
The Racket Foreign Interface
Version 9.0.0.11

Eli Barzilay

January 4, 2026

(require ffi/unsafe) package: base

The ffi/unsafe library enables the direct use of C-based APIs within Racket programs—
without writing any new C code. From the Racket perspective, functions and data with a
C-based API are foreign, hence the term foreign interface. Furthermore, since most APIs
consist mostly of functions, the foreign interface is sometimes called a foreign function in-
terface, abbreviated FFI.

1

https://pkgs.racket-lang.org/package/base

Contents

1 Overview 5

1.1 Libraries, C Types, and Objects . 5

1.2 Function-Type Bells and Whistles . 6

1.3 By-Reference Arguments . 7

1.4 C Structs . 8

1.5 Pointers and Manual Allocation . 9

1.6 Pointers and GC-Managed Allocation . 10

1.7 Reliable Release of Resources . 11

1.8 Threads and Places . 12

1.9 More Examples . 14

2 Loading Foreign Libraries 15

3 C Types 19

3.1 Type Constructors . 19

3.2 Numeric Types . 21

3.3 Other Atomic Types . 23

3.4 String Types . 24

3.4.1 Primitive String Types . 24

3.4.2 Fixed Auto-Converting String Types 25

3.4.3 Variable Auto-Converting String Type 25

3.4.4 Other String Types . 26

3.5 Pointer Types . 26

3.6 Function Types . 28

3.6.1 Custom Function Types . 35

2

3.7 C Struct Types . 41

3.8 C Array Types . 47

3.9 C Union Types . 50

3.10 Enumerations and Masks . 52

4 Pointer Functions 54

4.1 Pointer Dereferencing . 55

4.2 Memory Management . 58

4.3 Pointer Structure Property . 63

5 Derived Utilities 64

5.1 Safe Homogenous Vectors . 64

5.2 Safe C Vectors . 71

5.3 Tagged C Pointer Types . 73

5.4 Serializable C Struct Types . 76

5.5 Static Callout and Callback Cores . 79

5.6 Defining Bindings . 79

5.6.1 FFI Identifier Conventions . 82

5.7 Allocation and Finalization . 83

5.8 Custodian Shutdown Registration . 85

5.9 Atomic Execution . 87

5.10 Speculatively Atomic Execution . 91

5.11 Thread Scheduling . 92

5.12 Ports . 94

5.13 Process-Wide and Place-Wide Registration 97

5.14 Operating System Threads . 97

3

5.14.1 Operating System Asynchronous Channels 98

5.15 Garbage Collection Callbacks . 99

5.16 Objective-C FFI . 101

5.16.1 FFI Types and Constants . 101

5.16.2 Syntactic Forms and Procedures 102

5.16.3 Raw Runtime Functions . 108

5.16.4 Legacy Library . 111

5.17 Cocoa Foundation . 111

5.17.1 Strings . 111

5.17.2 Allocation Pools . 111

5.18 COM (Common Object Model) . 112

5.18.1 COM Automation . 113

5.18.2 COM Classes and Interfaces . 123

5.18.3 ActiveX Controls . 130

5.19 File Security-Guard Checks . 131

5.20 Windows API Helpers . 132

5.21 Virtual Machine Primitives . 133

6 Miscellaneous Support 135

7 Unexported Primitive Functions 138

Bibliography 141

Index 142

Index 142

4

1 Overview

Although using the FFI requires writing no new C code, it provides very little insulation
against the issues that C programmers face related to safety and memory management. An
FFI programmer must be particularly aware of memory management issues for data that
spans the Racket–C divide. Thus, this manual relies in many ways on the information in
Inside: Racket C API, which defines how Racket interacts with C APIs in general.

Since using the FFI entails many safety concerns that Racket programmers can normally
ignore, the library name includes unsafe. Importing the library macro should be considered
as a declaration that your code is itself unsafe, therefore can lead to serious problems in
case of bugs: it is your responsibility to provide a safe interface. If your library provides an
unsafe interface, then it should have unsafe in its name, too.

For more information on the motivation and design of the Racket FFI, see [Barzilay04].

1.1 Libraries, C Types, and Objects

To use the FFI, you must have in mind

• a particular library from which you want to access a function or value,

• a particular symbol exported by the file, and

• the C-level type (typically a function type) of the exported symbol.

The library corresponds to a file with a suffix such as ".dll", ".so", or ".dylib" (de-
pending on the platform), or it might be a library within a ".framework" directory on Mac
OS.

Knowing the library’s name and/or path is often the trickiest part of using the FFI. Some-
times, when using a library name without a path prefix or file suffix, the library file can be
located automatically, especially on Unix. See ffi-lib for advice.

The ffi-lib function gets a handle to a library. To extract exports of the library, it’s sim-
plest to use define-ffi-definer from the ffi/unsafe/define library:

#lang racket/base
(require ffi/unsafe

ffi/unsafe/define)

(define-ffi-definer define-curses (ffi-lib "libcurses"))

This define-ffi-definer declaration introduces a define-curses form for binding

5

a Racket name to a value extracted from "libcurses"—which might be located at
"/usr/lib/libcurses.so", depending on the platform.

To use define-curses, we need the names and C types of functions from "libcurses".
We’ll start by using the following functions:

WINDOW* initscr(void);
int waddstr(WINDOW *win, char *str);
int wrefresh(WINDOW *win);
int endwin(void);

We make these functions callable from Racket as follows: By convention, an
underscore prefix
indicates a
representation of a
C type (such as
_int) or a
constructor of such
representations
(such as
_cpointer).

(define _WINDOW-pointer (_cpointer 'WINDOW))

(define-curses initscr (_fun -> _WINDOW-pointer))
(define-curses waddstr (_fun _WINDOW-pointer _string -> _int))
(define-curses wrefresh (_fun _WINDOW-pointer -> _int))
(define-curses endwin (_fun -> _int))

The definition of _WINDOW-pointer creates a Racket value that reflects a C type via
_cpointer, which creates a type representation for a pointer type—usually one that is
opaque. The 'WINDOW argument could have been any value, but by convention, we use a
symbol matching the C base type.

Each define-curses form uses the given identifier as both the name of the library export
and the Racket identifier to bind. The (_fun ... -> ...) part of each definition describes An optional

#:c-id clause for
define-curses
can specify a name
for the library
export that is
different from the
Racket identifier to
bind.

the C type of the exported function, since the library file does not encode that information
for its exports. The types listed to the left of -> are the argument types, while the type to the
right of -> is the result type. The pre-defined _int type naturally corresponds to the int C
type, while _string corresponds to the char* type when it is intended as a string to read.

At this point, initscr, waddstr, wrefresh, and endwin are normal Racket bindings to
Racket functions (that happen to call C functions), and so they can be exported from the
defining module or called directly:

(define win (initscr))
(void (waddstr win "Hello"))
(void (wrefresh win))
(sleep 1)
(void (endwin))

1.2 Function-Type Bells and Whistles

Our initial use of functions like waddstr is sloppy, because we ignore return codes. C
functions often return error codes, and checking them is a pain. A better approach is to build

6

the check into the waddstr binding and raise an exception when the code is non-zero.

The _fun function-type constructor includes many options to help convert C functions to
nicer Racket functions. We can use some of those features to convert return codes into either
#<void> or an exception:

(define (check v who)
(unless (zero? v)

(error who "failed: ~a" v)))

(define-curses initscr (_fun -> _WINDOW-pointer))
(define-curses waddstr (_fun _WINDOW-pointer _string -> (r : _int)

-> (check r 'waddstr)))
(define-curses wrefresh (_fun _WINDOW-pointer -> (r : _int)

-> (check r 'wrefresh)))
(define-curses endwin (_fun -> (r : _int)

-> (check r 'endwin)))

Using (r : _int) as a result type gives the local name r to the C function’s result. This
name is then used in the result post-processing expression that is specified after a second ->
in the _fun form.

1.3 By-Reference Arguments

To get mouse events from "libcurses", we must explicitly enable them through the
mousemask function:

typedef unsigned long mmask_t;
#define BUTTON1_CLICKED 004L

mmask_t mousemask(mmask_t newmask, mmask_t *oldmask);

Setting BUTTON1_CLICKED in the mask enables button-click events. At the same time,
mousemask returns the current mask by installing it into the pointer provided as its second
argument.

Since these kinds of call-by-reference interfaces are common in C, _fun cooperates with a
_ptr form to automatically allocate space for a by-reference argument and extract the value
put there by the C function. Give the extracted value name to use in the post-processing
expression. The post-processing expression can combine the by-reference result with the
function’s direct result (which, in this case, reports a subset of the given mask that is actually
supported).

(define _mmask_t _ulong)
(define-curses mousemask (_fun _mmask_t (o : (_ptr o _mmask_t))

7

-> (r : _mmask_t)
-> (values o r)))

(define BUTTON1_CLICKED 4)

(define-values (old supported) (mousemask BUTTON1_CLICKED))

1.4 C Structs

Assuming that mouse events are supported, the "libcurses" library reports them via get-
mouse, which accepts a pointer to a MEVENT struct to fill with mouse-event information:

typedef struct {
short id;
int x, y, z;
mmask_t bstate;

} MEVENT;

int getmouse(MEVENT *event);

To work with MEVENT values, we use define-cstruct:

(define-cstruct _MEVENT ([id _short]
[x _int]
[y _int]
[z _int]
[bstate _mmask_t]))

This definition binds many names in the same way that define-struct binds many names:
_MEVENT is a C type representing the struct type, _MEVENT-pointer is a C type representing
a pointer to a _MEVENT, make-MEVENT constructs a _MEVENT value, MEVENT-x extracts the
x fields from an _MEVENT value, and so on.

With this C struct declaration, we can define the function type for getmouse. The simplest
approach is to define getmouse to accept an _MEVENT-pointer, and then explicitly allocate
the _MEVENT value before calling getmouse:

(define-curses getmouse (_fun _MEVENT-pointer -> _int))

(define m (make-MEVENT 0 0 0 0 0))
(when (zero? (getmouse m))

; use m...
....)

For a more Racket-like function, use (_ptr o _MEVENT) and a post-processing expression:

8

(define-curses getmouse (_fun (m : (_ptr o _MEVENT))
-> (r : _int)
-> (and (zero? r) m)))

(waddstr win (format "click me fast..."))
(wrefresh win)
(sleep 1)

(define m (getmouse))
(when m

(waddstr win (format "at ~a,~a"
(MEVENT-x m)
(MEVENT-y m)))

(wrefresh win)
(sleep 1))

(endwin)

The difference between _MEVENT-pointer and _MEVENT is crucial. Using (_ptr o
_MEVENT-pointer) would allocate only enough space for a pointer to an MEVENT struct,
which is not enough space for an MEVENT struct.

1.5 Pointers and Manual Allocation

To get text from the user instead of a mouse click, "libcurses" provides wgetnstr:

int wgetnstr(WINDOW *win, char *str, int n);

While the char* argument to waddstr is treated as a nul-terminated string, the char* ar-
gument to wgetnstr is treated as a buffer whose size is indicated by the final int argument.
The C type _string does not work for such buffers.

One way to approach this function from Racket is to describe the arguments in their rawest
form, using plain _pointer for the second argument to wgetnstr:

(define-curses wgetnstr (_fun _WINDOW-pointer _pointer _int -> _int))

To call this raw version of wgetnstr, allocate memory, zero it, and pass the size minus one
(to leave room a nul terminator) to wgetnstr:

(define SIZE 256)
(define buffer (malloc 'raw SIZE))
(memset buffer 0 SIZE)

(void (wgetnstr win buffer (sub1 SIZE)))

9

When wgetnstr returns, it has written bytes to buffer. At that point, we can use cast to
convert the value from a raw pointer to a string:

(cast buffer _pointer _string)

Conversion via the _string type causes the data referenced by the original pointer to be
copied (and UTF-8 decoded), so the memory referenced by buffer is no longer needed.
Memory allocated with (malloc 'raw ...) must be released with free:

(free buffer)

1.6 Pointers and GC-Managed Allocation

Instead of allocating buffer with (malloc 'raw ...), we could have allocated it with
(malloc 'atomic ...):

(define buffer (malloc 'atomic SIZE))

Memory allocated with 'atomic is managed by the garbage collector, so free is neither
necessary nor allowed when the memory referenced by buffer is no longer needed. Instead,
when buffer becomes inaccessible, the allocated memory will be reclaimed automatically.

Allowing the garbage collector (GC) to manage memory is usually preferable. It’s easy to
forget to call free, and exceptions or thread termination can easily skip a free.

At the same time, using GC-managed memory adds a different burden on the programmer:
data managed by the GC may be moved to a new address as the GC compacts allocated
objects to avoid fragmentation. C functions, meanwhile, expect to receive pointers to objects
that will stay put.

Fortunately, unless a C function calls back into the Racket runtime system (perhaps through
a function that is provided as an argument), no garbage collection will happen between the
time that a C function is called and the time that the function returns.

Let’s look a few possibilities related to allocation and pointers:

• Ok:

(define p (malloc 'atomic SIZE))
(wgetnstr win p (sub1 SIZE))

Although the data allocated by malloc can move around, p will always point to it,
and no garbage collection will happen between the time that the address is extracted
from p to pass to wgetnstr and the time that wgetnstr returns.

10

• Bad:

(define p (malloc 'atomic SIZE))
(define i (cast p _pointer _intptr))
(wgetnstr win (cast i _intptr _pointer) (sub1 SIZE))

The data referenced by p can move after the address is converted to an integer, in
which case i cast back to a pointer will be the wrong address.

Obviously, casting a pointer to an integer is generally a bad idea, but the cast simulates
another possibility, which is passing the pointer to a C function that retains the pointer
in its own private store for later use. Such private storage is invisible to the Racket
GC, so it has the same effect as casting the pointer to an integer.

• Ok:

(define p (malloc 'atomic SIZE))
(define p2 (ptr-add p 4))
(wgetnstr win p2 (- SIZE 5))

The pointer p2 retains the original reference and only adds the 4 at the last minute
before calling wgetnstr (i.e., after the point that garbage collection is allowed).

• Ok:

(define p (malloc 'atomic-interior SIZE))
(define i (cast p _pointer _intptr))
(wgetnstr win (cast i _intptr _pointer) (sub1 SIZE))

This is ok assuming that p itself stays accessible, so that the data it references isn’t
reclaimed. Allocating with 'atomic-interior puts data at a particular address and
keeps it there. A garbage collection will not change the address in p, and so i (cast
back to a pointer) will always refer to the data.

Keep in mind that C struct constructors like make-MEVENT are effectively the same as (mal-
loc 'atomic ...); the result values can move in memory during a garbage collection.
The same is true of byte strings allocated with make-bytes, which (as a convenience) can
be used directly as a pointer value (unlike character strings, which are always copied for
UTF-8 encoding or decoding).

For more information about memory management and garbage collection, see §1.2 “Racket
CS Memory Management” and §12 “Memory Allocation (BC)” in Inside: Racket C API.

1.7 Reliable Release of Resources

Using GC-managed memory saves you from manual frees for plain memory blocks, but C
libraries often allocate resources and require a matching call to a function that releases the

11

resources. For example, "libcurses" supports windows on the screen that are created with
newwin and released with delwin:

WINDOW *newwin(int lines, int ncols, int y, int x);
int delwin(WINDOW *win);

In a sufficiently complex program, ensuring that every newwin is paired with delwin can
be challenging, especially if the functions are wrapped by otherwise safe functions that are
provided from a library. A library that is intended to be safe for use in a sandbox, say,
must protect against resource leaks within the Racket process as a whole when a sandboxed
program misbehaves or is terminated.

The ffi/unsafe/alloc library provides functions to connect resource-allocating functions
and resource-releasing functions. The library then arranges for finalization to release a re-
source if it becomes inaccessible (according to the GC) before it is explicitly released. At the
same time, the library handles tricky atomicity requirements to ensure that the finalization is
properly registered and never run multiple times.

Using ffi/unsafe/alloc, the newwin and delwin functions can be imported with allo-
cator and deallocator wrappers, respectively:

(require ffi/unsafe/alloc)

(define-curses delwin (_fun _WINDOW-pointer -> _int)
#:wrap (deallocator))

(define-curses newwin (_fun _int _int _int _int
-> _WINDOW-pointer)

#:wrap (allocator delwin))

A deallocator wrapper makes a function cancel any existing finalizer for the function’s
argument. An allocator wrapper refers to the deallocator, so that the deallocator can be
run if necessary by a finalizer.

If a resource is scarce or visible to end users, then custodian management is more appropriate
than mere finalization as implemented by allocator. See the ffi/unsafe/custodian
library.

1.8 Threads and Places

Although older versions of "libcurses" are not thread-safe, Racket threads do not corre-
spond to OS-level threads, so using Racket threads to call "libcurses" functions creates
no particular problems.

Racket places, however, correspond to OS-level threads. Using a foreign library from mul-

12

tiple places works when the library is thread-safe. Calling a non-thread-safe library from
multiple places requires more care.

The simplest way to use a non-thread-safe library from multiple places is to specify the
#:in-original-place? #t option of _fun, which routes every call to the function
through the original Racket place instead of the calling place. Most of the functions that
we initially used from "libcurses" can be made thread-safe simply:

(define-curses initscr
(_fun #:in-original-place? #t -> _WINDOW-pointer))

(define-curses wrefresh
(_fun #:in-original-place? #t _WINDOW-pointer -> _int))

(define-curses endwin
(_fun #:in-original-place? #t -> _int))

The waddstr function is not quite as straightforward. The problem with

(define-curses waddstr
(_fun #:in-original-place? #t _WINDOW-pointer _string -> _int))

is that the string argument to waddstr might move in the calling place before the
waddstr call completes in the original place. To safely call waddstr, we can use a
_string/immobile type that allocates bytes for the string argument with 'atomic-
interior:

(define _string/immobile
(make-ctype _pointer

(lambda (s)
(define bstr (cast s _string _bytes))
(define len (bytes-length bstr))
(define p (malloc 'atomic-interior len))
(memcpy p bstr len)
p)

(lambda (p)
(cast p _pointer _string))))

(define-curses waddstr
(_fun #:in-original-place? #t _WINDOW-pointer _string/immobile -> _int))

Beware that passing memory allocated with 'interior (as opposed to 'atomic-
interior) is safe only for functions that read the memory without writing. A foreign
function must not write to 'interior-allocated memory from a place other than the one
where the memory is allocated, due a place-specific treatment of writes to implement gener-
ational garbage collection.

13

1.9 More Examples

For more examples of common FFI patterns, see the defined interfaces in the
"ffi/examples" collection. See also [Barzilay04].

14

2 Loading Foreign Libraries

The FFI is normally used by extracting functions and other objects from shared objects
(a.k.a. shared libraries or dynamically loaded libraries). The ffi-lib function loads a
shared object.

(ffi-lib? v) Ñ boolean?
v : any/c

Returns #t if v is a foreign-library value, #f otherwise.

(ffi-lib path
[version
#:get-lib-dirs get-lib-dirs
#:fail fail
#:global? global?
#:custodian custodian]) Ñ any

path : (or/c path-string? #f)
version : (or/c string? (listof (or/c string? #f)) #f) = #f
get-lib-dirs : (-> (listof path?)) = get-lib-search-dirs
fail : (or/c #f (-> any)) = #f
global? : any/c = (eq? 'global (system-type 'so-mode))
custodian : (or/c 'place custodian? #f) = #f

Returns a foreign-library value or the result of fail . Normally,

• path is a path without a version or suffix (i.e., without ".dll", ".so", or ".dylib");
and

• version is a list of versions to try in order with #f (i.e., no version) as the last element
of the list; for example, '("2" #f) indicates version 2 with a fallback to a versionless
library.

When the library suffix as reported by (system-type 'so-suffix) is ".dylib",
then a version is added to path after a "." and before the ".dylib" suffix. When the
library suffix is ".dll", then a version is added to path after a "-" and before the
".dll" suffix. For any other suffix, the version number is added after the suffix plus
".".

A string or #f version is equivalent to a list containing just the string or #f, and an empty
string (by itself or in a list) is equivalent to #f.

Beware of relying on versionless library names. On some platforms, versionless library
names are provided only by development packages. At the same time, other platforms may

15

require a versionless fallback. A list of version strings followed by #f is typically best for
version .

Assuming that path is not #f, the result from ffi-lib represents the library found by the
following search process:

• If path is not an absolute path, look in each directory reported by get-lib-dirs ;
the default list is the result of (get-lib-search-dirs). In each directory, try path
with the first version in version , adding a suitable suffix if path does not already
end in the suffix, then try the second version in version , etc. (If version is an
empty list, no paths are tried in this step.)

• Try the same filenames again, but without converting the path to an absolute path,
which allows the operating system to use its own search paths. (If version is an
empty list, no paths are tried in this step.)

• Try path without adding any version or suffix, and without converting to an absolute
path.

• Try the version-adjusted filenames again, but relative to the current directory. (If ver-
sion is an empty list, no paths are tried in this step.)

• Try path without adding any version or suffix, but converted to an absolute path
relative to the current directory.

If none of the paths succeed and fail is a function, then fail is called in tail position. If
fail is #f, an error is reported from trying the first path from the second bullet above or
(if version is an empty list) from the third bullet above. A library file may exist but fail to
load for some reason; the eventual error message will unfortunately name the fallback from
the second or third bullet, since some operating systems offer no way to determine why a
given library path failed.

If path is #f, then the resulting foreign-library value represents all libraries loaded in the
current process, including libraries previously opened with ffi-lib. In particular, use #f to
access C-level functionality exported by the run-time system (as described in Inside: Racket
C API). The version argument is ignored when path is #f.

If path is not #f, global? is true, and the operating system supports opening a library in
“global” mode so that the library’s symbols are used for resolving references from libraries
that are loaded later, then global mode is used to open the library. Otherwise, the library
is opened in “local” mode, where the library’s symbols are not made available for future
resolution. This local-versus-global choice does not affect whether the library’s symbols are
available via (ffi-lib #f).

If custodian is 'place or a custodian, the library is unloaded when a custodian is shut
down—either the given custodian or the place’s main custodian if custodian is 'place.
When a library is unloaded, all references to the library become invalid. Supplying 'place

16

for custodian is consistent with finalization via ffi/unsafe/alloc but will not, for ex-
ample, unload the library when hitting in the Run button in DrRacket. Supplying (current-
custodian) for custodian tends to unload the library for eagerly, but requires even more
care to ensure that library references are not accessed after the library is unloaded.

If custodian is #f, the loaded library is associated with Racket (or DrRacket) for the
duration of the process. Loading again with ffi-lib, will not force a re-load of the corre-
sponding library.

When ffi-lib returns a reference to a library that was previously loaded within the current
place, it increments a reference count on the loaded library rather than loading the library
fresh. Unloading a library reference decrements the reference count and requests unloading
at the operating-system level only if the reference count goes to zero.

The ffi-lib procedure logs (see §15.5 “Logging”) on the topic 'ffi-lib. In particular,
on failure it logs the paths attempted according to the rules above, but it cannot report the
paths tried due to the operating system’s library search path.

Changed in version 6.1.0.5 of package base: Changed the way a version number is added with a ".dll" suffix to
place it before the suffix, instead of after.
Changed in version 7.3.0.3: Added logging.
Changed in version 7.4.0.7: Added the #:custodian argument.

(get-ffi-obj objname lib type [failure-thunk]) Ñ any
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
type : ctype?
failure-thunk : (or/c (-> any) #f) = #f

Looks for objname in lib library. If lib is not a foreign-library value it is converted to
one by calling ffi-lib. If objname is found in lib , it is converted to Racket using the
given type . Types are described in §3 “C Types”; in particular the get-ffi-obj procedure
is most often used with function types created with _fun.

Keep in mind that get-ffi-obj is an unsafe procedure; see §1 “Overview” for details.

If the name is not found, and failure-thunk is provided, it is used to produce a return
value. For example, a failure thunk can be provided to report a specific error if a name is not
found:

(define foo
(get-ffi-obj "foo" foolib (_fun _int -> _int)

(lambda ()
(error 'foolib

"installed foolib does not provide \"foo\""))))

The default (also when failure-thunk is provided as #f) is to raise an exception.

17

(set-ffi-obj! objname lib type new) Ñ void?
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
type : ctype?
new : any/c

Looks for objname in lib similarly to get-ffi-obj, but then it stores the given new value
into the library, converting it to a C value. This can be used for setting library customization
variables that are part of its interface, including Racket callbacks.

(make-c-parameter objname
lib
type

[failure-thunk])
Ñ (case-> (-> any)

(any/c . -> . void?))
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
type : ctype?
failure-thunk : (or/c (-> any) #f) = #f

Returns a parameter-like procedure that can either references the specified foreign value, or
set it. The arguments are handled as in get-ffi-obj.

A parameter-like function is useful in case Racket code and library code interact through
a library value. Although make-c-parameter can be used with any type, it is not recom-
mended to use this for foreign functions, since each reference through the parameter will
construct the low-level interface before the actual call.

Changed in version 8.4.0.5 of package base: Added failure-thunk argument.

(define-c id lib-expr type-expr)

Defines id behave like a Racket binding, but id is actually redirected through a parameter-
like procedure created by make-c-parameter. The id is used both for the Racket binding
and for the foreign name.

(ffi-obj-ref objname lib [failure-thunk]) Ñ any
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
failure-thunk : (or/c (-> any) #f) = #f

Returns a pointer for the specified foreign name, calls failure-thunk if the name is not
found, or raises an exception if failure-thunk is #f.

Normally, get-ffi-obj should be used, instead.

18

3 C Types

C types are the main concept of the FFI, either primitive types or user-defined types. The
FFI deals with primitive types internally, converting them to and from C types. A user type
is defined in terms of existing primitive and user types, along with conversion functions to
and from the existing types.

3.1 Type Constructors

(make-ctype type racket-to-c c-to-racket) Ñ ctype?
type : ctype?
racket-to-c : (or/c #f (any/c . -> . any))
c-to-racket : (or/c #f (any/c . -> . any))

Creates a new C type value whose representation for foreign code is the same as type ’s.

The given conversion functions convert to and from the Racket representation of the new
type. Either conversion function can be #f, meaning that the conversion for the correspond-
ing direction is the identity function. If both functions are #f, type is returned.

The racket-to-c function takes any value and, if it is a valid representation of the new
type, converts it to a representation of type . The c-to-racket function takes a represen-
tation of type and produces a representation of the new type.

When the result type is used for an argument in a foreign call, beware that only the original
argument value is specifically retained for the call, and not a result of racket-to-c . If the
foreign call leads to a Racket callback, a garbage collection during the callback may move or
reclaim an argument value that is otherwise unreferenced. Consider registering a mapping
from the argument to result of racket-to-c in an ephemeron hash table so that the result
remains reachable as long as the argument is reachable.

(ctype? v) Ñ boolean?
v : any/c

Returns #t if v is a C type, #f otherwise.

Examples:

> (ctype? _int)
#t
> (ctype? (_fun _int -> _int))
#t
> (ctype? #f)
#f

19

> (ctype? "foo")
#f

(ctype-sizeof type) Ñ exact-nonnegative-integer?
type : ctype?

(ctype-alignof type) Ñ exact-nonnegative-integer?
type : ctype?

Returns the size or alignment of a given type for the current platform.

Examples:

> (ctype-sizeof _int)
4
> (ctype-sizeof (_fun _int -> _int))
8
> (ctype-alignof _int)
4
> (ctype-alignof (_fun _int -> _int))
8

(ctype->layout type)
Ñ (flat-rec-contract rep symbol? (listof rep))
type : ctype?

Returns a value to describe the eventual C representation of the type. It can be any of the
following symbols:

'int8 'uint8 'int16 'uint16 'int32 'uint32 'int64 'uint64
'float 'double 'bool 'void 'pointer 'fpointer
'bytes 'string/ucs-4 'string/utf-16

The result can also be a list, which describes a C struct whose element representations are
provided in order within the list. Finally, the result can be a vector of size 2 containing an
element representation followed by an exact-integer count.

Examples:

> (ctype->layout _int)
'int32
> (ctype->layout _void)
'void
> (ctype->layout (_fun _int -> _int))
'fpointer

20

(compiler-sizeof sym) Ñ exact-nonnegative-integer?
sym : (or/c symbol? (listof symbol?))

Possible values for sym are 'int, 'char, 'wchar, 'short, 'long, '*, 'void, 'float,
'double, or lists of symbols, such as '(long long). The result is the size of the corre-
sponding type according to the C sizeof operator for the current platform. The compiler-
sizeof operation should be used to gather information about the current platform, such as
defining alias type like _int to a known type like _int32.

Examples:

> (compiler-sizeof 'int)
4
> (compiler-sizeof '(long long))
8

3.2 Numeric Types

_int8 : ctype?
_sint8 : ctype?
_uint8 : ctype?
_int16 : ctype?
_sint16 : ctype?
_uint16 : ctype?
_int32 : ctype?
_sint32 : ctype?
_uint32 : ctype?
_int64 : ctype?
_sint64 : ctype?
_uint64 : ctype?

The basic integer types at various sizes. The s or u prefix specifies a signed or an unsigned
integer, respectively; the ones with no prefix are signed.

_byte : ctype?
_sbyte : ctype?
_ubyte : ctype?

The _sbyte and _ubyte types are aliases for _sint8 and _uint8, respectively. The _byte
type is like _ubyte, but adds 256 to a negative Racket value that would work as a _sbyte
(i.e., it casts signed bytes to unsigned bytes).

_wchar : ctype?

21

The _wchar type is an alias for an unsigned integer type, such as _uint16 or _uint32,
corresponding to the platform’s wchar_t type.

Added in version 7.0.0.3 of package base.

_word : ctype?
_sword : ctype?
_uword : ctype?

The _sword and _uword types are aliases for _sint16 and _uint16, respectively. The
_word type is like _uword, but coerces negative values in the same way as _byte.
_short : ctype?
_sshort : ctype?
_ushort : ctype?
_int : ctype?
_sint : ctype?
_uint : ctype?
_long : ctype?
_slong : ctype?
_ulong : ctype?
_llong : ctype?
_sllong : ctype?
_ullong : ctype?
_intptr : ctype?
_sintptr : ctype?
_uintptr : ctype?

Aliases for basic integer types. The _short aliases correspond to _int16. The _int aliases
correspond to _int32. The _long aliases correspond to either _int32 or _int64, depend-
ing on the platform. Similarly, the _intptr aliases correspond to either _int32 or _int64,
depending on the platform.
_size : ctype?
_ssize : ctype?
_ptrdiff : ctype?
_intmax : ctype?
_uintmax : ctype?

More aliases for basic integer types. The _size and _uintmax types are aliases for
_uintptr, and the rest are aliases for _intptr.
_fixnum : ctype?
_ufixnum : ctype?

For cases where speed matters and where you know that the integer is small enough, the
types _fixnum and _ufixnum are similar to _intptr and _uintptr but assume that the
quantities fit in Racket’s immediate integers (i.e., not bignums).

22

_fixint : ctype?
_ufixint : ctype?

Similar to _fixnum/_ufixnum, but based on _int/_uint instead of _intptr/_uintptr,
and coercions from C are checked to be in range.

_float : ctype?
_double : ctype?
_double* : ctype?

The _float and _double types represent the corresponding C types. Both single- and
double-precision Racket numbers are accepted for conversion via both _float and _dou-
ble, while both _float and _double coerce C values to double-precision Racket numbers.
The type _double* coerces any Racket real number to a C double.

_longdouble : ctype?

Represents the long double type on platforms where it is supported, in which case Racket
extflonums convert to and from long double values.

3.3 Other Atomic Types

_stdbool : ctype?

The _stdbool type represents the C99 bool type from <stdbool.h>. Going from Racket
to C, _stdbool translates #f to a 0 bool and any other value to a 1 bool. Going from C to
Racket, _stdbool translates 0 to a #f and any other value to #t.

Added in version 6.0.0.6 of package base.

_bool : ctype?

Like _stdbool, but with an int representation on the C side, reflecting one of many tradi-
tional (i.e., pre-C99) encodings of booleans.

_void : ctype?

Indicates a Racket #<void> return value, and it cannot be used to translate values to C. This
type cannot be used for function inputs.

23

3.4 String Types

3.4.1 Primitive String Types

See also _bytes/nul-terminated and _bytes for converting between byte strings and
C’s char* type.

_string/ucs-4 : ctype?

A type for UCS-4 format strings that include a nul terminator. As usual, the type treats #f
as NULL and vice versa.

For the CS implementation of Racket, the conversion of a Racket string for the foreign side
is a copy of the Racket representation, where the copy is managed by the garbage collector.

For the BC implementation of Racket, the conversion of a Racket string for the foreign side
shares memory with the Racket string representation, since UCS-4 is the native represen-
tation format for those variants. The foreign pointer corresponds to the mzchar* type in
Racket’s C API.
_string/utf-16 : ctype?

Unicode strings in UTF-16 format that include a nul terminator. As usual, the types treat #f
as NULL and vice versa.

The conversion of a Racket string for the foreign side is a copy of the Racket representation
(reencoded), where the copy is managed by the garbage collector.

_path : ctype?

Simple char* strings that are nul terminated, corresponding to Racket’s path or string. As
usual, the type treats #f as NULL and vice versa.

For the BC implementation of Racket, the conversion of a Racket path for the foreign side
shares memory with the Racket path representation. Otherwise (for the CS implementation
or for Racket strings), conversion for the foreign side creates a copy that is managed by the
garbage collector.

Beware that changing the current directory via current-directory does năot change
the OS-level current directory as seen by foreign library functions. Paths normally should
be converted to absolute form using path->complete-path (which uses the current-
directory parameter) before passing them to a foreign function.

_symbol : ctype?

Simple char* strings as Racket symbols (encoded in UTF-8 and nul terminated), intended
as read-only for the foreign side. Return values using this type are interned as symbols.

24

For the CS implementation of Racket, the conversion of a Racket symbol for the foreign side
is a copy of the Racket representation, where the copy is managed by the garbage collector.

For the BC implementation of Racket, the conversion of a Racket symbol for the foreign
side shares memory with the Racket symbol representation, but points to the middle of the
symbol’s allocated memory—so the string pointer must not be used across a garbage collec-
tion.

3.4.2 Fixed Auto-Converting String Types

_string/utf-8 : ctype?
_string/latin-1 : ctype?
_string/locale : ctype?

Types that correspond to (character) strings on the Racket side and char* strings on the C
side. The bridge between the two requires a transformation on the content of the string. As
usual, the types treat #f as NULL and vice versa.

_string*/utf-8 : ctype?
_string*/latin-1 : ctype?
_string*/locale : ctype?

Similar to _string/utf-8, etc., but accepting a wider range of values: Racket byte strings
are allowed and passed as is, and Racket paths are converted using path->bytes.

3.4.3 Variable Auto-Converting String Type

The _string/ucs-4 type is rarely useful when interacting with foreign code, while using
_bytes/nul-terminated is somewhat unnatural, since it forces Racket programmers to
use byte strings. Using _string/utf-8, etc., meanwhile, may prematurely commit to a
particular encoding of strings as bytes. The _string type supports conversion between
Racket strings and char* strings using a parameter-determined conversion.

_string : ctype?

Expands to a use of the default-_string-type parameter. The parameter’s value is con-
sulted when _string is evaluated, so the parameter should be set before any interface defi-
nition that uses _string.

Don’t use _string when you should use _path. Although C APIs typically represent paths
as strings, and although the default _string (via default-_string-type) even implicitly
converts Racket paths to strings, using _path ensures the proper encoding of strings as paths,
which is not always UTF-8. See also _path for a caveat about relative paths.

25

(default-_string-type) Ñ ctype?
(default-_string-type type) Ñ void?

type : ctype?

A parameter that determines the current meaning of _string. It is initially set to
_string*/utf-8. If you change it, do so before interfaces are defined.

3.4.4 Other String Types

_file : ctype?

Like _path, but when values go from Racket to C, cleanse-path is used on the given
value. As an output value, it is identical to _path.

_bytes/eof : ctype?

Similar to the _bytes type, except that a foreign return value of NULL is translated to a
Racket eof value.
_string/eof : ctype?

Similar to the _string type, except that a foreign return value of NULL is translated to a
Racket eof value.

3.5 Pointer Types

_pointer : ctype?

Corresponds to Racket C pointer values. These pointers can have an arbitrary Racket object
attached as a type tag. The tag is ignored by built-in functionality; it is intended to be used
by interfaces. See §5.3 “Tagged C Pointer Types” for creating pointer types that use these
tags for safety. A #f value is converted to NULL and vice versa.

As a result type, the address referenced by a _pointer value must not refer to memory
managed by the garbage collector (unless the address corresponds to a value that supports
interior pointers and that is otherwise referenced to preserve the value from garbage collec-
tion). The reference is not traced or updated by the garbage collector. As an argument type,
_pointer works for a reference to either GC-managed memory or not.

The equal? predicate equates C pointers (including pointers for _gcpointer and possibly
containing an offset) when they refer to the same address—except for C pointers that are
instances of structure types with the prop:cpointer property, in which case the equality
rules of the relevant structure types apply.

26

_gcpointer : ctype?

The same as _pointer as an argument type, but as a result type, _gcpointer corresponds
to a C pointer value that refers to memory managed by the garbage collector.

In the BC implementation of Racket, a _gcpointer result pointer can reference to memory
that is not managed by the garbage collector, but beware of using an address that might
eventually become managed by the garbage collector. For example, if a reference is created
by malloc with 'raw and released by free, then the free may allow the memory formerly
occupied by the reference to be used later by the garbage collector.

The cpointer-gcable? function returns #t for a cpointer generated via the _gcpointer
result type. See cpointer-gcable? for more information.

_racket : ctype?
_scheme : ctype?

A type that can be used with any Racket object; it corresponds to the Scheme_Object* type
of Racket’s C API (see Inside: Racket C API). The _racket or _scheme type is useful only
for libraries that are aware of Racket’s C API.

As a result type with a function type, _racket or _scheme permits multiple values, but mul-
tiple values are not allowed in combination with a true value for #:in-original-place?
or #:async-apply in _cprocedure or _fun.

_fpointer : ctype?

Similar to _pointer, except that when _fpointer is used as the type for get-ffi-obj or
ffi-obj-ref, then a level of indirection is skipped. Furthermore, for a C pointer value from
get-ffi-obj or ffi-obj-ref using _fpointer, ptr-ref on the pointer as a _fpointer
simply returns the pointer instead of dereferencing it. Like _pointer, _fpointer treats #f
as NULL and vice versa.

A type generated by _cprocedure or _fun builds on _fpointer, and normally _cproce-
dure or _fun should be used instead of _fpointer.

(_or-null ctype) Ñ ctype?
ctype : ctype?

Creates a type that is like ctype , but #f is converted to NULL and vice versa. The given
ctype must have the same C representation as _pointer, _gcpointer, or _fpointer.

(_gcable ctype) Ñ ctype?
ctype : ctype?

27

Creates a type that is like ctype , but whose base representation is like _gcpointer in-
stead of _pointer. The given ctype must have a base representation like _pointer or
_gcpointer (and in the later case, the result is the ctype).

3.6 Function Types

(_cprocedure input-types
output-type

[#:abi abi
#:varargs-after varargs-after
#:atomic? atomic?
#:async-apply async-apply
#:lock-name lock-name
#:in-original-place? in-original-place?
#:blocking? blocking?
#:callback-exns? callback-exns?
#:save-errno save-errno
#:wrapper wrapper
#:keep keep]) Ñ any

input-types : (list ctype?)
output-type : ctype?
abi : (or/c #f 'default 'stdcall 'sysv) = #f
varargs-after : (or/c #f positive-exact-integer?) = #f
atomic? : any/c = #f
async-apply : (or/c #f ((-> any/c) . -> . any/c) box?) = #f
lock-name : (or/c string? #f) = #f
in-original-place? : any/c = #f
blocking? : any/c = #f
callback-exns? : any/c = #f
save-errno : (or/c #f 'posix 'windows) = #f
wrapper : (or/c #f (procedure? . -> . procedure?)) = #f
keep : (or/c boolean? box? (any/c . -> . any/c)) = #t

A type constructor that creates a new function type, which is specified by the given input-
types list and output-type . Usually, the _fun syntax (described below) should be used
instead, since it manages a wide range of complicated cases and may enable static code
generation.

The resulting type can be used to reference foreign functions (usually ffi-objs, but any
pointer object can be referenced with this type), generating a matching foreign callout object.
Such objects are new primitive procedure objects that can be used like any other Racket
procedure. As with other pointer types, #f is treated as a NULL function pointer and vice
versa.

28

A type created with _cprocedure can also be used for passing Racket procedures to for-
eign functions, which will generate a foreign function pointer that calls to the given Racket
callback procedure. There are no restrictions on the representation of the Racket procedure;
in particular, the procedure can have free variables that refer to bindings in its environment.
Callbacks are subject to run-time constraints, however, such as running in atomic mode or
not raising exceptions; see more information on callbacks below.

The optional abi keyword argument determines the foreign ABI that is used. Supplying
#f or 'default indicates the platform-dependent default. The other possible values—
'stdcall and 'sysv (i.e., “cdecl”)—are currently supported only for 32-bit Windows;
using them on other platforms raises an exception. See also ffi/winapi.

The optional varargs-after argument indicates whether some function-type arguments
should be considered “varargs,” which are argument represented by an ellipsis ... in the C
declaration (but by explicit arguments in input-types). A #f value indicates that the C
function type does not have varargs. If varargs-after is a number, then arguments after
the first varargs-after arguments in input-types are varargs. Note that #f is different
from (length input-types) on some platforms; the possibility of varargs for a function
may imply a different calling convention even for non-vararg arguments. Note also that a
non-#f varargs-after does not mean that you can supply any number of arguments to a
callout or receive any number of arguments to a callback using the procedure type; to work
with different argument counts and argument types, use _cprocedure (or _fun) separately
for each combination.

For callouts to foreign functions with the generated type:

• If save-errno is 'posix, then the value of errno is saved (specific to the cur-
rent thread) immediately after a foreign function callout returns. The saved value
is accessible through saved-errno. If save-errno is 'windows, then the value
of GetLastError() is saved for later use via saved-errno; the 'windows option
is available only on Windows (on other platforms saved-errno will return 0). If
save-errno is #f, no error value is saved automatically.

The error-recording support provided by save-errno is needed because the Racket
runtime system may otherwise preempt the current Racket thread and itself call func-
tions that set error values.

• If wrapper is not #f, it takes the callout that would otherwise be generated and returns
a replacement procedure. Thus, wrapper acts a hook to perform various argument
manipulations before the true callout is invoked, and it can return different results (for
example, grabbing a value stored in an “output” pointer and returning multiple values).

• If lock-name is not #f, then a process-wide lock with the given name is held during
the foreign call. In a build that supports parallel places, lock-name is registered via
scheme_register_process_global, so choose names that are suitably distinct.

• If in-original-place? is true, then when a foreign callout procedure with the gen-
erated type is called in a Racket place other than the original Racket place or in a

29

Racket parallel thread, the procedure is called in the original Racket place in an un-
specified coroutine thread. Use this mode for a foreign function that is not thread-safe
at the C level, which means that it is not place-safe or parallel-thread-safe at the Racket
level. Callbacks from place-unsafe code back into Racket at a non-original place typ-
ically will not work, since the place of the Racket code may have a different allocator
than the original place.

• If blocking? is true, then a foreign callout deactivates tracking of the calling OS
thread—to the degree supported by the Racket variant—during the foreign call. The
value of blocking? affects only the CS implementation of Racket, where it enable
activity such as garbage collection in other OS threads while the callout blocks. Since
a garbage collection can happen during the foreign call, objects passed to the foreign
call need to be immobile if they’re managed by the garbage collector; in particular,
any _ptr arguments should normally specify 'atomic-interior allocation mode.
If the blocking callout can invoke any callbacks back to Racket, those callbacks must
be constructed with a non-#f value of async-apply , even if they are always applied
in the OS thread used to run Racket.

• If callback-exns? is true, then a foreign callout allows an atomic callback during
the foreign call to raise an exception that escapes from the foreign call. From the
foreign library’s perspective, the exception escapes via longjmp. Exception escapes
are implemented through an exception handler that catches and reraises the exception.

A callback that raises an exception must be an atomic callback in the BC implemen-
tation of Racket (and callbacks are always atomic in the CS implementation). Raising
an exception is not allowed in a callback that has an async-apply , since the callback
will run in an unspecified context. Raising an exception is also not allowed if the
callout (that led to the callback) was created with in-original-place? as true and
called in a non-original place.

• Values that are provided to a callout (i.e., the underlying callout, and not the replace-
ment produced by a wrapper , if any) are always considered reachable by the garbage
collector until the called foreign function returns. If the foreign function invokes
Racket callbacks, however, beware that values managed by the Racket garbage col-
lector might be moved in memory by the garbage collector. Also, beware that each
argument is retained only as supplied, and not as potentially converted to a different
representation based the argument’s type (via layers of racket-to-c procedures for
make-ctype); a converter procedure associated with a type may need to create a ref-
erence connection between the original and converted values using an ephemeron hash
table.

• A callout object is finalized internally. Beware of trying to use a callout object that
is reachable only from a finalized object, since the two objects might be finalized in
either order.

For callbacks to Racket functions with the generated type:

30

• The keep argument provides control over reachability by the garbage collector of the
underlying value that foreign code see as a plain C function. Additional care must be
taken in case the foreign code might retain the callback function, in which case the
callback value must remain reachable or else the held callback will become invalid.
The possible values of keep are as follows:

– #t — the callback stays in memory as long as the converted Racket function is
reachable. This mode is the default, as it is fine in most cases. Note that each
Racket function can hold onto only one callback value through this mode, so it
is not suitable for a function used multiple times as a reatined callback.

– #f — the callback value is not held. This mode may be useful for a callback
that is only used for the duration of the foreign call; for example, the comparison
function argument to the standard C library qsort function is only used while
qsort is working, and no additional references to the comparison function are
kept. Use this option only in such cases, when no holding is necessary and you
want to avoid the extra cost.

– A box holding #f or any other non-list value — the callback value is stored in
the box, overriding any non-list value that was in the box (making it useful for
holding a single callback value). When you know that the callback is no longer
needed, you can “release” the callback value by changing the box contents or by
allowing the box itself to become unreachable. This mode can be useful if the
box is held for a dynamic extent that corresponds to when the callback is needed;
for example, you might encapsulate some foreign functionality in a Racket class
or a unit, and keep the callback box as a field in new instances or instantiations
of the unit.

– A box holding null (or any list) — similar to a box holding a non-list value,
except that new callback values are consed onto the contents of the box. This
mode is therefore useful in cases when a Racket function is used in multiple call-
backs (that is, sent to foreign code to hold onto multiple times) and all callbacks
should be retained together.

– A one-argument function — the function is invoked with the callback value when
it is generated. This mode allows you to explicitly manage reachability of the
generated callback closure.

• If wrapper is not #f, it takes the procedure to be converted into a callback and returns
a replacement procedure to be invoked as the callback. Thus, wrapper acts a hook to
perform various argument manipulations before a Racket callback function is called,
and it can return different results to the foreign caller.

The callback value’s reachability (and its interaction with keep) is based on the orig-
inal function for the callback, not the result of wrapper .

• If atomic? is true or when using the CS implementation of Racket, then when a
Racket procedure is given this type and called as a callback from foreign code, then
the Racket process is put into atomic mode while evaluating the Racket procedure
body.

31

In atomic mode, other Racket threads do not run, so the Racket code must not call
any function that potentially blocks on synchronization with other threads, or else it
may lead to deadlock. In addition, the Racket code must not perform any potentially
blocking operation (such as I/O), it must not raise an uncaught exception unless called
through a callout that supports exception (with #:callback-exns? #t), it must not
perform any escaping continuation jumps, and (at least for the BC implementation)
its non-tail recursion must be minimal to avoid C-level stack overflow; otherwise, the
process may crash or misbehave.

Callbacks are always atomic in the CS implementation of Racket. Even on the BC
implementation of Racket, atomic mode is typically needed for callbacks, because
capturing by copying a portion of the C stack is often incompatible with C libraries.

If a callback in atomic mode sends a break to the current thread, then not only is the
break delayed as usual for atomic mode, it delivery might be delayed further than
return from a foreign call that led to the callback.

• If a async-apply is provided as a procedure or box, then a Racket callback procedure
with the generated procedure type can be applied in a foreign thread (i.e., an OS-level
thread other than the one used to run Racket).

If async-apply is a procedure, the call in the foreign thread is transferred to the
OS-level thread that runs Racket coroutine threads and to an unspecified coroutine
thread; the job of the provided async-apply procedure is to arrange for the callback
procedure to be run in a suitable Racket thread.

The given async-apply procedure is applied to a thunk that encapsulates the specific
callback invocation, and the foreign OS-level thread blocks until the thunk is called
and completes; the thunk must be called exactly once, and the callback invocation
must return normally. The given async-apply procedure itself is called in atomic
mode.

If the callback is known to complete quickly, requires no synchronization, and works
independent of the Racket thread in which it runs, then it is safe for the given async-
apply procedure to apply the thunk directly. Otherwise, the given async-apply pro-
cedure must arrange for the thunk to be applied in a suitable Racket thread sometime
after the given async-apply procedure itself returns; if the thunk raises an exception
or synchronizes within an unsuitable Racket-level thread, it can deadlock or otherwise
damage the Racket process.

If async-apply is a box, then the value contained in the box is used as the result of
the callback when it is called in a foreign thread; the async-apply value is converted
to a foreign value at the time that _cprocedure is called. Using a boxed constant
value for async-apply avoids the need to synchronize with the OS-level thread that
runs Racket, but it effectively ignores the Racket procedure that is wrapped as callback
when the callback is applied in a foreign thread.

Foreign-thread detection to trigger async-apply works only when Racket is com-
piled with OS-level thread support, which is the default for many platforms. If a call-
back with an async-apply is called from foreign code in the same OS-level thread
that runs Racket, then async-apply is not used.

32

• A callback normally should not escape by raising an exception or invoking a continua-
tion. An atomic callback can potentially raise an exception, but only if it is called dur-
ing the invocation of a callout created with callback-exns? as true. A non-atomic
callback must never raise an exception.

Changed in version 6.3 of package base: Added the #:lock-name argument.
Changed in version 6.12.0.2: Added the #:blocking? argument.
Changed in version 7.9.0.16: Added the #:varargs-after argument.
Changed in version 8.0.0.8: Added the #:callback-exns? argument.

(_fun fun-option ... maybe-args type-spec ... -> type-spec
maybe-wrapper)

fun-option = #:abi abi-expr
| #:varargs-after varargs-after-expr
| #:save-errno save-errno-expr
| #:keep keep-expr
| #:atomic? atomic?-expr
| #:async-apply async-apply-expr
| #:lock-name lock-name-expr
| #:in-original-place? in-original-place?-expr
| #:blocking? blocking?-expr
| #:callback-exns? callback-exns?-expr
| #:retry (retry-id [arg-id init-expr])

maybe-args =
| formals ::

type-spec = type-expr
| (id : type-expr)
| (type-expr = value-expr)
| (id : type-expr = value-expr)

maybe-wrapper =
| -> output-expr

Creates a new function type. The _fun form is a convenient syntax for the _cprocedure
type constructor, and it can enable more static generation of callout and callback code; see
_fun from ffi/unsafe/static for more information.

In the simplest form of _fun, only the input type-exprs and the output type-expr are
specified, and each types is a simple expression, which creates a straightforward function
type. For example,

(_fun _string _int -> _int)

33

specifies a function that receives a string and an integer and returns an integer.

See _cprocedure for information about the #:abi, #:varargs-after, #:save-errno,
#:keep, #:atomic?, #:async-apply, #:in-original-place?, #:blocking, and
#:callback-exns? options.

In its full form, the _fun syntax provides an IDL-like language that creates a wrapper func-
tion around the primitive foreign function when the type is used for a callout. These wrappers
can implement complex interfaces given simple specifications:

• The full form of each argument type-spec can include an optional label and an
expression. A label id : makes the argument value accessible to later expressions
using id . A = value-expr expression causes the wrapper function to calculates the
argument for that position using value-expr , implying that the wrapper does not
expect to be given an argument for that position.

For example,

(_fun (s : _string) (_int = (string-length s)) -> _int)

produces a wrapper that takes a single string argument and calls a foreign function that
takes a string and an integer; the string’s length is provided as the integer argument.

• If the optional output-expr is specified, or if an expression is provided for the output
type, then the expression specifies an expression that will be used as a return value for
the function call, replacing the foreign function’s result. The output-expr can use
any of the previous labels, including a label given for the output to access the foreign
function’s return value.

For example,

(_fun _string (len : _int) -> (r : _int) -> (min r len))

produces a wrapper that returns the minimum of the foreign function’s result and the
given integer argument.

• A #:retry (retry-id [arg-id init-expr] ...) specification binds retry-
id for use in an output-expr for retrying the foreign call (normally in tail position).
The function bound to retry-id accepts each arg-id as an argument, each arg-id
can be used in = value-exprs, and each init-exprs provides the initial value for
the corresponding arg-id .

For example,

(_fun #:retry (again [count 0])
_string _int -> (r : _int)
-> (if (and (= r ERR_BUSY)

(< count 5))
(again (add1 count))
r))

34

produces a wrapper that calls the foreign function up to five times if it continues to
produce a number equal to ERR_BUSY.

• In rare cases where complete control over the input arguments is needed, the wrapper’s
argument list can be specified as maybe-args with a formals as for lambda (includ-
ing keyword arguments and/or a “rest” argument). When an argument type-spec in-
cludes a label that matches an binding identifier in formals , then the identifier is used
as the default value for the argument. All argument type-specs must include either
explicit = value-expr annotations or an implicit one through a matching label.

For example,

(_fun (n s) :: (s : _string) (n : _int) -> _int)

produces a wrapper that receives an integer and a string, but the foreign function re-
ceives the string first.

Changed in version 6.2 of package base: Added the #:retry option.
Changed in version 6.3: Added the #:lock-name option.
Changed in version 6.12.0.2: Added the #:blocking? option.
Changed in version 7.9.0.16: Added the #:varargs-after option.
Changed in version 8.0.0.8: Added the #:callback-exns? option.

(function-ptr ptr-or-proc fun-type) Ñ cpointer?
ptr-or-proc : (or cpointer? procedure?)
fun-type : ctype?

Casts ptr-or-proc to a function pointer of type fun-type .

->

A literal used in _fun forms. (It’s unfortunate that this literal has the same name as -> from
racket/contract, but it’s a different binding.)

3.6.1 Custom Function Types

The behavior of the _fun type can be customized via custom function types, which are
pieces of syntax that can behave as C types and C type constructors, but they can interact
with function calls in several ways that are not possible otherwise. When the _fun form
is expanded, it tries to expand each of the given type expressions, and ones that expand
to certain keyword-value lists interact with the generation of the foreign function wrapper.
This expansion makes it possible to construct a single wrapper function, avoiding the costs
involved in compositions of higher-order functions.

Custom function types are macros that expand to a sequence (key: val ...), where each
key: is from a short list of known keys. Each key interacts with generated wrapper functions
in a different way, which affects how its corresponding argument is treated:

35

• type: specifies the foreign type that should be used, if it is #f then this argument does
not participate in the foreign call.

• expr: specifies an expression to be used for arguments of this type, removing it from
wrapper arguments.

• bind: specifies a name that is bound to the original argument if it is required later
(e.g., _box converts its associated value to a C pointer, and later needs to refer back to
the original box).

• 1st-arg: specifies a name that can be used to refer to the first argument of the foreign
call (good for common cases where the first argument has a special meaning, e.g., for
method calls).

• prev-arg: similar to 1st-arg:, but refers to the previous argument.

• pre: a pre-foreign code chunk that is used to change the argument’s value.

• post: a similar post-foreign code chunk.

• keywords: specifies keyword/value expressions that will be used with the surround-
ing _fun form. (Note: the keyword/value sequence follows keywords:, not paren-
thesized.)

The pre: and post: bindings can be of the form (id => expr) to use the existing value.
Note that if the pre: expression is not (id => expr), then it means that there is no input
for this argument to the _fun-generated procedure. Also note that if a custom type is used
as an output type of a function, then only the post: code is used.

Most custom types are meaningful only in a _fun context, and will raise a syntax error if
used elsewhere. A few such types can be used in non-_fun contexts: types which use only
type:, pre:, post:, and no others. Such custom types can be used outside a _fun by
expanding them into a usage of make-ctype, using other keywords makes this impossible,
because it means that the type has specific interaction with a function call.

(define-fun-syntax id transformer-expr)

Binds id as a custom function type as well as a syntax transformer (i.e, macro). The type
is expanded by applying the procedure produced by transformer-expr to a use of the
custom function type.

For instance, the following defines a new type that automatically coerces the input number
to an inexact form which is compatible with the _float type.

(define-fun-syntax _float*
(syntax-id-rules (_float*)

[_float* (type: _float pre: (x => (+ 0.0 x)))]))

(_fun _float* -> _bool)

36

_?

A custom function type that is a marker for expressions that should not be sent to the foreign
function. Use this to bind local values in a computation that is part of an ffi wrapper interface,
or to specify wrapper arguments that are not sent to the foreign function (e.g., an argument
that is used for processing the foreign output).

Examples:

(_fun _? ; not sent to foreign function
_int -> _int)

(_fun [init : _?] ; init is used for pre-processing
[boxed : (_box _int) = (box init)]
-> _void)

(_fun [offset : _?] ; offset is used for post-processing
-> [res : _int]
-> (+ res offset))

(_ptr mode type-expr maybe-malloc-mode)

mode = i
| o
| io

maybe-malloc-mode =
| #f
| raw
| atomic
| nonatomic
| tagged
| atomic-interior
| interior
| zeroed-atomic
| zeroed-atomic-interior
| stubborn
| uncollectable
| eternal

Creates a C pointer type, where mode indicates input or output pointers (or both). The mode
can be one of the following (matched as a symbol independent of binding):

• i — indicates an input pointer argument: the wrapper arranges for the function call to
receive a value that can be used with the type and to send a pointer to this value to
the foreign function. After the call, the value is discarded.

37

• o — indicates an output pointer argument: the foreign function expects a pointer to a
place where it will save some value, and this value is accessible after the call, to be
used by an extra return expression. If _ptr is used in this mode, then the generated
wrapper does not expect an argument, since one will be freshly allocated before the
call.

• io — combines the above into an input/output pointer argument: the wrapper gets
the Racket value, allocates and set a pointer using this value, and then references the
value after the call. The “_ptr” name can be confusing here: it means that the foreign
function expects a pointer, but the generated wrapper uses an actual value. (Note that
if this is used with structs, a struct is created when calling the function, and a copy
of the return value is made too—which is inefficient, but ensures that structs are not
modified by C code.)

For example, the _ptr type can be used in output mode to create a foreign function wrapper
that returns more than a single argument. The following type:

(_fun (i : (_ptr o _int))
-> (d : _double)
-> (values d i))

creates a function that calls the foreign function with a fresh integer pointer, and use the
value that is placed there as a second return value.

The pointer argument created by _ptr is allocated using allocated using (malloc type-
expr) if maybe-malloc-mode is not specified or if it is #f, (malloc type-expr
'maybe-malloc-mode) otherwise.

Changed in version 7.7.0.6 of package base: The modes i, o, and io match as symbols instead of free identifiers.
Changed in version 8.0.0.13: Added maybe-malloc-mode .
Changed in version 8.14.0.4: Added the zeroed-atomic and zeroed-atomic-interior allocation modes.

(_box type maybe-malloc-mode)

A custom function type similar to a (_ptr io type) argument, where the input is ex-
pected to be a box holding an appropriate value, which is unboxed on entry and modified
accordingly on exit. The optional maybe-malloc-mode is the same as for _ptr.

Example:

(_fun (_box _int) -> _void)
(_fun [boxed : (_box _int) = (box 0)]

-> [res : _int]
-> (values res (unbox boxed)))

38

(_list mode type maybe-len maybe-mode)

mode = i
| o
| io

maybe-len =
| len-expr

maybe-mode =
| atomic
| raw
| atomic
| nonatomic
| tagged
| atomic-interior
| interior
| zeroed-atomic
| zeroed-atomic-interior
| stubborn
| uncollectable
| eternal

A custom function type that is similar to _ptr, except that it is used for converting lists
to/from C vectors. The optional maybe-len argument is needed for output values where it
is used in the post code, and in the pre code of an output mode to allocate the block. (If the
length is 0, then NULL is passed in and an empty list is returned.) In either case, it can refer
to a previous binding for the length of the list which the C function will most likely require.
The maybe-mode , if provided, is quoted and passed to malloc as needed to allocate the C
representation.

For example, the following type corresponds to a function that takes a vector argument of
type *float (from a Racket list input) and a length argument of type int for the vector:

(_fun [vec : (_list i _float)]
; this argument is implicitly provided
[_int = (length vec)]
-> _void)

In this next example, the type specifies a function that provides output through a given output
vector (represented as a list on the Racket side) and through a boolean return value. The
FFI-bound function will take an integer argument and return two values, the vector and the
boolean.

(_fun [len : _int]

39

[vec : (_list o _float len)]
-> [res : _bool]
-> (values vec res))

Changed in version 7.7.0.2 of package base: Added maybe-mode .
Changed in version 7.7.0.6: The modes i , o , and io match as symbols instead of free identifiers.
Changed in version 8.14.0.4: Added the zeroed-atomic zeroed-atomic-interior allocation modes.

(_vector mode type maybe-len maybe-mode)

A custom function type like _list, except that it uses Racket vectors instead of lists.

Examples:

(_fun [vec : (_vector i _float)]
[_int = (length vec)]
-> _void)

(_fun [len : _int]
[vec : (_vector o _float len)]
-> [res : _bool]
-> (values vec res))

See _list for more explanation about the examples.

Changed in version 7.7.0.2 of package base: Added maybe-mode .
Changed in version 7.7.0.6: The modes i, o, and io match as symbols instead of free identifiers.

_bytes
(_bytes o len-expr)

The _bytes form by itself corresponds to C’s char* type; a byte string is passed as _bytes
without any copying. Beware that a Racket byte string is not necessarily nul terminated; see
also _bytes/nul-terminated.

In the BC implementation of Racket, a C non-NULL result value is converted to a Racket
byte string without copying; the pointer is treated as potentially managed by the garbage
collector (see _gcpointer for caveats). In the CS implementation of Racket, conversion
requires copying to represent a C char* result as a Racket byte string, and the original
pointer is not treated as managed by the garbage collector. In both cases, the C result must
have a nul terminator to determine the Racket byte string’s length.

A (_bytes o len-expr) form is a custom function type. As an argument, a byte string is
allocated with the given length; in the BC implementation, that byte string includes an extra
byte for the nul terminator, and (_bytes o len-expr) as a result wraps a C non-NULL
char* pointer as a byte string of the given length. For the CS implementation, the allocated
argument does not include a nul terminator and a copy is made for a result string.

40

As usual, _bytes treats #f as NULL and vice versa. As a result type, (_bytes o len-
expr) works only for non-NULL results.

_bytes/nul-terminated
(_bytes/nul-terminated o len-expr)

The _bytes/nul-terminated type is like _bytes, but an explicit nul-terminator byte is
added to a byte-string argument, which implies copying. As a result type, a char* is copied
to a fresh byte string (without an explicit nul terminator).

When (_bytes/nul-terminated o len-expr) is used as an argument type, a byte
string of length len-expr is allocated. Similarly, when (_bytes/nul-terminated o
len-expr) is used as a result type, a char* result is copied to a fresh byte string of length
len-expr .

As usual, _bytes/nul-terminated treats #f as NULL and vice versa. As a result type,
(_bytes/nul-terminated o len-expr) works only for non-NULL results.

Added in version 6.12.0.2 of package base.

3.7 C Struct Types

(make-cstruct-type types
[abi
alignment
malloc-mode]) Ñ ctype?

types : (non-empty-listof ctype?)
abi : (or/c #f 'default 'stdcall 'sysv) = #f
alignment : (or/c #f 1 2 4 8 16) = #f
malloc-mode : (or/c 'raw 'atomic 'nonatomic 'tagged

'atomic-interior 'interior
'zeroed-atomic 'zeroed-atomic-interior
'stubborn 'uncollectable 'eternal)

= 'atomic

The primitive type constructor for creating new C struct types. These types are actually new
primitive types; they have no conversion functions associated. The corresponding Racket
objects that are used for structs are pointers, but when these types are used, the value that
the pointer refers to is used, rather than the pointer itself. This value is basically made of a
number of bytes that is known according to the given list of types list.

If alignment is #f, then the natural alignment of each type in types is used for its align-
ment within the struct type. Otherwise, alignment is used for all struct type members.

The malloc-mode argument is used when an instance of the type is allocated to represent
the result of a function call. This allocation mode is not used for an argument to a callback,

41

because temporary space allocated on the C stack (possibly by the calling convention) is
used in that case.

Changed in version 7.3.0.8 of package base: Added the malloc-mode argument.
Changed in version 8.14.0.4: Added the 'zeroed-atomic 'zeroed-atomic-interior allocation modes.

(_list-struct [#:alignment alignment
#:malloc-mode malloc-mode]
type ...+) Ñ ctype?

alignment : (or/c #f 1 2 4 8 16) = #f
malloc-mode : (or/c 'raw 'atomic 'nonatomic 'tagged

'atomic-interior 'interior
'zeroed-atomic 'zeroed-atomic-interior
'stubborn 'uncollectable 'eternal)

= 'atomic
type : ctype?

A type constructor that builds a struct type using make-cstruct-type function and wraps
it in a type that marshals a struct as a list of its components. Note that space for structs
must be allocated using malloc with malloc-mode ; the converter for a _list-struct
type immediately allocates and uses a list from the allocated space, so it is inefficient. Use
define-cstruct below for a more efficient approach.

Changed in version 6.0.0.6 of package base: Added #:malloc-mode.

#:changed "8.14.0.4" Added the 'zeroed-atomic 'zeroed-atomic-interior allocation
modes.

(define-cstruct id/sup ([field-id type-expr field-option ...] ...)
property ...)

id/sup = _id
| (_id _super-id)

field-option = #:offset offset-expr

property = #:alignment alignment-expr
| #:malloc-mode malloc-mode-expr
| #:property prop-expr val-expr
| #:no-equal
| #:define-unsafe

42

offset-expr : exact-integer?

alignment-expr : (or/c #f 1 2 4 8 16)

malloc-mode-expr :

(or/c 'raw 'atomic 'nonatomic 'tagged
'atomic-interior 'interior
'zeroed-atomic 'zeroed-atomic-interior
'stubborn 'uncollectable 'eternal)

prop-expr : struct-type-property?

Defines a new C struct type, but unlike _list-struct, the resulting type deals with C
structs in binary form, rather than marshaling them to Racket values. The syntax is similar
to define-struct, providing accessor functions for raw struct values (which are pointer
objects); the _id must start with _, at most one #:offset can be supplied for a field, and at
most one #:alignment or #:malloc-mode can be supplied. If no _super-id is provided,
then at least one field must be specified.

The resulting bindings are as follows:

• _id : the new C type for this struct.

• _id-pointer: a pointer type that should be used when a pointer to values of this
struct are used.

• _id-pointer/null: like _id-pointer, but allowing NULL pointers (as repre-
sented on the Racket side by #f).

• id?: a predicate for the new type.

• id-tag: the tag object that is used with instances. The tag object may be the symbol
form of id or a list of symbols containing the id symbol and other symbols, such as
the super-id symbol.

• make-id : a constructor, which expects an argument for each field.

• id-field-id : an accessor function for each field-id ; if the field has a C struct
type, then the result of the accessor is a pointer to the field within the enclosing struc-
ture, rather than a copy of the field.

• set-id-field-id! : a mutator function for each field-id .

• id-field-id-offset : the absolute offset, in bytes, of each field-id , if
#:define-unsafe is present.

• unsafe-id-field-id : an unsafe accessor function for each field-id , if
#:define-unsafe is present.

• unsafe-set-id-field-id! : an unsafe mutator function for each field-id , if
#:define-unsafe is present.

43

• id : structure-type information compatible with struct-out or match (but not
struct or define-struct); currently, this information is correct only when no
super-id is specified.

• id->list, list->id : a function that converts a struct into a list of field values and
vice versa.

• id->list*, list*->id : like id->list, list->id , but fields that are structs are
recursively unpacked to lists or packed from lists.

• struct:cpointer:id : only when a #:property is specified — a structure type
that corresponds to a wrapper to reflect properties (see below).

• make-wrap-id : only when a #:property is specified — a function that takes a
cpointer and returns a wrapper structure that holds the cpointer.

Objects of the new type are actually C pointers, with a type tag that is the symbol form of
id or a list that contains the symbol form of id . Since structs are implemented as pointers,
they can be used for a _pointer input to a foreign function: their address will be used. To
make this a little safer, the corresponding cpointer type is defined as _id-pointer. The
_id type should not be used when a pointer is expected, since it will cause the struct to be
copied rather than use the pointer value, leading to memory corruption.

Field offsets within the structure are normally computed automatically, but the offset for a
field can be specified with #:offset. Specifying #:offset for a field affects the default
offsets computed for all remaining fields.

Instances of the new type are not normally Racket structure instances. However, if at least
one #:property modifier is specified, then struct creation and coercions from _id variants
wrap a non-NULL C pointer representation in a Racket structure that has the specified prop-
erties. The wrapper Racket structure also has a prop:cpointer property, so that wrapped
C pointers can be treated the same as unwrapped C pointers. If a super-id is provided
and it corresponds to a C struct type with a wrapper structure type, then the wrapper struc-
ture type is a subtype of super-id’s wrapper structure type. If a #:property modifier is
specified, #:no-equal is not specified, and if prop:equal+hash is not specified as any
#:property, then the prop:equal+hash property is automatically implemented for the
wrapper structure type to use ptr-equal?.

If the first field is itself a C struct type, its tag will be used in addition to the new tag. This
feature supports common cases of object inheritance, where a sub-struct is made by having a
first field that is its super-struct. Instances of the sub-struct can be considered as instances of
the super-struct, since they share the same initial layout. Using the tag of an initial C struct
field means that the same behavior is implemented in Racket; for example, accessors and
mutators of the super-struct can be used with the new sub-struct. See the example below.

Providing a super-id is shorthand for using an initial field named super-id and using
_super-id as its type. Thus, the new struct will use _super-id’s tag in addition to its

44

own tag, meaning that instances of _id can be used as instances of _super-id. Aside from
the syntactic sugar, the constructor function is different when this syntax is used: instead
of expecting a first argument that is an instance of _super-id, the constructor will expect
arguments for each of _super-id’s fields, in addition for the new fields. This adjustment of
the constructor is, again, in analogy to using a supertype with define-struct.

Structs are allocated using malloc with the result of malloc-mode-expr , which defaults
to 'atomic. (This allocation mode does not apply to arguments of a callback; see also
define-cstruct-type.) The default allocation of 'atomic means that the garbage col-
lector ignores the content of a struct; thus, struct fields can hold only non-pointer values,
pointers to memory outside the GC’s control, and otherwise-reachable pointers to immobile
GC-managed values (such as those allocated with malloc and 'internal or 'internal-
atomic).

As an example, consider the following C code:

typedef struct { int x; char y; } A;
typedef struct { A a; int z; } B;

A* makeA() {
A *p = malloc(sizeof(A));
p->x = 1;
p->y = 2;
return p;

}

B* makeB() {
B *p = malloc(sizeof(B));
p->a.x = 1;
p->a.y = 2;
p->z = 3;
return p;

}

char gety(A* a) {
return a->y;

}

Using the simple _list-struct, you might expect this code to work:

(define makeB
(get-ffi-obj 'makeB "foo.so"

(_fun -> (_list-struct (_list-struct _int _byte) _int))))
(makeB) ; should return '((1 2) 3)

The problem here is that makeB returns a pointer to the struct rather than the struct itself.
The following works as expected:

45

(define makeB
(get-ffi-obj 'makeB "foo.so" (_fun -> _pointer)))

(ptr-ref (makeB) (_list-struct (_list-struct _int _byte) _int))

As described above, _list-structs should be used in cases where efficiency is not an
issue. We continue using define-cstruct, first define a type for A which makes it possible
to use makeA:

(define-cstruct _A ([x _int] [y _byte]))
(define makeA

(get-ffi-obj 'makeA "foo.so"
(_fun -> _A-pointer))) ; using _A is a memory-corrupting bug!

(define a (makeA))
(list a (A-x a) (A-y a))
; produces an A containing 1 and 2

Using gety is also simple:

(define gety
(get-ffi-obj 'gety "foo.so"

(_fun _A-pointer -> _byte)))
(gety a) ; produces 2

We now define another C struct for B, and expose makeB using it:

(define-cstruct _B ([a _A] [z _int]))
(define makeB

(get-ffi-obj 'makeB "foo.so"
(_fun -> _B-pointer)))

(define b (makeB))

We can access all values of b using a naive approach:

(list (A-x (B-a b)) (A-y (B-a b)) (B-z b))

but this is inefficient as it allocates and copies an instance of A on every access. Inspecting
the tags (cpointer-tag b) we can see that A’s tag is included, so we can simply use its
accessors and mutators, as well as any function that is defined to take an A pointer:

(list (A-x b) (A-y b) (B-z b))
(gety b)

Constructing a B instance in Racket requires allocating a temporary A struct:

46

(define b (make-B (make-A 1 2) 3))

To make this more efficient, we switch to the alternative define-cstruct syntax, which
creates a constructor that expects arguments for both the super fields and the new ones:

(define-cstruct (_B _A) ([z _int]))
(define b (make-B 1 2 3))

Changed in version 6.0.0.6 of package base: Added #:malloc-mode.
Changed in version 6.1.1.8: Added #:offset for fields.
Changed in version 6.3.0.13: Added #:define-unsafe.
Changed in version 8.14.0.4: Added the 'zeroed-atomic 'zeroed-atomic-interior allocation modes.

(compute-offsets types [alignment declare])
Ñ (listof exact-integer?)
types : (listof ctype?)
alignment : (or/c #f 1 2 4 8 16) = #f
declare : (listof (or/c #f exact-integer?)) = '()

Given a list of types in a C struct type, return the offset of those types.

The types list describes a C struct type and is identical to the list in make-cstruct-type.

The C struct’s alignment is set with alignment The behavior is identical to make-
cstruct-type.

Explicit positions can be set with declare . If provided, it is a list with the same length as
as types . At each index, if a number is provided, that type is at that offset. Otherwise, the
type is alignment bytes after the offset.

Examples:

> (compute-offsets (list _int _bool _short))
'(0 4 8)
> (compute-offsets (list _int _bool _short) 1)
'(0 4 8)
> (compute-offsets (list _int _int _int) #f (list #f 5 #f))
'(0 5 12)

Added in version 6.10.1.2 of package base.

3.8 C Array Types

47

(make-array-type type count) Ñ ctype?
type : ctype?
count : exact-nonnegative-integer?

The primitive type constructor for creating new C array types. Like C struct types, array
types are new primitive types with no conversion functions associated. When used as a
function argument or return type, array types behave like pointer types; otherwise, array
types behave like struct types (i.e., a struct with as many fields as the array has elements),
particularly when used for a field within a struct type.

Since an array is treated like a struct, casting a pointer type to an array type does not work.
Instead, use ptr-ref with a pointer, an array type constructed with _array, and index 0 to
convert a pointer to a Racket representation that works with array-ref and array-set!.

(_array type count ...+) Ñ ctype?
type : ctype?
count : exact-nonnegative-integer?

Creates an array type whose Racket representation is an array that works with array-ref
and array-set!. The array is not copied; the Racket representation is backed by the under-
lying C representation.

Supply multiple counts for a multidimensional array. Since C uses row-major order for ar-
rays, (_array t n m) is equivalent to (_array (_array t m) n), which is different
from an array of pointers to arrays.

When a value is used as an instance of an array type (e.g., as passed to a foreign function),
checking ensures that the given value is an array of at least the expected length and whose
elements have the same representation according to ctype->layout; the array can have
additional elements, and it can have a different element type as long as that type matches the
layout of the expected type.

(array? v) Ñ boolean?
v : any/c

Returns #t if v is a Racket representation of a C value via _array, #f otherwise.

(array-ref a i ...+) Ñ any/c
a : array?
i : exact-nonnegative-integer?

Extracts an element from an array. Use multiple i indices for a multidimensional array
access; using fewer indices than the array dimension produces a sub-array.

(array-set! a i ...+ v) Ñ void?

48

a : array?
i : exact-nonnegative-integer?
v : any/c

Sets an element in an array. Use multiple i indices for a multidimensional array update;
using fewer indices than the array dimension sets a sub-array (i.e., v must be an array of the
same size as the sub-array and v is copied into the sub-array).

(array-ptr a) Ñ cpointer?
a : array?

Extracts the pointer for an array’s storage.

(array-length a) Ñ exact-nonnegative-integer?
a : array?

Extracts the length of an array. For a multidimensional array, the result is still a single
number; extract an element to get a sub-array to get the length of the next dimension, and so
on.

(array-type a) Ñ ctype?
a : array?

Extracts the type of the array. For a multidimensional array, the result is the ctype of the
nested array.

(in-array a [start stop step]) Ñ sequence?
a : array?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to a when no optional arguments are supplied.

The optional arguments start , stop , and step are as in in-vector.

(_array/list type count ...+) Ñ ctype?
type : ctype?
count : exact-nonnegative-integer?

Like _array, but the Racket representation is a list (or list of lists for a multidimensional
array) of elements copied to and from an underlying C array.

(_array/vector type count ...+) Ñ ctype?
type : ctype?
count : exact-nonnegative-integer?

49

Like _array, but the Racket representation is a vector (or vector of vectors for a multidi-
mensional array) of elements copied to and from an underlying C array.

3.9 C Union Types

(make-union-type type ...+) Ñ ctype?
type : ctype?

The primitive type constructor for creating new C union types. Like C struct types, union
types are new primitive types with no conversion functions associated. Unions are always
treated like structs with 'atomic allocation mode.

Example:

> (make-union-type (_list-struct _int _int)
(_list-struct _double _double))

#<compound-ctype>

(_union type ...+) Ñ ctype?
type : ctype?

Creates a union type whose Racket representation is a union that works with union-ref and
union-set!. The union is not copied; the Racket representation is backed by the underlying
C representation.

Example:

> (_union (_list-struct _int _int)
(_list-struct _double _double))

#<compound-ctype>

(union? v) Ñ boolean?
v : any/c

Returns #t if v is a Racket representation of a C value via _union, #f otherwise.

Examples:

> (define a-union-type
(_union (_list-struct _int _int)

(_list-struct _double _double)))
> (define a-union-val

(cast (list 3.14 2.71)
(_list-struct _double _double)
a-union-type))

50

> (union? a-union-val)
#t
> (union? 3)
#f

(union-ref u i) Ñ any/c
u : union?
i : exact-nonnegative-integer?

Extracts a variant from a union. The variants are indexed starting at 0.

Examples:

; see examples for union? for definitions
> (union-ref a-union-val 1)
'(3.14 2.71)

(union-set! u i v) Ñ void?
u : union?
i : exact-nonnegative-integer?
v : any/c

Sets a variant in a union.

Examples:

; see examples for union? for definitions
> (union-set! a-union-val 0 (list 4 5))
> a-union-val
#<union>
> (union-ref a-union-val 0)
'(4 5)

(union-ptr u) Ñ cpointer?
u : union?

Extracts the pointer for a union’s storage.

Example:

> (union-ptr a-union-val)
#<cpointer+offset>

51

3.10 Enumerations and Masks

Although the constructors below are described as procedures, they are implemented as syn-
tax, so that error messages can report a type name where the syntactic context implies one.

(_enum symbols [basetype #:unknown unknown]) Ñ ctype?
symbols : list?
basetype : ctype? = _ufixint
unknown : any/c = (lambda (x) (error))

Takes a list of symbols and generates an enumeration type. The enumeration maps between
a symbol in the given symbols list and corresponding integers, counting from 0.

To call a foreign function that takes an enum as a parameter simply provide the symbol of
the desired enum as an argument.

; example sdl call
(sdl-create-window "title" ... 'SDL_WINDOW_OPENGL)

The list symbols can also set the values of symbols by putting '= and an exact integer after
the symbol. For example, the list '(x y = 10 z) maps 'x to 0, 'y to 10, and 'z to 11.

The basetype argument specifies the base type to use.

The unknown argument specifies the result of converting an unknown integer from the for-
eign side: it can be a one-argument function to be applied on the integer, or a value to return
instead. The default is to throw an exception.

Examples:

; example from snappy-c.h
> (define _snappy_status

(_enum '(ok = 0
invalid_input
buffer_too_small)))

Note that the default basetype is _ufixint. This differs from C enumerations that can use
any value in _fixint. Any _enum using negative values should use _fixint for the base
type.

Example:

> (define _negative_enum
(_enum '(unkown = -1

error = 0
ok = 1)

_fixint))

52

(_bitmask symbols [basetype]) Ñ ctype?
symbols : (or symbol? list?)
basetype : ctype? = _uint

Similar to _enum, but the resulting mapping translates a list of symbols to a number and
back, using bitwise-ior on the values of individual symbols, where A single symbol is
equivalent to a list containing just the symbol.

In other words, to call a foreign function that uses bitmask parameters simply call the proce-
dure with the list of wanted flags.

; example call from curl_global_init in curl.h
(curl-global-init '(CURL_GLOBAL_SSL CURL_GLOBAL_WIN32))

When a symbol does not have a given value (via '= after the symbol in symbols), its value is
the next power of 2 greater than the previous symbol’s assignment (or 1 for the first symbol).

The default basetype is _uint, since high bits are often used for flags.

Examples:

; example from curl.h
> (define _curl_global_flag

(_bitmask `(CURL_GLOBAL_SSL = 1
CURL_GLOBAL_WIN32 = 2
CURL_GLOBAL_ALL = 3
CURL_GLOBAL_NOTHING = 0
CURL_GLOBAL_DEFAULT = 3
CURL_GLOBAL_ACK_EINTR = 4)))

; example from XOrg
> (define _Modifiers

(_bitmask '(ShiftMask = 1
LockMask = 2
ControlMask = 4
Mod1Mask = 8
Mod2Mask = 16
Mod3Mask = 32
Mod4Mask = 64
Mod5Mask = 128
Button1Mask = 256
Button2Mask = 512
Button3Mask = 1024
Button4Mask = 2048
Button5Mask = 4096
Any = 32768)))

53

4 Pointer Functions

(cpointer? v) Ñ boolean?
v : any/c

Returns #t if v is a C pointer or a value that can be used as a pointer: #f (used as
a NULL pointer), byte strings (used as memory blocks), or a structure instance with the
prop:cpointer structure type property. Returns #f for other values.

(ptr-equal? cptr1 cptr2) Ñ boolean?
cptr1 : cpointer?
cptr2 : cpointer?

Compares the values of the two pointers. Two different Racket pointer objects can contain
the same pointer.

If the values are both pointers that are not represented by #f, a byte string, a callback, a
pointer based on _fpointer, or a structure with the prop:cpointer property, then the
ptr-equal? comparison is the same as using equal?.

(ptr-add cptr offset [type]) Ñ cpointer?
cptr : cpointer?
offset : exact-integer?
type : ctype? = _byte

Returns a cpointer that is like cptr offset by offset instances of ctype.

The resulting cpointer keeps the base pointer and offset separate. The two pieces are com-
bined at the last minute before any operation on the pointer, such as supplying the pointer to
a foreign function. In particular, the pointer and offset are not combined until after all alloca-
tion leading up to a foreign-function call; if the called function does not itself call anything
that can trigger a garbage collection, it can safely use pointers that are offset into the middle
of a GCable object.

(offset-ptr? cptr) Ñ boolean?
cptr : cpointer?

A predicate for cpointers that have an offset, such as pointers that were created using ptr-
add. Returns #t even if such an offset happens to be 0. Returns #f for other cpointers and
non-cpointers.

(ptr-offset cptr) Ñ exact-integer?
cptr : cpointer?

Returns the offset of a pointer that has an offset. The resulting offset is always in bytes.

54

(cpointer-gcable? cptr) Ñ boolean?
cptr : cpointer?

Returns #t if cptr is treated as a reference to memory that is (assumed to be) managed by
the garbage collector, #f otherwise.

For a pointer based on _gcpointer as a result type, cpointer-gcable? will return #t.
For a pointer based on _pointer as a result type, cpointer-gcable? will return #f.

4.1 Pointer Dereferencing

(set-ptr-offset! cptr offset [ctype]) Ñ void?
cptr : cpointer?
offset : exact-integer?
ctype : ctype? = _byte

Sets the offset component of an offset pointer. The arguments are used in the same way as
ptr-add. If cptr has no offset, the exn:fail:contract exception is raised.

(ptr-add! cptr offset [ctype]) Ñ void?
cptr : cpointer?
offset : exact-integer?
ctype : ctype? = _byte

Like ptr-add, but destructively modifies the offset contained in a pointer. The same opera-
tion could be performed using ptr-offset and set-ptr-offset!.

(ptr-ref cptr type [offset]) Ñ any
cptr : cpointer?
type : ctype?
offset : exact-nonnegative-integer? = 0

(ptr-ref cptr type abs-tag offset) Ñ any
cptr : cpointer?
type : ctype?
abs-tag : 'abs
offset : exact-nonnegative-integer?

(ptr-set! cptr type val) Ñ void?
cptr : cpointer?
type : ctype?
val : any/c

(ptr-set! cptr type offset val) Ñ void?
cptr : cpointer?
type : ctype?

55

offset : exact-nonnegative-integer?
val : any/c

(ptr-set! cptr type abs-tag offset val) Ñ void?
cptr : cpointer?
type : ctype?
abs-tag : 'abs
offset : exact-nonnegative-integer?
val : any/c

The ptr-ref procedure returns the object referenced by cptr , using the given type . The
ptr-set! procedure stores the val in the memory cptr points to, using the given type
for the conversion.

In each case, offset defaults to 0 (which is the only value that should be used with ffi-
obj objects, see §7 “Unexported Primitive Functions”). If an offset index is non-0, the
value is read or stored at that location, considering the pointer as a vector of types — so
the actual address is the pointer plus the size of type multiplied by offset . In addition,
a 'abs flag can be used to use the offset as counting bytes rather then increments of the
specified type .

Beware that the ptr-ref and ptr-set! procedure do not keep any meta-information on
how pointers are used. It is the programmer’s responsibility to use this facility only when
appropriate. For example, on a little-endian machine:

> (define block (malloc _int 5))
> (ptr-set! block _int 0 196353)
> (map (lambda (i) (ptr-ref block _byte i)) '(0 1 2 3))
(1 255 2 0)

In addition, ptr-ref and ptr-set! cannot detect when offsets are beyond an object’s
memory bounds; out-of-bounds access can easily lead to a segmentation fault or memory
corruption.

(memmove cptr
[offset]
src-cptr

[src-offset]
count

[type]) Ñ void?
cptr : cpointer?
offset : exact-integer? = 0
src-cptr : cpointer?
src-offset : exact-integer? = 0
count : exact-nonnegative-integer?
type : ctype? = _byte

56

Copies to cptr from src-cptr . The destination pointer can be offset by an optional off-
set , which is in type instances. The source pointer can be similarly offset by src-offset .
The number of bytes copied from source to destination is determined by count , which is in
type instances when supplied.

(memcpy cptr
[offset]
src-cptr

[src-offset]
count

[type]) Ñ void?
cptr : cpointer?
offset : exact-integer? = 0
src-cptr : cpointer?
src-offset : exact-integer? = 0
count : exact-nonnegative-integer?
type : ctype? = _byte

Like memmove, but the result is undefined if the destination and source overlap.

(memset cptr [offset] byte count [type]) Ñ void?
cptr : cpointer?
offset : exact-integer? = 0
byte : byte?
count : exact-nonnegative-integer?
type : ctype? = _byte

Similar to memmove, but the destination is uniformly filled with byte (i.e., an exact integer
between 0 and 255 inclusive). When a type argument is present, the result is that of a call
to memset with no type argument and the count multiplied by the size associated with the
type .

(cpointer-tag cptr) Ñ any
cptr : cpointer?

Returns the Racket object that is the tag of the given cptr pointer.

(set-cpointer-tag! cptr tag) Ñ void?
cptr : cpointer?
tag : any/c

Sets the tag of the given cptr . The tag argument can be any arbitrary value; other pointer
operations ignore it. When a cpointer value is printed, its tag is shown if it is a symbol, a
byte string, a string. In addition, if the tag is a pair holding one of these in its car, the car
is shown (so that the tag can contain other information).

57

4.2 Memory Management

For general information on C-level memory management with Racket, see Inside: Racket C
API.

(malloc bytes-or-type
[type-or-bytes
cptr
mode
fail-mode]) Ñ cpointer?

bytes-or-type : (or/c (and/c exact-nonnegative-integer? fixnum?)
ctype?)

type-or-bytes : (or/c (and/c exact-nonnegative-integer? fixnum?)
ctype?)

= absent
cptr : cpointer? = absent
mode : (or/c 'raw 'atomic 'nonatomic 'tagged

'atomic-interior 'interior
'zeroed-atomic 'zeroed-atomic-interior
'stubborn 'uncollectable 'eternal)

= absent

fail-mode : 'failok = absent

Allocates a memory block of a specified size using a specified allocation. The result is a C
pointer to the allocated memory, or #f if the requested size is zero. Although not reflected
above, the four arguments can appear in any order, since they are all different types of Racket
objects; a size specification is required at minimum:

• If a C type bytes-or-type is given, its size is used to determine the block allocation
size.

• If an integer bytes-or-type is given, it specifies the required size in bytes.

• If both bytes-or-type and type-or-bytes are given, then the allocated size is for
a vector of values (the multiplication of the size of the C type and the integer).

• If a cptr pointer is given, its content is copied to the new block.

• A symbol mode argument can be given, which specifies what allocation function to
use. It should be one of the following:

– 'raw — Allocates memory that is outside the garbage collector’s space and is
not traced by the garbage collector (i.e., is treated as holding no pointers to col-
lectable memory). This memory must be freed with free. The initial content of
the memory is unspecified.

– 'atomic — Allocates memory that can be reclaimed by the garbage collector
but is not traced by the garbage collector. The initial content of the memory is
unspecified.

58

For the BC Racket implementation, this allocation mode corresponds to
scheme_malloc_atomic in the C API.

– 'nonatomic — Allocates memory that can be reclaimed by the garbage collec-
tor, is treated by the garbage collector as holding only pointers, and is initially
filled with zeros. The memory is allowed to contain a mixture of references
to objects managed by the garbage collector and addresses that are outside the
garbage collector’s space.
For the BC Racket implementation, this allocation mode corresponds to
scheme_malloc in the C API.

– 'atomic-interior — Like 'atomic, but the allocated object will not be
moved by the garbage collector as long as the allocated object is retained.
A better name for this allocation mode would be 'atomic-immobile, but it’s
'atomic-interior for historical reasons.
For the BC Racket implementation, a reference can point to the interior of the
object, instead of its starting address. This allocation mode corresponds to
scheme_malloc_atomic_allow_interior in the C API.

– 'interior — Like 'nonatomic, but the allocated object will not be moved by
the garbage collector as long as the allocated object is retained.
A better name for this allocation mode would be 'nonatomic-immobile, but
it’s 'interior for historical reasons.
For the BC Racket implementation, a reference can point to the interior of the
object, instead of its starting address. This allocation mode corresponds to
scheme_malloc_allow_interior in the C API.

– 'zeroed-atomic — Like 'atomic, but the allocated object is filled with zeros,
instead of having unspecified initial content.

– 'zeroed-atomic-interior — Like 'atomic-interior, but the allocated
object is filled with zeros, instead of having unspecified initial content.

– 'tagged — Allocates memory that must start with a short value that is regis-
tered as a tag with the garbage collector.
This mode is supported only for the BC Racket implementation, and it corre-
sponds to scheme_malloc_tagged in the C API.

– 'stubborn — Like 'nonatomic, but supports a hint to the GC via end-
stubborn-change after all changes to the object have been made.
This mode is supported only for the BC Racket implementation, and it corre-
sponds to scheme_malloc_stubborn in the C API.

– 'eternal — Like 'raw, except the allocated memory cannot be freed.
This mode is supported only for the CGC Racket variant, and it corresponds to
scheme_malloc_uncollectable in the C API.

– 'uncollectable — Allocates memory that is never collected, cannot be freed,
and potentially contains pointers to collectable memory.
This mode is supported only for the CGC Racket variant, and it corresponds to
scheme_malloc_uncollectable in the C API.

59

• If an additional 'failok flag is given, then some effort may be made to detect an
allocation failure and raise exn:fail:out-of-memory instead of crashing.

If no mode is specified, then 'nonatomic allocation is used when the type is a _gcpointer-
or _scheme-based type, and 'atomic allocation is used otherwise.

Changed in version 6.4.0.10 of package base: Added the 'tagged allocation mode.
Changed in version 8.0.0.13: Changed CS to support the 'interior allocation mode.
Changed in version 8.1.0.6: Changed CS to remove constraints on the use of memory allocated with the
'nonatomic and 'interior allocation modes.
Changed in version 8.14.0.4: Added the 'zeroed-atomic 'zeroed-atomic-interior allocation modes.

(free cptr) Ñ void
cptr : cpointer?

Uses the operating system’s free function for 'raw-allocated pointers, and for pointers that
a foreign library allocated and we should free. Note that this is useful as part of a finalizer
(see below) procedure hook (e.g., on the Racket pointer object, freeing the memory when
the pointer object is collected, but beware of aliasing).

Memory allocated with malloc and modes other than 'raw must not be freed, since those
modes allocate memory that is managed by the garbage collector.

(end-stubborn-change cptr) Ñ void?
cptr : cpointer?

Uses scheme_end_stubborn_change on the given stubborn-allocated pointer.

(malloc-immobile-cell v) Ñ cpointer?
v : any/c

Allocates memory large enough to hold one arbitrary (collectable) Racket value, but that is
not itself collectable or moved by the memory manager. The cell is initialized with v ; use
the type _scheme with ptr-ref and ptr-set! to get or set the cell’s value. The cell must
be explicitly freed with free-immobile-cell.

(free-immobile-cell cptr) Ñ void?
cptr : cpointer?

Frees an immobile cell created by malloc-immobile-cell.

(register-finalizer obj finalizer) Ñ void?
obj : any/c
finalizer : (any/c . -> . any)

60

Registers a finalizer procedure finalizer-proc with the given obj , which can be any
Racket (GC-able) object. The finalizer is registered with a “late” will executor that makes
wills ready for a value only after all weak references (such as in a weak box) for the value
have been cleared, which implies that the value is unreachable and no normal will executor
has a will ready for the value. The finalizer is invoked when the will for obj becomes ready
in the “late” will executor, which means that the value is unreachable (even from wills, and
even from itself) by safe code.

The finalizer is invoked in a thread that is in charge of triggering will executors for
register-finalizer. The given finalizer procedure should generally not rely on the
environment of the triggering thread, and it must not use any parameters or call any param-
eter functions, except that relying on a default logger and/or calling current-logger is
allowed.

Finalizers are mostly intended to be used with cpointer objects (for freeing unused memory
that is not under GC control), but it can be used with any Racket object—even ones that have
nothing to do with foreign code. Note, however, that the finalizer is registered for the Racket
object that represents the pointer. If you intend to free a pointer object, then you must be
careful to not register finalizers for two cpointers that point to the same address. Also, be
careful to not make the finalizer a closure that holds on to the object. Finally, beware that
the finalizer is not guaranteed to be run when a place exits; see ffi/unsafe/alloc and
register-finalizer-and-custodian-shutdown for more complete solutions.

As an example for register-finalizer, suppose that you’re dealing with a foreign func-
tion that returns a C pointer that you should free, but you mostly want to use the memory at
a 16-byte offset. Here is an attempt at creating a suitable type:

(define _pointer-at-sixteen/free
(make-ctype _pointer

#f ; i.e., just _pointer as an argument type
(lambda (x)

(let ([p (ptr-add x 16)])
(register-finalizer x free)
p))))

The above code is wrong: the finalizer is registered for x, which is no longer needed after
the new pointer p is created. Changing the example to register the finalizer for p corrects the
problem, but then free is invoked p instead of on x. In the process of fixing this problem,
we might be careful and log a message for debugging:

(define _pointer-at-sixteen/free
(make-ctype _pointer

#f
(lambda (x)

(let ([p (ptr-add x 16)])
(register-finalizer p

61

(lambda (ignored)
(log-debug (format "Releasing ~s\n" p))
(free x)))

p))))

Now, we never see any logged event. The problem is that the finalizer is a closure that keeps
a reference to p. Instead of referencing the value that is finalized, use the input argument
to the finalizer; simply changing ignored to p above solves the problem. (Removing the
debugging message also avoids the problem, since the finalization procedure would then not
close over p.)

(make-late-weak-box v) Ñ weak-box?
v : any/c

(make-late-weak-hasheq v) Ñ (and/c hash? hash-eq? hash-weak?)
v : any/c

Like make-weak-box and make-weak-hasheq, but with “late” weak references that last
longer than references in the result of make-weak-box or make-weak-hasheq. Specifically,
a “late” weak reference remains intact if a value is unreachable but not yet processed by a
finalizer installed with register-finalizer. “Late” weak references are intended for use
by such finalizers.

(make-sized-byte-string cptr length) Ñ bytes?
cptr : cpointer?
length : exact-nonnegative-integer?

Returns a byte string made of the given pointer and the given length in the BC im-
plementation of Racket; no copying is performed. In the CS implementation, the
exn:fail:unsupported exception is raised.

Beware that the representation of a Racket byte string normally requires a nul terminator at
the end of the byte string (after length bytes), but some functions work with a byte-string
representation that has no such terminator—notably bytes-copy.

If cptr is an offset pointer created by ptr-add, the offset is immediately added to the
pointer. Thus, this function cannot be used with ptr-add to create a substring of a Racket
byte string, because the offset pointer would be to the middle of a collectable object (which
is not allowed).

(void/reference-sink v ...) Ñ void?
v : any/c

Returns #<void>, but unlike calling the void function where the compiler may optimize
away the call and replace it with a #<void> result, calling void/reference-sink ensures
that the arguments are considered reachable by the garbage collector until the call returns.

Added in version 6.10.1.2 of package base.

62

4.3 Pointer Structure Property

prop:cpointer : struct-type-property?

A structure type property that causes instances of a structure type to work as C pointer values.
The property value must be either an exact non-negative integer indicating an immutable
field in the structure (which must, in turn, be initialized to a C pointer value), a procedure
that takes the structure instance and returns a C pointer value, or a C pointer value.

The prop:cpointer property allows a structure instance to be used transparently as a C
pointer value, or it allows a C pointer value to be transparently wrapped by a structure that
may have additional values or properties.

63

5 Derived Utilities

5.1 Safe Homogenous Vectors

(require ffi/vector) package: base

Homogenous vectors are similar to C vectors (see §5.2 “Safe C Vectors”), except that they
define different types of vectors, each with a fixed element type. An exception is the u8 fam-
ily of bindings, which are just aliases for byte-string bindings; for example, make-u8vector
is an alias for make-bytes.

(make-u8vector len) Ñ u8vector?
len : exact-nonnegative-integer?

(u8vector val ...) Ñ u8vector?
val : byte?

(u8vector? v) Ñ boolean?
v : any/c

(u8vector-length vec) Ñ exact-nonnegative-integer?
vec : u8vector?

(u8vector-ref vec k) Ñ byte?
vec : u8vector?
k : exact-nonnegative-integer?

(u8vector-set! vec k val) Ñ void?
vec : u8vector?
k : exact-nonnegative-integer?
val : byte?

(list->u8vector lst) Ñ u8vector?
lst : (listof byte?)

(u8vector->list vec) Ñ (listof byte?)
vec : u8vector?

(u8vector->cpointer vec) Ñ cpointer?
vec : u8vector?

Like _cvector, but for vectors of _uint8 elements. These are aliases for byte operations,
where u8vector->cpointer is the identity function.

(_u8vector mode maybe-len)
_u8vector

Like _cvector, but for vectors of _uint8 elements.

(make-s8vector len) Ñ s8vector?
len : exact-nonnegative-integer?

(s8vector val ...) Ñ s8vector?

64

https://pkgs.racket-lang.org/package/base

val : (integer-in -128 127)
(s8vector? v) Ñ boolean?

v : any/c
(s8vector-length vec) Ñ exact-nonnegative-integer?

vec : s8vector?
(s8vector-ref vec k) Ñ (integer-in -128 127)

vec : s8vector?
k : exact-nonnegative-integer?

(s8vector-set! vec k val) Ñ void?
vec : s8vector?
k : exact-nonnegative-integer?
val : (integer-in -128 127)

(list->s8vector lst) Ñ s8vector?
lst : (listof (integer-in -128 127))

(s8vector->list vec) Ñ (listof (integer-in -128 127))
vec : s8vector?

(s8vector->cpointer vec) Ñ cpointer?
vec : s8vector?

Like make-vector, etc., but for _int8 elements. The s8vector->cpointer function
extracts a plain pointer to the underlying array.

(_s8vector mode maybe-len)
_s8vector

Like _cvector, but for vectors of _int8 elements.

(make-s16vector len) Ñ s16vector?
len : exact-nonnegative-integer?

(s16vector val ...) Ñ s16vector?
val : (integer-in -32768 32767)

(s16vector? v) Ñ boolean?
v : any/c

(s16vector-length vec) Ñ exact-nonnegative-integer?
vec : s16vector?

(s16vector-ref vec k) Ñ (integer-in -32768 32767)
vec : s16vector?
k : exact-nonnegative-integer?

(s16vector-set! vec k val) Ñ void?
vec : s16vector?
k : exact-nonnegative-integer?
val : (integer-in -32768 32767)

(list->s16vector lst) Ñ s16vector?
lst : (listof (integer-in -32768 32767))

65

(s16vector->list vec) Ñ (listof (integer-in -32768 32767))
vec : s16vector?

(s16vector->cpointer vec) Ñ cpointer?
vec : s16vector?

Like make-vector, etc., but for _int16 elements. The s16vector->cpointer function
extracts a plain pointer to the underlying array.

(_s16vector mode maybe-len)
_s16vector

Like _cvector, but for vectors of _int16 elements.

(make-u16vector len) Ñ u16vector?
len : exact-nonnegative-integer?

(u16vector val ...) Ñ u16vector?
val : (integer-in 0 65535)

(u16vector? v) Ñ boolean?
v : any/c

(u16vector-length vec) Ñ exact-nonnegative-integer?
vec : u16vector?

(u16vector-ref vec k) Ñ (integer-in 0 65535)
vec : u16vector?
k : exact-nonnegative-integer?

(u16vector-set! vec k val) Ñ void?
vec : u16vector?
k : exact-nonnegative-integer?
val : (integer-in 0 65535)

(list->u16vector lst) Ñ u16vector?
lst : (listof (integer-in 0 65535))

(u16vector->list vec) Ñ (listof (integer-in 0 65535))
vec : u16vector?

(u16vector->cpointer vec) Ñ cpointer?
vec : u16vector?

Like make-vector, etc., but for _uint16 elements. The u16vector->cpointer function
extracts a plain pointer to the underlying array.

(_u16vector mode maybe-len)
_u16vector

Like _cvector, but for vectors of _uint16 elements.

66

(make-s32vector len) Ñ s32vector?
len : exact-nonnegative-integer?

(s32vector val ...) Ñ s32vector?
val : (integer-in -2147483648 2147483647)

(s32vector? v) Ñ boolean?
v : any/c

(s32vector-length vec) Ñ exact-nonnegative-integer?
vec : s32vector?

(s32vector-ref vec k) Ñ (integer-in -2147483648 2147483647)
vec : s32vector?
k : exact-nonnegative-integer?

(s32vector-set! vec k val) Ñ void?
vec : s32vector?
k : exact-nonnegative-integer?
val : (integer-in -2147483648 2147483647)

(list->s32vector lst) Ñ s32vector?
lst : (listof (integer-in -2147483648 2147483647))

(s32vector->list vec)
Ñ (listof (integer-in -2147483648 2147483647))
vec : s32vector?

(s32vector->cpointer vec) Ñ cpointer?
vec : s32vector?

Like make-vector, etc., but for _int32 elements. The s32vector->cpointer function
extracts a plain pointer to the underlying array.

(_s32vector mode maybe-len)
_s32vector

Like _cvector, but for vectors of _int32 elements.

(make-u32vector len) Ñ u32vector?
len : exact-nonnegative-integer?

(u32vector val ...) Ñ u32vector?
val : (integer-in 0 4294967295)

(u32vector? v) Ñ boolean?
v : any/c

(u32vector-length vec) Ñ exact-nonnegative-integer?
vec : u32vector?

(u32vector-ref vec k) Ñ (integer-in 0 4294967295)
vec : u32vector?
k : exact-nonnegative-integer?

(u32vector-set! vec k val) Ñ void?

67

vec : u32vector?
k : exact-nonnegative-integer?
val : (integer-in 0 4294967295)

(list->u32vector lst) Ñ u32vector?
lst : (listof (integer-in 0 4294967295))

(u32vector->list vec) Ñ (listof (integer-in 0 4294967295))
vec : u32vector?

(u32vector->cpointer vec) Ñ cpointer?
vec : u32vector?

Like make-vector, etc., but for _uint32 elements. The u32vector->cpointer function
extracts a plain pointer to the underlying array.

(_u32vector mode maybe-len)
_u32vector

Like _cvector, but for vectors of _uint32 elements.

(make-s64vector len) Ñ s64vector?
len : exact-nonnegative-integer?

(s64vector val ...) Ñ s64vector?
val : (integer-in -9223372036854775808 9223372036854775807)

(s64vector? v) Ñ boolean?
v : any/c

(s64vector-length vec) Ñ exact-nonnegative-integer?
vec : s64vector?

(s64vector-ref vec k)
Ñ (integer-in -9223372036854775808 9223372036854775807)
vec : s64vector?
k : exact-nonnegative-integer?

(s64vector-set! vec k val) Ñ void?
vec : s64vector?
k : exact-nonnegative-integer?
val : (integer-in -9223372036854775808 9223372036854775807)

(list->s64vector lst) Ñ s64vector?
lst : (listof (integer-in -9223372036854775808 9223372036854775807))

(s64vector->list vec)
Ñ (listof (integer-in -9223372036854775808 9223372036854775807))
vec : s64vector?

(s64vector->cpointer vec) Ñ cpointer?
vec : s64vector?

Like make-vector, etc., but for _int64 elements. The s64vector->cpointer function
extracts a plain pointer to the underlying array.

68

(_s64vector mode maybe-len)
_s64vector

Like _cvector, but for vectors of _int64 elements.

(make-u64vector len) Ñ u64vector?
len : exact-nonnegative-integer?

(u64vector val ...) Ñ u64vector?
val : (integer-in 0 18446744073709551615)

(u64vector? v) Ñ boolean?
v : any/c

(u64vector-length vec) Ñ exact-nonnegative-integer?
vec : u64vector?

(u64vector-ref vec k) Ñ (integer-in 0 18446744073709551615)
vec : u64vector?
k : exact-nonnegative-integer?

(u64vector-set! vec k val) Ñ void?
vec : u64vector?
k : exact-nonnegative-integer?
val : (integer-in 0 18446744073709551615)

(list->u64vector lst) Ñ u64vector?
lst : (listof (integer-in 0 18446744073709551615))

(u64vector->list vec)
Ñ (listof (integer-in 0 18446744073709551615))
vec : u64vector?

(u64vector->cpointer vec) Ñ cpointer?
vec : u64vector?

Like make-vector, etc., but for _uint64 elements. The u64vector->cpointer function
extracts a plain pointer to the underlying array.

(_u64vector mode maybe-len)
_u64vector

Like _cvector, but for vectors of _uint64 elements.

(make-f32vector len) Ñ f32vector?
len : exact-nonnegative-integer?

(f32vector val ...) Ñ f32vector?
val : real?

(f32vector? v) Ñ boolean?
v : any/c

69

(f32vector-length vec) Ñ exact-nonnegative-integer?
vec : f32vector?

(f32vector-ref vec k) Ñ real?
vec : f32vector?
k : exact-nonnegative-integer?

(f32vector-set! vec k val) Ñ void?
vec : f32vector?
k : exact-nonnegative-integer?
val : real?

(list->f32vector lst) Ñ f32vector?
lst : (listof real?)

(f32vector->list vec) Ñ (listof real?)
vec : f32vector?

(f32vector->cpointer vec) Ñ cpointer?
vec : f32vector?

Like make-vector, etc., but for _float elements. The f32vector->cpointer function
extracts a plain pointer to the underlying array.

(_f32vector mode maybe-len)
_f32vector

Like _cvector, but for vectors of _float elements.

(make-f64vector len) Ñ f64vector?
len : exact-nonnegative-integer?

(f64vector val ...) Ñ f64vector?
val : real?

(f64vector? v) Ñ boolean?
v : any/c

(f64vector-length vec) Ñ exact-nonnegative-integer?
vec : f64vector?

(f64vector-ref vec k) Ñ real?
vec : f64vector?
k : exact-nonnegative-integer?

(f64vector-set! vec k val) Ñ void?
vec : f64vector?
k : exact-nonnegative-integer?
val : real?

(list->f64vector lst) Ñ f64vector?
lst : (listof real?)

(f64vector->list vec) Ñ (listof real?)
vec : f64vector?

(f64vector->cpointer vec) Ñ cpointer?

70

vec : f64vector?

Like make-vector, etc., but for _double* elements. The f64vector->cpointer function
extracts a plain pointer to the underlying array.

(_f64vector mode maybe-len)
_f64vector

Like _cvector, but for vectors of _double* elements.

(make-f80vector len) Ñ f80vector?
len : exact-nonnegative-integer?

(f80vector val ...) Ñ f80vector?
val : extflonum?

(f80vector? v) Ñ boolean?
v : any/c

(f80vector-length vec) Ñ exact-nonnegative-integer?
vec : f80vector?

(f80vector-ref vec k) Ñ extflonum?
vec : f80vector?
k : exact-nonnegative-integer?

(f80vector-set! vec k val) Ñ void?
vec : f80vector?
k : exact-nonnegative-integer?
val : extflonum?

(list->f80vector lst) Ñ f80vector?
lst : (listof extflonum?)

(f80vector->list vec) Ñ (listof extflonum?)
vec : f80vector?

(f80vector->cpointer vec) Ñ cpointer?
vec : f80vector?

Like make-vector, etc., but for _longdouble elements. The f80vector->cpointer
function extracts a plain pointer to the underlying array.

(_f80vector mode maybe-len)
_f80vector

Like _cvector, but for vectors of _longdouble elements.

5.2 Safe C Vectors

(require ffi/cvector) package: base

71

https://pkgs.racket-lang.org/package/base

(require ffi/unsafe/cvector)

The ffi/unsafe/cvector library exports the bindings of this section. The ffi/cvector
library exports the same bindings, except for the unsafe make-cvector* operation.

The cvector form can be used as a type C vectors (i.e., a pointer to a memory block).

(_cvector mode type maybe-len)
_cvector

Like _bytes, _cvector can be used as a simple type that corresponds to a pointer that is
managed as a safe C vector on the Racket side. The longer form behaves similarly to the
_list and _vector custom types, except that _cvector is more efficient; no Racket list or
vector is needed.

(make-cvector type length) Ñ cvector?
type : ctype?
length : exact-nonnegative-integer?

Allocates a C vector using the given type and length . The resulting vector is not guaran-
teed to contain any particular values.

(cvector type val ...) Ñ cvector?
type : ctype?
val : any/c

Creates a C vector of the given type , initialized to the given list of vals.

(cvector? v) Ñ boolean?
v : any/c

Returns #t if v is a C vector, #f otherwise.

(cvector-length cvec) Ñ exact-nonnegative-integer?
cvec : cvector?

Returns the length of a C vector.

(cvector-type cvec) Ñ ctype?
cvec : cvector?

Returns the C type object of a C vector.

(cvector-ptr cvec) Ñ cpointer?
cvec : cvector?

72

Returns the pointer that points at the beginning block of the given C vector.

(cvector-ref cvec k) Ñ any
cvec : cvector?
k : exact-nonnegative-integer?

References the k th element of the cvec C vector. The result has the type that the C vector
uses.

(cvector-set! cvec k val) Ñ void?
cvec : cvector?
k : exact-nonnegative-integer?
val : any

Sets the k th element of the cvec C vector to val . The val argument should be a value that
can be used with the type that the C vector uses.

(cvector->list cvec) Ñ list?
cvec : cvector?

Converts the cvec C vector object to a list of values.

(list->cvector lst type) Ñ cvector?
lst : list?
type : ctype?

Converts the list lst to a C vector of the given type .

(make-cvector* cptr type length) Ñ cvector?
cptr : any/c
type : ctype?
length : exact-nonnegative-integer?

Constructs a C vector using an existing pointer object. This operation is not safe, so it is
intended to be used in specific situations where the type and length are known.

5.3 Tagged C Pointer Types

The unsafe cpointer-has-tag? and cpointer-push-tag! operations manage tags to
distinguish pointer types.

(_cpointer tag
[ptr-type
racket-to-c
c-to-racket]) Ñ ctype?

73

tag : any/c
ptr-type : (or/c ctype? #f) = _pointer
racket-to-c : (or/c (any/c . -> . any/c) #f) = values
c-to-racket : (or/c (any/c . -> . any/c) #f) = values

(_cpointer/null tag
[ptr-type
racket-to-c
c-to-racket]) Ñ ctype?

tag : any/c
ptr-type : (or/c ctype? #f) = _pointer
racket-to-c : (or/c (any/c . -> . any/c) #f) = values
c-to-racket : (or/c (any/c . -> . any/c) #f) = values

Constructs a C pointer type, _tag , that gets a specific tag when converted to Racket, and
accept only such tagged pointers when going to C. For any optional argument, #f is treated
the same as the default value of the argument.

The ptr-type is used as the base pointer type for _tag . Values of ptr-type must be
represented as pointers.

Although any value can be used as tag , by convention it is the symbol form of a type
name—without a leading underscore. For example, a pointer type _animal would normally
use 'animal as the tag.

Pointer tags are checked with cpointer-has-tag? and changed with cpointer-push-
tag!, which means that other tags are preserved on an existing pointer value. Specifically,
if a base ptr-type is given and is itself produced by _cpointer, then the new type will
handle pointers that have the new tag in addition to ptr-type ’s tag(s). When the tag is a
pair, its first value is used for printing, so the most recently pushed tag (which corresponds
to the inheriting type) is displayed.

A Racket value to be used as a _tag value is first passed to racket-to-c , and the result
must be a pointer that is tagged with tag . Similarly, a C value to be returned as a _tag value
is initially represented as pointer tagged with tag , but then it is passed to c-to-racket to
obtain the Racket representation. Thus, a _tag value is represented by a pointer at the C
level, but (unlike the given ptr-type) it can have any representation at the Racket level as
implemented by racket-to-c and c-to-racket .

The _cpointer/null function is similar to _cpointer, except that it tolerates NULL point-
ers both going to C and back. Note that NULL pointers are represented as #f in Racket, so
they are not tagged.

(define-cpointer-type _id)
(define-cpointer-type _id #:tag tag-expr)
(define-cpointer-type _id ptr-type-expr)
(define-cpointer-type _id ptr-type-expr #:tag tag-expr)

74

(define-cpointer-type _id ptr-type-expr
racket-to-c-expr c-to-racket-expr)

(define-cpointer-type _id ptr-type-expr
racket-to-c-expr c-to-racket-expr
#:tag tag-expr)

A macro version of _cpointer and _cpointer/null, using the defined name for a tag
symbol, and defining a predicate too. The _id must start with _.

The optional expressions produce optional arguments to _cpointer.

In addition to defining _id to a type generated by _cpointer, _id/null is bound to a type
produced by _cpointer/null type. Finally, id? is defined as a predicate, and id-tag is
defined as an accessor to obtain a tag. If provided, the tag is tag-expr , otherwise it is the
symbol form of id .

(cpointer-predicate-procedure? v) Ñ boolean?
v : any/c

Returns #t if v is a predicate procedure generated by define-cpointer-type or define-
cstruct, #f otherwise.

Added in version 6.6.0.1 of package base.

(cpointer-has-tag? cptr tag) Ñ boolean?
cptr : cpointer?
tag : any/c

(cpointer-push-tag! cptr tag) Ñ void?
cptr : cpointer?
tag : any/c

These two functions treat pointer tags as lists of tags. As described in §4 “Pointer Func-
tions”, a pointer tag does not have any role, except for Racket code that uses it to distinguish
pointers; these functions treat the tag value as a list of tags, which makes it possible to
construct pointer types that can be treated as other pointer types, mainly for implementing
inheritance via upcasts (when a struct contains a super struct as its first element).

The cpointer-has-tag? function checks whether if the given cptr has the tag . A pointer
has a tag tag when its tag is either eq? to tag or a list that contains (in the sense of memq)
tag .

The cpointer-push-tag! function pushes the given tag value on cptr ’s tags. The main
properties of this operation are: (a) pushing any tag will make later calls to cpointer-has-
tag? succeed with this tag, and (b) the pushed tag will be used when printing the pointer
(until a new value is pushed). Technically, pushing a tag will simply set it if there is no tag
set, otherwise push it on an existing list or an existing value (treated as a single-element list).

75

5.4 Serializable C Struct Types

(require ffi/serialize-cstruct)
package: serialize-cstruct-lib

(define-serializable-cstruct _id ([field-id type-expr] ...)
property ...)

property = #:alignment alignment-expr
| #:malloc-mode malloc-mode-expr
| #:serialize-inplace
| #:deserialize-inplace
| #:version vers
| #:other-versions ([other-vers deserialize-chain-expr

convert-proc-expr
unconvert-proc-expr
cycle-convert-proc-expr]

...)
| #:property prop-expr val-expr

Like define-cstruct, but defines a serializable type, with several changed additional bind-
ings:

• make-id — always uses 'atomic allocation, even if #:malloc-mode is specified
(for historical reasons).

• make-id/mode — like behaves like make-id but uses the mode or allocator specified
via malloc-mode-expr (for historical reasons).

• deserialize:cstruct:id (for a vers of 0) or deserialize:cstruct:id-
vvers (for a vers of 1 or more) — deserialization information that is automatically
exported from a deserialize-info submodule.

• deserialize-chain:cstruct:id (for a vers of 0) or deserialize-
chain:cstruct:id-vvers (for a vers of 1 or more) — deserialization information
for use via #:other-versions in other define-serializable-cstruct forms.

• deserialize:cstruct:id (for an other-vers of 0) or
deserialize:cstruct:id-vother-vers (for an other-vers of 1 or more) —
deserialization information that is automatically exported from a deserialize-info
submodule.

Instances of the new type fulfill the serializable? predicate and can be used with seri-
alize and deserialize. Serialization may fail if one of the fields contains an arbitrary
pointer, an embedded non-serializable C struct, or a pointer to a non-serializable C struct.
Array-types are supported as long as they don’t contain one of these types.

76

https://pkgs.racket-lang.org/package/serialize-cstruct-lib

The default vers is 0, and vers must be a literal, exact, non-negative integer. An
#:other-versions clause provides deserializers for previous versions of the structure
with the name id , so that previously serialized data can be deserialized after a change to
the declaration of id . For each other-vers , deserialize-chain-expr should be the
value of a deserialize:cstruct:other-id binding for some other "other-id" de-
clared with define-serializable-cstruct that has the same shape that the previous
version of id ; the function produced by convert-proc-expr should convert an instance
of other-id to an instance of id . The functions produced by unconvert-proc-expr and
cycle-convert-proc-expr are used if a record is involved in a cycle; the function from
unconvert-proc-expr takes an id instance produced by convert-proc-expr ’s func-
tion back to a other-id , while cycle-convert-proc-expr returns two values: a shell
instance of id and function to accept a filled other-id whose content should be moved to
the shell instance of id.

The malloc-mode-expr arguments control the memory allocation for this type during de-
serialization and make-id/mode. It can be one of the mode arguments to malloc, or a
procedure

(-> exact-positive-integer? cpointer?)

that allocates memory of the given size. The default is malloc with 'atomic.

When #:serialize-inplace is specified, the serialized representation shares memory
with the C struct object. While being more efficient, especially for large objects, changes to
the object after serialization may lead to changes in the serialized representation.

A #:deserialize-inplace option reuses the memory of the serialized representation, if
possible. This option is more efficient for large objects, but it may fall back to allocation
via malloc-mode-expr for cyclic structures. As the allocation mode of the serialized rep-
resentation will be 'atomic by default or may be arbitrary if #:serialize-inplace is
specified, inplace deserialisation should be used with caution whenever the object contains
pointers.

When the C struct contains pointers, it is advisable to use a custom allocator. It should be
based on a non-moving-memory allocation like 'raw, potentially with manual freeing to
avoid memory leaks after garbage collection.

Changed in version 1.1 of package serialize-cstruct-lib: Added #:version and #:other-versions.

Examples:

> (define-serializable-cstruct fish ([color _int]))
> (define f0/s (serialize (make-fish 1)))
> (fish-color (deserialize f0/s))
1
> (define-serializable-cstruct aq ([a (_gcable fish-pointer)]

[d (_gcable aq-pointer/null)])

77

#:malloc-mode 'nonatomic)
> (define aq1 (make-aq/mode (make-fish 6) #f))
> (set-aq-d! aq1 aq1) ; create a cycle
> (define aq0/s (serialize aq1))
> (aq-a (aq-d (aq-d (deserialize aq0/s))))
#<cpointer:fish>
; Same shape as original aq:
> (define-serializable-cstruct old-aq ([a (_gcable fish-pointer)]

[d (_gcable _pointer)])
#:malloc-mode 'nonatomic)

; Replace the original aq:
> (define-serializable-cstruct aq ([a (_gcable fish-pointer)]

[b (_gcable fish-pointer)]
[d (_gcable aq-pointer/null)])

#:malloc-mode 'nonatomic
#:version 1
#:other-versions ([0 deserialize-chain:cstruct:old-aq

(lambda (oa)
(make-aq/mode (old-aq-a oa)

(old-aq-a oa)
(cast (old-aq-

d oa) _pointer aq-pointer)))
(lambda (a)

(make-old-aq/mode (aq-a a)
(aq-d a)))

(lambda ()
(define tmp-fish (make-fish 0))
(define a (make-aq/mode tmp-fish tmp-

fish #f))
(values a

(lambda (oa)
(set-aq-a! a (old-aq-a oa))
(set-aq-b! a (old-aq-a oa))
(set-aq-d! a (cast (old-aq-

d oa) _pointer aq-pointer)))))]))
; Deserialize old instance to new cstruct:
> (fish-color (aq-a (aq-d (aq-d (deserialize aq0/s)))))
6
> (define aq1/s (serialize (make-aq/mode (make-fish 1) (make-
fish 2) #f)))
; New version of fish:
> (define-serializable-cstruct old-fish ([color _int]))
> (define-serializable-cstruct fish ([weight _float]

[color _int])
#:version 1
#:other-versions ([0 deserialize-chain:cstruct:old-fish

78

(lambda (of)
(make-fish 10.0 (old-fish-color of)))

(lambda (a) (error "cycles not
possible!"))

(lambda () (error "cycles not
possible!"))]))
; Deserialized content upgraded to new fish:
> (fish-color (aq-b (deserialize aq1/s)))
2
> (fish-weight (aq-b (deserialize aq1/s)))
10.0

5.5 Static Callout and Callback Cores

(require ffi/unsafe/static) package: base

The ffi/unsafe/static library provides the same bindings as ffi/unsafe, but with a
replacement _fun form.

Added in version 8.11.0.2 of package base.

(_fun fun-option ... maybe-args type-spec ... -> type-spec
maybe-wrapper)

Like _fun from ffi/unsafe, but triggers an error at compile time in the CS implementation
of Racket if the compiler is unable to infer enough information about the resulting C type to
statically generate code for callouts and callbacks using the type.

The type-spec forms and some fun-option forms within _fun are arbitrary expressions
that can compute C types and options at run time. If the optimizer can statically infer un-
derlying representations, then it can generate the necessary code for a callout or callback
statically, instead of deferring code generation to run time. This optimization applies even
when using _fun from ffi/unsafe, but _fun from ffi/unsafe/static insists that the
optimization must apply.

Currently, the benefit of static generation for callout and callback code is limited, because
run-time code generation is fast and cached. In the long run, static generation may provide
more benefit.

5.6 Defining Bindings

(require ffi/unsafe/define) package: base

79

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(define-ffi-definer define-id ffi-lib-expr
option ...)

option = #:provide provide-id
| #:define core-define-id
| #:default-make-fail default-make-fail-expr
| #:make-c-id make-c-id

Binds define-id as a definition form to extract bindings from the library produced by
ffi-lib-expr . The syntax of define-id is

(define-id id type-expr
bind-option ...)

bind-option = #:c-id c-id
| #:c-id (unquote c-id-expr)
| #:wrap wrap-expr
| #:make-fail make-fail-expr
| #:fail fail-expr
| #:variable

A define-id form binds id by extracting a binding with the foreign name c-id from the
library produced by ffi-lib-expr , where c-id defaults to id . The other options support
further wrapping and configuration:

• Before the extracted result is bound as id , it is passed to the result of wrap-expr ,
which defaults to values. Expressions such as (allocator delete) or (deallo-
cator) are useful as wrap-exprs.

• The #:make-fail and #:fail options are mutually exclusive; if make-fail-expr
is provided, it is applied to 'id to obtain the last argument to get-ffi-obj; if fail-
expr is provided, it is supplied directly as the last argument to get-ffi-obj. The
make-not-available function is useful as make-fail-expr to cause a use of id
to report an error when it is applied if c-id was not found in the foreign library.

• If the #:c-id option is provided with an identifier argument c-id , then c-id is used
as the foreign name. If the argument has the form (unquote c-id-expr), then the
foreign name is the result of evaluating c-id-expr . In either case, the #:make-c-id
argument is ignored.

• If the #:c-id option is absent, the foreign name is based on id . If define-id was
defined with the #:make-c-id option, it computes the foreign name using an ffi iden-
tifier convention, such as converting hyphens to underscores or camel case. Several
conventions are provided by ffi/unsafe/define/conventions. If #:make-c-id
was absent, then id is used as the foreign name.

80

• If the #:variable keyword is given, then make-c-parameter is used instead of
get-ffi-obj to get the foreign value.

If provide-id is provided to define-ffi-definer, then define-id also provides its
binding using provide-id . The provide-protected form is usually a good choice for
provide-id .

If core-define-id is provided to define-ffi-definer, then core-define-id is used
in place of define in the expansion of define-id for each binding.

If default-make-fail-expr is provided to define-ffi-definer, it serves as the de-
fault #:make-fail value for define-id .

For example,

(define-ffi-definer define-gtk gtk-lib)

binds define-gtk to extract FFI bindings from gtk-lib, so that gtk_rc_parse could be
bound as

(define-gtk gtk_rc_parse (_fun _path -> _void))

If gtk_rc_parse is not found, then define-gtk reports an error immediately. If define-
gtk is instead defined with

(define-ffi-definer define-gtk gtk-lib
#:default-make-fail make-not-available)

then if gtk_rc_parse is not found in gtk-lib, an error is reported only when
gtk_rc_parse is called.

Changed in version 6.9.0.5 of package base: Added #:make-c-id parameter.
Changed in version 8.4.0.5: Added #:variable option. Added unquote variant of #:c-id argument.

(make-not-available name) Ñ procedure?
name : symbol?

Returns a procedure that takes any number of arguments, including keyword arguments, and
reports an error message from name . This function is intended for using with #:make-fail
or #:default-make-fail in define-ffi-definer

Changed in version 8.3.0.5 of package base: Added support for keyword arguments.

(provide-protected provide-spec ...)

Equivalent to (provide (protect-out provide-spec ...)). The provide-
protected identifier is useful with #:provide in define-ffi-definer.

81

5.6.1 FFI Identifier Conventions

(require ffi/unsafe/define/conventions) package: base

This module provides several FFI identifier conventions for use with #:make-c-id in
define-ffi-definer. A FFI identifier convention is any syntax transformer that converts
one identifier to another.

Added in version 6.9.0.5 of package base.

convention:hyphen->underscore

A convention that converts hyphens in an identifier to underscores. For example, the identi-
fier underscore-variable will transform to underscore_variable.

(define-ffi-definer define-unlib underscore-lib
#:make-c-id convention:hyphen->underscore)

(define-unlib underscore-variable (_fun -> _void))

convention:hyphen->camelCase

Similar to convention:hyphen->underscore, but converts the identifier to “camel-
Case,” following the string-downcase and string-titlecase functions. For example,
the identifier camel-case-variable (or even cAmeL-CAsE-vaRiaBlE) will transform to
camelCaseVariable.

(define-ffi-definer define-calib camel-lib
#:make-c-id convention:hyphen->camelCase)

(define-calib camel-case-variable (_fun -> _void))

Added in version 8.11.1.8 of package base.

convention:hyphen->PascalCase

Like convention:hyphen->camelCase, but converts the identifier to “PascalCase,” fol-
lowing the string-titlecase function. For example, the identifier pascal-case-
variable (or even paSCaL-CAsE-vaRiaBlE) will transform to PascalCaseVariable.

(define-ffi-definer define-palib pascal-lib
#:make-c-id convention:hyphen->PascalCase)

(define-palib pascal-case-variable (_fun -> _void))

Added in version 8.11.1.8 of package base.

convention:hyphen->camelcase

82

https://pkgs.racket-lang.org/package/base

NOTE: This convention is deprecated; use convention:hyphen-
>PascalCase, instead. This convention unfortunately converts to “PascalCase”
as opposed to what its name suggests.

Changed in version 8.11.1.8 of package base: Deprecated due to the wrong behavior.

5.7 Allocation and Finalization

(require ffi/unsafe/alloc) package: base

The ffi/unsafe/alloc library provides utilities for ensuring that values allocated through
foreign functions are reliably deallocated.

((allocator dealloc
[#:merely-uninterruptible? uninterruptible?])

alloc)
Ñ (or/c procedure? #f)
dealloc : (any/c . -> . any)
uninterruptible? : any/c = #f
alloc : (or/c procedure? #f)

Produces an allocator procedure that behaves like alloc , but each result v of the allocator,
if not #f, is given a finalizer that calls dealloc on v—unless the call has been canceled by
applying a deallocator (produced by deallocator) to v . Any existing dealloc registered
for v is canceled. If and only if alloc is #f, ((allocator alloc) dealloc) produces
#f.

The resulting allocator calls alloc in atomic mode (see call-as-atomic), unless
uninterruptible? is true, in which case uninterruptible mode is used (see call-as-
uninterruptible). The result from alloc is received and registered in atomic or uninter-
ruptible mode, so that the result is reliably deallocated as long as no exception is raised.

The dealloc procedure will be called in atomic mode, and it must obey the same constraints
as a finalizer procedure provided to register-finalizer. The dealloc procedure itself
need not be specifically a deallocator produced by deallocator. If a deallocator is called
explicitly, it need not be the same as dealloc .

When a non-main place exits, after all custodian-shutdown actions, for every dealloc still
registered via an allocator or retainer (from allocator or retainer), the value to deallo-
cate is treated as immediately unreachable. At that point, dealloc functions are called in
reverse order of their registrations. Note that references in a dealloc function’s closure do
not prevent running a dealloc function for any other value. If deallocation needs to pro-
ceed in an order different than reverse of allocation, use a retainer to insert a new deallocation
action that will run earlier.

83

https://pkgs.racket-lang.org/package/base

Changed in version 7.0.0.4 of package base: Added atomic mode for dealloc and changed non-main place exits
to call all remaining deallocs.
Changed in version 7.4.0.4: Produce #f when alloc is #f.
Changed in version 8.17.0.7: Added the #:merely-uninterruptible? optional argument.

((deallocator [get-arg
#:merely-uninterruptible? uninterruptible?])

dealloc)
Ñ procedure?
get-arg : (list? . -> . any/c) = car
uninterruptible? : any/c = #f
dealloc : procedure?

((releaser [get-arg]) dealloc) Ñ procedure?
get-arg : (list? . -> . any/c) = car
dealloc : procedure?

Produces a deallocator procedure that behaves like dealloc . The deallocator calls deal-
loc in atomic mode (see call-as-atomic) or uninterruptible mode (see call-as-
uninterruptible), and for one of its arguments, the it cancels the most recent remaining
deallocator registered by a allocator or retainer.

The optional get-arg procedure determines which of dealloc ’s arguments correspond
to the released object; get-arg receives a list of arguments passed to dealloc , so the
default car selects the first one. Note that get-arg can only choose one of the by-position
arguments to dealloc , though the deallocator will require and accept the same keyword
arguments as dealloc , if any.

The releaser procedure is a synonym for deallocator.

Changed in version 8.17.0.7 of package base: Added the #:merely-uninterruptible? optional argument.

((retainer release
[get-arg
#:merely-uninterruptible? uninterruptible?])

retain)
Ñ procedure?
release : (any/c . -> . any)
get-arg : (list? . -> . any/c) = car
uninterruptible? : any/c = #f
retain : procedure?

Produces a retainer procedure that behaves like retain . A retainer acts the same as an
allocator produced by allocator, except that

• a retainer does not cancel any existing release or dealloc registrations when reg-
istering release ; and

84

• release is registered for a value v that is is an argument to the retainer, instead of
the result for an allocator.

The optional get-arg procedure determines which of the retainer’s arguments (that is,
which of retain ’s arguments) correspond to the retained object v ; get-arg receives a
list of arguments passed to retain , so the default car selects the first one. Note that get-
arg can only choose one of the by-position arguments to retain , though the retainer will
require and accept the same keyword arguments as retain , if any.

Changed in version 7.0.0.4 of package base: Added atomic mode for release and changed non-main place exits
to call all remaining releases.
Changed in version 8.17.0.7: Added the #:merely-uninterruptible? optional argument.

5.8 Custodian Shutdown Registration

(require ffi/unsafe/custodian) package: base

The ffi/unsafe/custodian library provides utilities for registering shutdown callbacks
with custodians.

(register-custodian-shutdown v
callback

[custodian
#:at-exit? at-exit?
#:weak? weak?
#:ordered? ordered?]) Ñ cpointer?

v : any/c
callback : (any/c . -> . any)
custodian : custodian? = (current-custodian)
at-exit? : any/c = #f
weak? : any/c = #f
ordered? : any/c = #f

Registers callback to be applied (in atomic mode and an unspecified Racket thread) to v
when custodian is shutdown. If custodian is already shut down, the result is #f and v
is not registered. Otherwise, the result is a pointer that can be supplied to unregister-
custodian-shutdown to remove the registration.

If at-exit? is true, then callback is applied when Racket exits, even if the custodian is
not explicitly shut down.

If weak? is true, then callback may not be called if v is determined to be unreachable dur-
ing garbage collection. The value v is initially weakly held by the custodian, even if weak?
is #f. A value associated with a custodian can therefore be finalized via will executors, at

85

https://pkgs.racket-lang.org/package/base

least through will registrations and register-finalizer uses after calling register-
custodian-shutdown, but the value becomes strongly held when there are no other strong
references and no later-registered finalizers or wills apply.

If ordered? is true when weak is #f, then v is retained in a way that allows finalization of
v via register-finalizer to proceed. For the CS implementation of Racket, v must not
refer to itself or to a value that can refer back to v .

Normally, weak? should be false. To trigger actions based on finalization or custodian
shutdown—whichever happens first—leave weak? as #f and have a finalizer run in atomic
mode to check that the custodian shutdown has not happened and then cancel the shutdown
action via unregister-custodian-shutdown. If weak? is true or if the finalizer is not
run in atomic mode, then there’s no guarantee that either of the custodian or finalizer call-
backs has completed by the time that the custodian shutdown has completed; v might be no
longer registered to the custodian, while the finalizer for v might be still running or merely
queued to run. Furthermore, if finalization is via register-finalizer (as opposed to a
will executor), then supply ordered? as true; if ordered? is false while weak? is false,
then custodian may retain v in a way that does not allow finalization to be triggered when
v is otherwise inaccessible. See also register-finalizer-and-custodian-shutdown.

Changed in version 7.8.0.8 of package base: Added the #:ordered? argument.

(unregister-custodian-shutdown v
registration) Ñ void?

v : any/c
registration : cpointer?

Cancels a custodian-shutdown registration, where registration is a previous result from
register-custodian-shutdown applied to v . If registration is #f, then no action is
taken.

(register-finalizer-and-custodian-shutdown
v
callback

[custodian
#:at-exit? at-exit?
#:custodian-available available-callback
#:custodian-unavailable unavailable-callback])

Ñ any
v : any/c
callback : (any/c . -> . any)
custodian : custodian? = (current-custodian)
at-exit? : any/c = #f
available-callback : ((any/c . -> . void?) . -> . any)

= (lambda (unreg) (void))
unavailable-callback : ((-> void?) . -> . any)

= (lambda (reg-fnl) (reg-fnl))

86

Registers callback to be applied (in atomic mode and an unspecified Racket thread) to v
when custodian is shutdown or when v is about to be collected by the garbage collector,
whichever happens first. The callback is only applied to v once. The object v is subject
to the the constraints of register-finalizer—particularly the constraint that v must not
be reachable from itself.

When v is successfully registered with custodian and a finalizer is registered, then
available-callback is called with a function unreg that unregisters the v and disables
the use of callback through the custodian or a finalizer. The value v must be provided to
unreg (otherwise it would be in unreg ’s closure, possibly preventing the value from being
finalized). The available-callback function is called in tail position, so its result is the
result of register-finalizer-and-custodian-shutdown.

If custodian is already shut down, then unavailable-callback is applied in tail po-
sition to a function reg-fnl that registers a finalizer. By default, a finalizer is registered
anyway, but usually a better choice is to report an error.

Added in version 6.1.1.6 of package base.
Changed in version 8.1.0.6: Added the #:custodian-available argument.

(make-custodian-at-root) Ñ custodian?

Creates a custodian that is a child of the root custodian, bypassing the current-custodian
setting.

Creating a child of the root custodian is useful for registering a shutdown function that will
be triggered only when the current place terminates.

Added in version 6.9.0.5 of package base.

5.9 Atomic Execution

(require ffi/unsafe/atomic) package: base

Atomic mode evaluates a Racket expression without switching among Racket threads and
with limited support for events. An atomic computation in this sense is not atomic with
respect to other places, futures, or parallel threads, but only to coroutine threads within a
place. Asynchronous break exceptions (in the sense of break-thread) are also disabled in
atomic mode except as started by start-breakable-atomic.

Atomic mode is unsafe, because the Racket scheduler is not able to operate while execution
is in atomic mode: (1) the scheduler cannot switch coroutine threads or poll certain kinds of
events, which can lead to deadlock or starvation of other threads; and (2) calling a scheduler-
related function in atomic mode has unspecified behavior, where misuse is not necessarily
caught with a check. Functions that are directly scheduler-related include thread, sleep,
semaphore-wait, semaphore-post, channel-put, channel-get, and sync. Beware

87

https://pkgs.racket-lang.org/package/base

that other operations can involve such synchronization, such as writing to an output port
or using an equal?-based hash table. Even if an output target is known to be free of syn-
chronization, beware that values can have arbitrary printing procedures attached through
prop:custom-write. Successful use of atomic mode requires a detailed knowledge of any
implementation that might be reached during atomic mode to ensure that it terminates and
does not involve synchronization.

Uninterruptible mode is related to atomic mode. It is also unsafe and practically the same
as atomic mode in a coroutine thread, but uninterruptible mode does not force a parallel
thread to synchronize with all coroutine threads. Uninterruptible mode also allows the use
of uncontested semaphores and equal?-based hash tables.

(start-atomic) Ñ void?
(end-atomic) Ñ void?

Starts and ends atomic mode by disabling/re-enabling concurrency with any Racket corou-
tine threads in the same place, and also suspends/resumes delivery of break exceptions (in-
dependent of the result of break-enabled). Calls to start-atomic and end-atomic can
be nested.

Note that pairing start-atomic and end-atomic with dynamic-wind is useful only when

• the current exception handler is known to safely escape atomic mode, or else all pos-
sible escapes are through known continuation jumps or aborts (because breaks are
disabled and no other exceptions are possible) that escape safely; and

• exception constructions, if any, avoid printing values in the exception message, or else
the error value conversion handler is always used and known to be safe for atomic
mode.

Using call-as-atomic is somewhat safer than using start-atomic and end-atomic,
because call-as-atomic catches exceptions and re-raises them after exiting atomic mode,
and it wraps any call to the error value conversion handler with call-as-nonatomic. The
latter is safe for a particular atomic region, however, only if the region can be safely in-
terrupted by a non-atomic exception construction. See also call-as-nonatomic-retry-
point.

Unlike call-as-atomic, start-atomic and end-atomic can be called from any OS
thread as supported by ffi/unsafe/os-thread, although the calls have no effect outside
of Racket threads. Using start-atomic in a future that is not running in a Racket thread
blocks the future until it is resumed by touch in a Racket thread. Using start-atomic
in a parallel thread synchronizes with all coroutine threads in the same place, but not other
parallel threads or futures.

See also the caveat that atomic mode is unsafe.

88

(start-breakable-atomic) Ñ void?
(end-breakable-atomic) Ñ void?

Like start-atomic and end-atomic, but the delivery of break exceptions is not sus-
pended.

These functions are not significantly faster than start-atomic and end-atomic, so they
provide no benefit in a context where breaks are disabled.

(call-as-atomic thunk) Ñ any
thunk : (-> any)

Calls thunk in atomic mode, where call-as-nonatomic can be used during the dynamic
extent of the call to revert to non-atomic mode for a nested computation.

When call-as-atomic is used in the dynamic extent of call-as-atomic, then thunk is
called directly as a non-tail call.

If thunk raises an exception, the exception is caught and re-raised after exiting atomic
mode. Any call to the current error value conversion handler is effectively wrapped with
call-as-nonatomic.

See also the caveat that atomic mode is unsafe.

(call-as-nonatomic thunk) Ñ any
thunk : (-> any)

Within the dynamic extent of a call to call-as-atomic, calls thunk in non-atomic mode.
Beware that the current thread may be suspended or terminated by other threads during the
execution of thunk .

When used not in the dynamic extent of a call to call-as-atomic, call-as-nonatomic
raises exn:fail:contract.

(in-atomic-mode?) Ñ boolean?

Returns #t when in atomic mode or uninterruptible mode (within the current place), #f
otherwise.

(start-uninterruptible) Ñ void?
(end-uninterruptible) Ñ void?

Like start-atomic and end-atomic, but the continuation after start-
uninterruptible and before end-uninterruptible may run concurrently with
other Racket threads (both coroutine threads and parallel threads), but in uninterruptible

89

mode: the continuation will reach end-uninterruptible without interruption from other
threads. Uninterruptable mode is unsafe, just like atomic mode is unsafe.

Unlike start-atomic, start-uninterruptible in the CS implementation does not
block a future that is running concurrently with Racket threads, and it does not cause a
parallel thread to synchronize with coroutine threads. At the same time, such a future or par-
allel thread must not perform any action that blocks the future or requires synchronization
with coroutine threads; successful use of uninterruptible mode in a future or parallel thread
thus requires knowledge of Racket’s internals.

As a special case, an equal?-based mutable hash table (created by make-hash, for example)
or a semaphore (created by make-semaphore) can be used an in uninterruptible mode if it
is used only in uninterruptible mode, never concurrently; in the case of a semaphore, the
semaphore’s internal counter must be non-zero when waiting on the semaphore. Direct use
of a semaphore in uninterrupted mode would not make sense, but the special case allows
uninterrupted mode to use data structures that normally rely on semaphores for locking, as
long as they are used consistently that way. See also make-uninterruptible-lock.

Calls to start-uninterruptible and end-uninterruptible can be nested, and they
can be mutually nested with calls to start-atomic and end-atomic in a coroutine thread.
Since start-atomic is blocking for futures and requires synchronization in a parallel
thread, it cannot be used in uninterruptible mode in a future or parallel thread.

Added in version 8.17.0.7 of package base.
Changed in version 8.18.0.2: Constrain the use of uninterruptible mode in futures and parallel threads.

(call-as-uninterruptible thunk) Ñ any
thunk : (-> any)

Similar to call-as-atomic, but for uninterruptible mode.

Added in version 8.17.0.7 of package base.

(make-uninterruptible-lock) Ñ any/c
(uninterruptible-lock-acquire lock) Ñ void?

lock : any/c
(uninterruptible-lock-release lock) Ñ void?

lock : any/c

An uninterruptible lock provides low-level synchronization that cooperates with uninterrupt-
ible mode across parallel threads and futures. In particular, since a hash table or semaphore
can be used in uninterruptible mode but non-concurrently, an uninterruptible lock can be
used to guard access to the hash table or semaphore.

An uninterruptible lock does not cooperate with coroutine thread scheduling. The
uninterruptible-lock-acquire function enters uninterruptible mode immediately, be-
fore taking the lock or even waiting for it, and uninterruptible-lock-release exits

90

uninterruptible mode only after releasing the lock. An uninterruptible lock is therefore use-
ful only to guard predictably short actions that are reasonably considered atomic from the
perspective of Racket threads.

Added in version 8.18.0.5 of package base.

5.10 Speculatively Atomic Execution

(require ffi/unsafe/try-atomic) package: base

The ffi/unsafe/try-atomic library supports atomic execution that can be suspended and
resumed in non-atomic mode if it takes too long or if some external event causes the attempt
to be abandoned.
(call-as-nonatomic-retry-point thunk) Ñ any

thunk : (-> any)

Calls thunk in atomic mode (see start-atomic and end-atomic) while allowing thunk
to use try-atomic. Any incomplete computations started with try-atomic are run non-
atomically after thunk returns. The result of thunk is used as the result of call-as-
nonatomic-retry-point.

(try-atomic thunk
default-val

[#:should-give-up? give-up-proc
#:keep-in-order? keep-in-order?]) Ñ any

thunk : (-> any)
default-val : any/c
give-up-proc : (-> any/c) = run-200-milliseconds
keep-in-order? : any/c = #t

Within the dynamic extent of a call-as-nonatomic-retry-point call, attempts to run
thunk in the existing atomic mode. The give-up-proc procedure is called periodically to
determine whether atomic mode should be abandoned; the default give-up-proc returns
true after 200 milliseconds. If atomic mode is abandoned, the computation is suspended,
and default-val is returned, instead. The computation is resumed later by the enclosing
call-as-nonatomic-retry-point call.

If keep-in-order? is true, then if try-atomic is called after an earlier computation was
suspended for the same call-as-nonatomic-retry-point call, then thunk is immedi-
ately enqueued for completion by call-as-nonatomic-retry-point and default-val
is returned.

The give-up-proc callback is polled only at points where the level of atomic-mode nesting
(see start-atomic, start-breakable-atomic, and call-as-atomic) is the same as at
the point of calling try-atomic.

91

https://pkgs.racket-lang.org/package/base

If thunk aborts the current continuation using (default-continuation-prompt-tag),
the abort is suspended the resumed by the enclosing call-as-nonatomic-retry-point.
Escapes to the context of the call to thunk using any other prompt tag or continuation are
blocked (using dynamic-wind) and simply return (void) from thunk .

5.11 Thread Scheduling

(require ffi/unsafe/schedule) package: base

The ffi/unsafe/schedule library provides functions for cooperating with the thread
scheduler and manipulating it. The library’s operations are unsafe because callbacks run
in atomic mode and in an unspecified thread.

Running an operation in an unspecified thread means that the Racket scheduler for coroutine
threads selects a convenient coroutine thread and switches the thread’s evaluation temporar-
ily to the operation. The thread will not have been in atomic mode, but the operation using
the thread is always run in atomic mode. An operation that is run in an unspecified thread can
use (current-thread) check parameter values, and inspect the continuation, but doing so
is unsafe: the current thread and its continuation are not specified, and misusing a thread or
it continuation can leak information or change the thread’s behavior.

Added in version 6.11.0.1 of package base.

(unsafe-poller poll) Ñ any/c
poll : (evt? (or/c #f any/c) . -> . (values (or/c #f list?) evt?))

Produces a poller value that is allowed as a prop:evt value, even though it is not a procedure
or itself an evt?. The poll callback is called in atomic mode in an unspecified thread to
check whether the event is ready or to allow it to register a wakeup trigger.

The first argument to poll is always the object that is used as a synchronizable event with
the poller as its prop:evt value. Let’s call that value evt .

The second argument to poll is #f when poll is called to check whether the event is ready.
The result must be two values. The first result value is a list of results if evt is ready, or it
is #f if evt is not ready. The second result value is #f if evt is ready, or it is an event to
replace evt (often just evt itself) if evt is not ready.

When the thread scheduler has determined that the Racket process should sleep until an ex-
ternal event or timeout, then poll is called with a non-#f second argument, wakeups . In
that case, if the first result value is a list, then the sleep will be canceled, but the list is not
recorded as the result (and poll most likely will be called again). In addition to return-
ing a #f initial value, poll can call unsafe-poll-ctx-fd-wakeup, unsafe-poll-ctx-
eventmask-wakeup, and/or unsafe-poll-ctx-milliseconds-wakeup on wakeups to
register wakeup triggers.

92

https://pkgs.racket-lang.org/package/base

(unsafe-poll-fd fd mode [socket?]) Ñ boolean?
fd : exact-integer?
mode : '(read write)
socket? : any/c = #t

Checks whether the given file descriptor or socket is currently ready for reading or writing,
as selected by mode .

Added in version 7.2.0.6 of package base.

(unsafe-poll-ctx-fd-wakeup wakeups fd mode) Ñ void?
wakeups : any/c
fd : fixnum?
mode : '(read write error)

Registers a file descriptor (Unix and Mac OS) or socket (all platforms) to cause the Racket
process to wake up and resume polling if the file descriptor or socket becomes ready for
reading, writing, or error reporting, as selected by mode . The wakeups argument must be a
non-#f value that is passed by the scheduler to a unsafe-poller-wrapped procedure.

(unsafe-poll-ctx-eventmask-wakeup wakeups
mask) Ñ void?

wakeups : any/c
mask : fixnum?

On Windows, registers an eventmask to cause the Racket process to wake up and resume
polling if an event selected by the mask becomes available.

(unsafe-poll-ctx-milliseconds-wakeup wakeups
msecs) Ñ void?

wakeups : any/c
msecs : flonum?

Causes the Racket process to wake up and resume polling at the point when (current-
inexact-monotonic-milliseconds) starts returning a value that is msecs or greater.

Changed in version 8.3.0.9 of package base: unsafe-poll-ctx-milliseconds-wakeup previously used
current-inexact-milliseconds.

(unsafe-set-sleep-in-thread! foreground-sleep
fd) Ñ void?

foreground-sleep : (-> any/c)
fd : fixnum?

Registers foreground-sleep as a procedure to implement sleeping for the Racket process
when the thread scheduler determines at the process will sleep. Meanwhile, during a call

93

to foreground-sleep , the scheduler’s default sleeping function will run in a separate OS-
level thread. When that default sleeping function wakes up, a byte is written to fd as a way
of notifying foreground-sleep that it should return immediately.

This function works on when OS-level threads are available within the Racket implementa-
tion. It always works for Mac OS.

(unsafe-signal-received) Ñ void?

For use with unsafe-set-sleep-in-thread! by foreground-sleep or something that
it triggers, causes the default sleeping function to request foreground-sleep to return.

(unsafe-make-signal-received) Ñ (-> void?)

Returns a function that is like unsafe-signal-received, but it can be called in any place
or in any OS thread as supported by ffi/unsafe/os-thread to ensure a subsequent round
of polling by the thread scheduler in the place where unsafe-make-signal-received
was called.

Synchronizaiton between the result of unsafe-make-signal-received and the scheduler
will ensure the equivalent of (memory-order-release) before the call to the function
produced by unsafe-make-signal-received and the equivalent of (memory-order-
acquire) before the scheduler’s invocation of pollers.

Added in version 8.0.0.4 of package base.

5.12 Ports

(require ffi/unsafe/port) package: base

The ffi/unsafe/port library provides functions for working with ports, file descriptors,
and sockets. The library’s operations are unsafe, because no checking is performed on file
descriptors and sockets, and misuse of file descriptors and sockets can break other objects.

Added in version 6.11.0.4 of package base.

(unsafe-file-descriptor->port fd name mode)
Ñ (or/c port? (values input-port? output-port?))
fd : exact-integer?
name : any/c
mode : (listof (or/c 'read 'write 'text 'regular-file))

(unsafe-socket->port socket name mode) Ñ input-port? output-port?
socket : exact-integer?
name : bytes?
mode : (listof (or/c 'no-close))

94

https://pkgs.racket-lang.org/package/base

Returns an input port and/or output port for the given file descriptor or socket. On Windows,
a “file descriptor” corresponds to a file HANDLE, while a socket corresponds to a SOCKET.
On Unix, a socket is a file descriptor, but using the socket-specific unsafe-socket->port
may enable socket-specific functionality, such as address reporting via tcp-addresses.

The name argument determines the port’s name as reported by object-name. The name
must be a UTF-8 encoding that is converted to a symbol for the socket name.

For a file descriptor, the mode list must include at least one of 'read or 'write, and two
ports are returned if mode includes both 'read and 'write. The 'text mode affects only
Windows ports. The 'regular-file mode indicates that the file descriptor corresponds to
a regular file (which has the property, for example, that reading never blocks). Closing all
returned file-descriptor ports closes the file descriptor.

For a socket, the mode list can include 'no-close, in which case closing both of the returned
ports does not close the socket.

For any kind of result port, closing the resulting ports readies and unregisters any
semaphores for the file descriptor or socket that were previously created with unsafe-file-
descriptor->semaphore or unsafe-socket->semaphore.

(unsafe-port->file-descriptor p) Ñ (or/c exact-integer? #f)
p : port?

(unsafe-port->socket p) Ñ (or/c exact-integer? #f)
p : port?

Returns a file descriptor (which is a HANDLE value on Windows) of a socket for port if it
has one, #f otherwise.

On Unix and Mac OS, the result of unsafe-port->file-descriptor can be #f if it
corresponds to a port that is waiting for its peer as reported by port-waiting-peer?, such
as the write end of a fifo where no reader is connected. Wait until such is ready by using
sync).

Changed in version 7.4.0.5 of package base: Accommodate a fifo write end blocked on a reader by returning #f.

(unsafe-file-descriptor->semaphore fd mode)
Ñ (or/c semaphore? #f)
fd : exact-integer?
mode : (or/c 'read 'write 'check-read 'check-write 'remove)

(unsafe-socket->semaphore socket mode) Ñ (or/c semaphore? #f)
socket : exact-integer?
mode : (or/c 'read 'write 'check-read 'check-write 'remove)

Returns a semaphore that becomes ready when fd or socket is ready for reading or writ-
ing, as selected by mode . Specifically, these functions provide a one-shot, edge-triggered
indicator; the semaphore is posted the first time any of the following cases holds:

95

• fd or socket is ready for reading or writing (depending on mode),

• ports were created from fd or socket using unsafe-file-descriptor->port or
unsafe-socket->port, and those ports were closed, or

• a subsequent call occurred with the same fd or socket and with 'remove for mode .

The result is #f if a conversion to a semaphore is not supported for the current platform or
for the given file descriptor or socket.

The 'check-read and 'check-write modes are like 'read and 'write, but the result if
#f if a semaphore is not already generated for the specified file descriptor or socket in the
specified mode.

The 'remove mode readies and unregisters any semaphores previously created for the given
file descriptor or socket. Semaphores must be unregistered before the file descriptor or socket
is closed. Beware that closing a port from unsafe-file-descriptor->port or unsafe-
socket->port will also ready and unregister semaphores. In all of those cases, however,
the semaphore is made ready asynchronously, so there may be a detectable delay.

(unsafe-fd->evt fd mode [socket?]) Ñ (or/c evt? #f)
fd : exact-integer?
mode : (or/c 'read 'write 'check-read 'check-write 'remove)
socket? : any/c = #t

Returns an event that is ready when fd is ready for reading or writing, as selected by mode .
Specifically, it returns a multi-use, level-triggered indicator; the event is ready whenever any
of the following cases holds:

• fd is ready for reading or writing (depending on mode),

• a subsequent call occurred with the same fd and with 'remove for mode (once re-
moved, the event is perpetually ready).

The synchronization result of the event is the event itself.

The 'check-read and 'check-write modes are like 'read and 'write, but the result
is #f if an event is not already generated for the specified file descriptor or socketin the
specified mode.

The 'remove mode readies and unregisters any events previously created for the given
file descriptor or socket. Events must be unregistered before the file descriptor or socket
is closed. Unlike the semaphore result of unsafe-file-descriptor->semaphore and
unsafe-socket->semaphore, the event result of unsafe-fd->evt is not triggered or un-
registered by closing a port—not even a port from unsafe-file-descriptor->port or
unsafe-socket->port.

Added in version 7.2.0.6 of package base.

96

5.13 Process-Wide and Place-Wide Registration

(require ffi/unsafe/global) package: base

The ffi/unsafe/global library provides a utility registering information that is local to a
place or spans all places in the Racket process.

Added in version 6.9.0.5 of package base.

(register-process-global key val) Ñ cpointer?
key : bytes?
val : cpointer?

Gets or sets a value in a process-global table (i.e., shared across multiple places, if any).

If val is #f, the current mapping for key is reported.

If val is not #f, and no value has been installed for key , then the value is installed and #f
is returned. If a value has already been installed, then no new value is installed and the old
value is returned. The given val must not refer to garbage-collected memory.

This function is intended for infrequent use with a small number of keys.

(get-place-table) Ñ hash?

Returns a place-specific, mutable, eq?-based hash table. The result is always the same for a
particular place.

Added in version 6.11.0.6 of package base.

5.14 Operating System Threads

(require ffi/unsafe/os-thread) package: base

The ffi/unsafe/os-thread library provides functions for running constrained Racket
code in a separate thread at the operating-system level. Except for os-thread-enabled?,
the functions of ffi/unsafe/os-thread are currently supported only when (system-
type 'vm) returns 'chez-scheme, and even then only in certain build modes. The func-
tions raise exn:fail:unsupported when not supported.

Added in version 6.90.0.9 of package base.

(os-thread-enabled?) Ñ boolean?

Returns #t if the other functions of ffi/unsafe/os-thread work without raising
exn:fail:unsupported, #f otherwise.

97

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

(call-in-os-thread thunk) Ñ void?
thunk : (-> any)

Runs thunk in a separate operating-system thread, which runs concurrently to all Racket
threads.

The thunk is run in atomic mode, and it must not inspect its continuation or use any Racket
thread functions (such as thread or current-thread), any Racket synchronization func-
tions (such as semaphore-post or sync), or any parameters (such as current-output-
port). Variables may be safely mutated with set!, and vectors, mutable pairs, boxes, muta-
ble structure fields, and eq?- and eqv?-based hash tables can be mutated, but the visibility of
mutations to other threads is unspecified except as synchronized through os-semaphore-
wait and os-semaphore-post.

(make-os-semaphore) Ñ any

Creates a semaphore that can be used with os-semaphore-wait and os-semaphore-post
to synchronize an operating-system thread with Racket threads and other operating-system
threads.

(os-semaphore-post sema) Ñ void?
sema : any/c

Analogous to semaphore-post, but posts to a semaphore created by make-os-semaphore.

(os-semaphore-wait sema) Ñ void?
sema : any/c

Analogous to semaphore-wait, but waits on a semaphore created by make-os-
semaphore. Waiting blocks the current thread; if the current thread is a Racket coroutine
threads, then waiting also blocks all other coroutine threads in the same place. Waiting from
a parallel thread, does not necessarily block other Racket threads, but it consumes a pro-
cessor resource for the thread’s pool, and it may block coroutine threads or others if they
attempt to synchronize with the blocked parallel thread.

5.14.1 Operating System Asynchronous Channels

(require ffi/unsafe/os-async-channel) package: base

The ffi/unsafe/os-async-channel library provides an asynchronous channels that
work with operating-system threads, where normal racket channels or place channels are not
allowed. These channels are typically used in combination with ffi/unsafe/os-thread.

98

https://pkgs.racket-lang.org/package/base

An asynchronous operating-system channel is a synchronizable event, so can it can be
used with sync to receive a value in a Racket thread. Other threads must use os-async-
channel-try-get or os-async-channel-get.

When a thread is blocked on an otherwise inaccessible asynchronous channel that was pro-
duced by make-os-async-channel, the thread is not available for garbage collection.
That’s different from a thread is blocked on a regular Racket channel or a place channel.

Added in version 8.0.0.4 of package base.

(make-os-async-channel) Ñ os-async-channel?

Creates a new, empty asynchronous channel for use with operating-system threads.

(os-async-channel? v) Ñ boolean?
v : any/c

Returns #t if v is an asynchronous channel produced by make-os-async-channel, #f
otherwise.
(os-async-channel-put ch v) Ñ void?

ch : os-async-channel?
v : any/c

Enqueues v in the asynchronous channel ch . This function can be called from a Racket
thread or any operating-system thread.

(os-async-channel-try-get ch [default-v]) Ñ any/c
ch : os-async-channel?
default-v : any/c = #f

Dequeues a value from the the asynchronous channel ch and returns it, if a value is available.
If no value is immediately available in the channel, default-v is returned. This function
can be called from a Racket thread or any operating-system thread.

(os-async-channel-get ch) Ñ any/c
ch : os-async-channel?

Dequeues a value from the the asynchronous channel ch and returns it, blocking until a value
is available. This function can be called from any non-Racket operating-system thread. This
function should not be called from a Racket thread, since it blocks in a way that will block
all Racket threads within a place; in a Racket thread, use sync, instead.

5.15 Garbage Collection Callbacks

(require ffi/unsafe/collect-callback) package: base

99

https://pkgs.racket-lang.org/package/base

The ffi/unsafe/collect-callback library provides functions to register constrained
callbacks that are run just before and after a garbage collection.

Added in version 7.0.0.9 of package base.

(unsafe-add-collect-callbacks pre post) Ñ any/c
pre : (vectorof vector?)
post : (vectorof vector?)

Registers descriptions of foreign functions to be called just before and just after a garbage
collection. The foreign functions must not allocate garbage-collected memory, and they are
called in a way that does not allocate, which is why pre_desc and post_desc are function
descriptions instead of thunks.

A description is a vector of vectors, where each of the inner vectors describes a single call,
and the calls are performed in sequence. Each call vector starts with a symbol that indicates
the protocol of the foreign function to be called. The following protocols are supported: The apparently

arbitrary and
whimsical set of
supported protocols
is enough to allow
DrRacket to show a
garbage-collection
icon.

• 'int->void corresponds to void (*)(int).

• 'ptr_ptr_ptr->void corresponds to void (*)(void*, void*, void*).

• 'ptr_ptr->save corresponds to void* (*)(void*, void*), but the result is
recorded as the current “save” value. The current “save” value starts as NULL.

• 'save!_ptr->void corresponds to void (*)(void*, void*), but only if the cur-
rent “save” value is not a NULL pointer, and passing that pointer as the function’s first
argument (so that only one additional argument is us from the description vector).

• 'ptr_ptr_ptr_int->void corresponds to void (*)(void*, void*, void*,
int).

• 'ptr_ptr_float->void corresponds to void (*)(void*, void*, float).

• 'ptr_ptr_double->void corresponds to void (*)(void*, void*, double).

• 'ptr_ptr_ptr_int_int_int_int_int_int_int_int_int->void corresponds
to void (*)(void*, void*, void*, int, int, int, int, int, int,
int, int, int).

• 'osapi_ptr_int->void corresponds to void (*)(void*, int), but using the
stdcall calling convention on Windows.

• 'osapi_ptr_ptr->void corresponds to void (*)(void*, void*), but using the
stdcall calling convention on Windows.

• 'osapi_ptr_int_int_int_int_ptr_int_int_long->void corresponds to void
(*)(void*, int, int, int, int, void*, int, int, long), but using the
stdcall calling convention on Windows.

100

After the protocol symbol, the vector should contain a pointer to a foreign function and then
an element for each of the function’s arguments. Pointer values are represented as for the
_pointer representation defined by ffi/unsafe.

The result is a key for use with unsafe-remove-collect-callbacks. If the key be-
comes inaccessible, then the callback will be removed automatically (but beware that the
pre-callback will have executed and the post-callback will not have executed)

(unsafe-remove-collect-callbacks key) Ñ void?
key : any/c

Unregisters pre- and post-collection callbacks that were previously registered by a call to
unsafe-add-collect-callbacks that returned v.

5.16 Objective-C FFI

(require ffi/unsafe/objc) package: base

The ffi/unsafe/objc library builds on ffi/unsafe to support interaction with
Objective-C.

The library supports Objective-C interaction in two layers. The upper layer provides syntac-
tic forms for sending messages and deriving subclasses. The lower layer is a thin wrapper
on the Objective-C runtime library functions. Even the upper layer is unsafe and relatively
low-level compared to normal Racket libraries, because argument and result types must be
declared in terms of FFI C types (see §3.1 “Type Constructors”).

5.16.1 FFI Types and Constants

_id : ctype?

The type of an Objective-C object, an opaque pointer.

_Class : ctype?

The type of an Objective-C class, which is also an _id.

_Protocol : ctype?

The type of an Objective-C protocol, which is also an _id.

_SEL : ctype?

101

https://pkgs.racket-lang.org/package/base
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/
https://developer.apple.com/documentation/objectivec

The type of an Objective-C selector, an opaque pointer.

_BOOL : ctype?

The Objective-C boolean type. Racket values are converted for C in the usual way: #f is
false and any other value is true. C values are converted to Racket booleans.

YES : boolean?

Synonym for #t

NO : boolean?

Synonym for #f

5.16.2 Syntactic Forms and Procedures

(tell result-type obj-expr method-id)
(tell result-type obj-expr arg ...)

result-type =
| #:type ctype-expr

arg = method-id arg-expr
| method-id #:type ctype-expr arg-expr

Sends a message to the Objective-C object produced by obj-expr . When a type is omitted
for either the result or an argument, the type is assumed to be _id, otherwise it must be
specified as an FFI C type (see §3.1 “Type Constructors”).

If a single method-id is provided with no arguments, then method-id must not end with
:; otherwise, each method-id must end with :.

Examples:

> (tell NSString alloc)
#<cpointer:id>
> (tell (tell NSString alloc)

initWithUTF8String: #:type _string "Hello")
#<cpointer:id>

(tellv obj-expr method-id)
(tellv obj-expr arg ...)

102

Like tell, but with a result type _void.

(import-class class-id ...)

Defines each class-id to the class (a value with FFI type _Class) that is registered with
the string form of class-id . The registered class is obtained via objc_lookUpClass.

Example:

> (import-class NSString)

A class accessed by import-class is normally declared as a side effect of loading a foreign
library. For example, if you want to import the class NSString on Mac OS, the "Founda-
tion" framework must be loaded, first. Beware that if you use import-class in DrRacket
or a module that requires racket/gui/base, then "Foundation" will have been loaded
into the Racket process already. To avoid relying on other libraries to load "Foundation",
explicitly load it with ffi-lib:

> (ffi-lib
"/System/Library/Frameworks/Foundation.framework/Foundation")

> (import-class NSString)

(import-protocol protocol-id ...)

Defines each protocol-id to the protocol (a value with FFI type _Protocol) that is
registered with the string form of protocol-id . The registered class is obtained via
objc_getProtocol.

Example:

> (import-protocol NSCoding)

(define-objc-class class-id superclass-expr
maybe-mixins
maybe-protocols
[field-id ...]
method ...)

103

maybe-mixins =
| #:mixins (mixin-expr ...)

maybe-protocols =
| #:protocols (protocol-expr ...)

method = (mode maybe-async result-ctype-expr (method-id) body ...+)
| (mode maybe-async result-ctype-expr (arg ...+) body ...+)

mode = +
| -
| +a
| -a

maybe-async =
| #:async-apply async-apply-expr

arg = method-id [ctype-expr arg-id]

Defines class-id as a new, registered Objective-C class (of FFI type _Class). The
superclass-expr should produce an Objective-C class or #f for the superclass. An op-
tional #:mixins clause can specify mixins defined with define-objc-mixin. An optional
#:protocols clause can specify Objective-C protocols to be implemented by the class,
where a #f result for a protocol-expr is ignored.

Each field-id is an instance field that holds a Racket value and that is initialized to #f
when the object is allocated. The field-ids can be referenced and set! directly when
the method bodys. Outside the object, they can be referenced and set with get-ivar and
set-ivar!.

Each method adds or overrides a method to the class (when mode is - or -a) to be called
on instances, or it adds a method to the meta-class (when mode is + or +a) to be called
on the class itself. All result and argument types must be declared using FFI C types (see
§3.1 “Type Constructors”). When mode is +a or -a, the method is called in atomic mode
(see _cprocedure). An optional #:async-apply specification determines how the method
works when called from a foreign thread in the same way as for _cprocedure.

If a method is declared with a single method-id and no arguments, then method-id must
not end with :. Otherwise, each method-id must end with :.

If the special method dealloc is declared for mode -, it must not call the superclass method,
because a (super-tell dealloc) is added to the end of the method automatically. In
addition, before (super-tell dealloc), space for each field-id within the instance is
deallocated.

Example:

104

> (define-objc-class MyView NSView
[bm] ; <- one field
(- _racket (swapBitwmap: [_racket new-bm])

(begin0 bm (set! bm new-bm)))
(- _void (drawRect: [_NSRect exposed-rect])

(super-tell drawRect: exposed-rect)
(draw-bitmap-region bm exposed-rect))

(- _void (dealloc)
(when bm (done-with-bm bm))))

Changed in version 6.90.0.26 of package base: Changed #:protocols handling to ignore #f expression results.

(define-objc-mixin (class-id superclass-id)
maybe-mixins
maybe-protocols
[field-id ...]
method ...)

Like define-objc-class, but defines a mixin to be combined with other method defini-
tions through either define-objc-class or define-objc-mixin. The specified field-
ids are not added by the mixin, but must be a subset of the field-ids declared for the
class to which the methods are added.

self

When used within the body of a define-objc-class or define-objc-mixin method,
refers to the object whose method was called. This form cannot be used outside of a define-
objc-class or define-objc-mixin method.

(super-tell result-type method-id)
(super-tell result-type arg ...)

When used within the body of a define-objc-class or define-objc-mixin method,
calls a superclass method. The result-type and arg sub-forms have the same syntax as
in tell. This form cannot be used outside of a define-objc-class or define-objc-
mixin method.

(get-ivar obj-expr field-id)

Extracts the Racket value of a field in a class created with define-objc-class.

(set-ivar! obj-expr field-id value-expr)

Sets the Racket value of a field in a class created with define-objc-class.

105

(selector method-id)

Returns a selector (of FFI type _SEL) for the string form of method-id .

Example:

> (tellv button setAction: #:type _SEL (selector terminate:))

(objc-is-a? obj cls) Ñ boolean?
obj : _id
cls : _Class

Check whether obj is an instance of the Objective-C class cls or a subclass.

Changed in version 6.1.0.5 of package base: Recognize subclasses, instead of requiring an exact class match.

(objc-subclass? subcls cls) Ñ boolean?
subcls : _Class
cls : _Class

Check whether subcls is cls or a subclass.

Added in version 6.1.0.5 of package base.

(objc-get-class obj) Ñ _Class
obj : _id

Extract the class of obj .

Added in version 6.3 of package base.

(objc-set-class! obj cls) Ñ void?
obj : _id
cls : _Class

Changes the class of obj to cls . The object’s existing representation must be compatible
with the new class.

Added in version 6.3 of package base.

(objc-get-superclass cls) Ñ _Class
cls : _Class

Returns the superclass of cls .

Added in version 6.3 of package base.

106

(objc-class-has-instance-method? cls sel) Ñ boolean?
cls : _Class
sel : _SEL

Reports report cls offers an instance method sel .

Added in version 9.0.0.6 of package base.

(objc-dispose-class cls) Ñ void?
cls : _Class

Destroys cls , which must have no existing instances or subclasses.

Added in version 6.3 of package base.

(objc-block function-type? proc #:keep keep) Ñ cpointer?
function-type? : ctype
proc : procedure?
keep : (box/c list?)

Wraps a Racket function proc as an Objective-C block. The procedure must accept an initial
pointer argument that is the “self” argument for the block, and that extra argument must be
included in the given function-type.

Extra records that are allocated to implement the block are added to the list in keep , which
might also be included in function-type through a #:keep option to _fun. The pointers
registered in keep must be retained as long as the block remains in use.

Added in version 6.3 of package base.

(objc-block-function-pointer block) Ñ fpointer?
block : cpointer?

Extracts the function pointer of an Objective-C block. Cast this function pointer to a suitable
function type to call it, where the block itself must be passed as the first argument to the
function.

Added in version 8.13.0.1 of package base.

(with-blocking-tell form ...+)

Causes any tell, tellv, or super-tell expression syntactically within the forms to be
blocking in the sense of the #:blocking? argument to _cprocedure. Otherwise, (with-
blocking-tell form ...+) is equivalent to (let () form ...+).

Added in version 7.0.0.19 of package base.

107

5.16.3 Raw Runtime Functions

(objc_lookUpClass s) Ñ (or/c _Class #f)
s : string?

Finds a registered class by name.

(objc_getProtocol s) Ñ (or/c _Protocol #f)
s : string?

Finds a registered protocol by name.

(sel_registerName s) Ñ _SEL
s : string?

Interns a selector given its name in string form.

(objc_allocateClassPair cls s extra) Ñ _Class
cls : _Class
s : string?
extra : integer?

Allocates a new Objective-C class.

(objc_registerClassPair cls) Ñ void?
cls : _Class

Registers an Objective-C class.

(object_getClass obj) Ñ _Class
obj : _id

Returns the class of an object (or the meta-class of a class).

(class_getSuperclass cls) Ñ _Class
cls : _Class

Returns the superclass of cls or #f if cls has no superclass.

Added in version 6.1.0.5 of package base.

(class_addMethod cls
sel
imp
type
type-encoding) Ñ boolean?

108

cls : _Class
sel : _SEL
imp : procedure?
type : ctype?
type-encoding : string?

Adds a method to a class. The type argument must be a FFI C type (see §3.1 “Type Con-
structors”) that matches both imp and the not Objective-C type string type-encoding .

(class_addIvar cls
name
size
log-alignment
type-encoding) Ñ boolean?

cls : _Class
name : string?
size : exact-nonnegative-integer?
log-alignment : exact-nonnegative-integer?
type-encoding : string?

Adds an instance variable to an Objective-C class.

(object_getInstanceVariable obj name) Ñ _Ivar any/c
obj : _id
name : string?

Gets the value of an instance variable whose type is _pointer.

(object_setInstanceVariable obj name val) Ñ _Ivar
obj : _id
name : string?
val : any/c

Sets the value of an instance variable whose type is _pointer.

_Ivar : ctype?

The type of an Objective-C instance variable, an opaque pointer.

((objc_msgSend/typed types) obj sel arg) Ñ any/c
types : (vector/c result-ctype arg-ctype ...)
obj : _id
sel : _SEL
arg : any/c

109

Calls the Objective-C method on _id named by sel . The types vector must contain one
more than the number of supplied args; the first FFI C type in type is used as the result
type.

((objc_msgSendSuper/typed types)
super
sel
arg) Ñ any/c
types : (vector/c result-ctype arg-ctype ...)
super : _objc_super
sel : _SEL
arg : any/c

Like objc_msgSend/typed, but for a super call.

(make-objc_super id super) Ñ _objc_super
id : _id
super : _Class

_objc_super : ctype?

Constructor and FFI C type use for super calls.

((objc_msgSend/typed/blocking types)
obj
sel
arg) Ñ any/c
types : (vector/c result-ctype arg-ctype ...)
obj : _id
sel : _SEL
arg : any/c

((objc_msgSendSuper/typed/blocking types)
super
sel
arg) Ñ any/c
types : (vector/c result-ctype arg-ctype ...)
super : _objc_super
sel : _SEL
arg : any/c

The same as objc_msgSend/typed and objc_msgSendSuper/typed, but specifying that
the send should be blocking in the sense of the #:blocking? argument to _cprocedure.

Added in version 7.0.0.19 of package base.

110

5.16.4 Legacy Library

(require ffi/objc) package: base

The ffi/objc library is a deprecated entry point to ffi/unsafe/objc. It exports only safe
operations directly, and unsafe operations are imported using objc-unsafe!, analogous to
scheme/foreign.

(objc-unsafe!)

Makes unsafe bindings of ffi/unsafe/objc available in the importing module.

5.17 Cocoa Foundation

The ffi/unsafe/nsalloc and ffi/unsafe/nsstring libraries provide basic facilities
for working with Cocoa and/or Mac OS Foundation libraries (usually along with ffi/objc).

5.17.1 Strings

(require ffi/unsafe/nsstring) package: base

_NSString : ctype?

A type that converts between Racket strings and NSString* (a.k.a. CFStringRef) values.
That is, use _NSString as a type for a foreign-function NSString* argument or result.

The _NSString conversion keeps a weak mapping from Racket strings to converted strings,
so that converting the same string (in the equal? sense) multiple times may avoid allocating
multiple NSString objects.

5.17.2 Allocation Pools

(require ffi/unsafe/nsalloc) package: base

Calling any Foundation API that allocates requires an NSAutoreleasePool installed. The
ffi/unsafe/nsalloc library provides a function and shorthand syntactic form for setting
up such a context. (The _NSString type creates an autorelease pool implicitly while con-
verting from/to a Racket string, however.)

(call-with-autorelease thunk) Ñ any
thunk : (-> any)

111

https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base
https://pkgs.racket-lang.org/package/base

Calls thunk in atomic mode and with a fresh NSAutoreleasePool that is released after
thunk returns.

(with-autorelease expr)

A shorthand for (call-with-autorelease (lambda () expr)).

5.18 COM (Common Object Model)

The ffi/com and ffi/unsafe/com libraries support COM interaction in two layers. The
safe upper layer provides functions for creating COM objects and dynamically constructing
method calls based on COM automation (i.e., reflective information provided by the object).
The unsafe lower layer provides a syntactic form and functions for working more directly
with COM objects and interfaces.

A COM object instantiates a particular COM class. A COM class can be specified in either
of two ways:

• A CLSID (class id), which is represented as a GUID. A GUID (globally unique iden-
tifier) is a 16-byte structure. GUIDs are typically written in string forms such as
"{A3B0AF9E-2AB0-11D4-B6D2-0060089002FE}". The string->guid and guid-
>string convert between string and GUID forms. The string->clsid function is
the same as string->guid, but its use suggests that the resulting GUID is to be used
as a CLSID.

• A ProgID is a human-readable name, such as "MzCom.MzObj.5.2.0.7", which in-
cludes a version number. The version number can be omitted in a ProgID, in which
case the most recent available version is used. The operating system provides a map-
ping between ProgIDs and CLSIDs that is available via progid->clsid and clsid-
>progid.

A COM object can be instantiated either on the local machine or on a remote machine. The
latter relies on the operating system’s DCOM (distributed COM) support.

Each COM object supports some number of COM interfaces. A COM interface has a pro-
grammatic name, such as IDispatch, that corresponds to a C-layer protocol. Each interface
also has an IID (interface id) that is represented as a GUID such as "{00020400-0000-
0000-C000-000000000046}". Direct calls to COM methods require extracting a suitable
interface pointer from an object using QueryInterface and the desired IID; the result is
effectively cast it to a pointer to a dispatch-table pointer, where the dispatch table has a stat-
ically known size and foreign-function content. The define-com-interface form sim-
plifies description and use of interface pointers. The COM automation layer uses a fixed
number of reflection interfaces internally, notably IDispatch, to call methods by name and
with safe argument marshaling.

112

5.18.1 COM Automation

(require ffi/com) package: base

The ffi/com library builds on COM automation to provide a safe use of COM objects that
support the IDispatch interface. The ffi/com

library is based on
the MysterX library
by Paul Steckler.
MysterX is included
with Racket but
deprecated, and it
will be replaced in
the next version
with a partial
compatibility
library that redirects
to this one.

GUIDs, CLSIDs, IIDs, and ProgIDs

(guid? v) Ñ boolean?
v : any/c

(clsid? v) Ñ boolean?
v : any/c

(iid? v) Ñ boolean?
v : any/c

Returns #t if v is a structure representing a GUID, #f otherwise. The clsid? and iid?
functions are the same as guid?.

A GUID corresponds an a _GUID structure at the unsafe layer.

(string->guid str) Ñ guid?
str : string?

(string->clsid str) Ñ clsid?
str : string?

(string->iid str) Ñ iid?
str : string?

Converts a string of the form "{00000000-0000-0000-0000-0000000000}", where each
0 can be a hexadecimal digit, to a GUID. If str does not have te expected form, the
exn:fail exception is raised.

The string->clsid and string->iid functions are the same as string->guid.

(guid->string g) Ñ string?
g : guid?

Converts a GUID to its string form.

(guid=? g1 g2) Ñ boolean?
g1 : guid?
g2 : guid?

Determines whether g1 and g2 represent the same GUID.

113

https://pkgs.racket-lang.org/package/base

(progid->clsid progid) Ñ clsid?
progid : string?

(clsid->progid clsid) Ñ (or/c string? #f)
clsid : clsid?

Converts a ProgID to a CLSID or vice versa. Not evey COM class has a ProgID, so the result
of clsid->progid can be #f.

The progid->clsid function accepts a versionless ProgID, in which case it produces the
CLSID of the most recent available version. The clsid->progid function always produces
a ProgID with its version.

COM Objects

(com-object? obj) Ñ boolean?
obj : com-object?

Returns #t if the argument represents a COM object, #f otherwise.

(com-create-instance clsid-or-progid [where]) Ñ com-object?
clsid-or-progid : (or/c clsid? string?)
where : (or/c 'local 'remote string?) = 'local

Returns an instance of the COM class specified by clsid-or-progid , which is either a
CLSID or a ProgID.

The optional where argument indicates a location for running the instance, and may be
'local, 'remote, or a string indicating a machine name. See §5.18.1.8 “Remote COM
servers (DCOM)” for more information.

An object can be created this way for any COM class, but functions such as com-invoke
work only if the object supports the IDispatch COM automation interface.

The resulting object is registered with the current custodian, which retains a reference to the
object until it is released with com-release or the custodian is shut down.

(com-release obj) Ñ void?
obj : com-object?

Releases the given COM object. The given obj is subsequently unusable, and the underlying
COM object is destroyed unless its reference count has been incremented (via COM methods
or unsafe operations).

If obj has already been released, com-release has no effect.

(com-get-active-object clsid-or-progid) Ñ com-object?
clsid-or-progid : (or/c clsid? string?)

114

Like com-create-instance, but gets an existing active object (always local) instead of
creating a new one.

(com-object-clsid obj) Ñ clsid?
obj : com-object?

Returns the "CLSID" of the COM class instantiated by obj , or raises an error if the COM
class is not known.

(com-object-set-clsid! obj clsid) Ñ void?
obj : com-object?
clsid : clsid?

Sets the COM CLSID for obj to clsid . This is useful when COM event-handling proce-
dures can obtain only ambiguous information about the object’s COM class.

(com-object-eq? obj1 obj2) Ñ boolean?
obj1 : com-object?
obj2 : com-object?

Returns #t if obj1 and obj2 refer to the same COM object, #f otherwise.

If two references to a COM object are the same according to com-object-eq?, then they are
also the same according to equal?. Two com-object-eq? references are not necessarily
eq?, however.

(com-type? v) Ñ boolean?
v : any/c

Returns #t if v represents reflective information about a COM object’s type, #f otherwise.

(com-object-type obj) Ñ com-type?
obj : com-object?

Returns a representation of a COM object’s type that is independent of the object itself.

(com-type=? t1 t2) Ñ boolean?
t1 : com-type?
t2 : com-type?

Returns #t if t1 and t2 represent the same type information, #f otherwise.

COM Methods

(com-methods obj/type) Ñ (listof string?)
obj/type : (or/c com-object? com-type?)

115

Returns a list of strings indicating the names of methods on obj/type .

(com-method-type obj/type method-name)
Ñ (list/c '-> (listof type-description?)

type-description?)
obj/type : (or/c com-object? com-type?)
method-name : string?

Returns a list indicating the type of the specified method in obj/type . The list after the '->
represents the argument types, and the final value represents the result type. See §5.18.1.9
“COM Types” for more information.

(com-invoke obj method-name v ...) Ñ any/c
obj : com-object?
method-name : string?
v : any/c

Invokes method-name on obj with vs as the arguments. The special value com-omit may
be used for optional arguments, which useful when values are supplied for arguments after
the omitted argument(s).

The types of arguments are determined via com-method-type, if possible, and type-
describe wrappers in the vs are simply replaced with the values that they wrap. If the
types are not available from com-method-type, then types are inferred for each v with
attention to descriptions in any type-describe wrappers in v .

com-omit : any/c

A constant for use with com-invoke in place of an optional argument.

(com-omit? v) Ñ boolean?
v : any/c

Returns #t if v is com-omit, #f otherwise.

Added in version 6.3.0.3 of package base.

COM Properties

(com-get-properties obj/type) Ñ (listof string?)
obj/type : (or/c com-object? com-type?)

Returns a list of strings indicating the names of readable properties in obj/type .

(com-get-property-type obj/type
property-name)

116

Ñ (list/c '-> '() type-description?)
obj/type : (or/c com-object? com-type?)
property-name : string?

Returns a type for property-name like a result of com-method, where the result type
corresponds to the property value type. See §5.18.1.9 “COM Types” for information on the
symbols.

(com-get-property obj property ...+) Ñ any/c
obj : com-object?
property : (or/c string?

(cons/c string? list?))

Returns the value of the final property by following the indicated path of propertys, where
each intermediate property must be a COM object.

Each property is either a property-name string or a list that starts with a property-name
string and continues with arguments for a parameterized property.

(com-get-property* obj property v ...) Ñ any/c
obj : com-object?
property : string?
v : any/c

Returns the value of a parameterized property, which behaves like a method and accepts the
vs as arguments (like com-invoke). When no vs are provided, com-get-property* is the
same as com-get-property.

(com-set-properties obj/type) Ñ (listof string?)
obj/type : (or/c com-object? com-type?)

Returns a list of strings indicating the names of writeable properties in obj/type .

(com-set-property-type obj/type
property-name)

Ñ (list/c '-> (list/c type-description?) 'void)
obj/type : (or/c com-object? com-type?)
property-name : string?

Returns a type for property-name like a result of com-method, where the sole argument
type corresponds to the property value type. See §5.18.1.9 “COM Types” for information on
the symbols.

(com-set-property! obj property ...+ v) Ñ void?
obj : com-object?

117

property : (or/c string?
(cons/c string? list?))

v : any/c

Sets the value of the final property in obj to v by following the propertys, where the value
of each intermediate property must be a COM object. A property can be a list instead of a
string to represent a parameterized property and its arguments.

The type of the property is determined via com-property-type, if possible, and type-
describe wrappers in v are then replaced with the values that they wrap. If the type is
not available from com-property-type, then a type is inferred for v with attention to the
descriptions in any type-describe wrappers in v .

COM Events
(com-events obj/type) Ñ (listof string?)

obj/type : (or/c com-object? com-type?)

Returns a list of strings indicating the names of events on obj/type .

(com-event-type obj/type event-name)
Ñ (list/c '-> (listof type-description?) 'void)
obj/type : (or/c com-object? com-type?)
event-name : string?

Returns a list indicating the type of the specified events in obj/type . The list after the '->
represents the argument types. See §5.18.1.9 “COM Types” for more information.

(com-event-executor? v) Ñ boolean?
v : any/c

Returns #t if v is a COM event executor, which queues event callbacks. A COM event
executor com-ev-ex is a synchronizable event in the sense of sync, and (sync com-ev-
ex) returns a thunk for a ready callback.

(com-make-event-executor) Ñ com-event-executor?

Creates a fresh COM event executor for use with com-register-event-callback.

(com-register-event-callback obj
name
proc
com-ev-ex) Ñ void?

obj : com-object?
name : string?
proc : procedure?
com-ev-ex : com-event-executor?

118

Registers a callback for the event named by name in obj . When the event fires, an invocation
of proc to event arguments (which depends on obj and name) is queued in com-ev-ex .
Synchronizing on com-ev-ex produces a thunk that applies proc to the event arguments
and returns the result.

Only one callback can be registered for each obj and name combination.

Registration of event callbacks relies on prior registration of the COM class implemented by
"myssink.dll" as distributed with Racket. (The DLL is the same for all Racket versions.)

(com-unregister-event-callback obj name) Ñ void?
obj : com-object?
name : string?

Removes any existing callback for name in obj .

COM Enumerations

(com-enumerate-to-list obj) Ñ list?
obj : com-object?

Produces the elements that obj would generate as the driver of a for-each loop in Visual
Basic or PowerShell.

A call (com-enumerate-to-list obj) is equivalent to (com-enumeration-to-list
(com-get-property obj "_NewEnum")).

Added in version 6.2 of package base.

(com-enumeration-to-list obj) Ñ list?
obj : com-object?

Given a COM object that implements IEnumVARIANT, extracts the enumerated values into a
list.

Added in version 6.2 of package base.

Interface Pointers

(com-object-get-iunknown obj) Ñ com-iunkown?
obj : com-object?

(com-object-get-idispatch obj) Ñ com-idispatch?
obj : com-object?

Extracts an IUnknown or IDispatch pointer from obj . The former succeeds for any COM
object that has not been released via com-release. The latter succeeds only when the COM
object supports IDispatch, otherwise exn:fail is raised.

119

(com-iunknown? v) Ñ boolean?
v : any/c

Returns #t if v corresponds to an unsafe _IUnknown-pointer, #f otherwise. Every COM
interface extends IUnknown, so com-iunknown? returns #t for every interface pointers.

(com-idispatch? v) Ñ boolean?
v : any/c

Returns #t if v corresponds to an unsafe IDispatch, #f otherwise.

Remote COM servers (DCOM)

The optional where argument to com-create-instance can be 'remote. In that case, the
server instance is run at the location given by the Registry key

HKEY_CLASSES_ROOT\AppID\⟨CLSID⟩\RemoteServerName

where ⟨CLSID⟩ is the CLSID of the application. This key may be set using the dcomcnfg
utility. From dcomcnfg, pick the application to be run on the Applications tab, then click
on the Properties button. On the Location tab, choose Run application on the following
computer, and enter the machine name.

To run a COM remote server, the registry on the client machine must contain an entry at

HKEY_CLASSES_ROOT\CLSID\⟨CLSID⟩

where ⟨CLSID⟩ is the CLSID for the server. The server application itself need not be in-
stalled on the client machine.

There are a number of configuration issues relating to DCOM. See

http://www.distribucon.com/dcom95.html

for more information on how to setup client and server machines for DCOM.

COM Types

In the result of a function like com-method-type, symbols are used to represent various
atomic types:

• 'int — a 32-bit signed integer

120

https://web.archive.org/web/20061013184653/www.distribucon.com/dcom95.html

• 'unsigned-int — a 32-bit unsigned integer

• 'short-int — a 16-bit signed integer

• 'unsigned-short — a 16-bit unsigned integer

• 'signed-char — an 8-bit signed integer

• 'char — an 8-bit unsigned integer

• 'long-long — a 64-bit signed integer

• 'unsigned-long-long — a 64-bit unsigned integer

• 'float — a 32-bit floating-point number

• 'double — a 64-bit floating-point number

• 'currency — an exact number that, when multiplied by 10,000, is a 64-bit signed
integer

• 'boolean — a boolean

• 'string — a string

• 'date — a date or date*; when converting to a date*, the timezone is reported as
"UTC" and the year-day field is 0

• 'com-object — a COM object as in com-object?

• 'iunknown — like 'com-object, but also accepts an IUnknown pointer as in com-
iunknown?

• 'com-enumeration — a 32-bit signed integer

• 'any — any of the above, or an array when not nested in an array type

• '... — treated like 'any, but when it appears at the end of the sequence of types for
arguments, allows the preceding type 0 or more times

• 'void — no value

A type symbol wrapped in a list with 'box, such as '(box int), is a call-by-reference
argument. A box supplied for the argument is updated with a new value when the method
returns.

A type wrapped in a list with 'opt, such as '(opt (box int)), is an optional argument.
The argument can be omitted or replaced with com-omit.

A type wrapped in a list with 'array and a positive exact integer, such as '(array 7 int),
represents a vector of values to be used as a COM array. A '? can be used in place of the

121

length integer to support a vector of any length. Array types with non-'? lengths can be
nested to specify a multidimensional array as represented by nested vectors.

A type wrapped in a list with 'variant, such as '(variant (array 7 int)), is the
same as the wrapped type, but a 'variant wrapper within an 'array type prevents con-
struction of another array dimension. For example, '(array 2 (array 3 int)) is a
two-dimensional array of integers, but '(array 2 (variant (array 3 int))) is a one-
dimensional array whose elements are one-dimensional arrays of integers.

When type information is not available, functions like com-invoke infer type descriptions
from arguments. Inference chooses 'boolean for booleans; the first of 'int, 'unsigned-
int, 'long-long, 'unsigned-long-long that fits for an exact integer; 'double for in-
exact real numbers; 'string for a string; 'com-object and 'iunknown for corresponding
COM object references; and an 'array type for a vector, where the element type is inferred
from vector values, resorting to 'any if any two elements have different inferred types.

(type-description? v) Ñ boolean?
v : any/c

Return #t if v is a COM argument or result type description as above, #f otherwise.

(type-described? v) Ñ boolean?
v : any/c

(type-describe v desc) Ñ type-described?
v : any/c
desc : type-description?

(type-described-value td) Ñ any/c
td : type-described?

(type-described-description td) Ñ type-description?
td : type-described?

The type-described? predicate recognizes wrappers produced with type-describe, and
type-described-value and type-described-description extract the value and de-
scription parts of a type-describe value.

A type-describe wrapper combines a base value with a type description. The description
is used instead of an automatically inferred COM argument type when no type is available for
from COM automation a method for com-invoke or a property for com-set-property!.
A wrapper can be placed on an immediate value, or it can be on a value within a box or
vector.

Class Display Names

(require ffi/com-registry) package: base

The ffi/com-registry library provides a mapping from coclass names to CLSIDs for
compatibility with the older MysterX interface.

122

https://pkgs.racket-lang.org/package/base

A coclass name corresponds to the display name of a COM class; the display name is not
uniquely mapped to a COM class, and some COM classes have no display name.

(com-all-coclasses) Ñ (listof string?)

Returns a list of coclass strings for all COM classes registered on a system.

(com-all-controls) Ñ (listof string?)

Returns a list of coclass strings for all COM classes in the system registry that have the
"Control" subkey.

(coclass->clsid coclass) Ñ clsid?
coclass : string?

(clsid->coclass clsid) Ñ string?
clsid : clsid?

Converts a coclass string to/from a CLSID. This conversion is implemented by an enumera-
tion an COM classes from the system registry.

5.18.2 COM Classes and Interfaces

(require ffi/unsafe/com) package: base

The ffi/unsafe/com library exports all of ffi/com, and it also supports direct, FFI-based
calls to COM object methods.

Describing COM Interfaces

(define-com-interface (_id _super-id)
([method-id ctype-expr maybe-alloc-spec] ...))

maybe-alloc-spec =
| #:release-with-function function-id
| #:release-with-method method-id
| #:releases

Defines _id as an interface that extends _super-id , where _super-id is often _IUn-
known, and that includes methods named by method-id . The _id and _super-id identi-
fiers must start with an underscore. A _super-id _vt must also be defined for deriving a
virtual-method table type.

The order of the method-ids must match the specification of the COM interface, not in-
cluding methods inherited from _super-id . Each method type produced by ctype-expr

123

https://pkgs.racket-lang.org/package/base

that is not _fpointer must be a function type whose first argument is the “self” pointer,
usually constructed with _mfun or _hmfun.

The define-com-interface form binds _id , id ?, _id -pointer, _id _ vt (for
the virtual-method table), _id _ vt-pointer, and method-id for each method whose
ctype-expr is not _fpointer. (In other words, use _fpointer as a placeholder for meth-
ods of the interface that you do not need to call.) An instance of the interface will have type
_id -pointer. Each defined method-id is bound to a function-like macro that expects a
_id -pointer as its first argument and the method arguments as the remaining arguments.

A maybe-alloc-spec describes allocation and finalization information for a method
along the lines of ffi/unsafe/alloc. If the maybe-alloc-spec is #:release-with-
function function-id , then function-id is used to deallocate the result produced by
the method, unless the result is explicitly deallocated before it becomes unreachable; for
example, #:release-with-function Release is suitable for a method that returns a
COM interface reference that must be eventually released. The #:release-with-method
method-id form is similar, except that the deallocator is a method on the same object
as the allocating method (i.e., one of the other method-ids or an inherited method). A
#:releases annotation indicates that a method is a deallocator (so that a value should not
be automatically deallocated if it is explicitly deallocated using the method).

See §5.18.2.4 “COM Interface Example” for an example using define-com-interface.

Obtaining COM Interface References

(QueryInterface iunknown
iid
intf-pointer-type) Ñ (or/c cpointer? #f)

iunknown : com-iunknown?
iid : iid?
intf-pointer-type : ctype?

Attempts to extract a COM interface pointer for the given COM object. If the object does
not support the requested interface, the result is #f, otherwise it is cast to the type intf-
pointer-type .

Specific IIDs and intf-pointer-types go together. For example, IID_IUnknown goes
with _IUnknown-pointer.

For a non-#f result, Release function is the automatic deallocator for the resulting pointer.
The pointer is register with a deallocator after the cast to intf-pointer-type , which is
why QueryInterface accepts the intf-pointer-type argument (since a cast generates
a fresh reference).

(AddRef iunknown) Ñ exact-positive-integer?
iunknown : com-iunknown?

(Release iunknown) Ñ exact-nonnegative-integer?
iunknown : com-iunknown?

124

Increments or decrements the reference count on iunknown , returning the new reference
count and releasing the interface reference if the count goes to zero.

(make-com-object iunknown
clsid

[#:manage? manage?]) Ñ com-object?
iunknown : com-iunknown?
clsid : (or/c clsid? #f)
manage? : any/c = #t

Converts a COM object into an object that can be used with the COM automation functions,
such as com-invoke.

If manage? is true, the resulting object is registered with the current custodian and a fi-
nalizer to call com-release when the custodian is shut down or when the object becomes
inaccessible.

COM FFI Helpers

(_wfun fun-option ... maybe-args type-spec ... -> type-spec
maybe-wrapper)

Like _fun, but adds #:abi winapi.

(_mfun fun-option ... maybe-args type-spec ... -> type-spec
maybe-wrapper)

Like _wfun, but adds a _pointer type (for the “self” argument of a method) as the first
argument type-spec .

(_hfun fun-option ... type-spec ... -> id maybe-allow output-expr)

maybe-allow =
| #:allow [result-id allow?-expr]

Like _wfun, but for a function that returns an _HRESULT. The result is bound to result-id
if #:allow is specified, otherwise the result is not directly accessible.

The _hfun form handles the _HRESULT value of the foreign call as follows:

• If the result is zero or if #:allow is specified and allow?-expr produces #t, then
output-expr (as in a maybe-wrapper for _fun) determines the result.

• If the result is RPC_E_CALL_REJECTED or RPC_E_SERVERCALL_RETRYLATER, the
call is automatically retried up to (current-hfun-retry-count) times with a delay
of (current-hfun-retry-delay) seconds between each attempt.

125

• Otherwise, an error is raised using windows-error and using id as the name of the
failed function.

Changed in version 6.2 of package base: Added #:allow and automatic retries.

(_hmfun fun-option ... type-spec ... -> id output-expr)

Like _hfun, but lke _mfun in that _pointer is added for the first argument.

(current-hfun-retry-count) Ñ count
(current-hfun-retry-count exact-nonnegative-integer?) Ñ void?

exact-nonnegative-integer? : count
(current-hfun-retry-delay) Ñ (>=/c 0.0)
(current-hfun-retry-delay secs) Ñ void?

secs : (>=/c 0.0)

Parameters that determine the behavior of automatic retries for _hfun.

Added in version 6.2 of package base.

(HRESULT-retry? r) Ñ boolean?
r : exact-nonnegative-integer?

Returns #t if r is RPC_E_CALL_REJECTED or RPC_E_SERVERCALL_RETRYLATER, #f oth-
erwise.

Added in version 6.2 of package base.

_GUID : ctype?
_GUID-pointer : ctype?
_HRESULT : ctype?
_LCID : ctype?

Some C types that commonly appear in COM interface specifications.

LOCALE_SYSTEM_DEFAULT : exact-integer?

The usual value for a _LCID argument.

(SysFreeString str) Ñ void?
str : _pointer

(SysAllocStringLen content len) Ñ cpointer?
content : _pointer
len : integer?

126

COM interfaces often require or return srings that must be allocated or freed as system
strings.

When receiving a string value, cast it to _string/utf-16 to extract a copy of the string,
and then free the original pointer with SysFreeString.

IID_NULL : iid?
IID_IUnknown : iid?

Commonly used IIDs.

_IUnknown : ctype?
_IUnknown-pointer : ctype?
_IUnknown_vt : ctype?

Types for the IUnknown COM interface.

(windows-error msg hresult) Ñ any
msg : string?
hresult : exact-integer?

Raises an exception. The msg string provides the base error message, but hresult and its
human-readable interpretation (if available) are added to the message.

COM Interface Example

Here’s an example using the Standard Component Categories Manager to enumerate in-
stalled COM classes that are in the different system-defined categories. The example illus-
trates instantiating a COM class by CLSID, describing COM interfaces with define-com-
interface, and using allocation specifications to ensure that resources are reclaimed even
if an error is encountered or the program is interrupted.

#lang racket/base
(require ffi/unsafe

ffi/unsafe/com)

(provide show-all-classes)

; The function that uses COM interfaces defined further below:

(define (show-all-classes)
(define ccm

(com-create-instance CLSID_StdComponentCategoriesMgr))
(define icat (QueryInterface (com-object-get-iunknown ccm)

IID_ICatInformation
_ICatInformation-pointer))

127

(define eci (EnumCategories icat LOCALE_SYSTEM_DEFAULT))
(for ([catinfo (in-producer (lambda () (Next/ci eci)) #f)])

(printf "~a:\n"
(cast (array-ptr (CATEGORYINFO-szDescription catinfo))

_pointer
_string/utf-16))

(define eg
(EnumClassesOfCategories icat (CATEGORYINFO-catid catinfo)))

(for ([guid (in-producer (lambda () (Next/g eg)) #f)])
(printf " ~a\n" (or (clsid->progid guid)

(guid->string guid))))
(Release eg))

(Release eci)
(Release icat))

; The class to instantiate:

(define CLSID_StdComponentCategoriesMgr
(string->clsid "{0002E005-0000-0000-C000-000000000046}"))

; Some types and variants to match the specification:

(define _ULONG _ulong)
(define _CATID _GUID)
(define _REFCATID _GUID-pointer)
(define-cstruct _CATEGORYINFO ([catid _CATID]

[lcid _LCID]
[szDescription (_array _short 128)]))

; –-–- IEnumGUID –-–--

(define IID_IEnumGUID
(string->iid "{0002E000-0000-0000-C000-000000000046}"))

(define-com-interface (_IEnumGUID _IUnknown)
([Next/g (_mfun (_ULONG = 1) ; simplifed to just one

(guid : (_ptr o _GUID))
(got : (_ptr o _ULONG))
-> (r : _HRESULT)
-> (cond

[(zero? r) guid]
[(= r 1) #f]
[else (windows-error "Next/g failed" r)]))]

[Skip _fpointer]
[Reset _fpointer]
[Clone _fpointer]))

128

; –-–- IEnumCATEGORYINFO –-–--

(define IID_IEnumCATEGORYINFO
(string->iid "{0002E011-0000-0000-C000-000000000046}"))

(define-com-interface (_IEnumCATEGORYINFO _IUnknown)
([Next/ci (_mfun (_ULONG = 1) ; simplifed to just one

(catinfo : (_ptr o _CATEGORYINFO))
(got : (_ptr o _ULONG))
-> (r : _HRESULT)
-> (cond

[(zero? r) catinfo]
[(= r 1) #f]
[else (windows-error "Next/ci

failed" r)]))]
[Skip _fpointer]
[Reset _fpointer]
[Clone _fpointer]))

; –-–- ICatInformation –-–--

(define IID_ICatInformation
(string->iid "{0002E013-0000-0000-C000-000000000046}"))

(define-com-interface (_ICatInformation _IUnknown)
([EnumCategories (_hmfun _LCID

(p : (_ptr o _IEnumCATEGORYINFO-
pointer))

-> EnumCategories p)]
[GetCategoryDesc (_hmfun _REFCATID _LCID

(p : (_ptr o _pointer))
-> GetCategoryDesc
(begin0
(cast p _pointer _string/utf-16)
(SysFreeString p)))]

[EnumClassesOfCategories (_hmfun (_ULONG = 1) ; simplifed
_REFCATID
(_ULONG = 0) ; simplifed
(_pointer = #f)
(p : (_ptr o

_IEnumGUID-
pointer))

-> EnumClassesOfCategories p)
#:release-with-function Release]

[IsClassOfCategories _fpointer]

129

[EnumImplCategoriesOfClass _fpointer]
[EnumReqCategoriesOfClass _fpointer]))

5.18.3 ActiveX Controls

An ActiveX control is a COM object that needs a container to manage its graphical repre-
sentation. Although ffi/com does not provide direct support for ActiveX controls, you can
use ffi/com to drive Internet Explorer as an ActiveX container.

The following code demonstrates using Internet Explorer to instantiate the “Sysmon” Ac-
tiveX control that is included with Windows.

#lang racket
(require ffi/com

xml)

;; The control we want to run:
(define control-progid "Sysmon")

;; Start IE:
(define ie (com-create-instance "InternetExplorer.Application.1"))

;; Set up an event callback so that we know when the initial document
;; is ready:
(define ex (com-make-event-executor))
(void (thread (lambda () (let loop () ((sync ex)) (loop)))))
(define ready (make-semaphore))
(com-register-event-callback ie "DocumentComplete"

(lambda (doc url) (semaphore-
post ready))

ex)

;; Navigate to get an initial document:
(com-invoke ie "Navigate" "about:blank")
(define READYSTATE_COMPLETE 4)
(unless (= (com-get-property ie "READYSTATE") READYSTATE_COMPLETE)

(semaphore-wait ready))
(define doc (com-get-property ie "Document"))

;; Install HTML to show the ActiveX control:
(com-invoke doc "write"

(xexpr->string
`(html

(head (title "Demo"))
(body

130

(object ((class "object")
(CLASSID ,(format

"CLSID:~a"
(let ([s (guid->string

(progid->clsid
control-progid))])

;; must remove curly braces:
(define len

(string-length s))
(substring s 1 (sub1 len)))))))))))

;; Configure the IE window and show it:
(com-set-property! ie "MenuBar" #f)
(com-set-property! ie "ToolBar" 0)
(com-set-property! ie "StatusBar" #f)
(com-set-property! ie "Visible" #t)

;; Extract the ActiveX control from the IE document:
(define ctl (com-get-property

(com-invoke (com-invoke doc "getElementsByTagName" "object")
"item"
0)

"object"))

;; At this point, `ctl' is the ActiveX control;
;; demonstrate by getting a list of method names:
(com-methods ctl)

5.19 File Security-Guard Checks

(require ffi/file) package: base

(security-guard-check-file who path perms) Ñ void?
who : symbol?
path : path-string?
perms : (listof (or/c 'read 'write 'execute 'delete 'exists))

Checks whether (current-security-guard) permits access to the file specified by path
with the permissions perms . See make-security-guard for more information on perms .

The symbol who should be the name of the function on whose behalf the security check is
performed; it is passed to the security guard to use in access-denied errors.

(_file/guard perms [who]) Ñ ctype?
perms : (listof (or/c 'read 'write 'execute 'delete 'exists))

131

https://pkgs.racket-lang.org/package/base

who : symbol? = '_file/guard

Like _file and _path, but conversion from Racket to C first completes the path using
path->complete-path then cleanses it using cleanse-path, then checks that the current
security guard grants access on the resulting complete path with perms . As an output value,
identical to _path.

_file/r : ctype?
_file/rw : ctype?

Equivalent to (_file/guard '(read) '_file/r) and (_file/guard '(read write)
'_file/rw), respectively.

(security-guard-check-file-link who
path
dest) Ñ void?

who : symbol?
path : path-string?
dest : path-string?

Checks whether (current-security-guard) permits link creation of path as a link
dest . The symbol who is the same as for security-guard-check-file.

Added in version 6.9.0.5 of package base.

(security-guard-check-network who
host
port
mode) Ñ void?

who : symbol?
host : (or/c string? #f)
port : (or/c (integer-in 1 65535) #f)
mode : (or/c 'client 'server)

Checks whether (current-security-guard) permits network access at host and port
in server or client mode as specified by mode . The symbol who is the same as for security-
guard-check-file.

Added in version 6.9.0.5 of package base.

5.20 Windows API Helpers

(require ffi/winapi) package: base

132

https://pkgs.racket-lang.org/package/base

win64? : boolean?

Indicates whether the current platform is 64-bit Windows: #t if so, #f otherwise.

winapi : (or/c 'stdcall 'default)

Suitable for use as an ABI specification for a Windows API function: 'stdcall on 32-bit
Windows, 'default on 64-bit Windows or any other platform.

5.21 Virtual Machine Primitives

(require ffi/unsafe/vm) package: base

The ffi/unsafe/vm library provides access to functionality in the underlying virtual ma-
chine that is used to implement Racket.

Added in version 7.6.0.7 of package base.

(vm-primitive name) Ñ any/c
name : symbol?

Accesses a primitive values at the level of the running Racket virtual machine, or returns #f
if name is not the name of a primitive.

Virtual-machine primitives are the ones that can be referenced in a linklet body. The specific
set of primitives depends on the virtual machine. Many “primitives” at the racket/base
level or even the '#%kernel level are not primitives at the virtual-machine level. For exam-
ple, if 'eval is available as a primitive, it is not the eval from racket/base.

In general, primitives are unsafe and can only be used with enough knowledge about
Racket’s implementation. Here are some tips for currently available virtual machines:

• (system-type 'vm) is 'racket — The primitives in this virtual machine are
mostly the same as the ones available from libraries like racket/base and
racket/unsafe/ops. As a result, accessing virtual machine primitives with vm-
primitive is rarely useful.

• (system-type 'vm) is 'chez-scheme — The primitives in this virtual machine are
Chez Scheme primitives, except as replaced by a Racket compatibility layer. The
'eval primitive is Chez Scheme’s eval.

Beware of directly calling a Chez Scheme primitive that uses Chez Scheme parame-
ters or dynamic-wind internally. Note that eval, in particular, is such a primitive.
The problem is that Chez Scheme’s dynamic-wind does not automatically cooperate

133

https://pkgs.racket-lang.org/package/base

with Racket’s continuations or threads. To call such primitives, use the call-with-
system-wind primitive, which takes a procedure of no arguments to run in a context
that bridges Chez Scheme’s dynamic-wind and Racket continuations and threads.
For example,

(define primitive-eval (vm-primitive 'eval))
(define call-with-system-wind (vm-primitive 'call-with-
system-wind))
(define (vm-eval s)

(call-with-system-wind
(lambda ()
(primitive-eval s))))

is how vm-eval is implemented on Chez Scheme.

Symbols, numbers, booleans, pairs, vectors, boxes, strings, byte strings (i.e., bytevec-
tors), and structures (i.e., records) are interchangeable between Racket and Chez
Scheme. A Chez Scheme procedure is a Racket procedure, but not all Racket pro-
cedures are Chez Scheme procedures. To call a Racket procedure from Chez Scheme,
use the #%app form that is defined in the Chez Scheme environment when it hosts
Racket.

Note that you can access Chez Scheme primitives, including ones that are shadowed by
Racket’s primitives, through the Chez Scheme $primitive form. For example, (vm-
eval '($primitive call-with-current-continuation)) accesses the Chez
Scheme call-with-current-continuation primitive instead of Racket’s replace-
ment (where the replacement works with Racket continuations and threads).

(vm-eval s-expr) Ñ any/c
s-expr : any/c

Evaluates s-expr using the most primitive available evaluator:

• (system-type 'vm) is 'racket — Uses compile-linklet and instantiate-
linklet.

• (system-type 'vm) is 'chez-scheme — Uses Chez Scheme’s eval.

See vm-primitive for some information about how virtual-machine primitives interact
with Racket.

134

6 Miscellaneous Support

(list->cblock lst
type

[expect-length
#:malloc-mode malloc-mode]) Ñ cpointer?

lst : list?
type : ctype?
expect-length : (or/c exact-nonnegative-integer? #f) = #f
malloc-mode : (or/c #f symbol?) = #f

Allocates a memory block of an appropriate size—using malloc with type and (length
lst)—and initializes it using values from lst . The lst must hold values that can all be
converted to C values according to the given type .

If expect-length is not #f and not the same as (length lst), then an exception is raised
instead of allocating memory.

If malloc-mode is not #f, it is provided as an additional argument to malloc.

Changed in version 7.7.0.2 of package base: Added the #:malloc-mode argument.

(vector->cblock vec
type

[expect-length
#:malloc-mode malloc-mode]) Ñ cpointer?

vec : vector?
type : ctype?
expect-length : (or/c exact-nonnegative-integer? #f) = #f
malloc-mode : (or/c #f symbol?) = #f

Like list->cblock, but using values from a vector instead of a list.

Changed in version 7.7.0.2 of package base: Added the #:malloc-mode argument.

(vector->cpointer vec) Ñ cpointer?
vec : vector?

Returns a pointer to an array of _scheme values, which is the internal representation of vec .

(flvector->cpointer flvec) Ñ cpointer?
flvec : flvector?

Returns a pointer to an array of _double values, which is the internal representation of
flvec .

135

(saved-errno) Ñ exact-integer?
(saved-errno new-value) Ñ void?

new-value : exact-integer?

Returns or sets the error code saved for the current Racket thread. The saved error code is
set after a foreign call with a non-#f #:save-errno option (see _fun and _cprocedure),
but it can also be set explicitly (for example, to create mock foreign functions for testing).

Changed in version 6.4.0.9 of package base: Added the one-argument variant.

(lookup-errno sym) Ñ (or/c exact-integer? #f)
sym : symbol?

Returns a platform-specific positive integer corresponding to a POSIX errno code, or #f if
the code is unknown. A code’s value is known if the code is one of the recognized symbols
described below and the code was defined by the "errno.h" header used to compile Racket.
Note that the contents of "errno.h" vary based on platform and compiler.

The recognized symbols currently consist of the 81 codes defined by IEEE Std 1003.1, 2013
Edition (also known as POSIX.1), including 'EINTR, 'EEXIST, and 'EAGAIN.

See also exn-classify-errno.

Changed in version 6.6.0.5 of package base: Relaxed the contract and added support for more symbols.

(cast v from-type to-type) Ñ any/c
v : any/c
from-type : ctype?
to-type : ctype?

Converts v from a value matching from-type to a value matching to-type , where
(ctype-sizeof from-type) matches (ctype-sizeof to-type).

The conversion is roughly equivalent to

(let ([p (malloc from-type)])
(ptr-set! p from-type v)
(ptr-ref p to-type))

If v is a cpointer, (cpointer-gcable? v) is true, and from-type and to-type are both
based on _pointer or _gcpointer, then from-type is implicitly converted with _gcable
to ensure that the result cpointer is treated as referring to memory that is managed by the
garbage collector.

If v is a pointer with an offset component (e.g., from ptr-add), (cpointer-gcable? v)
is true, and the result is a cpointer, then the result pointer has the same offset component as

136

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/errno.h.html

v . If (cpointer-gcable? v) is false, then any offset is folded into the pointer base for
the result.

(cblock->list cblock type length) Ñ list?
cblock : any/c
type : ctype?
length : exact-nonnegative-integer?

Converts C cblock , which is a vector of types, to a Racket list. The arguments are the
same as in the list->cblock. The length must be specified because there is no way to
know where the block ends.

(cblock->vector cblock type length) Ñ vector?
cblock : any/c
type : ctype?
length : exact-nonnegative-integer?

Like cblock->list, but for Racket vectors.

137

7 Unexported Primitive Functions

Parts of the ffi/unsafe library are implemented by the Racket built-in '#%foreign mod-
ule. The '#%foreign module is not intended for direct use, but it exports the following
procedures (among others).

(ffi-obj objname lib) Ñ ffi-obj?
objname : bytes?
lib : (or/c ffi-lib? path-string? #f)

Pulls out a foreign object from a library, returning a value that can be used as a C pointer. If
lib is a path or string, then ffi-lib is used to create a library object.

(ffi-obj? x) Ñ boolean?
x : any/c

(ffi-obj-lib obj) Ñ ffi-lib?
obj : ffi-obj?

(ffi-obj-name obj) Ñ bytes?
obj : ffi-obj?

A predicate for objects returned by ffi-obj, and accessor functions that return its corre-
sponding library object and name. These values can also be used as C pointer objects.

(ctype-basetype type) Ñ (or/c ctype? #f)
type : ctype?

(ctype-scheme->c type) Ñ procedure?
type : ctype?

(ctype-c->scheme type) Ñ procedure?
type : ctype?

Accessors for the components of a C type object, made by make-ctype. The ctype-
basetype selector returns a symbol for primitive types that names the type, a list of ctypes
for cstructs, and another ctype for user-defined ctypes.

(ffi-call ptr
in-types
out-type

[abi
save-errno?
orig-place?
lock-name
blocking?
varargs-after]) Ñ procedure?

ptr : cpointer?
in-types : (listof ctype?)

138

out-type : ctype?
abi : (or/c #f 'default 'stdcall 'sysv) = #f
save-errno? : any/c = #f
orig-place? : any/c = #f
lock-name : (or/c #f string?) = #f
blocking? : any/c = #f
varargs-after : (or/c #f positive-exact-integer?) = #f

The primitive mechanism that creates Racket callout values for _cprocedure. The given
ptr is wrapped in a Racket-callable primitive function that uses the types to specify how
values are marshaled.

(ffi-call-maker in-types
out-type

[abi
save-errno?
orig-place?
lock-name
blocking?
varargs-after]) Ñ (cpointer . -> . procedure?)

in-types : (listof ctype?)
out-type : ctype?
abi : (or/c #f 'default 'stdcall 'sysv) = #f
save-errno? : any/c = #f
orig-place? : any/c = #f
lock-name : (or/c #f string?) = #f
blocking? : any/c = #f
varargs-after : (or/c #f positive-exact-integer?) = #f

A curried variant of ffi-call that takes the foreign-procedure pointer separately.

(ffi-callback proc
in-types
out-type

[abi
atomic?
async-apply
varargs-after]) Ñ ffi-callback?

proc : procedure?
in-types : any/c
out-type : any/c
abi : (or/c #f 'default 'stdcall 'sysv) = #f
atomic? : any/c = #f
async-apply : (or/c #f ((-> any) . -> . any) box?) = #f
varargs-after : (or/c #f positive-exact-integer?) = #f

139

The symmetric counterpart of ffi-call. It receives a Racket procedure and creates a call-
back object, which can also be used as a C pointer.

(ffi-callback-maker in-types
out-type

[abi
atomic?
async-apply
varargs-after])

Ñ (procedure? . -> . ffi-callback?)
in-types : any/c
out-type : any/c
abi : (or/c #f 'default 'stdcall 'sysv) = #f
atomic? : any/c = #f
async-apply : (or/c #f ((-> any) . -> . any) box?) = #f
varargs-after : (or/c #f positive-exact-integer?) = #f

A curried variant of ffi-callback that takes the callback procedure separately.

(ffi-callback? v) Ñ boolean?
v : any/c

A predicate for callback values that are created by ffi-callback.

(make-late-will-executor) Ñ will-executor?

Creates a “late” will executor that readies a will for a value v only if no normal will executor
has a will registered for v . In addition, for the BC implementation of Racket, normal weak
references to v are cleared before a will for v is readied by the late will executor, but late
weak references created by make-late-weak-box and make-late-weak-hasheq are not.
For the CS implementation of Racket, a will is readied for v only when it is not reachable
from any value that has a late will; if a value v is reachable from itself (i.e., through any field
of v , as opposed to the immediate value itself), a “late” will for v never becomes ready.

Unlike a normal will executor, if a late will executor becomes inaccessible, the values for
which it has pending wills are retained within the late will executor’s place.

A late will executor is intended for use in the implementation of register-finalizer.

140

Bibliography

[Barzilay04] Eli Barzilay and Dmitry Orlovsky, “Foreign Interface for PLT Scheme,”
Workshop on Scheme and Functional Programming, 2004.

141

Index
->, 35
_?, 37
_array, 48
_array/list, 49
_array/vector, 49
_bitmask, 53
_BOOL, 102
_bool, 23
_box, 38
_byte, 21
_bytes, 40
_bytes/eof, 26
_bytes/nul-terminated, 41
_Class, 101
_cpointer, 73
_cpointer/null, 74
_cprocedure, 28
_cvector, 72
_double, 23
_double*, 23
_enum, 52
_f32vector, 70
_f64vector, 71
_f80vector, 71
_file, 26
_file/guard, 131
_file/r, 132
_file/rw, 132
_fixint, 23
_fixnum, 22
_float, 23
_fpointer, 27
_fun, 33
_fun, 79
_gcable, 27
_gcpointer, 27
_GUID, 126
_GUID-pointer, 126
_hfun, 125
_hmfun, 126

_HRESULT, 126
_id, 101
_int, 22
_int16, 21
_int32, 21
_int64, 21
_int8, 21
_intmax, 22
_intptr, 22
_IUnknown, 127
_IUnknown-pointer, 127
_IUnknown_vt, 127
_Ivar, 109
_LCID, 126
_list, 39
_list-struct, 42
_llong, 22
_long, 22
_longdouble, 23
_mfun, 125
_NSString, 111
_objc_super, 110
_or-null, 27
_path, 24
_pointer, 26
_Protocol, 101
_ptr, 37
_ptrdiff, 22
_racket, 27
_s16vector, 66
_s32vector, 67
_s64vector, 69
_s8vector, 65
_sbyte, 21
_scheme, 27
_SEL, 101
_short, 22
_sint, 22
_sint16, 21
_sint32, 21
_sint64, 21
_sint8, 21

142

_sintptr, 22
_size, 22
_sllong, 22
_slong, 22
_sshort, 22
_ssize, 22
_stdbool, 23
_string, 25
_string*/latin-1, 25
_string*/locale, 25
_string*/utf-8, 25
_string/eof, 26
_string/latin-1, 25
_string/locale, 25
_string/ucs-4, 24
_string/utf-16, 24
_string/utf-8, 25
_sword, 22
_symbol, 24
_u16vector, 66
_u32vector, 68
_u64vector, 69
_u8vector, 64
_ubyte, 21
_ufixint, 23
_ufixnum, 22
_uint, 22
_uint16, 21
_uint32, 21
_uint64, 21
_uint8, 21
_uintmax, 22
_uintptr, 22
_ullong, 22
_ulong, 22
_union, 50
_ushort, 22
_uword, 22
_vector, 40
_void, 23
_wchar, 21
_wfun, 125

_word, 22
ActiveX Controls, 130
AddRef, 124
Allocation and Finalization, 83
Allocation Pools, 111
allocator, 83
allocator, 83
array-length, 49
array-ptr, 49
array-ref, 48
array-set!, 48
array-type, 49
array?, 48
'atomic, 58
Atomic Execution, 87
Atomic mode, 87
'atomic-interior, 59
By-Reference Arguments, 7
C Array Types, 47
C pointer, 26
C Struct Types, 41
C Structs, 8
C Types, 19
C types, 19
C Union Types, 50
call-as-atomic, 89
call-as-nonatomic, 89
call-as-nonatomic-retry-point, 91
call-as-uninterruptible, 90
call-in-os-thread, 98
call-with-autorelease, 111
callback, 29
callout, 28
cast, 136
cblock->list, 137
cblock->vector, 137
CFStringRef, 111
Class Display Names, 122
class_addIvar, 109
class_addMethod, 108
class_getSuperclass, 108
CLSID, 112

143

clsid->coclass, 123
clsid->progid, 114
clsid?, 113
coclass, 123
coclass->clsid, 123
Cocoa Foundation, 111
COM (Common Object Model), 112
COM Automation, 113
COM class, 112
COM Classes and Interfaces, 123
COM Enumerations, 119
COM event executor, 118
COM Events, 118
COM FFI Helpers, 125
COM Interface Example, 127
COM interfaces, 112
COM Methods, 115
COM object, 112
COM Objects, 114
COM Properties, 116
COM Types, 120
com-all-coclasses, 123
com-all-controls, 123
com-create-instance, 114
com-enumerate-to-list, 119
com-enumeration-to-list, 119
com-event-executor?, 118
com-event-type, 118
com-events, 118
com-get-active-object, 114
com-get-properties, 116
com-get-property, 117
com-get-property*, 117
com-get-property-type, 116
com-idispatch?, 120
com-invoke, 116
com-iunknown?, 120
com-make-event-executor, 118
com-method-type, 116
com-methods, 115
com-object-clsid, 115
com-object-eq?, 115

com-object-get-idispatch, 119
com-object-get-iunknown, 119
com-object-set-clsid!, 115
com-object-type, 115
com-object?, 114
com-omit, 116
com-omit?, 116
com-register-event-callback, 118
com-release, 114
com-set-properties, 117
com-set-property!, 117
com-set-property-type, 117
com-type=?, 115
com-type?, 115
com-unregister-event-callback, 119
compiler-sizeof, 21
compute-offsets, 47
convention:hyphen->camelCase, 82
convention:hyphen->camelcase, 82
convention:hyphen->PascalCase, 82
convention:hyphen->underscore, 82
cpointer-gcable?, 55
cpointer-has-tag?, 75
cpointer-predicate-procedure?, 75
cpointer-push-tag!, 75
cpointer-tag, 57
cpointer?, 54
ctype->layout, 20
ctype-alignof, 20
ctype-basetype, 138
ctype-c->scheme, 138
ctype-scheme->c, 138
ctype-sizeof, 20
ctype?, 19
current-hfun-retry-count, 126
current-hfun-retry-delay, 126
Custodian Shutdown Registration, 85
Custom Function Types, 35
custom function types, 35
cvector, 72
cvector->list, 73
cvector-length, 72

144

cvector-ptr, 72
cvector-ref, 73
cvector-set!, 73
cvector-type, 72
cvector?, 72
DCOM, 112
deallocator, 84
deallocator, 84
default-_string-type, 26
define-c, 18
define-com-interface, 123
define-cpointer-type, 74
define-cstruct, 42
define-ffi-definer, 80
define-fun-syntax, 36
define-objc-class, 103
define-objc-mixin, 105
define-serializable-cstruct, 76
Defining Bindings, 79
Derived Utilities, 64
Describing COM Interfaces, 123
dynamically loaded libraries, 15
end-atomic, 88
end-breakable-atomic, 89
end-stubborn-change, 60
end-uninterruptible, 89
Enumerations and Masks, 52
errno, 29
'eternal, 59
f32vector, 69
f32vector->cpointer, 70
f32vector->list, 70
f32vector-length, 70
f32vector-ref, 70
f32vector-set!, 70
f32vector?, 69
f64vector, 70
f64vector->cpointer, 70
f64vector->list, 70
f64vector-length, 70
f64vector-ref, 70
f64vector-set!, 70

f64vector?, 70
f80vector, 71
f80vector->cpointer, 71
f80vector->list, 71
f80vector-length, 71
f80vector-ref, 71
f80vector-set!, 71
f80vector?, 71
'failok, 60
FFI, 1
FFI Identifier Conventions, 82
FFI identifier conventions, 82
FFI Types and Constants, 101
ffi-call, 138
ffi-call-maker, 139
ffi-callback, 139
ffi-callback-maker, 140
ffi-callback?, 140
ffi-lib, 15
ffi-lib?, 15
ffi-obj, 138
ffi-obj-lib, 138
ffi-obj-name, 138
ffi-obj-ref, 18
ffi-obj?, 138
ffi/com, 113
ffi/com-registry, 122
ffi/cvector, 71
ffi/file, 131
ffi/objc, 111
ffi/serialize-cstruct, 76
ffi/unsafe, 1
ffi/unsafe/alloc, 83
ffi/unsafe/atomic, 87
ffi/unsafe/collect-callback, 99
ffi/unsafe/com, 123
ffi/unsafe/custodian, 85
ffi/unsafe/cvector, 71
ffi/unsafe/define, 79
ffi/unsafe/define/conventions, 82
ffi/unsafe/global, 97
ffi/unsafe/nsalloc, 111

145

ffi/unsafe/nsstring, 111
ffi/unsafe/objc, 101
ffi/unsafe/os-async-channel, 98
ffi/unsafe/os-thread, 97
ffi/unsafe/port, 94
ffi/unsafe/schedule, 92
ffi/unsafe/static, 79
ffi/unsafe/try-atomic, 91
ffi/unsafe/vm, 133
ffi/vector, 64
ffi/winapi, 132
File Security-Guard Checks, 131
Fixed Auto-Converting String Types, 25
flvector->cpointer, 135
foreign-library value, 15
free, 60
free-immobile-cell, 60
Function Types, 28
function-ptr, 35
Function-Type Bells and Whistles, 6
Garbage Collection Callbacks, 99
get-ffi-obj, 17
get-ivar, 105
get-place-table, 97
GetLastError, 29
GUID, 112
guid->string, 113
guid=?, 113
guid?, 113
GUIDs, CLSIDs, IIDs, and ProgIDs, 113
HRESULT-retry?, 126
IDispatch, 113
IID, 112
iid?, 113
IID_IUnknown, 127
IID_NULL, 127
import-class, 103
import-protocol, 103
in-array, 49
in-atomic-mode?, 89
Interface Pointers, 119
'interior, 59

Legacy Library, 111
Libraries, C Types, and Objects, 5
list->cblock, 135
list->cvector, 73
list->f32vector, 70
list->f64vector, 70
list->f80vector, 71
list->s16vector, 65
list->s32vector, 67
list->s64vector, 68
list->s8vector, 65
list->u16vector, 66
list->u32vector, 68
list->u64vector, 69
list->u8vector, 64
Loading Foreign Libraries, 15
LOCALE_SYSTEM_DEFAULT, 126
lookup-errno, 136
make-array-type, 48
make-c-parameter, 18
make-com-object, 125
make-cstruct-type, 41
make-ctype, 19
make-custodian-at-root, 87
make-cvector, 72
make-cvector*, 73
make-f32vector, 69
make-f64vector, 70
make-f80vector, 71
make-late-weak-box, 62
make-late-weak-hasheq, 62
make-late-will-executor, 140
make-not-available, 81
make-objc_super, 110
make-os-async-channel, 99
make-os-semaphore, 98
make-s16vector, 65
make-s32vector, 67
make-s64vector, 68
make-s8vector, 64
make-sized-byte-string, 62
make-u16vector, 66

146

make-u32vector, 67
make-u64vector, 69
make-u8vector, 64
make-uninterruptible-lock, 90
make-union-type, 50
malloc, 58
malloc-immobile-cell, 60
memcpy, 57
memmove, 56
Memory Management, 58
memset, 57
Miscellaneous Support, 135
More Examples, 14
MysterX, 113
NO, 102
'nonatomic, 59
NSString*, 111
Numeric Types, 21
objc-block, 107
objc-block-function-pointer, 107
objc-class-has-instance-method?,

107
objc-dispose-class, 107
objc-get-class, 106
objc-get-superclass, 106
objc-is-a?, 106
objc-set-class!, 106
objc-subclass?, 106
objc-unsafe!, 111
objc_allocateClassPair, 108
objc_getProtocol, 108
objc_lookUpClass, 108
objc_msgSend/typed, 109
objc_msgSend/typed/blocking, 110
objc_msgSendSuper/typed, 110
objc_msgSendSuper/typed/blocking,

110
objc_registerClassPair, 108
object_getClass, 108
object_getInstanceVariable, 109
object_setInstanceVariable, 109
Objective-C FFI, 101

Obtaining COM Interface References, 124
offset-ptr?, 54
Operating System Asynchronous Channels,

98
Operating System Threads, 97
os-async-channel-get, 99
os-async-channel-put, 99
os-async-channel-try-get, 99
os-async-channel?, 99
os-semaphore-post, 98
os-semaphore-wait, 98
os-thread-enabled?, 97
Other Atomic Types, 23
Other String Types, 26
Overview, 5
Pointer Dereferencing, 55
Pointer Functions, 54
Pointer Structure Property, 63
Pointer Types, 26
Pointers and GC-Managed Allocation, 10
Pointers and Manual Allocation, 9
poller, 92
Ports, 94
Primitive String Types, 24
Process-Wide and Place-Wide Registration,

97
ProgID, 112
progid->clsid, 114
prop:cpointer, 63
provide-protected, 81
ptr-add, 54
ptr-add!, 55
ptr-equal?, 54
ptr-offset, 54
ptr-ref, 55
ptr-set!, 55
QueryInterface, 124
'raw, 58
Raw Runtime Functions, 108
register-custodian-shutdown, 85
register-finalizer, 60
register-finalizer-and-custodian-

147

shutdown, 86
register-process-global, 97
Release, 124
releaser, 84
Reliable Release of Resources, 11
Remote COM servers (DCOM), 120
retainer, 84
retainer, 84
s16vector, 65
s16vector->cpointer, 66
s16vector->list, 66
s16vector-length, 65
s16vector-ref, 65
s16vector-set!, 65
s16vector?, 65
s32vector, 67
s32vector->cpointer, 67
s32vector->list, 67
s32vector-length, 67
s32vector-ref, 67
s32vector-set!, 67
s32vector?, 67
s64vector, 68
s64vector->cpointer, 68
s64vector->list, 68
s64vector-length, 68
s64vector-ref, 68
s64vector-set!, 68
s64vector?, 68
s8vector, 64
s8vector->cpointer, 65
s8vector->list, 65
s8vector-length, 65
s8vector-ref, 65
s8vector-set!, 65
s8vector?, 65
Safe C Vectors, 71
Safe Homogenous Vectors, 64
saved-errno, 136
security-guard-check-file, 131
security-guard-check-file-link, 132
security-guard-check-network, 132

sel_registerName, 108
selector, 106
self, 105
Serializable C Struct Types, 76
set-cpointer-tag!, 57
set-ffi-obj!, 18
set-ivar!, 105
set-ptr-offset!, 55
shared libraries, 15
shared objects, 15
Speculatively Atomic Execution, 91
start-atomic, 88
start-breakable-atomic, 89
start-uninterruptible, 89
Static Callout and Callback Cores, 79
String Types, 24
string->clsid, 113
string->guid, 113
string->iid, 113
Strings, 111
'stubborn, 59
super-tell, 105
Syntactic Forms and Procedures, 102
SysAllocStringLen, 126
SysFreeString, 126
'tagged, 59
Tagged C Pointer Types, 73
tell, 102
tellv, 102
The Racket Foreign Interface, 1
Thread Scheduling, 92
Threads and Places, 12
try-atomic, 91
Type Constructors, 19
type-describe, 122
type-described-description, 122
type-described-value, 122
type-described?, 122
type-description?, 122
u16vector, 66
u16vector->cpointer, 66
u16vector->list, 66

148

u16vector-length, 66
u16vector-ref, 66
u16vector-set!, 66
u16vector?, 66
u32vector, 67
u32vector->cpointer, 68
u32vector->list, 68
u32vector-length, 67
u32vector-ref, 67
u32vector-set!, 67
u32vector?, 67
u64vector, 69
u64vector->cpointer, 69
u64vector->list, 69
u64vector-length, 69
u64vector-ref, 69
u64vector-set!, 69
u64vector?, 69
u8vector, 64
u8vector->cpointer, 64
u8vector->list, 64
u8vector-length, 64
u8vector-ref, 64
u8vector-set!, 64
u8vector?, 64
'uncollectable, 59
Unexported Primitive Functions, 138
uninterruptible lock, 90
uninterruptible mode, 89
uninterruptible-lock-acquire, 90
uninterruptible-lock-release, 90
union-ptr, 51
union-ref, 51
union-set!, 51
union?, 50
unregister-custodian-shutdown, 86
unsafe-add-collect-callbacks, 100
unsafe-fd->evt, 96
unsafe-file-descriptor->port, 94
unsafe-file-descriptor->semaphore,

95
unsafe-make-signal-received, 94

unsafe-poll-ctx-eventmask-wakeup,
93

unsafe-poll-ctx-fd-wakeup, 93
unsafe-poll-ctx-milliseconds-
wakeup, 93

unsafe-poll-fd, 93
unsafe-poller, 92
unsafe-port->file-descriptor, 95
unsafe-port->socket, 95
unsafe-remove-collect-callbacks,

101
unsafe-set-sleep-in-thread!, 93
unsafe-signal-received, 94
unsafe-socket->port, 94
unsafe-socket->semaphore, 95
Variable Auto-Converting String Type, 25
vector->cblock, 135
vector->cpointer, 135
Virtual Machine Primitives, 133
vm-eval, 134
vm-primitive, 133
void/reference-sink, 62
wchar_t, 22
win64?, 133
winapi, 133
Windows API Helpers, 132
windows-error, 127
with-autorelease, 112
with-blocking-tell, 107
YES, 102
'zeroed-atomic, 59
'zeroed-atomic-interior, 59

149

	1 Overview
	1.1 Libraries, C Types, and Objects
	1.2 Function-Type Bells and Whistles
	1.3 By-Reference Arguments
	1.4 C Structs
	1.5 Pointers and Manual Allocation
	1.6 Pointers and GC-Managed Allocation
	1.7 Reliable Release of Resources
	1.8 Threads and Places
	1.9 More Examples

	2 Loading Foreign Libraries
	3 C Types
	3.1 Type Constructors
	3.2 Numeric Types
	3.3 Other Atomic Types
	3.4 String Types
	3.4.1 Primitive String Types
	3.4.2 Fixed Auto-Converting String Types
	3.4.3 Variable Auto-Converting String Type
	3.4.4 Other String Types

	3.5 Pointer Types
	3.6 Function Types
	3.6.1 Custom Function Types

	3.7 C Struct Types
	3.8 C Array Types
	3.9 C Union Types
	3.10 Enumerations and Masks

	4 Pointer Functions
	4.1 Pointer Dereferencing
	4.2 Memory Management
	4.3 Pointer Structure Property

	5 Derived Utilities
	5.1 Safe Homogenous Vectors
	5.2 Safe C Vectors
	5.3 Tagged C Pointer Types
	5.4 Serializable C Struct Types
	5.5 Static Callout and Callback Cores
	5.6 Defining Bindings
	5.6.1 FFI Identifier Conventions

	5.7 Allocation and Finalization
	5.8 Custodian Shutdown Registration
	5.9 Atomic Execution
	5.10 Speculatively Atomic Execution
	5.11 Thread Scheduling
	5.12 Ports
	5.13 Process-Wide and Place-Wide Registration
	5.14 Operating System Threads
	5.14.1 Operating System Asynchronous Channels

	5.15 Garbage Collection Callbacks
	5.16 Objective-C FFI
	5.16.1 FFI Types and Constants
	5.16.2 Syntactic Forms and Procedures
	5.16.3 Raw Runtime Functions
	5.16.4 Legacy Library

	5.17 Cocoa Foundation
	5.17.1 Strings
	5.17.2 Allocation Pools

	5.18 COM (Common Object Model)
	5.18.1 COM Automation
	5.18.2 COM Classes and Interfaces
	5.18.3 ActiveX Controls

	5.19 File Security-Guard Checks
	5.20 Windows API Helpers
	5.21 Virtual Machine Primitives

	6 Miscellaneous Support
	7 Unexported Primitive Functions
	Bibliography
	Index
	Index

