
Essentials of Programming Languages Language
Version 9.0.0.11

January 4, 2026

The Essentials of Programming Languages language in DrRacket provides a subset of func-
tions and syntactic forms of racket—mostly the ones that correspond to r5rs forms. See
below for a complete list. The language is intended for use with the textbook [EoPL].

#lang eopl package: eopl

The following bindings are re-provided from racket:

make-parameter * inexact?
parameterize / zero?
print-struct abs positive?
unquote gcd negative?
unquote-splicing lcm odd?
quote exp even?
quasiquote log quotient
if sin remainder
lambda cos modulo
letrec tan floor
define-syntax not ceiling
delay eq? truncate
let make-string round
let* symbol->string numerator
let-syntax string->symbol denominator
letrec-syntax make-rectangular asin
and exact->inexact acos
or inexact->exact atan
cond number->string sqrt
case string->number expt
do rationalize make-polar
begin output-port? real-part
set! current-input-port imag-part

1

https://pkgs.racket-lang.org/package/eopl


#%module-begin current-output-port angle
#%app current-error-port magnitude
#%datum open-input-file input-port?
#%top open-output-file read
#%top-interaction close-input-port read-char
#%require close-output-port peek-char
#%provide with-output-to-file eof-object?
#%expression flush-output char-ready?
syntax-rules string-length write
... string-ci<=? display
cons string-ci>=? newline
car string-append write-char
cdr string-fill! load
pair? string->list string?
map list->string string
for-each vector-length string-ref
caar vector-fill! string-set!
cadr vector->list string=?
cdar list->vector substring
cddr char-alphabetic? string-copy
caaar char-numeric? string-ci=?
caadr char-whitespace? string<?
cadar char-upper-case? string>?
caddr char-lower-case? string<=?
cdaar char->integer string>=?
cdadr integer->char string-ci<?
cddar char-downcase string-ci>?
cdddr call-with-output-file vector?
caaaar call-with-input-file make-vector
caaadr with-input-from-file vector
caadar apply vector-ref
caaddr symbol? vector-set!
cadaar null? char?
cadadr list? char=?
caddar list char<?
cadddr length char>?
cdaaar append char<=?
cdaadr reverse char>=?
cdadar list-tail char-ci=?
cdaddr list-ref char-ci<?
cddaar memq char-ci>?
cddadr memv char-ci<=?
cdddar member char-ci>=?
cddddr assq char-upcase
= assv boolean?
< assoc eqv?

2



> procedure? equal?
<= number? force
>= complex? call-with-values
max real? values
min rational? dynamic-wind
+ integer? eval
- exact?

(define-datatype id predicate-id
(variant-id (field-id predicate-expr) ...)
...)

Defines the datatype id and a function predicate-id that returns #t for instances of the
datatype, and #f for any other value.

Each variant-id is defined as a constructor function that creates an instance of the
datatype; the constructor takes as many arguments as the variant’s field-ids, and each
argument is checked by applying the function produced by the variant’s predicate-expr .

In DrScheme v209 and older, when constructor-based printing was used, variant instances
were printed with a make- prefix before the variant name. Thus, for compatibility, in addi-
tion to variant-id , make-variant-id is also defined for each variant-id (to the same
constructor as variant-id ).

(cases datatype-id expr
(variant-id (field-id ...) result-expr ...)
...)

(cases datatype-id expr
(variant-id (field-id ...) result-expr ...)
...
(else result-expr ...))

Branches on the datatype instance produced by expr , which must be an instance of the
specified datatype-id that is defined with define-datatype.

sllgen:make-string-scanner
sllgen:make-string-parser
sllgen:make-stream-parser
sllgen:make-define-datatypes
sllgen:show-define-datatypes
sllgen:list-define-datatypes

Defined in the textbook’s Appendix B [EoPL]. However, the DrRacket versions are syntac-
tic forms, instead of procedures, and the arguments must be either quoted literal tables or
identifiers that are defined (at the top level) to quoted literal tables.

3



sllgen:make-rep-loop : procedure?

Defined in the EoPL textbook’s Appendix B [EoPL] (and still a function).

eopl:error : procedure?

As in the book.
(eopl:printf form v ...) Ñ void?

form : string?
v : any/c

(eopl:pretty-print v [port ]) Ñ void?
v : any/c
port : output-port? = (current-output-port)

Same as scheme/base’s printf and pretty-print.

((list-of pred ...+) x) Ñ boolean?
pred : (any/c . -> . any)
x : any/c

(always? x) Ñ boolean?
x : any/c

(maybe pred) Ñ boolean?
pred : (any/c . -> . boolean?)

As in the book [EoPL].

empty : empty?

The empty list.

(time expr)

Evaluates expr , and prints timing information before returning the result.

(collect-garbage) Ñ void?

Performs a garbage collection (useful for repeatable timings).

(trace id ...)
(untrace id ...)

For debugging: trace redefines each id at the top level (bound to a procedure) so that
it prints arguments on entry and results on exit. The untrace form reverses the action of
trace for the given ids.

Tracing a function causes tail-calls in the original function to become non-tail calls.

4



(provide provide-spec ...)

Useful only with a module that uses eopl as a language: exports identifiers from the module.
See provide from racket for more information.

eopl:error-stop : (-> any/c)

Defined only in the top-level namespace (i.e., not in a module); mutate this variable to install
an exception-handling thunk. Typically, the handler thunk escapes through a continuation.

The eopl library sets this variable to #f in the current namespace when it executes.

(install-eopl-exception-handler) Ñ void?

Sets an exception handler to one that checks eopl:error-stop.

The eopl library calls this function when it executes.

5



Bibliography

[EoPL] “Essentials of Programming Languages, Third Edition,” MIT Press, 2008.
http://www.eopl3.com/

6

http://www.eopl3.com/

	Bibliography

