phase on the animation. If
it is a number, then that number is used for each phase. If it is a pair of two numbers, then
the first number is used for the first phase, and the second number is used for the rest of
the phases. Similarly, if it is (cons num_1 (cons num_2 num_3)), num_1 and num_2 are
used for the first two phases and num_3 is used for the rest.

The elements of the comment argument are used like the steps argument, except passed as
comments instead of used as step counts.

The delay-secs , title , name , aspect , and layout arguments are passed on to play
for each of the n segments of animation.

Changed in version 1.7 of package slideshow-lib: Added the aspect argument.

(animate-slide element ...)
Ñ (() (listof (real-in 0.0 1.0)) . ->* . pict?)
element : (flat-rec-contract elem/c

(or/c pict? 'next 'alts
(listof (listof elem/c))))

Accepts slide content similar to slide with 'next and 'alts and produces a procedure

33

suitable for use with play-n. The result is similar to using slide, but with fades for 'next
and 'alts transitions (to better fit the style, perhaps, of surrounding animations).

(current-play-steps) Ñ exact-positive-integer?
(current-play-steps n) Ñ void?

n : exact-positive-integer?

A parameter that determines the default number of steps used for a slide animation. The
parameter’s initial value is 10.

Added in version 1.6 of package slideshow-lib.

34

6 Legacy Libraries

(require slideshow/pict) package: slideshow-lib

The slideshow/pict library re-exports pict.

(require slideshow/code-pict) package: slideshow-lib

The slideshow/code-pict library re-exports pict/code.

35

https://pkgs.racket-lang.org/package/slideshow-lib
https://pkgs.racket-lang.org/package/slideshow-lib

Bibliography

[Findler06] Robert Bruce Findler and Matthew Flatt, “Slideshow: Functional Pre-
sentations,” Journal of Functional Programming, 16(4-5), pp. 583–
619, 2006. http://www.cs.utah.edu/plt/publications/jfp05-
ff.pdf

36

http://www.cs.utah.edu/plt/publications/jfp05-ff.pdf
http://www.cs.utah.edu/plt/publications/jfp05-ff.pdf

Index
animate-slide, 33
Animations, 31
aspect?, 16
big, 23
bit, 10
blank-line, 24
bold, 24
bt, 10
bullet, 17
caps, 24
clickback, 13
client-h, 18
client-h, 27
client-h, 29
client-w, 28
client-w, 17
client-w, 27
Command-line Options, 7
comment, 14
comment?, 14
commentary-on-slide-font-size, 21
condense?, 19
Configuration, 19
Constants and Layout Variables, 16
Creating Slide Presentations, 4
current-font-size, 19
current-gap-size, 17
current-line-sep, 19
current-main-font, 19
current-page-number-adjust, 16
current-page-number-color, 16
current-page-number-font, 15
current-para-width, 20
current-play-steps, 34
current-slide-assembler, 20
current-title-color, 20
current-titlet, 21
current-tt-font, 19
current-tt-font-size, 19
Display Size and Font Selection, 7

enable-click-advance!, 15
full-page, 29
full-page, 18
full-page, 27
Fullscreen Slides, 26
Fullscreen vs. Widescreen Aspect Ratio, 26
gap-size, 17
Generating Animated Slides, 31
get-client-h, 18
get-client-w, 17
get-current-para-width, 20
get-full-page, 18
get-slides-as-picts, 24
get-titleless-page, 18
interactive, 13
it, 10
italic, 24
item, 28
item, 26
item, 12
Legacy Libraries, 35
make-outline, 27
make-outline, 28
make-outline, 13
make-slide-inset, 21
Making Slides, 9
margin, 18
most-recent-slide, 14
o-bullet, 17
para, 26
para, 11
para, 28
pict->pre-render-pict, 13
Pict-Staging Helper, 22
play, 31
play-n, 32
Primary Slide Functions, 9
Printing, 8
printing?, 18
re-slide, 15
retract-most-recent-slide, 14
rt, 11

37

set-allow-new-slides-after-close!,
16

set-margin!, 21
set-page-numbers-visible!, 15
set-spotlight-style!, 16
set-title-h!, 21
set-use-background-frame!, 15
size-in-pixels, 13
size-in-pixels, 28
size-in-pixels, 27
slide, 28
slide, 26
slide, 9
Slide Basics, 4
Slide Registration, 14
slide->pict, 15
slide-inset?, 21
slide?, 14
Slides to Picts, 24
slideshow, 1
slideshow/base, 9
slideshow/code, 30
slideshow/code-pict, 35
slideshow/fullscreen, 26
slideshow/fullscreen/base, 26
slideshow/pict, 35
slideshow/play, 31
slideshow/slides-to-picts, 24
slideshow/start, 7
slideshow/step, 22
slideshow/text, 23
slideshow/widescreen, 27
slideshow/widescreen/base, 27
Slideshow: Figure and Presentation Tools, 1
small, 23
Staging Slides, 5
start-at-recent-slide, 15
subitem, 28
subitem, 12
subitem, 27
subscript, 24
superscript, 24

t, 10
Text Formatting Helpers, 23
title-h, 18
titleless-page, 18
titleless-page, 29
titleless-page, 27
titlet, 11
tt, 10
Typesetting Racket Code in Slideshow, 30
Viewer Control, 15
Widescreen Slides, 27
with-font, 23
with-scale, 23
with-size, 23
with-steps, 22
with-steps~, 23
with-style, 24

38

	1 Creating Slide Presentations
	1.1 Slide Basics
	1.2 Staging Slides
	1.3 Display Size and Font Selection
	1.4 Command-line Options
	1.5 Printing

	2 Making Slides
	2.1 Primary Slide Functions
	2.2 Slide Registration
	2.3 Viewer Control
	2.4 Constants and Layout Variables
	2.5 Configuration
	2.6 Pict-Staging Helper
	2.7 Text Formatting Helpers
	2.8 Slides to Picts

	3 Fullscreen vs. Widescreen Aspect Ratio
	3.1 Fullscreen Slides
	3.2 Widescreen Slides

	4 Typesetting Racket Code in Slideshow
	5 Animations
	5.1 Generating Animated Slides

	6 Legacy Libraries
	Bibliography
	Index
	Index

