
Sprachebenen und Material zu Schreibe Dein
Programm!

Version 9.0.0.11

January 4, 2026

Note: This is documentation for the teachpacks that go with the German textbook Schreibe
Dein Programm!.

Das Material in diesem Handbuch ist für die Verwendung mit Buch Schreibe Dein
Programm! gedacht.

1

http://www.deinprogramm.de/sdp/
http://www.deinprogramm.de/sdp/
http://www.deinprogramm.de/sdp/
http://www.deinprogramm.de/sdp/

Contents

1 Schreibe Dein Programm! - Anfänger 5

1.1 Definitionen . 8

1.2 Record-Typ-Definitionen . 8

1.3 Record-Typ-Definitionen mit Signatur-Parametern 9

1.4 Singleton-Definitionen . 9

1.5 Funktionsapplikation . 9

1.6 #t and #f . 9

1.7 lambda / 𝜆 . 10

1.8 Bezeichner . 10

1.9 cond . 10

1.10 if . 11

1.11 and . 11

1.12 or . 11

1.13 Signaturen . 11

1.13.1 signature . 11

1.13.2 Signaturdeklaration . 12

1.13.3 Eingebaute Signaturen . 12

1.13.4 predicate . 13

1.13.5 enum . 13

1.13.6 mixed . 13

1.13.7 Funktions-Signatur . 14

1.13.8 Signatur-Variablen . 14

1.13.9 combined . 14

1.14 Testfälle . 14

2

1.15 Pattern-Matching . 16

1.16 Eigenschaften . 16

1.17 Primitive Operationen . 18

2 Schreibe Dein Programm! 27

2.1 Signaturen . 30

2.2 let, letrec und let* . 31

2.3 Pattern-Matching . 32

2.4 Primitive Operationen . 32

3 Schreibe Dein Programm! - fortgeschritten 43

3.1 Quote-Literal . 47

3.2 Signaturen . 47

3.3 Pattern-Matching . 47

3.4 Definitionen . 48

3.5 lambda / 𝜆 . 48

3.6 begin . 48

3.7 Primitive Operationen . 48

4 Konstruktionsanleitungen 60

4.1 Ablauf . 62

4.2 Kurzbeschreibung . 62

4.3 Signatur-Deklaration . 62

4.4 Tests . 62

4.5 Gerüst . 63

4.6 Rumpf . 63

4.7 Datenanalyse . 63

3

4.8 Fallunterscheidung: Datenanalyse . 64

4.9 Aufzählung: Datenanalyse . 64

4.10 Schablone . 64

4.11 Fallunterscheidung: Schablone . 64

4.12 boolesche Fallunterscheidung: Schablone 65

4.13 Zusammengesetzte Daten: Datenanalyse 65

4.14 Zusammengesetzte Daten als Eingabe: Schablone 66

4.15 Zusammengesetzte Daten als Ausgabe: Schablone 66

4.16 Gemischte Daten: Datenanalyse . 67

4.17 Gemischte Daten als Eingabe: Schablone 67

4.18 Selbstbezüge als Eingabe: Schablone . 67

4.19 Listen als Eingabe: Schablone . 67

4.20 Natürliche Zahlen als Eingabe: Schablone 68

4.21 Abstraktion . 69

4.22 Listen als Eingabe, mit Akkumulator: Schablone 70

4.23 Natürliche Zahlen als Eingabe, mit Akkumulator: Schablone 71

5 sdp: Sprachen als Libraries 73

5.1 Schreibe Dein Programm - Anfänger . 73

5.2 Schreibe Dein Programm! . 73

5.3 Schreibe Dein Programm! - fortgeschritten 73

Index 74

Index 74

4

1 Schreibe Dein Programm! - Anfänger

This is documentation for the language level Schreibe Dein Programm! - Anfänger to go
with the German textbook Schreibe Dein Programm!.

program = def-or-expr ...

def-or-expr = definition
| expr
| test-case

definition = (define id expr)
| (define-record id id (id id) ...)
| (define-record id id id (id id) ...)
| (define-record (id id ...) id id (id id) ...)
| (define-singleton id id id)
| (: id sig)

expr = (expr expr ...) ; Funktionsapplikation
| #t
| #f
| number
| string
| (lambda (id ...) definition ... expr)
| (𝜆 (id ...) definition ... expr)
| id ; Name
| (cond (expr definition ... expr) (expr definition ... expr) ...)
| (cond (expr definition ... expr) ... (else definition ... expr))
| (if expr expr)
| (and expr ...)
| (or expr ...)
| (match expr (pattern definition ... expr) ...)
| (signature sig)
| (for-all ((id sig) ...) definition ... expr)
| (==> expr expr)

sig = id
| (predicate expr)
| (enum expr ...)
| (mixed sig ...)
| (sig ... -> sig) ; Funktions-Signatur
| %a %b %c ; Signatur-Variable
| (combined sig ...)

pattern = #t

5

| #f
| number
| string
| id
| ...
| (constructor pattern ...)

test-case = (check-expect expr expr)
| (check-within expr expr expr)
| (check-member-of expr expr ...)
| (check-satisfied expr expr)
| (check-range expr expr expr)
| (check-error expr expr)
| (check-property expr)

Ein id ist eine Folge von Zeichen, die weder Leerzeichen noch eins der folgenden Zeichen
enthält:

" , ' ` () [] { } | ; #

Ein number ist eine Zahl wie z.B. 123, 3/2 oder 5.5.

Ein string ist eine Zeichenkette, und durch ein Paar von " umschlossen. So sind
z.B. "abcdef", "This is a string" und "Dies ist eine Zeichenkette, die \"
enthält." Zeichenketten.

Zahlen
* : (number number number ... -> number)
+ : (number number number ... -> number)
- : (number number ... -> number)
/ : (number number number ... -> number)
< : (real real real ... -> boolean)
<= : (real real real ... -> boolean)
= : (number number number ... -> boolean)
> : (real real real ... -> boolean)
>= : (real real real ... -> boolean)
abs : (real -> real)
acos : (number -> number)
angle : (number -> real)
asin : (number -> number)
atan : (number -> number)
ceiling : (real -> integer)
complex? : (any -> boolean)
cos : (number -> number)
current-seconds : (-> natural)
denominator : (rational -> natural)

6

even? : (integer -> boolean)
exact->inexact : (number -> number)
exact? : (number -> boolean)
exp : (number -> number)
expt : (number number -> number)
floor : (real -> integer)
gcd : (integer integer ... -> natural)
imag-part : (number -> real)
inexact->exact : (number -> number)
inexact? : (number -> boolean)
integer? : (any -> boolean)
lcm : (integer integer ... -> natural)
log : (number -> number)
magnitude : (number -> real)
make-polar : (real real -> number)
max : (real real ... -> real)
min : (real real ... -> real)
modulo : (integer integer -> integer)
natural? : (any -> boolean)
negative? : (number -> boolean)
number->string : (number -> string)
number? : (any -> boolean)
numerator : (rational -> integer)
odd? : (integer -> boolean)
positive? : (number -> boolean)
quotient : (integer integer -> integer)
random : (natural -> natural)
rational? : (any -> boolean)
real-part : (number -> real)
real? : (any -> boolean)
remainder : (integer integer -> integer)
round : (real -> integer)
sin : (number -> number)
sqrt : (number -> number)
string->number : (string -> (mixed number false))
tan : (number -> number)
zero? : (number -> boolean)

boolesche Werte
boolean=? : (boolean boolean -> boolean)
boolean? : (any -> boolean)
equal? : (any any -> boolean)
false? : (any -> boolean)
not : (boolean -> boolean)
true? : (any -> boolean)

Listen
Zeichenketten

7

string->strings-list : (string -> (list-of string))
string-append : (string string ... -> string)
string-length : (string -> natural)
string<=? : (string string string ... -> boolean)
string<? : (string string string ... -> boolean)
string=? : (string string string ... -> boolean)
string>=? : (string string string ... -> boolean)
string>? : (string string string ... -> boolean)
string? : (any -> boolean)
strings-list->string : ((list-of string) -> string)

Symbole
Verschiedenes
read : (-> any)
signature? : (any -> boolean)
violation : (string -> unspecific)
write-newline : (-> unspecific)
write-string : (string -> unspecific)

1.1 Definitionen

(define id expr)

Diese Form ist eine Definition, und bindet id als Namen an den Wert von expr . Eine
Definition kann ganz außen vorkommen, dann ist sie global und kann überall verwendet
werden. Eine Definition kann aber auch innerhalb eines lambda-Ausdrucks oder innerhalb
von cond- und match-Zweigen vorkommen, dann ist sie lokal und nur dort gültig.

1.2 Record-Typ-Definitionen

(define-record type
constructor
(selector signature) ...)

(define-record type
constructor
predicate?
(selector signature) ...)

Die define-record-Form ist eine Definition für einen neuen Record-Typ. Dabei ist type
der Name der Record-Signatur, constructor der Name des Konstruktors und predicate?
der (optionale) Name des Prädikats.

Jedes (selector signature) beschreibt ein Feld des Record-Typs, wobei selector der
Name des Selektors für das Feld und signature die Signatur des Feldes ist.

8

1.3 Record-Typ-Definitionen mit Signatur-Parametern

(define-record (type-constructor signature-parameter ...)
constructor
(selector signature) ...)

(define-record (type-constructor signature-parameter ...)
constructor
predicate?
(selector signature) ...)

Diese Variante von define-record erlaubt die Verwendung von Signatur-Parametern: Statt
einer konkreten Signatur type wie oben definiert die Form einen Signatur-Konstruktor
type-constructor , also eine Funktion, die Signaturen als Argumente akzeptiert,
entsprechend den Signatur-Parametern signature-parameter . Diese Signatur-Parameter
können in den Signaturen signature der Felder verwendet werden.

1.4 Singleton-Definitionen

(define-singleton signature name?)
(define-singleton signature name predicate?)

Diese Form definiert ein Singleton, also einen einzelnen Wert namens name , der mit Hilfe
von predicate? von allen anderen Werten unterschieden werden kann. Die dazu passende
Signatur ist signature .

1.5 Funktionsapplikation

(expr expr ...)

Dies ist eine Funktionsanwendung oder -applikation. Alle exprs werden ausgewertet: Der
Operator (also der erste Ausdruck) muss eine Funktion ergeben, die genauso viele Argu-
mente akzeptieren kann, wie es Operanden, also weitere exprs gibt. Die Anwendung wird
dann ausgewertet, indem der Rumpf der Applikation ausgewertet wird, nachdem die Param-
eter der Funktion durch die Argumente, also die Werte der Operanden ersetzt wurden.

1.6 #t and #f

#t ist das Literal für den booleschen Wert "wahr", #f das Literal für den booleschen Wert
"falsch".

9

1.7 lambda / 𝜆

(lambda (id ...) definition ... expr)

Ein Lambda-Ausdruck ergibt bei der Auswertung eine Funktion.

Im Rumpf können interne Definitionen vorkommen, die aber nur in expr gelten.

(𝜆 (id ...) definition ... expr)

𝜆 ist ein anderer Name für lambda.

1.8 Bezeichner

id

Eine Variable bezieht sich auf die, von innen nach außen suchend, nächstgelegene Bindung
durch lambda, let, letrec, oder let*. Falls es keine solche lokale Bindung gibt, muss es
eine Definition oder eine eingebaute Bindung mit dem entsprechenden Namen geben. Die
Auswertung des Namens ergibt dann den entsprechenden Wert.

1.9 cond

(cond (expr definition ... expr) ... (expr definition ... expr))

Ein cond-Ausdruck bildet eine Verzweigung, die aus mehreren Zweigen besteht. Jeder
Zweig besteht aus einem Test und einem Ausdruck. Bei der Auswertung werden die Zweige
nacheinander abgearbeitet. Dabei wird jeweils zunächst der Test ausgewertet, der jeweils
einen booleschen Wert ergeben müssen. Beim ersten Test, der #t ergibt, wird der Wert des
Ausdrucks des Zweigs zum Wert der gesamten Verzweigung. Wenn kein Test #t ergibt, wird
das Programm mit einer Fehlermeldung abgebrochen.

In einem cond-Zweig können lokale Definitionen mit define vorkommen.

(cond (expr definition ... expr) ... (else definition expr))

Die Form des cond-Ausdrucks ist ähnlich zur vorigen, mit der Ausnahme, dass in dem Fall,
in dem kein Test #t ergibt, der Wert des letzten Ausdruck zum Wert der cond-Form wird.

else

Das Schlüsselwort else kann nur in cond benutzt werden.

10

1.10 if

(if expr expr expr)

Eine if-Form ist eine binäre Verzweigung. Bei der Auswertung wird zunächst der erste
Operand ausgewertet (der Test), der einen booleschen Wert ergeben muss. Ergibt er #t,
wird der Wert des zweiten Operanden (die Konsequente) zum Wert der if-Form, bei #f der
Wert des dritten Operanden (die Alternative).

1.11 and

(and expr ...)

Bei der Auswertung eines and-Ausdrucks werden nacheinander die Operanden (die boo-
lesche Werte ergeben müssen) ausgewertet. Ergibt einer #f, ergibt auch der and-Ausdruck
#f; wenn alle Operanden #t ergeben, ergibt auch der and-Ausdruck #t.

1.12 or

(or expr ...)

Bei der Auswertung eines or-Ausdrucks werden nacheinander die Operanden (die boolesche
Werte ergeben müssen) ausgewertet. Ergibt einer #t, ergibt auch der or-Ausdruck #t; wenn
alle Operanden #f ergeben, ergibt auch der or-Ausdruck #f.

1.13 Signaturen

Signaturen können statt der Verträge aus dem Buch geschrieben werden: Während Verträge
reine Kommentare sind, überprüft DrRacket Signaturen und meldet etwaige Verletzungen.

1.13.1 signature

(signature sig)

Diese Form liefert die Signatur mit der Notation sig .

11

1.13.2 Signaturdeklaration

(: id sig)

Diese Form erklärt sig zur gültigen Signatur für id .

1.13.3 Eingebaute Signaturen

number

Signatur für beliebige Zahlen.

real

Signatur für reelle Zahlen.

rational

Signatur für rationale Zahlen.

integer

Signatur für ganze Zahlen.

(integer-from-to low high) Ñ signature?
low : integer?
high : integer?

Signatur für ganze Zahlen zwischen low und high .

natural

Signatur für ganze, nichtnegative Zahlen.

boolean

Signatur für boolesche Werte.

true

Signatur für #t.

12

false

Signatur für #f.

string

Signatur für Zeichenketten.

any

Signatur, die auf alle Werte gültig ist.

signature

Signatur für Signaturen.

property

Signatur für Eigenschaften.

1.13.4 predicate

(predicate expr)

Bei dieser Signatur muss expr als Wert ein Prädikat haben, also eine Funktion, die einen
beliebigen Wert akzeptiert und entweder #t oder #f zurückgibt. Die Signatur ist dann für
einen Wert gültig, wenn das Prädikat, darauf angewendet, #t ergibt.

1.13.5 enum

(enum expr ...)

Diese Signatur ist für einen Wert gültig, wenn er gleich dem Wert eines der expr ist.

1.13.6 mixed

(mixed sig ...)

Diese Signatur ist für einen Wert gültig, wenn er für eine der Signaturen sig gültig ist.

13

1.13.7 Funktions-Signatur

->

(sig ... -> sig)

Diese Signatur ist dann für einen Wert gültig, wenn dieser eine Funktion ist. Er erklärt
außerdem, dass die Signaturen vor dem -> für die Argumente der Funktion gelten und die
Signatur nach dem -> für den Rückgabewert. }

1.13.8 Signatur-Variablen

%a

%b

%c

...

Dies ist eine Signaturvariable: sie steht für eine Signatur, die für jeden Wert gültig ist.

1.13.9 combined

(combined sig ...)

Diese Signatur ist für einen Wert gültig, wenn sie für alle der Signaturen sig gültig ist.

1.14 Testfälle

(check-expect expr expr)

Dieser Testfall überprüft, ob der erste expr den gleichen Wert hat wie der zweite expr ,
wobei das zweite expr meist ein Literal ist.

14

(check-within expr expr expr)

Wie check-expect, aber mit einem weiteren Ausdruck, der als Wert eine Zahl delta hat.
Der Testfall überprüft, dass jede Zahl im Resultat des ersten expr maximal um delta von
der entsprechenden Zahl im zweiten expr abweicht.

(check-member-of expr expr ...)

Ähnlich wie check-expect: Der Testfall überprüft, dass das Resultat des ersten Operanden
gleich dem Wert eines der folgenden Operanden ist.

(check-satisfied expr pred)

Ähnlich wie check-expect: Der Testfall überprüft, ob der Wert des Ausdrucks expr vom
Prädikat pred erfüllt wird - das bedeutet, dass die Funktion pred den Wert #t liefert, wenn
sie auf den Wert von expr angewendet wird.

Der folgende Test wird also bestanden:

(check-satisfied 1 odd?)

Der folgende Test hingegen wird hingegen nicht bestanden:

(check-satisfied 1 even?)

(check-range expr expr expr)

Ähnlich wie check-expect: Alle drei Operanden müssen Zahlen sein. Der Testfall über-
prüft, ob die erste Zahl zwischen der zweiten und der dritten liegt (inklusive).

(check-error expr expr)

Dieser Testfall überprüft, ob der erste expr einen Fehler produziert, wobei die Fehlermel-
dung der Zeichenkette entspricht, die der Wert des zweiten expr ist.

(check-property expr)

Dieser Testfall überprüft experimentell, ob die Eigenschaft expr erfüllt ist. Dazu werden
zufällige Werte für die mit for-all quantifizierten Variablen eingesetzt: Damit wird über-
prüft, ob die Bedingung gilt.

Wichtig: check-property funktioniert nur für Eigenschaften, bei denen aus den Signaturen
sinnvoll Werte generiert werden können. Dies ist für viele Signaturen der Fall, aber nicht für
solche mit Signaturvariablen.

15

1.15 Pattern-Matching

(match expr (pattern definition ... expr) ...)

pattern = id
| #t
| #f
| string
| number
| ...
| (constructor pattern ...)

Ein match- Ausdruck führt eine Verzweigung durch, ähnlich wie cond. Dazu wertet match
zunächst einmal den Ausdruck expr nach dem match zum Wert v aus. Es prüft dann
nacheinander jeden Zweig der Form (pattern expr) dahingehend, ob das Pattern pat-
tern darin auf den Wert v passt (“matcht”). Beim ersten passenden Zweig (pattern
expr) macht match dann mit der Auswertung voh expr weiter.

Ob ein Wert v passt, hängt von pattern ab:

• Ein Pattern, das ein Literal ist (#t, #f, Zeichenketten string , Zahlen number) passt
nur dann, wenn der Wert v gleich dem Pattern ist.

• Ein Pattern, das ein Bezeichner id ist, passt auf jeden Wert. Der Bezeichner wird dann
an diesen Wert gebunden und kann in dem Ausdruck des Zweigs benutzt werden.

• Das Pattern ... passt auf jeden Wert, ohne dass ein Bezeichner gebunden wird.

• Ein Pattern (constructor pattern ...), bei dem constructor ein Record-
Konstruktor ist (ein Konstruktor-Pattern), passt auf v, falls v ein passender Record ist,
und dessen Felder auf die entsprechenden Patterns passen, die noch im Konstruktor-
Pattern stehen.

1.16 Eigenschaften

Eine Eigenschaft definiert eine Aussage über einen Scheme-Ausdruck, die experimentell
überprüft werden kann. Der einfachste Fall einer Eigenschaft ist ein boolescher Ausdruck.
Die folgende Eigenschaft gilt immer:

(= 1 1)

Es ist auch möglich, in einer Eigenschaft Variablen zu verwenden, für die verschiedene
Werte eingesetzt werden. Dafür müssen die Variablen gebunden und quantifiziert werden,
d.h. es muss festgelegt werden, welche Signatur die Werte der Variable erfüllen sollen.
Eigenschaften mit Variablen werden mit der for-all-Form erzeugt:

16

(for-all ((id sig) ...) expr)

Dies bindet die Variablen id in der Eigenschaft expr . Zu jeder Variable gehört eine Signatur
sig , der von den Werten der Variable erfüllt werden muss.

Beispiel:

(for-all ((x integer))
(= x (/ (* x 2) 2)))

(expect expr expr)

Ein expect-Ausdruck ergibt eine Eigenschaft, die dann gilt, wenn die Werte von expr und
expr gleich sind, im gleichen Sinne wie bei check-expect.

(expect-within expr expr expr)

Wie expect, aber entsprechend check-within mit einem weiteren Ausdruck, der als Wert
eine Zahl delta hat. Die resultierende Eigenschaft gilt, wenn jede Zahl im Resultat des
ersten expr maximal um delta von der entsprechenden Zahl im zweiten expr abweicht.

(expect-member-of expr expr ...)

Wie expect, aber entsprechend check-member-of mit weiteren Ausdrücken, die mit dem
ersten verglichen werden. Die resultierende Eigenschaft gilt, wenn das erste Argument gle-
ich einem der anderen Argumente ist.

(expect-range expr expr expr)

Wie expect, aber entsprechend check-range: Die Argumente müssen Zahlen sein. Die
Eigenschaft gilt, wenn die erste Zahl zwischen der zweiten und dritten Zahl liegt (inklusive).

(==> expr expr)

Der erste Operand ist ein boolescher Ausdruck, der zweite Operand eine Eigenschaft: (==>
c p) legt fest, dass die Eigenschaft p nur erfüllt sein muss, wenn c (die Bedingung) #t
ergibt, also erfüllt ist.

(for-all ((x integer))
(==> (even? x)

(= x (* 2 (/ x 2)))))

17

1.17 Primitive Operationen

* : (number number number ... -> number)

Produkt berechnen

+ : (number number number ... -> number)

Summe berechnen

- : (number number ... -> number)

bei mehr als einem Argument Differenz zwischen der ersten und der Summe aller weiteren
Argumente berechnen; bei einem Argument Zahl negieren

/ : (number number number ... -> number)

das erste Argument durch das Produkt aller weiteren Argumente berechnen

< : (real real real ... -> boolean)

Zahlen auf kleiner-als testen

<= : (real real real ... -> boolean)

Zahlen auf kleiner-gleich testen

= : (number number number ... -> boolean)

Zahlen auf Gleichheit testen

> : (real real real ... -> boolean)

Zahlen auf größer-als testen

>= : (real real real ... -> boolean)

18

Zahlen auf größer-gleich testen

abs : (real -> real)

Absolutwert berechnen

acos : (number -> number)

Arcuscosinus berechnen (in Radian)

angle : (number -> real)

Winkel einer komplexen Zahl berechnen

asin : (number -> number)

Arcussinus berechnen (in Radian)

atan : (number -> number)

Arcustangens berechnen (in Radian)

ceiling : (real -> integer)

nächste ganze Zahl oberhalb einer rellen Zahlen berechnen

complex? : (any -> boolean)

feststellen, ob ein Wert eine komplexe Zahl ist

cos : (number -> number)

Cosinus berechnen (Argument in Radian)

current-seconds : (-> natural)

aktuelle Zeit in Sekunden seit einem unspezifizierten Startzeitpunkt berechnen

19

denominator : (rational -> natural)

Nenner eines Bruchs berechnen

even? : (integer -> boolean)

feststellen, ob eine Zahl gerade ist

exact->inexact : (number -> number)

eine Zahl durch eine inexakte Zahl annähern

exact? : (number -> boolean)

feststellen, ob eine Zahl exakt ist

exp : (number -> number)

Exponentialfunktion berechnen (e hoch Argument)

expt : (number number -> number)

Potenz berechnen (erstes Argument hoch zweites Argument)

floor : (real -> integer)

nächste ganze Zahl unterhalb einer rellen Zahlen berechnen

gcd : (integer integer ... -> natural)

größten gemeinsamen Teiler berechnen

imag-part : (number -> real)

imaginären Anteil einer komplexen Zahl extrahieren

20

inexact->exact : (number -> number)

eine Zahl durch eine exakte Zahl annähern

inexact? : (number -> boolean)

feststellen, ob eine Zahl inexakt ist

integer? : (any -> boolean)

feststellen, ob ein Wert eine ganze Zahl ist

lcm : (integer integer ... -> natural)

kleinstes gemeinsames Vielfaches berechnen

log : (number -> number)

natürlichen Logarithmus (Basis e) berechnen

magnitude : (number -> real)

Abstand zum Ursprung einer komplexen Zahl berechnen

make-polar : (real real -> number)

komplexe Zahl aus Abstand zum Ursprung und Winkel berechnen

max : (real real ... -> real)

Maximum berechnen

min : (real real ... -> real)

Minimum berechnen

21

modulo : (integer integer -> integer)

Divisionsmodulo berechnen

natural? : (any -> boolean)

feststellen, ob ein Wert eine natürliche Zahl (inkl. 0) ist

negative? : (number -> boolean)

feststellen, ob eine Zahl negativ ist

number->string : (number -> string)

Zahl in Zeichenkette umwandeln

number? : (any -> boolean)

feststellen, ob ein Wert eine Zahl ist

numerator : (rational -> integer)

Zähler eines Bruchs berechnen

odd? : (integer -> boolean)

feststellen, ob eine Zahl ungerade ist

positive? : (number -> boolean)

feststellen, ob eine Zahl positiv ist

quotient : (integer integer -> integer)

ganzzahlig dividieren

22

random : (natural -> natural)

eine natürliche Zufallszahl berechnen, die kleiner als das Argument ist

rational? : (any -> boolean)

feststellen, ob eine Zahl rational ist

real-part : (number -> real)

reellen Anteil einer komplexen Zahl extrahieren

real? : (any -> boolean)

feststellen, ob ein Wert eine reelle Zahl ist

remainder : (integer integer -> integer)

Divisionsrest berechnen

round : (real -> integer)

relle Zahl auf eine ganze Zahl runden

sin : (number -> number)

Sinus berechnen (Argument in Radian)

sqrt : (number -> number)

Quadratwurzel berechnen

string->number : (string -> (mixed number false))

Zeichenkette in Zahl umwandeln, falls möglich

23

tan : (number -> number)

Tangens berechnen (Argument in Radian)

zero? : (number -> boolean)

feststellen, ob eine Zahl Null ist

boolean=? : (boolean boolean -> boolean)

Booleans auf Gleichheit testen

boolean? : (any -> boolean)

feststellen, ob ein Wert ein boolescher Wert ist

equal? : (any any -> boolean)

feststellen, ob zwei Werte gleich sind

false? : (any -> boolean)

feststellen, ob ein Wert #f ist

not : (boolean -> boolean)

booleschen Wert negieren

true? : (any -> boolean)

feststellen, ob ein Wert #t ist

string->strings-list : (string -> (list-of string))

Eine Zeichenkette in eine Liste von Zeichenketten mit einzelnen Zeichen umwandeln

24

string-append : (string string ... -> string)

Hängt Zeichenketten zu einer Zeichenkette zusammen

string-length : (string -> natural)

Liefert Länge einer Zeichenkette

string<=? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf kleiner-gleich testen

string<? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf kleiner-als testen

string=? : (string string string ... -> boolean)

Zeichenketten auf Gleichheit testen

string>=? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf größer-gleich testen

string>? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf größer-als testen

string? : (any -> boolean)

feststellen, ob ein Wert eine Zeichenkette ist

strings-list->string : ((list-of string) -> string)

Eine Liste von Zeichenketten in eine Zeichenkette umwandeln

25

read : (-> any)

Externe Repräsentation eines Werts in der REPL einlesen und den zugehörigen Wert liefern

signature? : (any -> boolean)

feststellen, ob ein Wert eine Signatur ist

violation : (string -> unspecific)

Programmm mit Fehlermeldung abbrechen

write-newline : (-> unspecific)

Zeilenumbruch ausgeben

write-string : (string -> unspecific)

Zeichenkette in REPL ausgeben

26

2 Schreibe Dein Programm!

This is documentation for the language level Schreibe Dein Programm! to go with the Ger-
man textbooks Schreibe Dein Programm!.

program = def-or-expr ...

def-or-expr = definition
| expr
| test-case

definition = (define id expr)
| (define-record id id (id id) ...)
| (define-record id id id (id id) ...)
| (define-record (id id ...) id id (id id) ...)
| (define-singleton id id id)
| (: id sig)

expr = (expr expr ...) ; Funktionsapplikation
| #t
| #f
| number
| string
| (lambda (id ...) definition ... expr)
| (𝜆 (id ...) definition ... expr)
| id ; Name
| (cond (expr definition ... expr) (expr definition ... expr) ...)
| (cond (expr definition ... expr) ... (else definition ... expr))
| (if expr expr)
| (and expr ...)
| (or expr ...)
| (match expr (pattern definition ... expr) ...)
| (signature sig)
| (for-all ((id sig) ...) definition ... expr)
| (==> expr expr)
| (let ((id expr) (... ...)) expr)
| (letrec ((id expr) (... ...)) expr)
| (let* ((id expr) (... ...)) expr)

sig = id
| (predicate expr)
| (enum expr ...)
| (mixed sig ...)
| (sig ... -> sig) ; Funktions-Signatur
| %a %b %c ; Signatur-Variable

27

| (combined sig ...)
| (list-of sig)
| (cons-list-of sig)

pattern = #t
| #f
| number
| string
| id
| ...
| (constructor pattern ...)
| empty
| (cons pattern pattern)
| (list pattern ...)

test-case = (check-expect expr expr)
| (check-within expr expr expr)
| (check-member-of expr expr ...)
| (check-satisfied expr expr)
| (check-range expr expr expr)
| (check-error expr expr)
| (check-property expr)

Ein id ist eine Folge von Zeichen, die weder Leerzeichen noch eins der folgenden Zeichen
enthält:

" , ' ` () [] { } | ; #

Ein number ist eine Zahl wie z.B. 123, 3/2 oder 5.5.

Ein string ist eine Zeichenkette, und durch ein Paar von " umschlossen. So sind
z.B. "abcdef", "This is a string" und "Dies ist eine Zeichenkette, die \"
enthält." Zeichenketten.

Zahlen
* : (number number number ... -> number)
+ : (number number number ... -> number)
- : (number number ... -> number)
/ : (number number number ... -> number)
< : (real real real ... -> boolean)
<= : (real real real ... -> boolean)
= : (number number number ... -> boolean)
> : (real real real ... -> boolean)
>= : (real real real ... -> boolean)
abs : (real -> real)
acos : (number -> number)

28

angle : (number -> real)
asin : (number -> number)
atan : (number -> number)
ceiling : (real -> integer)
complex? : (any -> boolean)
cos : (number -> number)
current-seconds : (-> natural)
denominator : (rational -> natural)
even? : (integer -> boolean)
exact->inexact : (number -> number)
exact? : (number -> boolean)
exp : (number -> number)
expt : (number number -> number)
floor : (real -> integer)
gcd : (integer integer ... -> natural)
imag-part : (number -> real)
inexact->exact : (number -> number)
inexact? : (number -> boolean)
integer? : (any -> boolean)
lcm : (integer integer ... -> natural)
log : (number -> number)
magnitude : (number -> real)
make-polar : (real real -> number)
max : (real real ... -> real)
min : (real real ... -> real)
modulo : (integer integer -> integer)
natural? : (any -> boolean)
negative? : (number -> boolean)
number->string : (number -> string)
number? : (any -> boolean)
numerator : (rational -> integer)
odd? : (integer -> boolean)
positive? : (number -> boolean)
quotient : (integer integer -> integer)
random : (natural -> natural)
rational? : (any -> boolean)
real-part : (number -> real)
real? : (any -> boolean)
remainder : (integer integer -> integer)
round : (real -> integer)
sin : (number -> number)
sqrt : (number -> number)
string->number : (string -> (mixed number false))
tan : (number -> number)
zero? : (number -> boolean)

boolesche Werte

29

boolean=? : (boolean boolean -> boolean)
boolean? : (any -> boolean)
equal? : (any any -> boolean)
false? : (any -> boolean)
not : (boolean -> boolean)
true? : (any -> boolean)

Listen
append : ((list-of %a) ... -> (list-of %a))
cons : (%a (list-of %a) -> (list-of %a))
cons? : (any -> boolean)
empty : list
empty? : (any -> boolean)
filter : ((%a -> boolean) (list-of %a) -> (list-of %a))
first : ((list-of %a) -> %a)
fold : (%b (%a %b -> %b) (list-of %a) -> %b)
length : ((list-of %a) -> natural)
list : (%a ... -> (list-of %a))
list-ref : ((list-of %a) natural -> %a)
rest : ((list-of %a) -> (list-of %a))
reverse : ((list-of %a) -> (list-of %a))

Zeichenketten
string->strings-list : (string -> (list-of string))
string-append : (string string ... -> string)
string-length : (string -> natural)
string<=? : (string string string ... -> boolean)
string<? : (string string string ... -> boolean)
string=? : (string string string ... -> boolean)
string>=? : (string string string ... -> boolean)
string>? : (string string string ... -> boolean)
string? : (any -> boolean)
strings-list->string : ((list-of string) -> string)

Symbole
Verschiedenes
for-each : ((%a -> %b) (list-of %a) -> unspecific)
map : ((%a -> %b) (list-of %a) -> (list-of %b))
read : (-> any)
signature? : (any -> boolean)
violation : (string -> unspecific)
write-newline : (-> unspecific)
write-string : (string -> unspecific)

2.1 Signaturen

empty-list

30

Signatur für die leere Liste.

(list-of sig)

Diese Signatur ist dann für einen Wert gültig, wenn dieser eine Liste ist, für dessen Elemente
sig gültig ist.

(cons-list-of sig)

Diese Signatur ist dann für einen Wert gültig, wenn dieser eine nichtleere Liste ist, für dessen
Elemente sig gültig ist.

2.2 let, letrec und let*

(let ((id expr) ...) expr)

Bei einem let-Ausdruck werden zunächst die exprs aus den (id expr)-Paaren ausgew-
ertet. Ihre Werte werden dann im Rumpf-expr für die Namen id eingesetzt. Dabei können
sich die Ausdrücke nicht auf die Namen beziehen.

(define a 3)
(let ((a 16)

(b a))
(+ b a))

=> 19

Das Vorkommen von a in der Bindung von b bezieht sich also auf das a aus der Definition,
nicht das a aus dem let-Ausdruck.

(letrec ((id expr) ...) expr)

Ein letrec-Ausdruck ist ähnlich zum entsprechenden let-Ausdruck, mit dem Unterschied,
dass sich die exprs aus den Bindungen auf die gebundenen Namen beziehen dürfen.

(let* ((id expr) ...) expr)

Ein let*-Ausdruck ist ähnlich zum entsprechenden let-Ausdruck, mit dem Unterschied,
dass sich die exprs aus den Bindungen auf die Namen beziehen dürfen, die jeweils vor dem
expr gebunden wurden. Beispiel:

(define a 3)
(let* ((a 16)

(b a))
(+ b a))

=> 32

31

Das Vorkommen von a in der Bindung von b bezieht sich also auf das a aus dem let*-
Ausdruck, nicht das a aus der globalen Definition.

2.3 Pattern-Matching

(match expr (pattern definition ... expr) ...)

pattern = ...
| empty
| (cons pattern pattern)
| (list pattern ...)

Zu den Patterns aus der "Anfänger"-Sprache kommen noch drei neue hinzu:

• Das Pattern empty passt auf die leere Liste.

• Das Pattern (cons pattern pattern) passt auf Cons-Listen, bei denen die beiden
inneren Patterns auf first bzw. rest passen.

• Das Pattern [(list pattern ...)] passt auf Listen, die genauso viele Elemente haben,
wie Teil-Patterns im list -Pattern stehen und bei denen die inneren Patterns auf die
Listenelemente passen.

2.4 Primitive Operationen

* : (number number number ... -> number)

Produkt berechnen

+ : (number number number ... -> number)

Summe berechnen

- : (number number ... -> number)

bei mehr als einem Argument Differenz zwischen der ersten und der Summe aller weiteren
Argumente berechnen; bei einem Argument Zahl negieren

/ : (number number number ... -> number)

32

das erste Argument durch das Produkt aller weiteren Argumente berechnen

< : (real real real ... -> boolean)

Zahlen auf kleiner-als testen

<= : (real real real ... -> boolean)

Zahlen auf kleiner-gleich testen

= : (number number number ... -> boolean)

Zahlen auf Gleichheit testen

> : (real real real ... -> boolean)

Zahlen auf größer-als testen

>= : (real real real ... -> boolean)

Zahlen auf größer-gleich testen

abs : (real -> real)

Absolutwert berechnen

acos : (number -> number)

Arcuscosinus berechnen (in Radian)

angle : (number -> real)

Winkel einer komplexen Zahl berechnen

asin : (number -> number)

Arcussinus berechnen (in Radian)

33

atan : (number -> number)

Arcustangens berechnen (in Radian)

ceiling : (real -> integer)

nächste ganze Zahl oberhalb einer rellen Zahlen berechnen

complex? : (any -> boolean)

feststellen, ob ein Wert eine komplexe Zahl ist

cos : (number -> number)

Cosinus berechnen (Argument in Radian)

current-seconds : (-> natural)

aktuelle Zeit in Sekunden seit einem unspezifizierten Startzeitpunkt berechnen

denominator : (rational -> natural)

Nenner eines Bruchs berechnen

even? : (integer -> boolean)

feststellen, ob eine Zahl gerade ist

exact->inexact : (number -> number)

eine Zahl durch eine inexakte Zahl annähern

exact? : (number -> boolean)

feststellen, ob eine Zahl exakt ist

34

exp : (number -> number)

Exponentialfunktion berechnen (e hoch Argument)

expt : (number number -> number)

Potenz berechnen (erstes Argument hoch zweites Argument)

floor : (real -> integer)

nächste ganze Zahl unterhalb einer rellen Zahlen berechnen

gcd : (integer integer ... -> natural)

größten gemeinsamen Teiler berechnen

imag-part : (number -> real)

imaginären Anteil einer komplexen Zahl extrahieren

inexact->exact : (number -> number)

eine Zahl durch eine exakte Zahl annähern

inexact? : (number -> boolean)

feststellen, ob eine Zahl inexakt ist

integer? : (any -> boolean)

feststellen, ob ein Wert eine ganze Zahl ist

lcm : (integer integer ... -> natural)

kleinstes gemeinsames Vielfaches berechnen

35

log : (number -> number)

natürlichen Logarithmus (Basis e) berechnen

magnitude : (number -> real)

Abstand zum Ursprung einer komplexen Zahl berechnen

make-polar : (real real -> number)

komplexe Zahl aus Abstand zum Ursprung und Winkel berechnen

max : (real real ... -> real)

Maximum berechnen

min : (real real ... -> real)

Minimum berechnen

modulo : (integer integer -> integer)

Divisionsmodulo berechnen

natural? : (any -> boolean)

feststellen, ob ein Wert eine natürliche Zahl (inkl. 0) ist

negative? : (number -> boolean)

feststellen, ob eine Zahl negativ ist

number->string : (number -> string)

Zahl in Zeichenkette umwandeln

36

number? : (any -> boolean)

feststellen, ob ein Wert eine Zahl ist

numerator : (rational -> integer)

Zähler eines Bruchs berechnen

odd? : (integer -> boolean)

feststellen, ob eine Zahl ungerade ist

positive? : (number -> boolean)

feststellen, ob eine Zahl positiv ist

quotient : (integer integer -> integer)

ganzzahlig dividieren

random : (natural -> natural)

eine natürliche Zufallszahl berechnen, die kleiner als das Argument ist

rational? : (any -> boolean)

feststellen, ob eine Zahl rational ist

real-part : (number -> real)

reellen Anteil einer komplexen Zahl extrahieren

real? : (any -> boolean)

feststellen, ob ein Wert eine reelle Zahl ist

37

remainder : (integer integer -> integer)

Divisionsrest berechnen

round : (real -> integer)

relle Zahl auf eine ganze Zahl runden

sin : (number -> number)

Sinus berechnen (Argument in Radian)

sqrt : (number -> number)

Quadratwurzel berechnen

string->number : (string -> (mixed number false))

Zeichenkette in Zahl umwandeln, falls möglich

tan : (number -> number)

Tangens berechnen (Argument in Radian)

zero? : (number -> boolean)

feststellen, ob eine Zahl Null ist

boolean=? : (boolean boolean -> boolean)

Booleans auf Gleichheit testen

boolean? : (any -> boolean)

feststellen, ob ein Wert ein boolescher Wert ist

38

equal? : (any any -> boolean)

feststellen, ob zwei Werte gleich sind

false? : (any -> boolean)

feststellen, ob ein Wert #f ist

not : (boolean -> boolean)

booleschen Wert negieren

true? : (any -> boolean)

feststellen, ob ein Wert #t ist

append : ((list-of %a) ... -> (list-of %a))

mehrere Listen aneinanderhängen

cons : (%a (list-of %a) -> (list-of %a))

erzeuge ein Cons aus Element und Liste

cons? : (any -> boolean)

feststellen, ob ein Wert ein Cons ist

empty : list

die leere Liste

empty? : (any -> boolean)

feststellen, ob ein Wert die leere Liste ist

39

filter : ((%a -> boolean) (list-of %a) -> (list-of %a))

Alle Elemente einer Liste extrahieren, für welche die Funktion #t liefert.

first : ((list-of %a) -> %a)

erstes Element eines Cons extrahieren

fold : (%b (%a %b -> %b) (list-of %a) -> %b)

Liste einfalten.

length : ((list-of %a) -> natural)

Länge einer Liste berechnen

list : (%a ... -> (list-of %a))

Liste aus den Argumenten konstruieren

list-ref : ((list-of %a) natural -> %a)

das Listenelement an der gegebenen Position extrahieren

rest : ((list-of %a) -> (list-of %a))

Rest eines Cons extrahieren

reverse : ((list-of %a) -> (list-of %a))

Liste in umgekehrte Reihenfolge bringen

string->strings-list : (string -> (list-of string))

Eine Zeichenkette in eine Liste von Zeichenketten mit einzelnen Zeichen umwandeln

40

string-append : (string string ... -> string)

Hängt Zeichenketten zu einer Zeichenkette zusammen

string-length : (string -> natural)

Liefert Länge einer Zeichenkette

string<=? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf kleiner-gleich testen

string<? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf kleiner-als testen

string=? : (string string string ... -> boolean)

Zeichenketten auf Gleichheit testen

string>=? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf größer-gleich testen

string>? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf größer-als testen

string? : (any -> boolean)

feststellen, ob ein Wert eine Zeichenkette ist

strings-list->string : ((list-of string) -> string)

Eine Liste von Zeichenketten in eine Zeichenkette umwandeln

41

for-each : ((%a -> %b) (list-of %a) -> unspecific)

Funktion von vorn nach hinten auf alle Elemente einer Liste anwenden

map : ((%a -> %b) (list-of %a) -> (list-of %b))

Funktion auf alle Elemente einer Liste anwenden, Liste der Resultate berechnen

read : (-> any)

Externe Repräsentation eines Werts in der REPL einlesen und den zugehörigen Wert liefern

signature? : (any -> boolean)

feststellen, ob ein Wert eine Signatur ist

violation : (string -> unspecific)

Programmm mit Fehlermeldung abbrechen

write-newline : (-> unspecific)

Zeilenumbruch ausgeben

write-string : (string -> unspecific)

Zeichenkette in REPL ausgeben

42

3 Schreibe Dein Programm! - fortgeschritten

This is documentation for the language level Schreibe Dein Programm - fortgeschritten that
goes with the German textbook Schreibe Dein Programm!.

program = def-or-expr ...

def-or-expr = definition
| expr
| test-case

definition = (define id expr)
| (define-record id id (id id) ...)
| (define-record id id id (id id) ...)
| (define-record (id id ...) id id (id id) ...)
| (define-singleton id id id)
| (: id sig)

field-spec = id
| (id id)

quoted = id
| number
| string
| character
| symbol
| (quoted ...)
| ’quoted

expr = (expr expr ...) ; Funktionsapplikation
| #t
| #f
| number
| string
| (lambda (id ...) definition ... expr)
| (𝜆 (id ...) definition ... expr)
| id ; Name
| (cond (expr definition ... expr) (expr definition ... expr) ...)
| (cond (expr definition ... expr) ... (else definition ... expr))
| (if expr expr)
| (and expr ...)
| (or expr ...)
| (match expr (pattern definition ... expr) ...)
| (signature sig)
| (for-all ((id sig) ...) definition ... expr)

43

| (==> expr expr)
| (let ((id expr) (... ...)) expr)
| (letrec ((id expr) (... ...)) expr)
| (let* ((id expr) (... ...)) expr)
| ’quoted ; Quote-Literal
| (begin expr ... expr)

sig = id
| (predicate expr)
| (enum expr ...)
| (mixed sig ...)
| (sig ... -> sig) ; Funktions-Signatur
| %a %b %c ; Signatur-Variable
| (combined sig ...)
| (list-of sig)
| (cons-list-of sig)

pattern = #t
| #f
| number
| string
| id
| ...
| (constructor pattern ...)
| (cons pattern pattern)
| (list pattern ...)
| ’quoted

test-case = (check-expect expr expr)
| (check-within expr expr expr)
| (check-member-of expr expr ...)
| (check-satisfied expr expr)
| (check-range expr expr expr)
| (check-error expr expr)
| (check-property expr)

Ein id ist eine Folge von Zeichen, die weder Leerzeichen noch eins der folgenden Zeichen
enthält:

" , ' ` () [] { } | ; #

Ein number ist eine Zahl wie z.B. 123, 3/2 oder 5.5.

Ein string ist eine Zeichenkette, und durch ein Paar von " umschlossen. So sind
z.B. "abcdef", "This is a string" und "Dies ist eine Zeichenkette, die \"
enthält." Zeichenketten.

44

Zahlen
* : (number number number ... -> number)
+ : (number number number ... -> number)
- : (number number ... -> number)
/ : (number number number ... -> number)
< : (real real real ... -> boolean)
<= : (real real real ... -> boolean)
= : (number number number ... -> boolean)
> : (real real real ... -> boolean)
>= : (real real real ... -> boolean)
abs : (real -> real)
acos : (number -> number)
angle : (number -> real)
asin : (number -> number)
atan : (number -> number)
ceiling : (real -> integer)
complex? : (any -> boolean)
cos : (number -> number)
current-seconds : (-> natural)
denominator : (rational -> natural)
even? : (integer -> boolean)
exact->inexact : (number -> number)
exact? : (number -> boolean)
exp : (number -> number)
expt : (number number -> number)
floor : (real -> integer)
gcd : (integer integer ... -> natural)
imag-part : (number -> real)
inexact->exact : (number -> number)
inexact? : (number -> boolean)
integer? : (any -> boolean)
lcm : (integer integer ... -> natural)
log : (number -> number)
magnitude : (number -> real)
make-polar : (real real -> number)
max : (real real ... -> real)
min : (real real ... -> real)
modulo : (integer integer -> integer)
natural? : (any -> boolean)
negative? : (number -> boolean)
number->string : (number -> string)
number? : (any -> boolean)
numerator : (rational -> integer)
odd? : (integer -> boolean)
positive? : (number -> boolean)
quotient : (integer integer -> integer)

45

random : (natural -> natural)
rational? : (any -> boolean)
real-part : (number -> real)
real? : (any -> boolean)
remainder : (integer integer -> integer)
round : (real -> integer)
sin : (number -> number)
sqrt : (number -> number)
string->number : (string -> (mixed number false))
tan : (number -> number)
zero? : (number -> boolean)

boolesche Werte
boolean=? : (boolean boolean -> boolean)
boolean? : (any -> boolean)
equal? : (any any -> boolean)
false? : (any -> boolean)
not : (boolean -> boolean)
true? : (any -> boolean)

Listen
append : ((list-of %a) ... -> (list-of %a))
cons : (%a (list-of %a) -> (list-of %a))
cons? : (any -> boolean)
empty : list
empty? : (any -> boolean)
filter : ((%a -> boolean) (list-of %a) -> (list-of %a))
first : ((list-of %a) -> %a)
fold : (%b (%a %b -> %b) (list-of %a) -> %b)
length : ((list-of %a) -> natural)
list : (%a ... -> (list-of %a))
list-ref : ((list-of %a) natural -> %a)
rest : ((list-of %a) -> (list-of %a))
reverse : ((list-of %a) -> (list-of %a))

Zeichenketten
string->strings-list : (string -> (list-of string))
string-append : (string string ... -> string)
string-length : (string -> natural)
string<=? : (string string string ... -> boolean)
string<? : (string string string ... -> boolean)
string=? : (string string string ... -> boolean)
string>=? : (string string string ... -> boolean)
string>? : (string string string ... -> boolean)
string? : (any -> boolean)
strings-list->string : ((list-of string) -> string)

Symbole
string->symbol : (string -> symbol)
symbol->string : (symbol -> string)

46

symbol=? : (symbol symbol -> boolean)
symbol? : (any -> boolean)

Verschiedenes
apply : (function (list-of %a) -> %b)
eq? : (%a %b -> boolean)
for-each : ((%a -> %b) (list-of %a) -> unspecific)
map : ((%a -> %b) (list-of %a) -> (list-of %b))
read : (-> any)
signature? : (any -> boolean)
violation : (string -> unspecific)
write-newline : (-> unspecific)
write-string : (string -> unspecific)

3.1 Quote-Literal

’quoted
(quote quoted)

Der Wert eines Quote-Literals hat die gleiche externe Repräsentation wie quoted .

3.2 Signaturen

symbol

Signatur für Symbole.

3.3 Pattern-Matching

(match expr (pattern expr) ...)

pattern = ...
| ’quoted

Zu den Patterns kommt noch eins hinzu:

• Das Pattern ’quoted passt auf genau auf Werte, welche die gleiche externe Repräsen-
tation wie quoted haben.

47

3.4 Definitionen

(define id expr)

Diese Form ist wie in den unteren Sprachebenen.

3.5 lambda / 𝜆

(lambda (id id id) expr)

Bei lambda ist in dieser Sprachebene in einer Form zulässig, die es erlaubt, eine Funktion
mit einer variablen Anzahl von Paramern zu erzeugen: Alle Parameter vor dem Punkt funk-
tionieren wie gewohnt und werden jeweils an die entsprechenden Argumente gebunden. Alle
restlichen Argumente werden in eine Liste verpackt und an den Parameter nach dem Punkt
gebunden.

(𝜆 (id id id) expr)

𝜆 ist ein anderer Name für lambda.

3.6 begin

(begin expr ... expr)

Ein begin-Ausdruck wertet die exprs nacheinander aus und liefert das Ergebnis des letzten
expr .

3.7 Primitive Operationen

* : (number number number ... -> number)

Produkt berechnen

+ : (number number number ... -> number)

Summe berechnen

- : (number number ... -> number)

48

bei mehr als einem Argument Differenz zwischen der ersten und der Summe aller weiteren
Argumente berechnen; bei einem Argument Zahl negieren

/ : (number number number ... -> number)

das erste Argument durch das Produkt aller weiteren Argumente berechnen

< : (real real real ... -> boolean)

Zahlen auf kleiner-als testen

<= : (real real real ... -> boolean)

Zahlen auf kleiner-gleich testen

= : (number number number ... -> boolean)

Zahlen auf Gleichheit testen

> : (real real real ... -> boolean)

Zahlen auf größer-als testen

>= : (real real real ... -> boolean)

Zahlen auf größer-gleich testen

abs : (real -> real)

Absolutwert berechnen

acos : (number -> number)

Arcuscosinus berechnen (in Radian)

angle : (number -> real)

49

Winkel einer komplexen Zahl berechnen

asin : (number -> number)

Arcussinus berechnen (in Radian)

atan : (number -> number)

Arcustangens berechnen (in Radian)

ceiling : (real -> integer)

nächste ganze Zahl oberhalb einer rellen Zahlen berechnen

complex? : (any -> boolean)

feststellen, ob ein Wert eine komplexe Zahl ist

cos : (number -> number)

Cosinus berechnen (Argument in Radian)

current-seconds : (-> natural)

aktuelle Zeit in Sekunden seit einem unspezifizierten Startzeitpunkt berechnen

denominator : (rational -> natural)

Nenner eines Bruchs berechnen

even? : (integer -> boolean)

feststellen, ob eine Zahl gerade ist

exact->inexact : (number -> number)

eine Zahl durch eine inexakte Zahl annähern

50

exact? : (number -> boolean)

feststellen, ob eine Zahl exakt ist

exp : (number -> number)

Exponentialfunktion berechnen (e hoch Argument)

expt : (number number -> number)

Potenz berechnen (erstes Argument hoch zweites Argument)

floor : (real -> integer)

nächste ganze Zahl unterhalb einer rellen Zahlen berechnen

gcd : (integer integer ... -> natural)

größten gemeinsamen Teiler berechnen

imag-part : (number -> real)

imaginären Anteil einer komplexen Zahl extrahieren

inexact->exact : (number -> number)

eine Zahl durch eine exakte Zahl annähern

inexact? : (number -> boolean)

feststellen, ob eine Zahl inexakt ist

integer? : (any -> boolean)

feststellen, ob ein Wert eine ganze Zahl ist

51

lcm : (integer integer ... -> natural)

kleinstes gemeinsames Vielfaches berechnen

log : (number -> number)

natürlichen Logarithmus (Basis e) berechnen

magnitude : (number -> real)

Abstand zum Ursprung einer komplexen Zahl berechnen

make-polar : (real real -> number)

komplexe Zahl aus Abstand zum Ursprung und Winkel berechnen

max : (real real ... -> real)

Maximum berechnen

min : (real real ... -> real)

Minimum berechnen

modulo : (integer integer -> integer)

Divisionsmodulo berechnen

natural? : (any -> boolean)

feststellen, ob ein Wert eine natürliche Zahl (inkl. 0) ist

negative? : (number -> boolean)

feststellen, ob eine Zahl negativ ist

52

number->string : (number -> string)

Zahl in Zeichenkette umwandeln

number? : (any -> boolean)

feststellen, ob ein Wert eine Zahl ist

numerator : (rational -> integer)

Zähler eines Bruchs berechnen

odd? : (integer -> boolean)

feststellen, ob eine Zahl ungerade ist

positive? : (number -> boolean)

feststellen, ob eine Zahl positiv ist

quotient : (integer integer -> integer)

ganzzahlig dividieren

random : (natural -> natural)

eine natürliche Zufallszahl berechnen, die kleiner als das Argument ist

rational? : (any -> boolean)

feststellen, ob eine Zahl rational ist

real-part : (number -> real)

reellen Anteil einer komplexen Zahl extrahieren

53

real? : (any -> boolean)

feststellen, ob ein Wert eine reelle Zahl ist

remainder : (integer integer -> integer)

Divisionsrest berechnen

round : (real -> integer)

relle Zahl auf eine ganze Zahl runden

sin : (number -> number)

Sinus berechnen (Argument in Radian)

sqrt : (number -> number)

Quadratwurzel berechnen

string->number : (string -> (mixed number false))

Zeichenkette in Zahl umwandeln, falls möglich

tan : (number -> number)

Tangens berechnen (Argument in Radian)

zero? : (number -> boolean)

feststellen, ob eine Zahl Null ist

boolean=? : (boolean boolean -> boolean)

Booleans auf Gleichheit testen

54

boolean? : (any -> boolean)

feststellen, ob ein Wert ein boolescher Wert ist

equal? : (any any -> boolean)

feststellen, ob zwei Werte gleich sind

false? : (any -> boolean)

feststellen, ob ein Wert #f ist

not : (boolean -> boolean)

booleschen Wert negieren

true? : (any -> boolean)

feststellen, ob ein Wert #t ist

append : ((list-of %a) ... -> (list-of %a))

mehrere Listen aneinanderhängen

cons : (%a (list-of %a) -> (list-of %a))

erzeuge ein Cons aus Element und Liste

cons? : (any -> boolean)

feststellen, ob ein Wert ein Cons ist

empty : list

die leere Liste

55

empty? : (any -> boolean)

feststellen, ob ein Wert die leere Liste ist

filter : ((%a -> boolean) (list-of %a) -> (list-of %a))

Alle Elemente einer Liste extrahieren, für welche die Funktion #t liefert.

first : ((list-of %a) -> %a)

erstes Element eines Cons extrahieren

fold : (%b (%a %b -> %b) (list-of %a) -> %b)

Liste einfalten.

length : ((list-of %a) -> natural)

Länge einer Liste berechnen

list : (%a ... -> (list-of %a))

Liste aus den Argumenten konstruieren

list-ref : ((list-of %a) natural -> %a)

das Listenelement an der gegebenen Position extrahieren

rest : ((list-of %a) -> (list-of %a))

Rest eines Cons extrahieren

reverse : ((list-of %a) -> (list-of %a))

Liste in umgekehrte Reihenfolge bringen

56

string->strings-list : (string -> (list-of string))

Eine Zeichenkette in eine Liste von Zeichenketten mit einzelnen Zeichen umwandeln

string-append : (string string ... -> string)

Hängt Zeichenketten zu einer Zeichenkette zusammen

string-length : (string -> natural)

Liefert Länge einer Zeichenkette

string<=? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf kleiner-gleich testen

string<? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf kleiner-als testen

string=? : (string string string ... -> boolean)

Zeichenketten auf Gleichheit testen

string>=? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf größer-gleich testen

string>? : (string string string ... -> boolean)

Zeichenketten lexikografisch auf größer-als testen

string? : (any -> boolean)

feststellen, ob ein Wert eine Zeichenkette ist

57

strings-list->string : ((list-of string) -> string)

Eine Liste von Zeichenketten in eine Zeichenkette umwandeln

string->symbol : (string -> symbol)

Zeichenkette in Symbol umwandeln

symbol->string : (symbol -> string)

Symbol in Zeichenkette umwandeln

symbol=? : (symbol symbol -> boolean)

Sind zwei Symbole gleich?

symbol? : (any -> boolean)

feststellen, ob ein Wert ein Symbol ist

apply : (function (list-of %a) -> %b)

Funktion auf Liste ihrer Argumente anwenden

eq? : (%a %b -> boolean)

zwei Werte auf Selbheit testen

for-each : ((%a -> %b) (list-of %a) -> unspecific)

Funktion von vorn nach hinten auf alle Elemente einer Liste anwenden

map : ((%a -> %b) (list-of %a) -> (list-of %b))

Funktion auf alle Elemente einer Liste anwenden, Liste der Resultate berechnen

58

read : (-> any)

Externe Repräsentation eines Werts in der REPL einlesen und den zugehörigen Wert liefern

signature? : (any -> boolean)

feststellen, ob ein Wert eine Signatur ist

violation : (string -> unspecific)

Programmm mit Fehlermeldung abbrechen

write-newline : (-> unspecific)

Zeilenumbruch ausgeben

write-string : (string -> unspecific)

Zeichenkette in REPL ausgeben

59

4 Konstruktionsanleitungen

This documents the design recipes of the German textbook Schreibe Dein Programm!.

60

Contents

61

4.1 Ablauf

Gehe bei der Konstruktion einer Funktion in folgender Reihenfolge vor:

• Kurzbeschreibung

• Datenanalyse

• Signatur

• Testfälle

• Gerüst

• Schablonen

• Rumpf

4.2 Kurzbeschreibung

Schreibe für die Funktion zunächst einen Kommentar, der ihren Zweck kurz beschreibt. Ein
Satz, der auf eine Zeile passen sollte, reicht. Beispiel:

; monatlichen Rechnungsbetrag für Tarif Billig-Strom berechnen

4.3 Signatur-Deklaration

Schreibe für die Funktion direkt unter die Kurzbeschreibung eine Signatur-Deklaration.
Dazu denke Dir zunächst einen möglichst aussagekräftigen Namen aus. Überlege dann,
welche Sorten die Ein- und Ausgaben haben und schreibe dann eine Signatur, welche die
Ein- und Ausgaben der Funktion möglichst präzise beschreiben. Beispiel:

(: billig-strom (natural -> rational))

Achte bei den Zahlen-Signaturen besonders auf eine möglichst präzise Signatur. Bei
billig-strom wäre auch die Signatur (number -> number) korrekt, aber nicht so genau.

4.4 Tests

Schreibe unter die Signatur Tests für die Funktion. Denke Dir dafür möglichst möglichst
einfache, aber auch möglichst interessante Beispiele für Aufrufe der Funktion auf und lege
fest, was dabei herauskommen soll. Mache aus den Beispielen Tests mit check-expect.
Beispiel:

62

(check-expect (billig-strom 0) 4.9)
(check-expect (billig-strom 10) 6.8)
(check-expect (billig-strom 20) 8.7)
(check-expect (billig-strom 30) 10.6)

Achte darauf, dass die Tests dafür sorgen, dass der Code Deiner Funktion durch die Tests
vollständig abgedeckt wird.

4.5 Gerüst

Schreibe unter die Tests ein Gerüst für die Funktion: Dazu übernimmst Du den Namen aus
der Signatur-Deklaration in eine Funktionsdefinition wie zum Beispiel:

(define billig-strom
(lambda (...)

...))

Denke Dir Namen für die Eingaben der Funktion aus. Das müssen genauso viele sein,
wie die Signatur Eingaben hat. Schreibe dann diese Namen als Eingaben in die lambda-
Abstraktion. Beispiel:

(define billig-strom
(lambda (kWh)

...))

4.6 Rumpf

Als letzten Schritt fülle mit Hilfe des Wissens über das Problem den Rumpf der Funktion
aus.

(define billig-strom
(lambda (kWh)

(+ 4.9 (* 0.19 kWh))))

4.7 Datenanalyse

Suche in der Aufgabenstellung nach problemrelevanten Größen; Kandidaten sind immer die
Substantive. Schreibe für jede dieser Größen eine Datendefinition, es sei denn, diese ist aus
dem Kontext offensichtlich.

63

Wenn es für die Datendefinition noch keine Signatur gibt, schreibe eine Signaturdefinition
dazu. Schreibe außerdem Beispiele auf und schreibe jeweils einen Kommentar, der die
Beziehung zwischen Daten und Information beschreibt.

4.8 Fallunterscheidung: Datenanalyse

Versuche, für die Datendefinition eine Formulierung “... ist eins der folgenden” zu finden.
Wenn das möglich ist, beschreibt Deine Datendefinition eine Fallunterscheidung. Schreibe
dann eine Auflistung aller Fälle, jeder Fall auf eine separate Zeile:

; Ein X ist eins der folgenden:
; - Fall 1
; - Fall 2
; - ...
; - Fall n

4.9 Aufzählung: Datenanalyse

Falls Deine Datendefinition eine Fallunterscheidung beschriebt und jeder der Fälle nur aus
einem einzelnen Wert besteht, handelt es sich um eine Aufzählung.

Schreibe für jede Aufzählung eine Signaturdefinition der Form:

(define s (signature (enum ...)))

Achte darauf, dass die Anzahl der Fälle der Signaturdefinition der Anzahl der Fälle der
Datendefinition entspricht.

4.10 Schablone

Wenn Du das Gerüst fertiggestellt hast, benutze die Signatur und die dazugehörigen Daten-
definitionen, um Konstruktionsanleitungen mit ein oder mehreren Schablonen auszuwählen
und übertrage die Elemente der Schablonen in den Rumpf der Funktion.

4.11 Fallunterscheidung: Schablone

Wenn Du eine Funktion schreibst, die eine Fallunterscheidung als Eingabe verarbeitet,
schreibe als Schablone in den Rumpf eine Verzweigung mit sovielen Zweigen, wie es in
der Fallunterscheidung Fälle gibt, nach folgendem Muster:

64

(define f
(lambda (a)

(cond
(...)
...
(... ...))))

Schreibe danach Bedingungen in die Zweige, welche die einzelnen Fälle voneinander unter-
scheiden.

4.12 boolesche Fallunterscheidung: Schablone

Wenn sich das Ergebnis einer Funktion nach einer booleschen Größe richtet, welche die
Funktion mit Hilfe der Eingaben berechnen kann, benutze als Schablone im Rumpf eine
binäre Verzweigung:

(define f
(lambda (e)

(if ... ; hier wird die boolesche Größe berechnet
...
....)))

4.13 Zusammengesetzte Daten: Datenanalyse

Zusammengesetzte Daten kannst Du an Formulierungen wie “ein X besteht aus ...”, “ein X
ist charakterisiert durch ...” oder “ein X hat ...” erkennen. Manchmal lautet die Formulierung
etwas anders. Die daraus resultierende Datendefinition ist ein Kommentar im Programm in
folgender Form:

; Ein X hat / besteht aus / ist charakterisiert durch:
; - Bestandteil / Eigenschaft 1
; - Bestandteil / Eigenschaft 2
; ...
; - Bestandteil / Eigenschaft n

Auf die Datendefinition folgt eine entsprechende Record-Definition. Dafür überlege Dir Na-
men für den Record-Typ T und für die Felder, f1 ... fn. Für jedes Feld solltest Du außerdem
die dazu passende Signatur sigi angeben. Die Record-Definition hat dann folgende Form:

(define-record T
make-T
(T-f1 sig1)

65

...
(T-fn sign))

Der Name des Record-Typs T ist die Record-Signatur, make-T ist der Konstruktor und T-fi
sind die Selektoren.

Dass der Konstruktorname mit make- anfängt und dass die Selektornamen sich aus dem
Namen des Typs und der Felder zusammensetzt, ist reine Konvention. Von ihr solltest Du
aber nur aus guten Gründen abweichen.

Unter die Record-Definition gehören die Signaturen für den Konstruktor und die Selektoren:

(: make-T (sig1 ... sign) -> T)
(: T-f1 (T -> sig1))
...
(: T-fn (T -> sign))

4.14 Zusammengesetzte Daten als Eingabe: Schablone

Wenn Deine Funktion zusammengesetzte Daten als Eingabe akzeptiert (das ergibt sich aus
der Signatur), gehe nach Schreiben des Gerüstes folgendermaßen vor:

• Für jede Komponente, schreibe (sel r) in die Schablone, wobei sel der Selektor
der Komponente und r der Name des Record-Parameters ist, also zum Beispiel:

(wallclock-time-hour wt)

• Vervollständige die Schablone, indem Du einen Ausdruck konstruieren, in dem die
Selektor-Anwendungen vorkommen.

• Es ist möglich, dass nicht alle Selektor-Anwendungen im Rumpf verwendet werden:
In diesem Fall lösche die Selektor-Anwendung wieder.

4.15 Zusammengesetzte Daten als Ausgabe: Schablone

Wenn Deine Funktion zusammengesetzte Daten als Ausgabe hat, schreibe einen Aufruf des
passenden Record-Konstruktors in den Rumpf, zunächst mit einer Ellipse für jedes Feld des
Records, also zum Beispiel:

(make-wallclock-time)

66

4.16 Gemischte Daten: Datenanalyse

Gemischte Daten sind Fallunterscheidungen, bei denen jeder Fall eine eigene Klasse von
Daten mit eigener Signatur ist. Schreibe bei gemischten Daten eine Signaturdefinition der
folgenden Form unter die Datendefinition:

(define sig
(signature

(mixed sig1 ... sign)))

Sig ist die Signatur für die neue Datensorte; sig1 bis sigsn sind die Signaturen, aus denen
die neue Datensorte zusammengemischt ist.

4.17 Gemischte Daten als Eingabe: Schablone

Eine Schablone für eine Funktion und deren Testfälle, die gemischte Daten akzeptiert, kannst
Du folgendermaßen konstruieren:

• Schreibe Tests für jeden der Fälle.

• Schreibe eine cond-Verzweigung als Rumpf in die Schablone, die genau n Zweige hat
- also genau soviele Zweige, wie es Fälle in der Datendefinition beziehungsweise der
Signatur gibt.

• Schreibe für jeden Zweig eine Bedingung, der den entsprechenden Fall identifiziert.

• Vervollständige die Zweige, indem Du eine Datenanalyse für jeden einzelnen Fall
vornimmst und entsprechende Hilfsfunktionen und Konstruktionsanleitungen benutzt.
Die übersichtlichsten Programme entstehen meist, wenn für jeden Fall separate Hilfs-
funktionen definiert sind.

4.18 Selbstbezüge als Eingabe: Schablone

Wenn Du eine Funktion schreibst, die Daten konsumiert, in denen Selbstbezüge enthalten
sind, dann schreibe an die Stellen der Selbstbezüge jeweils einen rekursiven Aufruf.

4.19 Listen als Eingabe: Schablone

Eine Funktion, die eine Liste akzeptiert, hat folgende Schablone:

67

(: f (... (list-of elem) ... -> ...))

(define f
(lambda (... list ...)

(cond
((empty? list) ...)
((cons? list)
... (first list)
... (f ... (rest list) ...) ...))))

Dabei ist elem die Signatur für die Elemente der Liste. Dies kann eine Signaturvariable (%a,
%b, ...) sein, falls die Funktion unabhängig von der Signatur der Listenelemente ist.

Fülle in der Schablone den empty-Zweig aus. Vervollständige den cons- Zweig unter der
Annahme, dass der rekursive Aufruf (f (rest lis)) das gewünschte Ergebnis für den
Rest der Liste liefert.

Beispiel:

(: list-sum ((list-of number) -> number))

(define list-sum
(lambda (list)

(cond
((empty? list) 0)
((cons? list)
(+ (first list)

(list-sum (rest list)))))))

4.20 Natürliche Zahlen als Eingabe: Schablone

Eine Funktion, die natürliche Zahlen akzeptiert, hat folgende Schablone:

(: f (... natural ... -> ...))

(define f
(lambda (... n ...)

(cond
((zero? n) ...)
((positive? n)
...
(f ... (- n 1) ...)
...))))

Beispiel:

68

(: power (number natural -> number))

(define power
(lambda (base exponent)

(cond
((zero? exponent) 1)
((positive? base)
(* base

(power base (predecessor exponent)))))))

4.21 Abstraktion

Wenn Du zwei Definitionen geschrieben hast, die inhaltlich verwandt sind und viele Ähn-
lichkeiten aufweisen, abstrahiere wie folgt:

1. Kopiere eine der beiden Definitionen und gib ihr einen neuen Namen.

2. Ersetze die Stellen, bei denen sich die beiden Definitionen unterscheiden, jeweils
durch eine neue Variable.

3. Füge die neuen Variablen als Parameter zum lambda der Definition hinzu oder füge
ein neues lambda mit diesen Parametern ein. Du muss gegebenenfalls rekursive
Aufrufe der Funktion anpassen.

4. Schreibe eine Signatur für die neue Funktion.

5. Ersetze die beiden alten Definitionen durch Aufrufe der neuen Definition.

Beispiel:

; Definition 1
(define home-points

(lambda (game)
(define goals1 (game-home-goals game))
(define goals2 (game-guest-goals game))
(cond

((> goals1 goals2) 3)
((< goals1 goals2) 0)
((= goals1 goals2) 1))))

; Definition 2
(define guest-points

(lambda (game)
(define goals1 (game-guest-goals game))
(define goals2 (game-home-goals game))

69

(cond
((> goals1 goals2) 3)
((< goals1 goals2) 0)
((= goals1 goals2) 1))))

; Abstraktion 1
(define compute-points

(lambda (game)
(define goals1 (game-guest-goals game))
(define goals2 (game-home-goals game))
(cond

((> goals1 goals2) 3)
((< goals1 goals2) 0)
((= goals1 goals2) 1))))

; Abstraktion 2
(define make-compute-points

(lambda (get-goals-1 get-goals-2)
(lambda (game)

(define goals1 (get-goals-1 game))
(define goals2 (get-goals-2 game))
(cond

((> goals1 goals2) 3)
((< goals1 goals2) 0)
((= goals1 goals2) 1)))))

4.22 Listen als Eingabe, mit Akkumulator: Schablone

Wenn Du eine Funktion schreibst, die eine Liste akzeptiert und einen Akkumulator benutzen
soll, gehe folgendermaßen vor:

1. Überlege Dir, was für Information der Akkumulator repräsentieren soll. Das ist typis-
cherweise ein Zwischenergebnis - also ein vorläufiger Wert für das Endergebnis.

2. Konstruiere die Schablone wie folgt:

(: f (... (list-of elem) ... -> ...))

(define f
(lambda (list0)

(define accumulate
; Invariante
(lambda (list acc)

(cond

70

((empty? list) acc)
((cons? list)
(accumulate (rest list) (... (first list) ... acc))))))

(accumulate list0 ...)))

3. Formuliere eine möglichst konkrete Invariante zwischen list0, list und acc und
schreibe sie als Kommentar zu accumulate.

4. Fülle mit Hilfe der Invariante die Ellipsen in der Funktion aus.

Beispiel:

(: list-sum ((list-of number) -> number))

(define list-sum
(lambda (list0)

(define accumulate
; sum ist die Summer aller Elemente in list0 vor list
(lambda (list sum)

(cond
((empty? list) sum)
((cons? list)
(accumulate (rest list) (+ (first list) sum))))))

(accumulate list0 0)))

4.23 Natürliche Zahlen als Eingabe, mit Akkumulator: Schablone

Wenn Du eine Funktion schreibst, die eine natürliche Zahl akzeptiert und einen Akkumulator
benutzen soll, gehe folgendermaßen vor:

1. Überlege Dir, was für Information der Akkumulator repräsentieren soll. Das ist typis-
cherweise ein Zwischenergebnis - also ein vorläufiger Wert für das Endergebnis.

2. Konstruiere die Schablone wie folgt:

(: f (... natural ... -> ...))

(define f
(lambda (... n0 ...)

(define accumulate
; Invariante
(lambda (n acc)

(cond
((zero? n) ... acc ...)

71

((positive? n)
(accumulate (- n 1) (... n ... acc ...))))))

(accumulate n0 ...)))

3. Formuliere eine möglichst konkrete Invariante zwischen n0, n und acc und schreibe
sie als Kommentar zu accumulate.

4. Fülle mit Hilfe der Invariante die Ellipsen in der Funktion aus.

Beispiel:

(: factorial (natural -> natural))

(define factorial
(lambda (n0)

(define accumulate
; acc ist das Produkt aller Zahlen von (+ n 1) bis n0
(lambda (n acc)

(cond
((zero? n) acc)
((positive? n)
(accumulate (- n 1) (* n acc))))))

(accumulate n0 1)))

72

5 sdp: Sprachen als Libraries

Note: This is documentation for the language levels that go with the German textbook
Schreibe Dein Programm!.

5.1 Schreibe Dein Programm - Anfänger

(require deinprogramm/sdp/beginner)
package: deinprogramm-lib

Das Modul deinprogramm/sdp/beginner implementiert die Anfängersprache für
Schreibe Dein Programm!; siehe §1 “Schreibe Dein Programm! - Anfänger”.

5.2 Schreibe Dein Programm!

(require deinprogramm/sdp) package: deinprogramm-lib

Das Modul deinprogramm/sdp implementiert die Standardsprache für Schreibe Dein Pro-
gramm!; siehe §2 “Schreibe Dein Programm!”.

5.3 Schreibe Dein Programm! - fortgeschritten

(require deinprogramm/sdp/advanced)
package: deinprogramm-lib

Das Modul deinprogramm/sdp/advanced implementiert die fortgeschittene Sprachebene
für Schreibe Dein Programm!; siehe §3 “Schreibe Dein Programm! - fortgeschritten”.

73

http://www.deinprogramm.de/sdp/
https://pkgs.racket-lang.org/package/deinprogramm-lib
https://pkgs.racket-lang.org/package/deinprogramm-lib
https://pkgs.racket-lang.org/package/deinprogramm-lib

Index
#f, 9
#t, 9
#t and #f, 9
*, 32
*, 18
*, 48
+, 48
+, 32
+, 18
-, 32
-, 18
-, 48
->, 14
/, 49
/, 18
/, 32
:, 12
<, 49
<, 33
<, 18
<=, 18
<=, 49
<=, 33
=, 33
=, 49
=, 18
==>, 17
>, 18
>, 49
>, 33
>=, 49
>=, 18
>=, 33
Ablauf, 62
abs, 49
abs, 33
abs, 19
Abstraktion, 69
acos, 49
acos, 33

acos, 19
and, 11
and, 11
angle, 33
angle, 49
angle, 19
any, 13
append, 55
append, 39
apply, 58
asin, 50
asin, 19
asin, 33
atan, 19
atan, 50
atan, 34
Aufzählung: Datenanalyse, 64
begin, 48
begin, 48
Bezeichner, 10
boolean, 12
boolean=?, 24
boolean=?, 38
boolean=?, 54
boolean?, 38
boolean?, 24
boolean?, 55
boolesche Fallunterscheidung: Schablone,

65
ceiling, 34
ceiling, 50
ceiling, 19
check-error, 15
check-expect, 14
check-member-of, 15
check-property, 15
check-range, 15
check-satisfied, 15
check-within, 15
combined, 14
combined, 14
complex?, 19

74

complex?, 50
complex?, 34
cond, 10
cond, 10
cons, 39
cons, 55
cons-list-of, 31
cons?, 55
cons?, 39
cos, 50
cos, 34
cos, 19
current-seconds, 34
current-seconds, 50
current-seconds, 19
Datenanalyse, 63
define, 48
define, 8
define-record, 8
define-singleton, 9
Definitionen, 8
Definitionen, 48
deinprogramm/sdp, 73
deinprogramm/sdp/advanced, 73
deinprogramm/sdp/beginner, 73
denominator, 50
denominator, 20
denominator, 34
Eigenschaft, 16
Eigenschaften, 16
Eingebaute Signaturen, 12
else, 10
empty, 55
empty, 39
empty-list, 30
empty?, 39
empty?, 56
enum, 13
enum, 13
eq?, 58
equal?, 24
equal?, 55

equal?, 39
even?, 34
even?, 50
even?, 20
exact->inexact, 34
exact->inexact, 50
exact->inexact, 20
exact?, 34
exact?, 20
exact?, 51
exp, 35
exp, 20
exp, 51
expect, 17
expect-member-of, 17
expect-range, 17
expect-within, 17
expt, 51
expt, 20
expt, 35
Fallunterscheidung: Datenanalyse, 64
Fallunterscheidung: Schablone, 64
false, 13
false?, 24
false?, 39
false?, 55
filter, 40
filter, 56
first, 40
first, 56
floor, 20
floor, 51
floor, 35
fold, 40
fold, 56
for-all, 17
for-each, 42
for-each, 58
Funktions-Signatur, 14
Funktionsapplikation, 9
gcd, 35
gcd, 20

75

gcd, 51
Gemischte Daten als Eingabe: Schablone, 67
Gemischte Daten: Datenanalyse, 67
Gerüst, 63
if, 11
if, 11
imag-part, 35
imag-part, 51
imag-part, 20
inexact->exact, 21
inexact->exact, 51
inexact->exact, 35
inexact?, 35
inexact?, 21
inexact?, 51
integer, 12
integer-from-to, 12
integer?, 35
integer?, 21
integer?, 51
Konstruktionsanleitungen, 60
Kurzbeschreibung, 62
lambda, 48
lambda, 10
lambda / 𝜆, 48
lambda / 𝜆, 10
lcm, 35
lcm, 52
lcm, 21
length, 40
length, 56
let, 31
let*, 31
let, letrec und let*, 31
letrec, 31
list, 56
list, 40
list-of, 31
list-ref, 56
list-ref, 40
Listen als Eingabe, mit Akkumulator: Sch-

ablone, 70

Listen als Eingabe: Schablone, 67
log, 52
log, 21
log, 36
magnitude, 21
magnitude, 52
magnitude, 36
make-polar, 52
make-polar, 36
make-polar, 21
map, 42
map, 58
match, 16
max, 21
max, 52
max, 36
min, 52
min, 21
min, 36
mixed, 13
mixed, 13
modulo, 36
modulo, 52
modulo, 22
natural, 12
natural?, 36
natural?, 52
natural?, 22
Natürliche Zahlen als Eingabe, mit Akkumu-

lator: Schablone, 71
Natürliche Zahlen als Eingabe: Schablone,

68
negative?, 52
negative?, 22
negative?, 36
not, 55
not, 39
not, 24
number, 12
number->string, 36
number->string, 53
number->string, 22

76

number?, 53
number?, 22
number?, 37
numerator, 37
numerator, 53
numerator, 22
odd?, 53
odd?, 37
odd?, 22
or, 11
or, 11
Pattern-Matching, 16
Pattern-Matching, 47
Pattern-Matching, 32
positive?, 22
positive?, 37
positive?, 53
predicate, 13
predicate, 13
Primitive Operationen, 48
Primitive Operationen, 18
Primitive Operationen, 32
property, 13
quantifiziert, 16
quote, 47
Quote-Literal, 47
quotient, 22
quotient, 53
quotient, 37
random, 53
random, 23
random, 37
rational, 12
rational?, 23
rational?, 37
rational?, 53
read, 26
read, 59
read, 42
real, 12
real-part, 37
real-part, 53

real-part, 23
real?, 54
real?, 23
real?, 37
Record-Typ-Definitionen, 8
Record-Typ-Definitionen mit Signatur-

Parametern, 9
remainder, 38
remainder, 54
remainder, 23
rest, 56
rest, 40
reverse, 56
reverse, 40
round, 54
round, 38
round, 23
Rumpf, 63
Schablone, 64
Schreibe Dein Programm - Anfänger, 73
Schreibe Dein Programm!, 73
Schreibe Dein Programm!, 27
Schreibe Dein Programm! - Anfänger, 5
Schreibe Dein Programm! - fortgeschritten,

73
Schreibe Dein Programm! - fortgeschritten,

43
sdp: Sprachen als Libraries, 73
Selbstbezüge als Eingabe: Schablone, 67
Signatur-Deklaration, 62
Signatur-Variablen, 14
Signaturdeklaration, 12
signature, 11
signature, 11
signature?, 26
signature?, 59
signature?, 42
Signaturen, 11
Signaturen, 47
Signaturen, 30
sin, 38
sin, 23

77

sin, 54
Singleton-Definitionen, 9
Sprachebenen und Material zu Schreibe Dein

Programm!, 1
sqrt, 23
sqrt, 54
sqrt, 38
string, 13
string->number, 54
string->number, 23
string->number, 38
string->strings-list, 40
string->strings-list, 57
string->strings-list, 24
string->symbol, 58
string-append, 25
string-append, 57
string-append, 41
string-length, 41
string-length, 57
string-length, 25
string<=?, 41
string<=?, 57
string<=?, 25
string<?, 57
string<?, 41
string<?, 25
string=?, 41
string=?, 57
string=?, 25
string>=?, 25
string>=?, 57
string>=?, 41
string>?, 25
string>?, 41
string>?, 57
string?, 41
string?, 57
string?, 25
strings-list->string, 25
strings-list->string, 41
strings-list->string, 58

symbol, 47
symbol->string, 58
symbol=?, 58
symbol?, 58
tan, 38
tan, 24
tan, 54
Testfälle, 14
Tests, 62
true, 12
true?, 55
true?, 39
true?, 24
violation, 59
violation, 42
violation, 26
write-newline, 26
write-newline, 42
write-newline, 59
write-string, 42
write-string, 26
write-string, 59
zero?, 38
zero?, 24
zero?, 54
Zusammengesetzte Daten als Ausgabe: Sch-

ablone, 66
Zusammengesetzte Daten als Eingabe: Sch-

ablone, 66
Zusammengesetzte Daten: Datenanalyse, 65
𝜆, 10
𝜆, 48

78

	1 Schreibe Dein Programm! - Anfänger
	1.1 Definitionen
	1.2 Record-Typ-Definitionen
	1.3 Record-Typ-Definitionen mit Signatur-Parametern
	1.4 Singleton-Definitionen
	1.5 Funktionsapplikation
	1.6 #t and #f
	1.7 lambda /
	1.8 Bezeichner
	1.9 cond
	1.10 if
	1.11 and
	1.12 or
	1.13 Signaturen
	1.13.1 signature
	1.13.2 Signaturdeklaration
	1.13.3 Eingebaute Signaturen
	1.13.4 predicate
	1.13.5 enum
	1.13.6 mixed
	1.13.7 Funktions-Signatur
	1.13.8 Signatur-Variablen
	1.13.9 combined

	1.14 Testfälle
	1.15 Pattern-Matching
	1.16 Eigenschaften
	1.17 Primitive Operationen

	2 Schreibe Dein Programm!
	2.1 Signaturen
	2.2 let, letrec und let*
	2.3 Pattern-Matching
	2.4 Primitive Operationen

	3 Schreibe Dein Programm! - fortgeschritten
	3.1 Quote-Literal
	3.2 Signaturen
	3.3 Pattern-Matching
	3.4 Definitionen
	3.5 lambda /
	3.6 begin
	3.7 Primitive Operationen

	4 Konstruktionsanleitungen
	4.1 Ablauf
	4.2 Kurzbeschreibung
	4.3 Signatur-Deklaration
	4.4 Tests
	4.5 Gerüst
	4.6 Rumpf
	4.7 Datenanalyse
	4.8 Fallunterscheidung: Datenanalyse
	4.9 Aufzählung: Datenanalyse
	4.10 Schablone
	4.11 Fallunterscheidung: Schablone
	4.12 boolesche Fallunterscheidung: Schablone
	4.13 Zusammengesetzte Daten: Datenanalyse
	4.14 Zusammengesetzte Daten als Eingabe: Schablone
	4.15 Zusammengesetzte Daten als Ausgabe: Schablone
	4.16 Gemischte Daten: Datenanalyse
	4.17 Gemischte Daten als Eingabe: Schablone
	4.18 Selbstbezüge als Eingabe: Schablone
	4.19 Listen als Eingabe: Schablone
	4.20 Natürliche Zahlen als Eingabe: Schablone
	4.21 Abstraktion
	4.22 Listen als Eingabe, mit Akkumulator: Schablone
	4.23 Natürliche Zahlen als Eingabe, mit Akkumulator: Schablone

	5 sdp: Sprachen als Libraries
	5.1 Schreibe Dein Programm - Anfänger
	5.2 Schreibe Dein Programm!
	5.3 Schreibe Dein Programm! - fortgeschritten

	Index
	Index

