How to Design Programs Languages

Version 9.0.0.11

January 4, 2026

The languages documented in this manual are provided by DrRacket to be used with the
How to Design Programs book.

When programs in these languages are run in DrRacket, any part of the program that was not
run is highlighted in orange and black. These colors are intended to give the programmer
feedback about the parts of the program that have not been tested. To avoid seeing these
colors, use check-expect to test your program. Of course, just because you see no colors,
does not mean that your program has been fully tested; it simply means that each part of the
program has been run (at least once).

While these languages are normally selected using the Choose Language dialog in DrRacket,
they can also be accessed using the #lang language directive as the first line of code in
DrRacket or other editors.

* Beginning Student #lang htdp/bsl

* Beginning Student with List Abbreviations #lang htdp/bsl+
¢ Intermediate Student #lang htdp/isl

¢ Intermediate Student with lambda #lang htdp/isl+

¢ Advanced Student #lang htdp/asl

http://www.htdp.org/

Contents

|1 Beginning Student]| 7
(L1 _Pre-defined Vamiables| 8
1.2 Template Variables|, 9
..................................... 9

A Signatures| L L L L e e 18
[1.4.1 Signature Forms| 19
I1.4.2 Struct Signatures| 21

LS Pre-defined Functionsl 21
1.6 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| 21
[L77Booleansl - . . . v vt 36
8 Symbols|. 38
MOTASE . - . o oo 38
[CIOPOSAS . . o o v o e e e 50
[CITCharactersl o oot e e e 51
[1.12 Strings|. e 56
MAZES|. . v v o e e e e e e e e 65
CIEMISA . . oo o 65
................................... 68

2 Beginning Student with List Abbreviations| 71
2.1 Pre-defined Vamables| 00000 73
2.2 “Template Variables| 73
2.3 Syntaxes for Beginning Student with List Abbreviations|. 74
2.4 Common Syntaxes| i i e e e 75

................................... 84

2.5.1 Signature Forms| oo L. 85
[2.5.2 Struct Signatures|o 86

2.6 Pre-defined Functionsl o oo 86
2.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| 87
2.8 Booleansl 102
2.9 Symbols| 103
RDIOTASE . . o o oo e 104
DITPosnslo 116
RI2CRaraClersl oo oo 117
2.13 Strings|. 122
4 Tmages|. 130
RISTMIS . . oo 131
................................... 134
3 Intermediate Student] 136
3.1 Pre-defined Variables| o000 138
3.2 Template Variables| 138
3.3 Syntax for Intermediate| o o 139
3.4 Common Syntaxes|t e 140
................................... 150
3.5.1 Signature Forms| 151
[3.5.2 Struct Signatures|o e 152

3.6 Pre-defined Functionsl L oo 152
13.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| 153
B8 Booleanslot 167

BIOTISI . . o o o e e 169
BITPosnsl o 181
BIZCharacters oo oot 182
3.13 Strings|. 187
4 Images|. 193
3.5 Miscl. . . .o 193
................................... 196
13.17 Numbers (relaxed conditions)|. 198
[3.18 String (relaxed conditions)] L. 199
BIOPosnl ot 202
[3.20 Higher-Order Functions|., 202
4 Intermediate Student with Lambdal 210
4.1 Pre-defined Variables| oo 212
4.2 Template Variables| 212
4.3 Syntax for Intermediate with Lambdal 213
4.4 Common Syntaxes| ot i e 214
4.5 Pre-defined Functions|0 224
4.6 Signatures|o 224
4.6.1 Signature Forms| 0 L. 225
[4.6.2 StructSignatures| L. 226
4.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| 226
4.8 Booleans
4.9 bols| 242
BIOTISE . .o 242

BI2CharaClersl o o vo e e 255
4 BS| . e e 260
4.14 BCS|. e e e e e 266
415 Miscl e 267
4.16 Signatures| 269
4.17 Numbers (relaxed conditions)|. 271
4.18 String (relaxed conditions)| L. 271
BIOPoSH . . . o oo 274
[4.20 Higher-Order Functions|. 274
4.21 Numbers (relaxed conditionsplus)| 274
[4.22 Higher-Order Functions (with Lambda)| 275
B5—Advanced Studenf 282
5.1 Pre-defined Variables| 285
5.2 Template Variables| 285
5.3 Syntax for Advanced| oL 286
5.4 Common Syntaxes| e 289
5.5 Pre-Defined Functions| 298
................................... 298
5.6.1 Signature Forms| 299
B.62 StructSignatures| 300

I5.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| 301
5.8 Booleansl 315
5.9 Symbols|. 317
BIOLASE - - o o oo o e e e e 317

BI2Characlersl o oot ot 331
5.13 Strings|. 335
5.14 Tmages|. 341
SIS Miscl . . . o 342
................................... 346
15.17 Numbers (relaxed conditions)|. 348
I5.18 String (relaxed conditions)| Lo Lo 348
BIOPosulo 350
[5.20 Higher-Order Functions|. 351
15.21 Numbers (relaxed conditionsplus)| 351
15.22 Higher-Order Functions (with Lambda)] 352
[5.23 Readingand Printing|, 358
B2AVECtorsl . . . o oo 361
B25Boxes . . - o o 363
.................................. 364

1 Beginning Student

The grammar notation uses the notation X ... (bold dots) to indicate that X may occur an
arbitrary number of times (zero, one, or more). Separately, the grammar also defines . .. as
an identifier to be used in templates.

See|[How to Design Programs/2e, Intermezzo 1 for an explanation of the Beginning Student
Language.

program = def-or-expr ..
def-or-expr definition

| expr
| test-case
|

library-require

definition = (define (name variable variable ..) expr)
| (define name expr)
| (define name (lambda (variable variable ..) expr))
| (define-struct name (name ...))
expr (name expr expr ..)
(cond [expr expr] .. [expr exprl])
(cond [expr expr] .. [else expr])

|

|

| (if expr expr expr)

| (and expr expr expr ...)
| (or expr expr expr ..)
| name

| ’name

| >0

| number

| boolean

| string

| character

| (signature signature-form)

signature-declaration (: name signature-form)

signature-form (enum expr ...)
(mixed signature-form ...)
(signature-form ... -> signature-form)

(List0f signature-form)
signature-variable
expr

https://htdp.org/2020-5-6/Book/i1-2.html

signature-variable = Yname
test-case = (check-expect expr expr)

| (check-random expr expr)

| (check-within expr expr expr)

| (check-member-of expr expr ...)

| (check-range expr expr expr)

| (check-satisfied expr name)

| (check-error expr expr)

| (check-error expr)

library-require = (require string)

| (require (1lib string string ...))

| (require (planet string package))

package = (string string number number)

A name or a variable is a sequence of characters not including a space or one of the
following:

LU 1 B I O -
A number is a number such as 123, 3/2, or 5. 5.
A boolean is one of: #true or #false.

Alternative spellings for the #true constant are #t, true, and #T. Similarly, #f, false, or
#F are also recognized as #false.

A symbol is a quote character followed by a name. A symbol is a value, just like 42, ' (),
or #false.

A string is a sequence of characters enclosed by a pair of ". Unlike symbols, strings may
be split into characters and manipulated by a variety of functions. For example, "abcdef",
"This is a string",and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\Db,
and #\space are characters.

In function calls, the function appearing immediately after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

1.1 Pre-defined Variables

empty : empty?

The empty list.
true : boolean?

The #true value.

false : boolean?

The #false value.

1.2 Template Variables

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

1.3 Syntax

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define name (lambda (variable variable ...) expression))

An alternate way to defining functions. The name is the name of the function, which cannot
be the same as that of another function or variable.

A lambda cannot be used outside of this alternate syntax.

’name
(quote name)

A quoted name is a symbol. A symbol is a value, just like O or ' ().

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns #true if the value is an instance of
the structure.
The name of the new functions introduced by define-struct must not be the same as that

of other functions or variables, otherwise def ine-struct reports an error.

(name expression expression ...)

10

Calls the function named name. The value of the call is the value of name’s body when
every one of the function’s variables are replaced by the values of the corresponding ex-
pressions.

The function named name must defined before it can be called. The number of argument
expressions must be the same as the number of arguments expected by the function.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to #true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to #true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither #true nor #false, cond also reports an error.

else cannot be used outside of cond.

(if question-expression
then-answer-expression
else-answer-expression)

When the value of the question-expression is #true, if evaluates the then-answer-
expression. When the test is #false, if evaluates the else-answer-expression.

If the question-expression is neither #true nor #false, if reports an error.

(and expression expression expression ...)

Evaluates to #true if all the expressions are #true. If any expression is #false, the
and expression evaluates to #false (and the expressions to the right of that expression are
not evaluated.)

If any of the expressions evaluate to a value other than #true or #false, and reports an
eITor.

(or expression expression expression ...)

Evaluates to #true as soon as one of the expressions is #true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are #false, the or
expression evaluates to #false.

11

If any of the expressions evaluate to a value other than #true or #false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheit->celsius -40) -40)

(define (fahrenheit->celsius f)
(* 5/9 (- £ 32)))

A check-expect expression must be placed at the top-level of a student program. Also it
may show up anywhere in the program, including ahead of the tested function definition. By
placing check-expects there, a programmer conveys to a future reader the intention behind
the program with working examples, thus making it often superfluous to read the function
definition proper. Syntax errors in check-expect (and all check forms) are intentionally
delayed to run time so that students can write tests without necessarily writing complete
function headers.

It is an error for expr or expected-expr to produce an inexact number or a function value.
As for inexact numbers, it is morally wrong to compare them for plain equality. Instead one
tests whether they are both within a small interval; see check-within. As for functions
(see Intermediate and up), it is provably impossible to compare functions.

(check-random expression expected-expression)
Checks that the first expression evaluates to the same value as the expected-
expression.

The form supplies the same random-number generator to both parts. If both parts request
random numbers from the same interval in the same order, they receive the same random
numbers.

Here is a simple example of where check-random is useful:

(define WIDTH 100)
(define HEIGHT (* 2 WIDTH))

(define-struct player (name x y))
; A Player is (make-player String Nat Nat)

; String -> Player

12

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(make-player name (random WIDTH) (random HEIGHT)))

Note how random is called on the same numbers in the same order in both parts of check-
random. If the two parts call random for different intervals, they are likely to fail:

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(a-helper-function name (random HEIGHT)))

; String Number -> Player
(define (a-helper-function name height)
(make-player name (random WIDTH) height))

Because the argument to a-helper-function is evaluated first, random is first called for
the interval [0,HEIGHT) and then for [0, WIDTH), that is, in a different order than in the
preceding check-random.

It is an error for expr or expected-expr to produce a function value or an inexact number;

see note on check-expect for details.

(check-satisfied expression predicate)

Checks that the first expression satisfies the named predicate (function of one argu-
ment). Recall that “satisfies” means “the function produces #true for the given value.”

Here are simple examples for check-satisfied:

> (check-satisfied 1 odd?)
The test passed!

> (check-satisfied 1 even?)
Ran 1 test.

0 tests passed.

Check failures:

13

Actual value | 1 | does not satisfy even?.
| I—

at line 3, column O

In general check-satisfied empowers program designers to use defined functions to for-
mulate test suites:

; [cons Number [List-of Number]] -> Boolean
; a function for testing htdp-sort

(check-expect (sorted? (list 1 2 3)) #true)
(check-expect (sorted? (list 2 1 3)) #false)

(define (sorted? 1)
(cond
[(empty? (rest 1)) #truel
[else (and (<= (first 1) (second 1)) (sorted? (rest 1)))]))

; [List-of Number] -> [List-of Number]
; create a sorted version of the given list of numbers

(check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(define (htdp-sort 1)
(cond
[(empty? 1) 1]
[else (insert (first 1) (htdp-sort (rest 1)))1))

; Number [List-of Number] -> [List-of Number]
; insert x into 1 at proper place
; assume 1 is arranged in ascending order
; the result is sorted in the same way
(define (insert x 1)
(cond
[(empty? 1) (list x)]
[else (if (<= x (first 1)) (cons x 1) (cons (first 1) (imsert x (rest 1))))1))

And yes, the results of htdp-sort satisfy the sorted? predicate:

> (check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)
The test passed!

I(check—within expression expected-expression delta)

14

Checks whether the value of the expression expression is structurally equal to the value
produced by the expected-expression expression; every number in the first expression
must be within delta of the corresponding number in the second expression.

(define-struct roots (x sqrt))
; RT is [List-of (make-roots Number Number)]

(define (root-of a)
(make-roots a (sqrt a)))

(define (roots-table xs)
(cond
[(empty? xs) '(O]
[else (cons (root-of (first xs)) (roots-table (rest xs)))]))

Due to the presence of inexact numbers in nested data, check-within is the correct choice
for testing, and the test succeeds if delta is reasonably large:

Example:

> (check-within (roots-table (list 1.0 2.0 3.0))
(1list
(make-roots 1.0 1.0)
(make-roots 2 1.414)
(make-roots 3 1.713))
0.1)
The test passed!

In contrast, when delta is small, the test fails:
Example:

> (check-within (roots-table (list 2.0))
(list
(make-roots 2 1.414))
#ile-5)
Ran 1 test.
0 tests passed.
Check failures:

Actual value | '((make-roots 2.0 1.4142135623730951)) | is

not within le-5 of expected value | '((make-roots 2 1.414)) |.
L J

at line 5, column O

15

It is an error for expressions or expected-expression to produce a function value; see
note on check-expect for details.

If delta is not a number, check-within reports an error.

(check-error expression expected-error-message)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of expected-error-message, if it is present.

Here is a typical beginner example that calls for a use of check-error:

(define sample-table
' (("matthias" 10)
("matthew" 20)
("robby" -1)

("shriram" 18)))

; [List-of [list String Number]] String -> Number
; determine the number associated with s in table

(define (lookup table s)
(cond
[(empty? table) (error (string-append s " not found"))]
[else (if (string=7 (first (first table)) s)
(second (first table))
(lookup (rest table)))]))

Consider the following two examples in this context:

Example:

> (check-expect (lookup sample-table "matthew") 20)
The test passed!

Example:

> (check-error (lookup sample-table "kathi") "kathi not found")
The test passed!

(check-member-of expression expression expression ...)

Checks that the value of the first expression is that of one of the following expressions.

16

; [List-of X] -> X
; pick a random element from the given list 1
(define (pick-one 1)

(list-ref 1 (random (length 1))))

Example:
> (check-member-of (pick-one '("a" "b" "c")) "a" "b" "c")

The test passed!

It is an error for any of expressions to produce a function value; see note on check-
expect for details.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

A check-range form is best used to delimit the possible results of functions that compute
inexact numbers:

(define EPSILON 0.001)

; [Real -> Real] Real -> Real
; what is the slope of f at x7
(define (differentiate f x)
(slope f (- x EPSILON) (+ x EPSILON)))

; [Real -> Real] Real Real -> Real
(define (slope f left right)
(/ (- (f right) (f left))
2 EPSILON))

(check-range (differentiate sin 0) 0.99 1.0)

It is an error for expression, low-expression, or high-expression to produce a func-
tion value; see note on check-expect for details.

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

17

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (l1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))
(require (planet id))
(require (planet string))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

The full grammar for planet requires is given in §3.2 “Importing and Exporting: require
and provide”, but the best place to find examples of the syntax is on the the PLaneT server,
in the description of a specific package.

1.4 Signatures

Signatures do not have to be comment: They can also be part of the code. When a signature
is attached to a function, DrRacket will check that program uses the function in accordance
with the signature and display signature violations along with the test results.

A signature is a regular value, and is specified as a signature form, a special syntax that only
works with : signature declarations and inside signature expressions.

(: name signature-form)

18

http://planet.racket-lang.org

This attaches the signature specified by signature-form to the definition of name. There
must be a definition of name somewhere in the program.

(: age Integer)
(define age 42)

(: area-of-square (Number -> Number))
(define (area-of-square len)
(sqr len))

On running the program, Racket checks whether the signatures attached with : actually
match the value of the variable. If they don’t, Racket reports signature violation along with
test failures.

For example, this piece of code:

(: age Integer)
(define age "fortytwo")

Yields this output:

1 signature violation.
Signature violations:
got "fortytwo" at line 2, column 12, signature at line 1,

column 7

Note that a signature violation does not stop the running program.

(signature signature-form)

This returns the signature described by signature-form as a value.

1.4.1 Signature Forms

Any expression can be a signature form, in which case the signature is the value returned by
that expression. There are a few special signature forms, however:

In a signature form, any name that starts with a % is a signature variable that stands for any
signature depending on how the signature is used.

Example:

(: same (%a -> %a))

(define (same x) x)

19

(input-signature-form ... -> output-signature-form)

This signature form describes a function with inputs described by the input-signature-
forms and output described by output-signature-form.

(enum expr ...)

This signature describes an enumeration of the values returned by the exprs.
Example:

(: cute? ((enum "cat" "snake") -> Boolean))

(define (cute? pet)
(cond
[(string=7 pet '"cat") #t]
[(string=7 pet "snake") #f]))

(mixed signature-form ...)

This signature describes mixed data, i.e. an itemization where each of the cases has a signa-
ture described by a signature-form.

Example:

(define SIGS (signature (mixed Aim Fired)))

(List0f signature-form)

This signature describes a list where the elements are described by signature-form.

(predicate expression)

This signature describes values through a predicate: expression must evaluate to a func-
tion of one argument that returns a boolean. The signature matches all values for which the
predicate returns #true.

20

1.4.2 Struct Signatures

A define-struct form defines two additional names that can be used in signatures. For a
struct called struct, these are Struct and Struct0f. Note that these names are capital-
ized. In particular, a struct called Struct, will also define Struct and StructOf. More-
over, when forming the additional names, hyphens are removed, and each letter following a
hyphen is capitalized - so a struct called foo-bar will define FooBar and FooBar0Of.

Struct is a signature that describes struct values from this structure type. StructOf is a
function that takes as input a signature for each field. It returns a signature describing values
of this structure type, additionally describing the values of the fields of the value.

(define-struct pair [fst snd])

(: add-pair ((PairOf Number Number) -> Number))
(define (add-pair p)
(+ (pair-fst p) (pair-snd p)))

1.5 Pre-defined Functions

The remaining subsections list those functions that are built into the programming language.
All other functions are imported from a teachpack or must be defined in the program.

1.6 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

(* x y z ...) — number
X : number
y : number
Z : number

Multiplies all numbers.

> (x 5 3)
15

> (x 53 2)
30

(+ x y z ...) — number
X : number
y . number
z @ number

21

Adds up all numbers.

> (+ 2/3 1/16)

35/48

> (+3258)

18

(- x y ...) — number

X : number
y : number

Subtracts the second (and following) number(s) from the first ; negates the number if there
is only one argument.

> (- 5)

-5

> (- 5 3)

2

> (-531)

1

(/ x y z ...) — number

X : number
y : number
z . number

Divides the first by the second (and all following) number(s).

(/ 12 2)

(/ 12 2 3)

N vV OO V

(< x y z ...) - boolean?
x @ real
y : real
z @ real

Compares two or more (real) numbers for less-than.

> (< 42 2/5)
#false

22

(<=x y z ...) — boolean?

X . real
y : real
z : real

Compares two or more (real) numbers for less-than or equality.

> (<= 42 2/5)
#false

(=xy z ...) — boolean?
X . number
y : number
z : number

Compares two or more numbers for equality.

> (= 42 2/5)

#false

(>x y z ...) — boolean?
x : real
y : real
z : real

Compares two or more (real) numbers for greater-than.

> (> 42 2/5)
#true

(>=x y z ...) — boolean?
x ! real
y : real
z @ real

Compares two or more (real) numbers for greater-than or equality.

> (>= 42 42)
#true

23

(abs x) — real
X . real
Determines the absolute value of a real number.

> (abs -12)
12

(acos x) — number
X . number
Computes the arccosine (inverse of cos) of a number.

> (acos 0)
#i1.5707963267948966

(addl x) — number
X ! number
Increments the given number.

> (addl 2)
3

(angle x) — real
X ! number
Extracts the angle from a complex number.

> (angle (make-polar 3 4))
#1-2.2831853071795867

(asin x) — number
X : number

Computes the arcsine (inverse of sin) of a number.

> (asin 0)
0

24

(atan x) — number
X . number

Computes the arctangent of the given number:

> (atan 0)

0

> (atan 0.5)
#10.46364760900080615

Also comes in a two-argument version where (atan y x) computes (atan (/ y x))
but the signs of y and x determine the quadrant of the result and the result tends to be more
accurate than that of the 1-argument version in borderline cases:

> (atan 3 4)
#10.6435011087932844
> (atan -2 -1)
#1-2.0344439357957027

(ceiling x) — integer
x ! real

Determines the closest integer (exact or inexact) above a real number. See round.

> (ceiling 12.3)
#113.0

(complex? x) — boolean?
x : any/c

Determines whether some value is complex.

> (complex? 1-2i)
#true

(conjugate x) — number
X @ number

Flips the sign of the imaginary part of a complex number.

25

> (conjugate 3+41i)

3-4i

> (conjugate -2-5i)

-2+561

> (conjugate (make-polar 3 4))
#1-1.960930862590836+2.2704074859237851

(cos x) — number
x : number
Computes the cosine of a number (radians).

> (cos pi)
#i-1.0

(cosh x) — number
X . number

Computes the hyperbolic cosine of a number.

> (cosh 10)
#i11013.232920103324

(current-seconds) — integer

Determines the current time in seconds elapsed (since a platform-specific starting date).

> (current-seconds)
1767549576

(denominator x) — integer
x : rational?

Computes the denominator of a rational.

> (denominator 2/3)
3

e : real

26

Euler’s number.

> e
#12.718281828459045

(even? x) — boolean?
x ! integer
Determines if some integer (exact or inexact) is even or not.

> (even? 2)
#true

(exact->inexact x) — number
X . number
Converts an exact number to an inexact one.

> (exact->inexact 12)
#i12.0

(exact? x) — boolean?
X : number
Determines whether some number is exact.

> (exact? (sqrt 2))
#false

(exp x) — number
X . number
Determines e raised to a number.

> (exp -2)
#10.1353352832366127

(expt x y) — number
X : number
y . number

27

Computes the power of the first to the second number, which is to say, exponentiation.

> (expt 16 1/2)
4

> (expt 3 -4)
1/81

(floor x) — integer
X @ real

Determines the closest integer (exact or inexact) below a real number. See round.

> (floor 12.3)
#i12.0

(gcd x y ...) — integer
X . integer
y : integer
Determines the greatest common divisor of two integers (exact or inexact).

> (gcd 6 12 8)
2

(imag-part x) — real
x : number
Extracts the imaginary part from a complex number.

> (imag-part 3+4i)
4

(inexact->exact x) — number
X . number

Approximates an inexact number by an exact one.

> (inexact->exact 12.0)
12

28

(inexact? x) — boolean?
X . number
Determines whether some number is inexact.

> (inexact? 1-2i)
#false

(integer->char x) — char
X : exact-integer?
Looks up the character that corresponds to the given exact integer in the ASCII table (if any).

> (integer->char 42)
#\x

(integer-sqrt x) — complex
X : integer
Computes the integer or imaginary-integer square root of an integer.

> (integer-sqrt 11)
3

> (integer-sqrt -11)
0+31

(integer? x) — boolean?
x : any/c

Determines whether some value is an integer (exact or inexact).

> (integer? (sqrt 2))
#false

(lecm x y ...) — integer
x : integer
y : integer

Determines the least common multiple of two integers (exact or inexact).

29

> (lcm 6 12 8)
24

(log x) — number
X @ number
Determines the base-e logarithm of a number.

> (log 12)
#12.4849066497880004

(magnitude x) — real
X @ number

Determines the magnitude of a complex number.

> (magnitude (make-polar 3 4))
#13.0000000000000004

(make-polar x y) — number
x @ real
y : real

Creates a complex from a magnitude and angle.

> (make-polar 3 4)
#1-1.960930862590836-2.2704074859237851

(make-rectangular x y) — number
x : real
y . real
Creates a complex from a real and an imaginary part.

> (make-rectangular 3 4)

3+4i

(max x y ...) — real
x ! real
y . real

30

Determines the largest number—aka, the maximum.

> (max 3287 29 0)

9

(min x y ...) — real
x ! real
y . real

Determines the smallest number—aka, the minimum.

> (min 3287 29 0)
0

(modulo x y) — integer
x : integer
y : integer
Finds the remainder of the division of the first number by the second:

> (modulo 9 2)
1
> (modulo 3 -4)
-1

(negative? x) — boolean?
x : real
Determines if some real number is strictly smaller than zero.

> (negative? -2)
#true

(number->string x) — string
X : number

Converts a number to a string.
> (number->string 42)

l|42|l

31

(number->string-digits x p) — string
x : number
p : posint

Converts a number x to a string with the specified number of digits.

> (number->string-digits 0.9 2)
l|0.9||

> (number->string-digits pi 4)
"3.1416"

(number? n) — boolean?
n : any/c
Determines whether some value is a number:

> (number? "hello world")
#false

> (number? 42)

#true

(numerator x) — integer
x @ rational?

Computes the numerator of a rational.

> (numerator 2/3)
2

(odd? x) — boolean?
x : integer

Determines if some integer (exact or inexact) is odd or not.

> (odd? 2)
#false

pi : real

32

The ratio of a circle’s circumference to its diameter.

> pi
#13.141592653589793

(positive? x) — boolean?
x : real
Determines if some real number is strictly larger than zero.

> (positive? -2)
#false

(quotient x y) — integer
X : integer
y : integer

Divides the first integer—also called dividend—by the second—known as divisor—to obtain
the quotient.

> (quotient 9 2)
4

> (quotient 3 4)
0

(random x) — natural?
x : (and/c natural? positive?)
Generates a random natural number less than some given exact natural.

> (random 42)
3

(rational? x) — boolean?
x : any/c

Determines whether some value is a rational number.

> (rational? 1)
#true

33

> (rational?
#true
> (rational?
#true
> (rational?
#false
> (rational?
#true
> (rational?
#true
> (rational?
#false

-2.349)
#11.23456789)
(sqrt -1))
pi)

e)

1-2i)

As the interactions show, the teaching languages considers many more numbers as rationals
than expected. In particular, pi is a rational number because it is only a finite approximation
to the mathematical 7. Think of rational? as a suggestion to think of these numbers as

fractions.

(real-part x) — real

X : number

Extracts the real part from a complex number.

> (real-part
3

3+41i)

(real? x) — boolean?

x : any/c

> (real? 1-21i)

#false

(remainder x y) — integer
X . integer
y : integer

Determines whether some value is a real number.

Determines the remainder of dividing the first by the second integer (exact or inexact).

(remainder 9 2)

>
1
> (remainder 3 4)
3

34

(round x) — integer
x : real
Rounds a real number to an integer (rounds to even to break ties). See floor and ceiling.

> (round 12.3)
#i12.0

(sgn x) — (union 1 #i1.0 0 #i0.0 -1 #i-1.0)
x @ real
Determines the sign of a real number.

> (sgn -12)
-1

(sin x) — number
X ! number
Computes the sine of a number (radians).

> (sin pi)
#11.2246467991473532e-16

(sinh x) — number
X ! number
Computes the hyperbolic sine of a number.

> (sinh 10)
#111013.232874703393

(sqr x) — number
X @ number

Computes the square of a number.

> (sqr 8)
64

35

(sqrt x) — number
x : number

Computes the square root of a number.

> (sqrt 9)

3

> (sqrt 2)
#11.4142135623730951

(subl x) — number
X : number
Decrements the given number.

> (subl 2)
1

(tan x) — number
X . number

Computes the tangent of a number (radians).

> (tan pi)
#i-1.2246467991473532e-16

(zero? x) — boolean?
X : number

Determines if some number is zero or not.

> (zero? 2)
#false
1.7 Booleans

(boolean->string x) — string
x : boolean?

36

Produces a string for the given boolean

> (boolean->string #false)
"#false"
> (boolean->string #true)
"#true"

(boolean=7 x y) — boolean?
x : boolean?
y : boolean?

Determines whether two booleans are equal.

> (boolean=7 #true #false)
#false

(boolean? x) — boolean?
x : any/c

Determines whether some value is a boolean.

> (boolean? 42)
#false

> (boolean? #false)
#true

(false? x) — boolean?
x : any/c
Determines whether a value is false.

> (false? #false)
#true

(not x) — boolean?
X : boolean?

Negates a boolean value.

> (not #false)
#true

37

1.8 Symbols

(symbol->string x) — string
x : symbol

Converts a symbol to a string.

> (symbol->string 'c)

IICII

(symbol=7 x y) — boolean?
X : symbol
y : symbol

Determines whether two symbols are equal.

> (symbol=7 'a 'b)
#false

(symbol? x) — boolean?
x @ any/c

Determines whether some value is a symbol.

> (symbol? 'a)
#true

1.9 Lists

(append x y z ...) — list?
x : list?
y @ list?
z @ list?

Creates a single list from several, by concatenation of the items.

n n

> (append (cons 1 (cons 2 '())) (cons "a" (cons "b" empty)))
(liSt 1 2 "g" nbu)

38

(assoc x 1) — (union (listof any) #false)
x @ any/c

1 : (listof any)

Produces the first pair on 1 whose first is equal? to x; otherwise it produces #false.

> (assoc "hello" '(("world" 2) ("hello" 3) ("good" 0)))
(list "hello" 3)

(assq x 1) — (union #false cons?)
x : any/c
1 : 1list?

Determines whether some item is the first item of a pair in a list of pairs. (It compares the
items with eq?.)
> a

(1ist (1ist 'a 22) (list 'b 8) (list 'c 70))
> (assq 'b a)
(list 'b 8)

(caaar x) — any/c
x : list?

LISP-style selector: (car (car (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (caaar w)

(1ist "bye")

(caadr x) — any/c
x @ list?
LISP-style selector: (car (car (cdr x))).

> (caadr (cons 1 (cons (cons
1
a

'a '"()) (cons (cons 'd 'O) "ON)N

39

(caar x) — any/c
x @ list?

LISP-style selector: (car (car x)).

>y
(list (1list (list 1 2 3) #false "world"))

> (caar y)
(list 1 2 3)

(cadar x) — any/c
x : list?

LISP-style selector: (car (cdr (car x))).

> W

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cadar w)

#true

(cadddr x) — any/c
x : list?

LISP-style selector: (car (cdr (cdr (cdr x)))).
> v
(1ist 1 23456789 'A)

> (cadddr v)
4

(caddr x) — any/c
x : list?

LISP-style selector: (car (cdr (cdr x))).

> X

(list 2 "hello" #true)
> (caddr x)

#true

40

(cadr x) — any/c
x @ list?

LISP-style selector: (car (cdr x)).

> X

(list 2 "hello" #true)
> (cadr x)

"hello"

(car x) — any/c
X : cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (car x)

2

(cdaar x) — any/c
x @ list?
LISP-style selector: (cdr (car (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cdaar w)

(1ist 3)

(cdadr x) — any/c
x : list?

LISP-style selector: (cdr (car (cdr x))).

> (cdadr (list 1 (list 2 "a") 3))
(list "a")

(cdar x) — list?
x : list?

41

LISP-style selector: (cdr (car x)).

>y
(list (1list (list 1 2 3) #false "world"))
> (cdar y)

(1ist #false "world")

(cddar x) — any/c
x : list?

LISP-style selector: (cdr (cdr (car x)))

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cddar w)

o)

(cdddr x) — any/c
x : list?

LISP-style selector: (cdr (cdr (cdr x))).

> v
(1ist 1 23456789 'A)
> (cdddr v)

(1ist 4 56 78 9 'A)

(cddr x) — 1list?
x . list?

LISP-style selector: (cdr (cdr x)).

> X
(list 2 "hello" #true)
> (cddr x)

(list #true)

(cdr x) — any/c
X : cons?

42

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (cdr x)

(list "hello" #true)

(cons x y) — list?
x : any/c
y @ list?

Constructs a list.

> (cons 1 '())
(cons 1 ')

(cons? x) — boolean?
x : any/c

Determines whether some value is a constructed list.

> (cons? (cons 1 '()))
#true

> (cons? 42)

#false

(eighth x) — any/c
x @ list?
Selects the eighth item of a non-empty list.

> v

(list 1 23456789 'A)
> (eighth v)

8

(empty? x) — boolean?
x : any/c

Determines whether some value is the empty list.

43

> (empty? ')
#true

> (empty? 42)
#false

(fifth x) — any/c
x . list?

Selects the fifth item of a non-empty list.

> v
(list 1 23 4567 89 'A)
> (fifth v)

5

(first x) — any/c
X . cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (first x)

2

(fourth x) — any/c
x : list?

Selects the fourth item of a non-empty list.
> v
(1ist 1 23456789 'A)

> (fourth v)
4

(length 1) — natural?
1 : list?

Evaluates the number of items on a list.

> X

(list 2 "hello" #true)
> (length x)
3

(list x ...) — list?
x : any/c

Constructs a list of its arguments.

> (list 1 234567 89 0)
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8

(cons 9 (cons 0 "ONNIMNNN

(Qist* x ... 1) — 1list?
x : any/c
1 : 1list?

Constructs a list by adding multiple items to a list.

> X

(list 2 "hello" #true)

> (list* 4 3 x)

(list 4 3 2 "hello" #true)

(list-ref x i) — any/c
x @ list?
i : natural?

Extracts the indexed item from the list.

> v

(list 1 234567 89 'A)
> (list-ref v 9)
'A

(1list? x) — boolean?
x : any/c

Checks whether the given value is a list.

45

> (list? 42)

#false

> (list? '())

#true

> (list? (cons 1 (cons 2 '())))
#true

(make-list i x) — list?
i : natural?
x : any/c

Constructs a list of i copies of x.

> (make-list 3 "hello")
(cons "hello" (cons "hello" (comns "hello" '())))

(member x 1) — boolean?
x @ any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member "hello" x)
#true

(member? x 1) — boolean?
x @ any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member? "hello" x)
#true

(memg x 1) — boolean?
x @ any/c
1 : 1list?

46

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq (list (list 1 2 3)) x)
#false

(memq? x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq? (list (list 1 2 3)) x)
#false

(memv x 1) — (or/c #false list)
x : any/c
1 : 1list?

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

> X

(list 2 "hello" #true)

> (memv (list (list 1 2 3)) x)
#false

null : list

Another name for the empty list

> null

O

(null? x) — boolean?
x @ any/c

47

Determines whether some value is the empty list.

> (null? ')
#true

> (null? 42)
#false

(range start end step) — list?
start : number
end : number
step : number

Constructs a list of numbers by stepping from start to end.

> (range 0 10 2)
(cons 0 (cons 2 (cons 4 (cons 6 (cons 8 '())))))

(remove x 1) — list?
x : any/c
1 : 1list?

Constructs a list like the given one, with the first occurrence of the given item removed
(comparing values with equal?).

> X

(list 2 "hello" #true)

> (remove "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove "hello" hello-2)
(list 2 #true "hello")

(remove-all x 1) — 1list?
x : any/c
1 : 1list?

Constructs a list like the given one, with all occurrences of the given item removed (compar-
ing values with equal?).

> x

48

(list 2 "hello" #true)

> (remove-all "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove-all "hello" hello-2)
(list 2 #true)

(rest x) — any/c
X : cons?

Selects the rest of a non-empty list.

> x

(list 2 "hello" #true)
> (rest x)

(list "hello" #true)

(reverse 1) — list
1 : list?

Creates a reversed version of a list.

> x

(list 2 "hello" #true)
> (reverse x)

(list #true "hello" 2)

(second x) — any/c
x . list?

Selects the second item of a non-empty list.

> X

(list 2 "hello" #true)
> (second x)

"hello"

(seventh x) — any/c
x @ list?

49

Selects the seventh item of a non-empty list.

> v

(list 1 234567 89 'A)
> (seventh v)

7

(sixth x) — any/c
x : list?

Selects the sixth item of a non-empty list.

> v

(list 1 23456789 'A)
> (sixth v)

6

(third x) — any/c
x @ list?

Selects the third item of a non-empty list.

> x

(list 2 "hello" #true)
> (third x)

#true

1.10 Posns

(make-posn x y) — posn
x @ any/c
y : any/c

Constructs a posn from two arbitrary values.

> (make-posn 3 3)
(make-posn 3 3)

> (make-posn "hello" #true)
(make-posn "hello" #true)

(posn-x p) — any/c
p : posn

Extracts the x component of a posn.

> p

(make-posn 2 -3)
> (posn-x p)

2

(posn-y p) — any/c
p : posn

Extracts the y component of a posn.

>p

(make-posn 2 -3)
> (posn-y p)

-3

(posn? x) — boolean?
x : any/c

Determines if its input is a posn.
> q
(make-posn "bye" 2)
> (posn? q)
#true

> (posn? 42)
#false

1.11 Characters

(char->integer c) — integer
¢ : char

Looks up the number that corresponds to the given character in the ASCII table (if any).

51

> (char->integer #\a)
97

> (char->integer #\z)
122

(char-alphabetic? c¢) — boolean?
¢ : char

Determines whether a character represents an alphabetic character.

> (char-alphabetic? #\Q)
#true

(char-ci<=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in an increasing and case-insensitive manner.

> (char-ci<=7 #\b #\B)
#true

> (char<=? #\b #\B)
#false

(char-ci<? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing and case-insensitive
manner.

> (char-ci<? #\B #\c)
#true

> (char<? #\b #\B)
#false

(char-ci=? ¢ d e ...) — boolean?
c : char
d : char
e : char

52

Determines whether two characters are equal in a case-insensitive manner.

> (char-ci=? #\b #\B)
#true

(char-ci>=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing and case-insensitive manner.

> (char-ci>=? #\b #\C)
#false

> (char>=7 #\b #\C)
#true

(char-ci>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing and case-insensitive

manner.

> (char-ci>? #\b #\B)
#false

> (char>? #\b #\B)
#true

(char-downcase c) — char
c : char

Produces the equivalent lower-case character.

> (char-downcase #\T)
#\t

(char-lower-case? c¢) — boolean?
c : char

53

Determines whether a character is a lower-case character.

> (char-lower-case? #\T)
#false

(char-numeric? c¢) — boolean?
¢ : char

Determines whether a character represents a digit.

> (char-numeric? #\9)
#true

(char-upcase ¢) — char
c : char
Produces the equivalent upper-case character.

> (char-upcase #\t)
#\T

(char-upper-case? c) — boolean?
c : char
Determines whether a character is an upper-case character.

> (char-upper-case? #\T)
#true

(char-whitespace? c¢) — boolean?
c : char
Determines whether a character represents space.
> (char-whitespace? #\tab)

#true

(char<=? ¢ d e ...) — boolean?

c : char
d : char
e : char

54

Determines whether the characters are ordered in an increasing manner.
> (char<=7 #\a #\a #\b)

#true

(char<? x d e ...) — boolean?

x . char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing manner.
> (char<? #\a #\b #\c)

#true

(char=7? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are equal.

> (char=7 #\b #\a)
#false

(char>=? ¢ d e ...) — boolean?

¢ : char
d : char
e : char

Determines whether the characters are sorted in a decreasing manner.
> (char>=7 #\b #\b #\a)

#true

(char>? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing manner.

55

> (char>? #\A #\z #\a)
#false

(char? x) — boolean?
x : any/c
Determines whether a value is a character.
> (char? "a")
#false

> (char? #\a)
#true

1.12 Strings

(explode s) — (listof string)
s : string
Translates a string into a list of 1-letter strings.

> (explode "cat")
(list Ilcll llall lltll)

(format f x ...) — string
f . string
x : any/c

Formats a string, possibly embedding values.

> (format "Dear Dr. “a:" "Flatt")
"Dear Dr. Flatt:"

> (format "Dear Dr. “s:" "Flatt")
"Dear Dr. \"Flatt\":"

(implode 1) — string
1 : 1list?

Concatenates the list of 1-letter strings into one string.

56

> (implode (coms "c" (cons "a" (coms "t" '()))))
"Cat"

(int->string i) — string
i : integer
Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

> (int->string 65)
IIAII

(list->string 1) — string
1 : 1list?
Converts a s list of characters into a string.

> (list->string (comns #\c (cons #\a (coms #\t '()))))
"Cat“

(make-string i c¢) — string
i : natural?
c : char

Produces a string of length i from c.

> (make-string 3 #\d)
llddd“

(replicate i s) — string
i : natural?
s : string
Replicates s i times.

> (replicate 3 "h")
llhhhll

(string ¢ ...) — string?
¢ : char

57

Builds a string of the given characters.

> (string #\d #\o #\g)
lldog"

(string->int s) — integer
s ! string
Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

> (string->int "a")
97

(string->list s) — (listof char)
s ! string
Converts a string into a list of characters.

> (string->list "hello")
(1ist #\h #\e #\1 #\1 #\o)

(string->number s) — (union number #false)
s . string
Converts a string into a number, produce false if impossible.

> (string->number "-2.03")
-2.03

> (string->number "1-2i")
1-21

(string->symbol s) — symbol
s @ string

Converts a string into a symbol.

> (string->symbol "hello")
'hello

58

(string-alphabetic? s) — boolean?
s . string

Determines whether all ’letters’ in the string are alphabetic.

> (string-alphabetic? "123")

#false

> (string-alphabetic? '"cat")

#true

(string-append s t z ...) — string
s @ string
t : string

z . string

Concatenates the characters of several strings.

> (string-append "hello" " " "world" " " "good bye")
"hello world good bye"

(string-ci<=?7 s t) — boolean?
s . string
t . string

Determines whether the strings are ordered in a lexicographically increasing and case-
insensitive manner.

> (string-ci<=7 "hello" "WORLD")
#true

(string-ci<? s t) — boolean?
s @ string
t : string

Determines whether the strings are ordered in a lexicographically strictly increasing and
case-insensitive manner.

> (string-ci<? "hello" "WORLD")
#true

59

(string-ci=? s t) — boolean?
s . string
t : string

Determines whether all strings are equal, character for character, regardless of case.

> (string-ci=? "hello" "HellO")
#true

(string-ci>=?7 s t) — boolean?
s . string
t : string

Determines whether the strings are ordered in a lexicographically decreasing and case-
insensitive manner.

> (string-ci>? "WORLD" "hello")
#true

(string-ci>? s t) — boolean?
s @ string
t : string

Determines whether the strings are ordered in a lexicographically strictly decreasing and
case-insensitive manner.

> (string-ci>? "WORLD" "hello")
#true

(string-contains-ci? s t) — boolean?
s : string
t : string

Determines whether the first string appears in the second one without regard to the case of
the letters.

> (string-contains-ci? "At" "caT")
#true

60

(string-contains? s t) — boolean?
s . string
t . string

Determines whether the first string appears literally in the second one.

> (string-contains? "at" "cat")
#true

(string-copy s) — string
s . string

Copies a string.

> (string-copy "hello")
"hello"

(string-downcase s) — string
s . string

Produces a string like the given one with all ’letters’ as lower case.

> (string-downcase "CAT")

"Cat"
> (string-downcase "cAt")

n Cat"

(string-ith s i) — 1string?
s . string
i : natural?

Extracts the ith 1-letter substring from s.

> (string-ith "hello world" 1)

llell

(string-length s) — nat
s . string

61

Determines the length of a string.

> (string-length "hello world")
11

(string-lower-case? s) — boolean?
s @ string

Determines whether all ’letters’ in the string are lower case.

> (string-lower-case? "CAT")
#false

(string-numeric? s) — boolean?
s . string

Determines whether all ’letters’ in the string are numeric.

> (string-numeric? "123")
#true
> (string-numeric? "1-2i")
#false

(string-ref s i) — char
s : string
i : natural?

Extracts the ith character from s.

> (string-ref "cat" 2)
#\t

(string-upcase s) — string
s @ string

Produces a string like the given one with all ’letters’ as upper case.

> (string-upcase "cat")
llCATll
> (string-upcase "cAt")
IICAT"

62

(string-upper-case? s) — boolean?
s . string
Determines whether all ’letters’ in the string are upper case.

> (string-upper-case? "CAT")
#true

(string-whitespace? s) — boolean?
s : string
Determines whether all ’letters’ in the string are white space.

> (string-whitespace? (string-append " " (string #\tab #\newline #\return)))
#true

(string<=? s t) — boolean?
s . string
t . string
Determines whether the strings are ordered in a lexicographically increasing manner.

> (string<=?7 "hello" "hello")
#true

(string<? s t) — boolean?
s @ string
t : string
Determines whether the strings are ordered in a lexicographically strictly increasing manner.

> (string<? "hello" "world")
#true

(string=? s t) — boolean?
s : string
t : string

Determines whether all strings are equal, character for character.

63

> (string=7 "hello" "world")
#false

> (string=7 "bye" "bye")
#true

(string>=? s t) — boolean?
s . string
t : string

Determines whether the strings are ordered in a lexicographically decreasing manner.

> (string>=7 "world" "hello")
#true

(string>? s t) — boolean?
s . string
t : string

Determines whether the strings are ordered in a lexicographically strictly decreasing manner.

> (string>? "world" "hello")
#true

(string? x) — boolean?
x @ any/c

Determines whether a value is a string.

> (string? "hello world")
#true

> (string? 42)

#false

(substring s i j) — string
s : string
i : natural?
J : natural?

Extracts the substring starting at i up to j (or the end if j is not provided).

64

> (substring "hello world" 1 5)

"ello"

> (substring "hello world" 1 8)
"ello wo"

> (substring "hello world" 4)
"o world"

1.13 Images

(image=? i j) — boolean?
i : image
Jj : image
Determines whether two images are equal.
> cl
> (image=7 (circle 5 "solid" "green") cl)
#false

> (image=7 (circle 10 "solid" "green") c1)
#true

(image? x) — boolean?
x : any/c

Determines whether a value is an image.

> cl

> (image? cl)
#true

1.14 Misc

(=7 x y eps) — boolean?
X ! number
y . number
eps : non-negative-real

Checks whether x and y are within eps of either other.

65

> (=7 1.01 1.0 0.1)
#true

> (=7 1.01 1.5 0.1)
#false

eof : eof-object?

A value that represents the end of a file:

> eof
#<eof>

(eof-object? x) — boolean?
x : any/c

Determines whether some value is the end-of-file value.

> (eof-object? eof)
#true

> (eof-object? 42)
#false

(eq? x y) — boolean?
x : any/c
y : any/c

Determines whether two values are equivalent from the computer’s perspective (intensional).

> (eq? (cons 1 '()) (cons 1 ')
#false

> one

(1ist 1)

> (eq? one one)

#true

(equal? x y) — boolean?
x : any/c
y : any/c

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

66

> (equal? (make-posn 1 2) (make-posn (- 2 1) (+ 1 1)))
#true

(equal™? x y z) — boolean?
x : any/c
y @ any/c
Z . non-negative-real

Compares x and y like equal? but uses =~ in the case of numbers.

> (equal™? (make-posn 1.01 1.0) (make-posn 1.01 0.99) 0.2)
#true

(eqv? x y) — boolean?
x : any/c
y : any/c

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

> (eqv? (cons 1 ")) (cons 1 '()))
#false

> one

(1ist 1)

> (eqv? one one)

#true

(error x ...) — void?
x : any/c

Signals an error, combining the given values into an error message. If any of the values’
printed representations is too long, it is truncated and “...” is put into the string. If the
first value is a symbol, it is suffixed with a colon and the result pre-pended on to the error

message.

> zero
0
> (if (= zero 0) (error "can't divide by 0") (/ 1 zero))

can't divide by 0

67

(exit) — void
Evaluating (exit) terminates the running program.

(identity x) — any/c
x : any/c
Returns x.
> (identity 42)

42
> (identity cl)

> (identity "hello")
"hello"

(struct? x) — boolean?
x : any/c

Determines whether some value is a structure.

> (struct? (make-posn 1 2))
#true

> (struct? 43)

#false

1.15 Signatures
Any : signature?
Signature for any value.
Boolean : signature?

Signature for booleans.

Char : signature?

68

Signature for chararacters.

(Cons0f first-sig rest-sig) — signature?
first-sig : signature?
rest-sig . signature?

Signature for a cons pair.

EmptyList : signature?

Signature for the empty list.

False : signature?

Signature for just false.

Integer : signature?

Signature for integers.

Natural : signature?

Signature for natural numbers.

Number : signature?

Signature for arbitrary numbers.

Rational : signature?

Signature for rational numbers.

Real : signature?

Signature for real numbers.

69

String : signature?

Signature for strings.

Symbol : signature?

Signature for symbols.

True : signature?

Signature for just true.

70

2 Beginning Student with List Abbreviations

The grammar notation uses the notation X ... (bold dots) to indicate that X may occur an
arbitrary number of times (zero, one, or more). Separately, the grammar also defines . .. as
an identifier to be used in templates.

See|[How to Design Programs/2e, Intermezzo 1 for an explanation of the Beginning Student
Language.

See How to Design Programs/2e, Intermezzo 2 for an explanation of quoted lists.

program = def-or-expr ..

def-or-expr = definition
| expr

| test-case
|

library-require

definition = (define (name variable variable ..) expr)
| (define name expr)

| (define name (lambda (variable variable ..) expr))
|

(define-struct name (name ...))

expr = (name expr expr ...)

| (prim-op expr ..)

| (cond [expr expr] .. [expr expr])
| (cond [expr expr] .. [else expr])
| (if expr expr expr)

| (and expr expr expr ..)

| (or expr expr expr ..)

| name

| ’quoted

| ‘quasiquoted

| >0

| number

| boolean

| string

| character

signature-declaration = (: name signature-form)

(enum expr ...)

(mixed signature-form ...)
(signature-form ... -> signature-form)
(ListO0f signature-form)

signature-form

71

https://htdp.org/2020-5-6/Book/i1-2.html
https://htdp.org/2020-5-6/Book/i2-3.html

| signature-variable

| expr
signature-variable = Yname

quoted = name

| number
| string
| character
| (quoted ...)
| ’quoted
| ‘quoted
| ,quoted
| ,@quoted

quasiquoted = name
| number

| string

| character

| (quasiquoted ...)
|

|

|

|

’quasiquoted
‘quasiquoted
, €Xpr
,Qexpr
test-case = (check-expect expr expr)
| (check-random expr expr)
| (check-within expr expr expr)
| (check-member-of expr expr ...)
| (check-range expr expr expr)
| (check-satisfied expr name)
| (check-error expr expr)
| (check-error expr)
library-require = (require string)
| (require (1ib string string ...))
| (require (planet string package))

package (string string number number)

A name or a variable is a sequence of characters not including a space or one of the
following:

WL MEYITL R sk

A number is a number such as 123, 3/2, or 5.5.

72

A boolean is one of: #true or #false.

Alternative spellings for the #true constant are #t, true, and #T. Similarly, #f, false, or
#F are also recognized as #false.

A symbol is a quote character followed by a name. A symbol is a value, just like 42, ' (),
or #false.

A string is a sequence of characters enclosed by a pair of ". Unlike symbols, strings may
be split into characters and manipulated by a variety of functions. For example, "abcdef",
"This is a string",and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,
and #\space are characters.

In function calls, the function appearing immediately after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

2.1 Pre-defined Variables
empty : empty?
The empty list.

true : boolean?

The #true value.

false : boolean?

The #false value.

2.2 Template Variables

A placeholder for indicating that a function definition is a template.

73

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

2.3 Syntaxes for Beginning Student with List Abbreviations

’name
’part
(quote name)
(quote part)

A quoted name is a symbol. A quoted part is an abbreviation for a nested lists.

Normally, this quotation is written with a ', like ' (apple banana), but it can also be
written with quote, like (quote (apple banana)).

‘name
‘part
(quasiquote name)
(quasiquote part)

Like quote, but also allows escaping to expression “unquotes.”

Normally, quasi-quotations are written with a backquote, ~, like ~ (apple ,(+ 1 2)), but
they can also be written with quasiquote, like (quasiquote (apple ,(+ 1 2))).

,expression
(unquote expression)

74

Under a single quasiquote, , expression escapes from the quote to include an evaluated
expression whose result is inserted into the abbreviated list.

Under multiple quasiquotes, , expression is really the literal , expression, decrementing
the quasiquote count by one for expression.

Normally, an unquote is written with ,, but it can also be written with unquote.

,Qexpression
(unquote-splicing expression)

Under a single quasiquote, ,@expression escapes from the quote to include an evaluated
expression whose result is a list to splice into the abbreviated list.

Under multiple quasiquotes, a splicing unquote is like an unquote; that is, it decrements the
quasiquote count by one.

Normally, a splicing unquote is written with ,, but it can also be written with unquote-
splicing.

2.4 Common Syntaxes

The following syntaxes behave the same in the Beginner with List Abbreviations level as
they did in the|§1 “Beginning Student”|level.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define name (lambda (variable variable ...) expression))

An alternate way to defining functions. The name is the name of the function, which cannot
be the same as that of another function or variable.

75

A lambda cannot be used outside of this alternate syntax.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns #true if the value is an instance of
the structure.

The name of the new functions introduced by define-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

(name expression expression ...)

Calls the function named name. The value of the call is the value of name’s body when
every one of the function’s variables are replaced by the values of the corresponding ex-
pressions.

The function named name must defined before it can be called. The number of argument
expressions must be the same as the number of arguments expected by the function.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to #true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to #true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither #true nor #false, cond also reports an error.

else cannot be used outside of cond.

(if question-expression
then-answer-expression
else-answer-expression)

76

When the value of the question-expression is #true, if evaluates the then-answer-
expression. When the test is #false, if evaluates the else-answer-expression.

If the question-expression is neither #true nor #false, if reports an error.

(and expression expression expression ...)

Evaluates to #true if all the expressions are #true. If any expression is #false, the
and expression evaluates to #false (and the expressions to the right of that expression are
not evaluated.)

If any of the expressions evaluate to a value other than #true or #false, and reports an
error.

(or expression expression expression ...)

Evaluates to #true as soon as one of the expressions is #true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are #false, the or
expression evaluates to #false.

If any of the expressions evaluate to a value other than #true or #false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheit->celsius -40) -40)

(define (fahrenheit->celsius f)
(x 5/9 (- £ 32)))

A check-expect expression must be placed at the top-level of a student program. Also it
may show up anywhere in the program, including ahead of the tested function definition. By
placing check-expects there, a programmer conveys to a future reader the intention behind
the program with working examples, thus making it often superfluous to read the function
definition proper. Syntax errors in check-expect (and all check forms) are intentionally
delayed to run time so that students can write tests without necessarily writing complete
function headers.

It is an error for expr or expected-expr to produce an inexact number or a function value.
As for inexact numbers, it is morally wrong to compare them for plain equality. Instead one

71

tests whether they are both within a small interval; see check-within. As for functions
(see Intermediate and up), it is provably impossible to compare functions.

(check-random expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

The form supplies the same random-number generator to both parts. If both parts request
random numbers from the same interval in the same order, they receive the same random
numbers.

Here is a simple example of where check-random is useful:

(define WIDTH 100)
(define HEIGHT (* 2 WIDTH))

(define-struct player (name x y))
; A Player is (make-player String Nat Nat)

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn'")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(make-player name (random WIDTH) (random HEIGHT)))

Note how random is called on the same numbers in the same order in both parts of check-
random. If the two parts call random for different intervals, they are likely to fail:

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(a-helper-function name (random HEIGHT)))

; String Number -> Player
(define (a-helper-function name height)
(make-player name (random WIDTH) height))

Because the argument to a-helper-function is evaluated first, random is first called for
the interval [0,HEIGHT) and then for [0,WIDTH), that is, in a different order than in the
preceding check-random.

78

It is an error for expr or expected-expr to produce a function value or an inexact number;
see note on check-expect for details.

(check-satisfied expression predicate)

Checks that the first expression satisfies the named predicate (function of one argu-
ment). Recall that “satisfies” means “the function produces #true for the given value.”

Here are simple examples for check-satisfied:

> (check-satisfied 1 odd?)
The test passed!

> (check-satisfied 1 even?)
Ran 1 test.
0 tests passed.
Check failures:
[

|1
L

| does not satisfy even?.

Actual value

at line 3, column O

In general check-satisfied empowers program designers to use defined functions to for-
mulate test suites:

; [cons Number [List-of Number]] -> Boolean
; a function for testing htdp-sort

(check-expect (sorted? (list 1 2 3)) #true)
(check-expect (sorted? (list 2 1 3)) #false)

(define (sorted? 1)
(cond
[(empty? (rest 1)) #truel
[else (and (<= (first 1) (second 1)) (sorted? (rest 1)))1))

; [List-of Number] -> [List-of Number]
; create a sorted version of the given list of numbers

(check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)
(define (htdp-sort 1)

(cond
[(empty? 1) 1]

79

[else (insert (first 1) (htdp-sort (rest 1)))1))

; Number [List-of Number] -> [List-of Number]
; insert x into 1 at proper place
; assume 1 is arranged in ascending order
; the result is sorted in the same way
(define (insert x 1)
(cond
[(empty? 1) (list x)]
[else (if (<= x (first 1)) (coms x 1) (comns (first 1) (insert x (rest 1))))]1))

And yes, the results of htdp-sort satisfy the sorted? predicate:

> (check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(check-within expression expected-expression delta)

Checks whether the value of the expression expression is structurally equal to the value
produced by the expected-expression expression; every number in the first expression
must be within delta of the corresponding number in the second expression.

(define-struct roots (x sqrt))
; RT is [List-of (make-roots Number Number)]

(define (root-of a)
(make-roots a (sqrt a)))

(define (roots-table xs)
(cond
[(empty? xs) '(O]
[else (cons (root-of (first xs)) (roots-table (rest xs)))]1))

Due to the presence of inexact numbers in nested data, check-within is the correct choice
for testing, and the test succeeds if delta is reasonably large:

Example:

> (check-within (roots-table (list 1.0 2.0 3.0))
(1list
(make-roots 1.0 1.0)
(make-roots 2 1.414)
(make-roots 3 1.713))
0.1)
The test passed!

80

In contrast, when delta is small, the test fails:
Example:

> (check-within (roots-table (list 2.0))
(list
(make-roots 2 1.414))
#ile-5)
Ran 1 test.
0 tests passed.
Check failures:

Actual value | '((make-roots 2.0 1.4142135623730951)) | is

not within le-5 of expected value | '((make-roots 2 1.414)) |.
x |

at line 5, column O

It is an error for expressions or expected-expression to produce a function value; see
note on check-expect for details.

If delta is not a number, check-within reports an error.

(check-error expression expected-error-message)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of expected-error-message, if it is present.

Here is a typical beginner example that calls for a use of check-error:

(define sample-table
'(("matthias" 10)
("matthew" 20)
("robby" -1)

("shriram" 18)))

; [List-of [list String Number]] String -> Number
; determine the number associated with s in table

(define (lookup table s)
(cond
[(empty? table) (error (string-append s " not found"))]
[else (if (string=7 (first (first table)) s)

81

(second (first table))
(lookup (rest table)))]))
Consider the following two examples in this context:
Example:
> (check-expect (lookup sample-table "matthew") 20)
The test passed!
Example:

> (check-error (lookup sample-table "kathi") "kathi not found")
The test passed!

(check-member-of expression expression expression ...)

Checks that the value of the first expression is that of one of the following expressions.

; [List-of X] -> X
; pick a random element from the given list 1
(define (pick-one 1)
(list-ref 1 (random (length 1))))
Example:
> (check—member—of (pick—one I(Ilall npn IICII)) ngn o npn IICII)

The test passed!

It is an error for any of expressions to produce a function value; see note on check-
expect for details.

(check-range expression low-expression high-expression)
Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

A check-range form is best used to delimit the possible results of functions that compute
inexact numbers:

(define EPSILON 0.001)

82

; [Real -> Real] Real -> Real
; what is the slope of f at x7
(define (differentiate f x)
(slope f (- x EPSILON) (+ x EPSILON)))

; [Real -> Real] Real Real -> Real
(define (slope f left right)
(/ (- (f right) (f left))
2 EPSILON))

(check-range (differentiate sin 0) 0.99 1.0)

Itis an error for expression, low-expression, or high-expression to produce a func-
tion value; see note on check-expect for details.

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), O through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))
(require (planet id))
(require (planet string))

83

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

The full grammar for planet requires is given in §3.2 “Importing and Exporting: require
and provide”, but the best place to find examples of the syntax is on the the PLaneT server,
in the description of a specific package.

2.5 Signatures

Signatures do not have to be comment: They can also be part of the code. When a signature
is attached to a function, DrRacket will check that program uses the function in accordance
with the signature and display signature violations along with the test results.

A signature is a regular value, and is specified as a signature form, a special syntax that only
works with : signature declarations and inside signature expressions.

(: name signature-form)
This attaches the signature specified by signature-form to the definition of name. There
must be a definition of name somewhere in the program.

(: age Integer)
(define age 42)

(: area-of-square (Number -> Number))
(define (area-of-square len)
(sqr len))

On running the program, Racket checks whether the signatures attached with : actually
match the value of the variable. If they don’t, Racket reports signature violation along with
test failures.

For example, this piece of code:

(: age Integer)
(define age "fortytwo")

Yields this output:

1 signature violation.
Signature violations:

got "fortytwo" at line 2, column 12, signature at line 1,
column 7

84

http://planet.racket-lang.org

Note that a signature violation does not stop the running program.

(signature signature-form)

This returns the signature described by signature-form as a value.

2.5.1 Signature Forms

Any expression can be a signature form, in which case the signature is the value returned by
that expression. There are a few special signature forms, however:

In a signature form, any name that starts with a % is a signature variable that stands for any
signature depending on how the signature is used.

Example:
(: same (%a -> %a))

(define (same x) x)

(input-signature-form ... -> output-signature-form)

This signature form describes a function with inputs described by the input-signature-
forms and output described by output-signature-form.

(enum expr ...)

This signature describes an enumeration of the values returned by the exprs.
Example:

(: cute? ((enum "cat" "snake") -> Boolean))

(define (cute? pet)
(cond
[(string=7 pet "cat") #t]
[(string=7 pet "snake") #f]))

(mixed signature-form ...)

85

This signature describes mixed data, i.e. an itemization where each of the cases has a signa-
ture described by a signature-form.

Example:

(define SIGS (signature (mixed Aim Fired)))

(List0f signature-form)

This signature describes a list where the elements are described by signature-form.

(predicate expression)

This signature describes values through a predicate: expression must evaluate to a func-
tion of one argument that returns a boolean. The signature matches all values for which the
predicate returns #true.

2.5.2 Struct Signatures

A define-struct form defines two additional names that can be used in signatures. For a
struct called struct, these are Struct and Struct0f. Note that these names are capital-
ized. In particular, a struct called Struct, will also define Struct and Struct0f. More-
over, when forming the additional names, hyphens are removed, and each letter following a
hyphen is capitalized - so a struct called foo-bar will define FooBar and FooBar0Of.

Struct is a signature that describes struct values from this structure type. StructOf is a
function that takes as input a signature for each field. It returns a signature describing values
of this structure type, additionally describing the values of the fields of the value.

(define-struct pair [fst snd])

(: add-pair ((PairOf Number Number) -> Number))
(define (add-pair p)
(+ (pair-fst p) (pair-snd p)))

2.6 Pre-defined Functions

The remaining subsections list those functions that are built into the programming language.
All other functions are imported from a teachpack or must be defined in the program.

86

2.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

(* x y z ...) — number
X : number
y @ number
z : number

Multiplies all numbers.

> (x 5 3)
15

> (x 53 2)
30

(+ x y z ...) — number
X . number
y . number
z . number

Adds up all numbers.

> (+ 2/3 1/16)
35/48

> (+ 325 8)
18

(- x y ...) — number
X : number
y @ number

Subtracts the second (and following) number(s) from the first ; negates the number if there
is only one argument.

> (- 5)
-5

> (- 5 3)
2

> (-531)
1

87

(/ x y z ...) — number
X . number
y . number
z : number

Divides the first by the second (and all following) number(s).

(/ 12 2)

(/ 12 2 3)

NV OO V

(< xy z ...) — boolean?
x : real
y : real
z @ real

Compares two or more (real) numbers for less-than.

> (< 42 2/5)
#false

(<= x y z ...) — boolean?
x : real
y . real
z : real

Compares two or more (real) numbers for less-than or equality.

> (k= 42 2/5)
#false

(=xy z ...) - boolean?
X : number
y : number
z : number

Compares two or more numbers for equality.
> (= 42 2/5)

#false

88

(>x y z ...) — boolean?

X . real
y : real
z : real

Compares two or more (real) numbers for greater-than.

> (> 42 2/5)
#true

(>=x y z ...) — boolean?
X @ real
y : real
z @ real

Compares two or more (real) numbers for greater-than or equality.

> (>= 42 42)
#true

(abs x) — real
X : real

Determines the absolute value of a real number.

> (abs -12)
12

(acos x) — number
X . number

Computes the arccosine (inverse of cos) of a number.

> (acos 0)
#i1.5707963267948966

(add1l x) — number
X . number

&9

Increments the given number.

> (addl 2)
3

(angle x) — real
X : number

Extracts the angle from a complex number.

> (angle (make-polar 3 4))
#1-2.2831853071795867

(asin x) — number
X . number

Computes the arcsine (inverse of sin) of a number.

> (asin 0)
0

(atan x) — number
X : number

Computes the arctangent of the given number:

> (atan 0)

0

> (atan 0.5)
#10.46364760900080615

Also comes in a two-argument version where (atan y x) computes (atan (/ y x))
but the signs of y and x determine the quadrant of the result and the result tends to be more
accurate than that of the 1-argument version in borderline cases:

> (atan 3 4)
#10.6435011087932844
> (atan -2 -1)
#1-2.0344439357957027

90

(ceiling x) — integer
x : real
Determines the closest integer (exact or inexact) above a real number. See round.

> (ceiling 12.3)
#113.0

(complex? x) — boolean?
x : any/c

Determines whether some value is complex.

> (complex? 1-2i)
#true

(conjugate x) — number
X @ number

Flips the sign of the imaginary part of a complex number.

> (conjugate 3+41i)

3-4i

> (conjugate -2-5i)

-2+51

> (conjugate (make-polar 3 4))
#1-1.960930862590836+2.2704074859237851

(cos x) — number
X . number

Computes the cosine of a number (radians).

> (cos pi)
#i-1.0

(cosh x) — number
X . number

91

Computes the hyperbolic cosine of a number.

> (cosh 10)
#i11013.232920103324

(current-seconds) — integer

Determines the current time in seconds elapsed (since a platform-specific starting date).

> (current-seconds)
1767549581

(denominator x) — integer
x : rational?

Computes the denominator of a rational.

> (denominator 2/3)
3

e : real

Euler’s number.

> e
#12.718281828459045

(even? x) — boolean?
x : integer

Determines if some integer (exact or inexact) is even or not.

> (even? 2)
#true

(exact->inexact x) — number
X . number

Converts an exact number to an inexact one.

92

> (exact->inexact 12)
#i12.0

(exact? x) — boolean?
X : number

Determines whether some number is exact.

> (exact? (sqrt 2))
#false

(exp x) — number
X : number

Determines e raised to a number.

> (exp -2)
#10.1353352832366127

(expt x y) — number
X : number
y : number

Computes the power of the first to the second number, which is to say, exponentiation.

> (expt 16 1/2)
4

> (expt 3 -4)
1/81

(floor x) — integer
X : real

Determines the closest integer (exact or inexact) below a real number. See round.

> (floor 12.3)
#i12.0

93

(gcd x y ...) — integer
x . integer
y : integer
Determines the greatest common divisor of two integers (exact or inexact).

> (gcd 6 12 8)
2

(imag-part x) — real
X : number
Extracts the imaginary part from a complex number.

> (imag-part 3+4i)
4

(inexact->exact x) — number
X : number
Approximates an inexact number by an exact one.

> (inexact->exact 12.0)
12

(inexact? x) — boolean?
X . number
Determines whether some number is inexact.

> (inexact? 1-2i)
#false

(integer->char x) — char
X . exact-integer?

Looks up the character that corresponds to the given exact integer in the ASCII table (if any).

> (integer->char 42)
#\ *

94

(integer-sqrt x) — complex
x . integer
Computes the integer or imaginary-integer square root of an integer.

> (integer-sqrt 11)
3

> (integer-sqrt -11)
0+31i

(integer? x) — boolean?
x : any/c
Determines whether some value is an integer (exact or inexact).

> (integer? (sqrt 2))
#false

(lem x y ...) — integer
x : integer
y : integer
Determines the least common multiple of two integers (exact or inexact).

> (lcm 6 12 8)
24

(log x) — number
X : number

Determines the base-e logarithm of a number.

> (log 12)
#12.4849066497880004

(magnitude x) — real
X : number

Determines the magnitude of a complex number.

95

> (magnitude (make-polar 3 4))
#13.0000000000000004

(make-polar x y) — number
x @ real
y : real

Creates a complex from a magnitude and angle.

> (make-polar 3 4)
#1-1.960930862590836-2.2704074859237851

(make-rectangular x y) — number
x ! real
y . real

Creates a complex from a real and an imaginary part.

> (make-rectangular 3 4)
3+4i

(max x y ...) — real
x @ real
y @ real

Determines the largest number—aka, the maximum.

> (max 3287 29 0)

9

(min x y ...) — real
x : real
y . real

Determines the smallest number—aka, the minimum.

> (min 3287 29 0)
0

96

(modulo x y) — integer
x . integer
y . integer

Finds the remainder of the division of the first number by the second:

> (modulo 9 2)
1
> (modulo 3 -4)
-1

(negative? x) — boolean?
x @ real
Determines if some real number is strictly smaller than zero.

> (negative? -2)
#true

(number->string x) — string
X @ number

Converts a number to a string.

> (number->string 42)
ll42|l

(number->string-digits x p) — string
x : number
p : posint

Converts a number x to a string with the specified number of digits.

> (number->string-digits 0.9 2)
l|0.9||

> (number->string-digits pi 4)
"3.1416"

(number? n) — boolean?
n : any/c

97

Determines whether some value is a number:

> (number? "hello world")
#false

> (number? 42)

#true

(numerator x) — integer
x : rational?
Computes the numerator of a rational.

> (numerator 2/3)
2

(odd? x) — boolean?
X : integer
Determines if some integer (exact or inexact) is odd or not.

> (odd? 2)
#false

pi : real

The ratio of a circle’s circumference to its diameter.

> pi
#13.141592653589793

(positive? x) — boolean?
x : real

Determines if some real number is strictly larger than zero.

> (positive? -2)
#false

98

(quotient x y) — integer
x . integer
y : integer

Divides the first integer—also called dividend—by the second—known as divisor—to obtain
the quotient.

(quotient 9 2)

>
4
> (quotient 3 4)
0

(random x) — natural?
x : (and/c natural? positive?)

Generates a random natural number less than some given exact natural.

> (random 42)
9

(rational? x) — boolean?
x : any/c

Determines whether some value is a rational number.

> (rational? 1)

#true

> (rational? -2.349)
#true

> (rational? #i1.23456789)
#true

> (rational? (sqrt -1))
#false

> (rational? pi)

#true

> (rational? e)

#true

> (rational? 1-2i)
#false

As the interactions show, the teaching languages considers many more numbers as rationals
than expected. In particular, pi is a rational number because it is only a finite approximation

99

to the mathematical 7. Think of rational? as a suggestion to think of these numbers as
fractions.

(real-part x) — real
X : number
Extracts the real part from a complex number.

> (real-part 3+4i)
3

(real? x) — boolean?
x : any/c
Determines whether some value is a real number.

> (real? 1-2i)
#false

(remainder x y) — integer
x : integer
y : integer
Determines the remainder of dividing the first by the second integer (exact or inexact).

(remainder 9 2)

>
1
> (remainder 3 4)
3

(round x) — integer
x @ real

Rounds a real number to an integer (rounds to even to break ties). See floor and ceiling.

> (round 12.3)
#i12.0

(sgn x) — (union 1 #i1.0 0 #i0.0 -1 #i-1.0)
X . real

100

Determines the sign of a real number.

> (sgn -12)
-1

(sin x) — number
X ! number
Computes the sine of a number (radians).

> (sin pi)
#11.2246467991473532e-16

(sinh x) — number
X : number
Computes the hyperbolic sine of a number.

> (sinh 10)
#111013.232874703393

(sqr x) — number
X . number

Computes the square of a number.

> (sqr 8)
64

(sqrt x) — number
X : number

Computes the square root of a number.

> (sqrt 9)

3

> (sqrt 2)
#11.4142135623730951

101

(subl x) — number
X . number

Decrements the given number.

> (subl 2)
1

(tan x) — number
X . number

Computes the tangent of a number (radians).

> (tan pi)
#1-1.2246467991473532e-16

(zero? x) — boolean?
X . number

Determines if some number is zero or not.

> (zero? 2)
#false

2.8 Booleans

(boolean->string x) — string
x : boolean?

Produces a string for the given boolean

> (boolean->string #false)
"#false"

> (boolean->string #true)
"#true"

(boolean=7 x y) — boolean?
X : boolean?
y : boolean?

102

Determines whether two booleans are equal.

> (boolean=7 #true #false)
#false

(boolean? x) — boolean?
x @ any/c

Determines whether some value is a boolean.

> (boolean? 42)
#false

> (boolean? #false)
#true

(false? x) — boolean?
x : any/c
Determines whether a value is false.

> (false? #false)
#true

(not x) — boolean?
X : boolean?
Negates a boolean value.

> (not #false)
#true

2.9 Symbols

(symbol->string x) — string
x : symbol
Converts a symbol to a string.

> (symbol->string 'c)
llcll

103

(symbol=? x y) — boolean?
x @ symbol
y : symbol
Determines whether two symbols are equal.

> (symbol=?7 'a 'b)
#false

(symbol? x) — boolean?
x : any/c

Determines whether some value is a symbol.

> (symbol? 'a)
#true

2.10 Lists

(append x y z ...) — list?

x . list?
y : list?
z . list?

Creates a single list from several, by concatenation of the items.

n n

> (append (cons 1 (cons 2 '())) (cons "a" (cons "b" empty)))
(liSt 1 2 "a" "b")

(assoc x 1) — (union (listof any) #false)
x : any/c
1 : (listof any)

Produces the first pair on 1 whose first is equal? to x; otherwise it produces #false.

> (assoc "hello" '(("world" 2) ("hello" 3) ("good" 0)))
(list "hello" 3)

104

(assq x 1) — (union #false cons?)
x : any/c
1 : 1list?

Determines whether some item is the first item of a pair in a list of pairs. (It compares the
items with eq?.)
> a

(1ist (1ist 'a 22) (list 'b 8) (list 'c 70))
> (assq 'b a)
(1list 'b 8)

(caaar x) — any/c
x : list?

LISP-style selector: (car (car (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (caaar w)
(list "bye")

(caadr x) — any/c
x : list?

LISP-style selector: (car (car (cdr x))).

> (caadr (cons 1 (cons (comns
1
a

'a '"()) (cons (cons 'd ') "ONN

(caar x) — any/c
x @ list?

LISP-style selector: (car (car x)).
>y
(1ist (1ist (list 1 2 3) #false "world"))

> (caar y)
(list 1 2 3)

105

(cadar x) — any/c
x : list?

LISP-style selector: (car (cdr (car x))).

> w
(1ist (1ist (list (list "bye") 3) #true) 42)

> (cadar w)
#true

(cadddr x) — any/c
x @ list?

LISP-style selector: (car (cdr (cdr (cdr x)))).

> v

(list 1 23456789 'A)
> (cadddr v)

4

(caddr x) — any/c
x @ list?

LISP-style selector: (car (cdr (cdr x))).

> X

(list 2 "hello" #true)
> (caddr x)

#true

(cadr x) — any/c
x : list?

LISP-style selector: (car (cdr x)).
> X
(list 2 "hello" #true)

> (cadr x)
"hello"

106

(car x) — any/c
X . cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (car x)
2

(cdaar x) — any/c
x : list?

LISP-style selector: (cdr (car (car x))).

> w

(list (list (list (list "bye") 3) #true) 42)
> (cdaar w)

(1ist 3)

(cdadr x) — any/c
x : list?
LISP-style selector: (cdr (car (cdr x))).

> (cdadr (list 1 (list 2 "a") 3))
(list "a"

(cdar x) — 1list?
x : list?

LISP-style selector: (cdr (car x)).
>y

(list (1list (list 1 2 3) #false "world"))
> (cdar y)

(list #false "world")

(cddar x) — any/c
x : list?

107

LISP-style selector: (cdr (cdr (car x)))
> w

(list (list (list (list "bye") 3) #true) 42)
> (cddar w)

O]

(cdddr x) — any/c
x : list?

LISP-style selector: (cdr (cdr (cdr x))).

> v
(list 1 23 4567 89 'A)
> (cdddr v)

(list 4 56 78 9 'A)

(cddr x) — 1list?
x : list?

LISP-style selector: (cdr (cdr x)).

> x
(list 2 "hello" #true)
> (cddr x)

(list #true)

(cdr x) — any/c
X : cons?

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (cdr x)

(list "hello" #true)

(cons x y) — list?
x @ any/c
y . list?

108

Constructs a list.

> (cons 1 '())
(cons 1 'Q))

(cons? x) — boolean?
x : any/c

Determines whether some value is a constructed list.

> (cons? (cons 1 '()))
#true

> (cons? 42)

#false

(eighth x) — any/c
x : list?

Selects the eighth item of a non-empty list.

> v

(1ist 1 23456789 'A)
> (eighth v)

8

(empty? x) — boolean?
x : any/c
Determines whether some value is the empty list.
> (empty? '())
#true

> (empty? 42)
#false

(fifth x) — any/c
x : list?

Selects the fifth item of a non-empty list.

109

> v

(1ist 1 23456789 'A)
> (fifth v)

5

(first x) — any/c
X . cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (first x)

2

(fourth x) — any/c
x : list?

Selects the fourth item of a non-empty list.

> v

(list 1 23456789 'A)
> (fourth v)

4

(length 1) — natural?
1 : 1list?
Evaluates the number of items on a list.
> X
(list 2 "hello" #true)

> (length x)
3

(list x ...) — 1list?
x : any/c

Constructs a list of its arguments.

110

> (list 1 234567 8 9 0)
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8

(cons 9 (cons 0 '(1))))I))

(list* x ... 1) — 1list?
x : any/c
1 : 1ist?

Constructs a list by adding multiple items to a list.

> X

(list 2 "hello" #true)

> (list* 4 3 x)

(list 4 3 2 "hello" #true)

(list-ref x i) — any/c
x : list?
i : natural?

Extracts the indexed item from the list.

> v

(list 1 234567 89 'A)
> (list-ref v 9)

'A

(1ist? x) — boolean?
x : any/c

Checks whether the given value is a list.

> (1list? 42)

#false

> (1ist? ')

#true

> (list? (cons 1 (cons 2 '())))
#true

(make-list i x) — list?
i : natural?
x @ any/c

111

Constructs a list of i copies of x.

> (make-list 3 "hello")
(cons "hello" (cons "hello" (comns "hello" '())))

(member x 1) — boolean?
x : any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member "hello" x)
#true

(member? x 1) — boolean?
x : any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member? "hello" x)
#true

(memgq x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq (list (list 1 2 3)) x)
#false

(memq? x 1) — boolean?
x @ any/c
1 : 1list?

112

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq? (list (list 1 2 3)) x)
#false

(memv x 1) — (or/c #false list)
x : any/c
1 : list?

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

> X

(list 2 "hello" #true)

> (memv (list (list 1 2 3)) x)
#false

null : list

Another name for the empty list

> null
'O

(null? x) — boolean?
x : any/c

Determines whether some value is the empty list.

> (null? '())
#true

> (null? 42)
#false

(range start end step) — list?
start : number
end : number
step : number

113

Constructs a list of numbers by stepping from start to end.

> (range 0 10 2)
(cons 0 (cons 2 (cons 4 (cons 6 (cons 8 '())))))

(remove x 1) — list?
x : any/c
1 : list?

Constructs a list like the given one, with the first occurrence of the given item removed
(comparing values with equal?).

> X

(list 2 "hello" #true)

> (remove "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove "hello" hello-2)
(list 2 #true "hello")

(remove-all x 1) — 1list?
x : any/c
1 : list?

Constructs a list like the given one, with all occurrences of the given item removed (compar-
ing values with equal?).

> X

(list 2 "hello" #true)

> (remove-all "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove-all "hello" hello-2)
(list 2 #true)

(rest x) — any/c
X @ cons?

Selects the rest of a non-empty list.

114

> x

(1ist 2 "hello" #true)
> (rest x)

(list "hello" #true)

(reverse 1) — list
1 : list?

Creates a reversed version of a list.

> X

(list 2 "hello" #true)
> (reverse x)

(list #true "hello" 2)

(second x) — any/c
x : list?

Selects the second item of a non-empty list.

> X

(list 2 "hello" #true)
> (second x)

"hello"

(seventh x) — any/c
x : list?
Selects the seventh item of a non-empty list.
> v
(1ist 1 23456789 'A)

> (seventh v)
7

(sixth x) — any/c
x : list?

Selects the sixth item of a non-empty list.

115

> v

(1ist 1 23456789 'A)
> (sixth v)

6

(third x) — any/c
x . list?

Selects the third item of a non-empty list.

> X

(list 2 "hello" #true)
> (third x)

#true

2.11 Posns

(make-posn x y) — posn
x : any/c
y @ any/c

Constructs a posn from two arbitrary values.

> (make-posn 3 3)
(make-posn 3 3)

> (make-posn "hello" #true)
(make-posn "hello" #true)

(posn-x p) — any/c
p : posn

Extracts the x component of a posn.

>p

(make-posn 2 -3)
> (posn-x p)

2

(posn-y p) — any/c
p : posn

116

Extracts the y component of a posn.

>p

(make-posn 2 -3)
> (posn-y p)

-3

(posn? x) — boolean?
x : any/c

Determines if its input is a posn.

> q

(make-posn "bye" 2)
> (posn? q)

#true

> (posn? 42)

#false

2.12 Characters

(char->integer c) — integer
c : char
Looks up the number that corresponds to the given character in the ASCII table (if any).

> (char->integer #\a)
97
> (char->integer #\z)
122

(char-alphabetic? c¢) — boolean?
c : char

Determines whether a character represents an alphabetic character.

> (char-alphabetic? #\Q)
#true

117

(char-ci<=? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are ordered in an increasing and case-insensitive manner.

> (char-ci<=? #\b #\B)

#true
> (char<=? #\b #\B)
#false

(char-ci<? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing and case-insensitive

manner.

> (char-ci<? #\B #\c)

#true
> (char<? #\b #\B)
#false

(char-ci=? ¢ d e ...) — boolean?
¢ : char
d : char
e : char

Determines whether two characters are equal in a case-insensitive manner.

> (char-ci=? #\b #\B)
#true

(char-ci>=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing and case-insensitive manner.

118

> (char-ci>=? #\b #\C)
#false
> (char>=7 #\b #\C)

#true

(char-ci>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing and case-insensitive
manner.

> (char-ci>? #\b #\B)
#false

> (char>? #\b #\B)
#true

(char-downcase c¢) — char
c : char
Produces the equivalent lower-case character.

> (char-downcase #\T)
#\t

(char-lower-case? c¢) — boolean?
¢ : char
Determines whether a character is a lower-case character.

> (char-lower-case? #\T)
#false

(char-numeric? c¢) — boolean?
¢ : char

Determines whether a character represents a digit.

> (char-numeric? #\9)
#true

119

(char-upcase c¢) — char
c @ char

Produces the equivalent upper-case character.

> (char-upcase #\t)
#\T

(char-upper-case? c¢) — boolean?
¢ : char

Determines whether a character is an upper-case character.

> (char-upper-case? #\T)

#true

(char-whitespace? c¢) — boolean?
c @ char

Determines whether a character represents space.

> (char-whitespace? #\tab)
#true

(char<=? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are ordered in an increasing manner.
> (char<=?7 #\a #\a #\b)

#true

(char<? x d e ...) — boolean?

x . char
d : char
e : char

120

Determines whether the characters are ordered in a strictly increasing manner.

> (char<? #\a #\b #\c)
#true

(char=7? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are equal.

> (char=7 #\b #\a)
#false

(char>=? ¢ d e ...) — boolean?

¢ : char
d : char
e : char

Determines whether the characters are sorted in a decreasing manner.

> (char>=7 #\b #\b #\a)
#true

(char>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing manner.

> (char>? #\A #\z #\a)
#false

(char? x) — boolean?
x : any/c

Determines whether a value is a character.

> (char? "a")
#false
> (char? #\a)
#true

121

2.13 Strings

(explode s) — (listof string)
s . string
Translates a string into a list of 1-letter strings.

> (explode "cat")
(1ist Ilcll llall lltll)

(format f x ...) — string
f : string
x : any/c

Formats a string, possibly embedding values.

> (format "Dear Dr. “a:" "Flatt")
"Dear Dr. Flatt:"

> (format "Dear Dr. “s:" "Flatt")
"Dear Dr. \"Flatt\":"

(implode 1) — string
1 : 1list?
Concatenates the list of 1-letter strings into one string.

> (implode (comns "c" (cons "a" (coms "t" '()))))
"Cat"

(int->string i) — string
i : integer

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

> (int->string 65)
llAIl

(list->string 1) — string
1 : 1list?

122

Converts a s list of characters into a string.

> (list->string (cons #\c (cons #\a (cons #\t '()))))
"Cat"

(make-string i ¢) — string
i : natural?
c : char

Produces a string of length i from c.

> (make-string 3 #\d)
n ddd"

(replicate i s) — string
i : natural?
s . string
Replicates s i times.

> (replicate 3 "h")
llhhhll

(string ¢ ...) — string?
c @ char
Builds a string of the given characters.

> (string #\d #\o #\g)
"dog"

(string->int s) — integer
s . string

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

> (string->int "a")
97

123

(string->list s) — (listof char)
s . string
Converts a string into a list of characters.

> (string->list "hello")
(1ist #\h #\e #\1 #\1 #\o)

(string->number s) — (union number #false)
s . string
Converts a string into a number, produce false if impossible.

> (string->number "-2.03")
-2.03

> (string->number "1-2i")
1-2i

(string->symbol s) — symbol
s @ string
Converts a string into a symbol.

> (string->symbol "hello")
'hello

(string-alphabetic? s) — boolean?
s . string

Determines whether all ’letters’ in the string are alphabetic.

> (string-alphabetic? "123")

#false

> (string-alphabetic? "cat")

#true

(string-append s t z ...) — string
s ! string
t . string

z . string

124

Concatenates the characters of several strings.

> (string-append "hello" " " "world" " " "good bye")
"hello world good bye"

(string-ci<=?7 s t) — boolean?
s : string
t : string

Determines whether the strings are ordered in a lexicographically increasing and case-
insensitive manner.

> (string-ci<=? "hello" "WORLD")
#true

(string-ci<? s t) — boolean?
s . string
t . string

Determines whether the strings are ordered in a lexicographically strictly increasing and
case-insensitive manner.

> (string-ci<? "hello" "WORLD")
#true

(string-ci=? s t) — boolean?
s @ string
t : string

Determines whether all strings are equal, character for character, regardless of case.

> (string-ci=? "hello" "HellO")
#true

(string-ci>=? s t) — boolean?
s @ string
t @ string

Determines whether the strings are ordered in a lexicographically decreasing and case-
insensitive manner.

125

> (string-ci>? "WORLD" "hello")
#true

(string-ci>? s t) — boolean?
s @ string
t : string

Determines whether the strings are ordered in a lexicographically strictly decreasing and
case-insensitive manner.

> (string-ci>? "WORLD" "hello")
#true

(string-contains-ci? s t) — boolean?
s . string
t . string

Determines whether the first string appears in the second one without regard to the case of
the letters.

> (string-contains-ci? "At" "caT")
#true

(string-contains? s t) — boolean?
s . string
t : string
Determines whether the first string appears literally in the second one.

> (string-contains? "at" "cat")
#true

(string-copy s) — string
s . string

Copies a string.
> (string-copy "hello")

"hello"

126

(string-downcase s) — string
s . string
Produces a string like the given one with all ’letters’ as lower case.

> (string-downcase "CAT")

n Cat"
> (string-downcase "cAt")

n Cat"

(string-ith s i) — 1string?
s . string
i : natural?

Extracts the ith 1-letter substring from s.

> (string-ith "hello world" 1)
llell

(string-length s) — nat
s : string

Determines the length of a string.

> (string-length "hello world")
11

(string-lower-case? s) — boolean?
s . string

Determines whether all *letters’ in the string are lower case.

> (string-lower-case? "CAT")
#false

(string-numeric? s) — boolean?
s : string

Determines whether all ’letters’ in the string are numeric.

127

> (string-numeric? "123")
#true
> (string-numeric? "1-2i")
#false

(string-ref s i) — char
s . string
i : natural?

Extracts the ith character from s.

> (string-ref "cat" 2)
#\t

(string-upcase s) — string
s @ string
Produces a string like the given one with all ’letters’ as upper case.
> (string-upcase "cat")
n CAT n

> (string-upcase "cAt")
IICATII

(string-upper-case? s) — boolean?
s . string
Determines whether all ’letters’ in the string are upper case.

> (string-upper-case? "CAT")
#true

(string-whitespace? s) — boolean?
s @ string

Determines whether all ’letters’ in the string are white space.

> (string-whitespace? (string-append " " (string #\tab #\newline #\return)))
#true

128

(string<=? s t) — boolean?
s . string
t . string

Determines whether the strings are ordered in a lexicographically increasing manner.

> (string<=7 "hello" "hello")
#true

(string<? s t) — boolean?
s . string
t : string

Determines whether the strings are ordered in a lexicographically strictly increasing manner.

> (string<? "hello" "world")
#true

(string=? s t) — boolean?
s : string
t : string

Determines whether all strings are equal, character for character.

> (string=7? "hello" "world")
#false

> (string=7 "bye" "bye")
#true

(string>=? s t) — boolean?
s . string
t . string

Determines whether the strings are ordered in a lexicographically decreasing manner.

> (string>=7 "world" "hello")
#true

(string>? s t) — boolean?
s . string
t . string

129

Determines whether the strings are ordered in a lexicographically strictly decreasing manner.

> (string>? "world" "hello")
#true

(string? x) — boolean?
x : any/c

Determines whether a value is a string.

> (string? "hello world")
#true

> (string? 42)

#false

(substring s i j) — string
s . string
i : natural?
Jj : natural?

Extracts the substring starting at i up to j (or the end if j is not provided).

> (substring "hello world" 1 5)

"ello"

> (substring "hello world" 1 8)
"ello wo"

> (substring "hello world" 4)
"o world"

2.14 Images

(image=? i j) — boolean?
i : image
Jj : image

Determines whether two images are equal.

> cl

> (image=7 (circle 5 "solid" "green") c1)
#false
> (image=7 (circle 10 "solid" "green") cl)
#true

130

(image? x) — boolean?
x : any/c

Determines whether a value is an image.

> cl

> (image? c1)
#true

2.15 Misc

(=7 x y eps) — boolean?
X ! number
y . number
eps : non-negative-real

Checks whether x and y are within eps of either other.

> (=7 1.01 1.0 0.1)
#true

> (=7 1.01 1.5 0.1)
#false

eof : eof-object?

A value that represents the end of a file:

> eof
#<eof>

(eof-object? x) — boolean?
x : any/c

Determines whether some value is the end-of-file value.

> (eof-object? eof)
#true

> (eof-object? 42)
#false

131

(eq? x y) — boolean?
x @ any/c
y : any/c

Determines whether two values are equivalent from the computer’s perspective (intensional).

> (eq? (cons 1 '()) (cons 1 '()))
#false

> one

(1list 1)

> (eq? one one)

#true

(equal? x y) — boolean?
x : any/c
y @ any/c

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

> (equal? (make-posn 1 2) (make-posn (- 2 1) (+ 1 1)))
#true

(equal™? x y z) — boolean?
x : any/c
y @ any/c
z : non-negative-real

Compares x and y like equal? but uses =~ in the case of numbers.

> (equal~? (make-posn 1.01 1.0) (make-posn 1.01 0.99) 0.2)
#true

(eqv? x y) — boolean?
x @ any/c
y : any/c

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

132

> (equ? (cons 1 '()) (cons 1 '0)))
#false

> one

(1ist 1)

> (eqv? one one)

#true

(error x ...) — void?
x : any/c

Signals an error, combining the given values into an error message. If any of the values’
printed representations is too long, it is truncated and “...” is put into the string. If the
first value is a symbol, it is suffixed with a colon and the result pre-pended on to the error
message.

> zero

0

> (if (= zero 0) (error "can't divide by 0") (/ 1 zero))
can't divide by 0

(exit) — void
Evaluating (exit) terminates the running program.

(identity x) — any/c
x : any/c

Returns x.

> (identity 42)
42
> (identity c1)

> (identity "hello")
"hello"

(struct? x) — boolean?
x : any/c

Determines whether some value is a structure.

133

> (struct? (make-posn 1 2))
#true

> (struct? 43)

#false

2.16 Signatures
Any : signature?
Signature for any value.
Boolean : signature?
Signature for booleans.
Char : signature?
Signature for chararacters.

(Cons0f first-sig rest-sig) — signature?
first-sig : signature?
rest-sig : signature?

Signature for a cons pair.
EmptyList : signature?

Signature for the empty list.
False : signature?

Signature for just false.

Integer : signature?

Signature for integers.

134

Natural : signature?

Signature for natural numbers.

Number : signature?

Signature for arbitrary numbers.

Rational : signature?

Signature for rational numbers.

Real : signature?

Signature for real numbers.

String : signature?

Signature for strings.

Symbol : signature?

Signature for symbols.

True : signature?

Signature for just true.

135

3 Intermediate Student

The grammar notation uses the notation X ... (bold dots) to indicate that X may occur an
arbitrary number of times (zero, one, or more). Separately, the grammar also defines . .. as
an identifier to be used in templates.

program = def-or-expr ..

def-or-expr = definition

| expr

| test-case

| library-require
definition = (define (name variable variable ..) expr)
| (define name expr)

| (define name (lambda (variable variable ..) expr))
| (define-struct name (name ...))

expr = (local [definition ..] expr)

| (letrec ([name expr-for-let] ..) expr)
| (let ([name expr-for-let] ..) expr)
| (let* ([name expr-for-let] ..) expr)
| (name expr expr ..)

| (cond [expr expr] .. [expr exprl)
| (cond [expr expr] .. [else expr])
| (if expr expr expr)

| (and expr expr expr ..)
| (or expr expr expr ..)
| (time expr)
| name
| ’quoted
|

|

|

|

|

|

|

‘quasiquoted

0]

number

boolean

string

character

(signature signature-form)

expr-for-let = (lambda (variable variable ..) expr)
| expr

signature-declaration = (: name signature-form)

signature-form = (enum expr ...)

136

| (mixed signature-form ...)
| (signature-form ... -> signature-form)
| (ListOf signature-form)
| signature-variable
| expr
signature-variable = Yname
quoted = name
| number
| string
| character
| (quoted ...)
| ’quoted
| ‘quoted
| ,quoted
| ,@quoted
quasiquoted = name
| number
| string
| character
| (quasiquoted ...)
| ’quasiquoted
| ‘quasiquoted
| ,expr
| ,Q@expr
test-case = (check-expect expr expr)
| (check-random expr expr)
| (check-within expr expr expr)
| (check-member-of expr expr ...)
| (check-range expr expr expr)
| (check-satisfied expr expr)
| (check-error expr expr)
| (check-error expr)

= (require string)
| (require (1lib string string ...))
| (require (planet string package))

library-require

package = (string string number number)

A name or a variable is a sequence of characters not including a space or one of the
following:

137

W, R
A number is a number such as 123, 3/2, or 5.5.
A boolean is one of: #true or #false.

Alternative spellings for the #true constant are #t, true, and #T. Similarly, #£, false, or
#F are also recognized as #false.

A symbol is a quote character followed by a name. A symbol is a value, just like 42, ' (),
or #false.

A string is a sequence of characters enclosed by a pair of ". Unlike symbols, strings may
be split into characters and manipulated by a variety of functions. For example, "abcdef",
"This is a string",and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,
and #\space are characters.

In function calls, the function appearing immediately after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

3.1 Pre-defined Variables
empty : empty?

The empty list.

true : boolean?

The #true value.

false : boolean?

The #false value.

3.2 Template Variables

A placeholder for indicating that a function definition is a template.

138

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

3.3 Syntax for Intermediate

(local [definition ...] expression)

Groups related definitions for use in expression. Each definition can be either a de-
fine or a define-struct.

When evaluating local, each definition is evaluated in order, and finally the body ex-
pression is evaluated. Only the expressions within the local (including the right-hand-
sides of the definitions and the expression) may refer to the names defined by the
definitions. If a name defined in the local is the same as a top-level binding, the inner
one “shadows” the outer one. That is, inside the local, any references to that name refer to
the inner one.

(letrec ([name expr-for-let] ...) expression)

Like 1ocal, but with a simpler syntax. Each name defines a variable (or a function) with the
value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines
a function, otherwise it defines a variable.

(let* ([name expr-for-let] ...) expression)

139

Like letrec, but each name can only be used in expression, and in expr-for-lets
occuring after that name.

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the
expr-for-lets next to the names.

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time
prints out the time taken by the evaluation (including real time, time taken by the CPU, and
the time spent collecting free memory). The value of time is the same as that of expres-
sion.

3.4 Common Syntaxes

The following syntaxes behave the same in the Intermediate level as they did in the [§2]
[*Beginning Student with List Abbreviations™|level.

’name
’part
(quote name)
(quote part)

A quoted name is a symbol. A quoted part is an abbreviation for a nested lists.
Normally, this quotation is written with a ', like ' (apple banana), but it can also be

written with quote, like (quote (apple banana)).

‘name
‘part
(quasiquote name)
(quasiquote part)

Like quote, but also allows escaping to expression “unquotes.”

Normally, quasi-quotations are written with a backquote, ~, like ~ (apple ,(+ 1 2)), but
they can also be written with quasiquote, like (quasiquote (apple ,(+ 1 2))).

140

,expression
(unquote expression)

Under a single quasiquote, , expression escapes from the quote to include an evaluated
expression whose result is inserted into the abbreviated list.

Under multiple quasiquotes, , expression is really the literal , expression, decrementing
the quasiquote count by one for expression.

Normally, an unquote is written with ,, but it can also be written with unquote.

,Qexpression
(unquote-splicing expression)

Under a single quasiquote, ,@expression escapes from the quote to include an evaluated
expression whose result is a list to splice into the abbreviated list.

Under multiple quasiquotes, a splicing unquote is like an unquote; that is, it decrements the
quasiquote count by one.

Normally, a splicing unquote is written with ,, but it can also be written with unquote-
splicing.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define name (lambda (variable variable ...) expression))

An alternate way to defining functions. The name is the name of the function, which cannot
be the same as that of another function or variable.

A lambda cannot be used outside of this alternate syntax.

141

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns #true if the value is an instance of
the structure.
The name of the new functions introduced by define-struct must not be the same as that

of other functions or variables, otherwise def ine-struct reports an error.

(name expression expression ...)

Calls the function named name. The value of the call is the value of name’s body when
every one of the function’s variables are replaced by the values of the corresponding ex-
pressions.

The function named name must defined before it can be called. The number of argument

expressions must be the same as the number of arguments expected by the function.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])
Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to #true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to #true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither #true nor #false, cond also reports an error.

else cannot be used outside of cond.

(if question-expression
then-answer-expression
else-answer-expression)

142

When the value of the question-expression is #true, if evaluates the then-answer-
expression. When the test is #false, if evaluates the else-answer-expression.

If the question-expression is neither #true nor #false, if reports an error.

(and expression expression expression ...)

Evaluates to #true if all the expressions are #true. If any expression is #false, the
and expression evaluates to #false (and the expressions to the right of that expression are
not evaluated.)

If any of the expressions evaluate to a value other than #true or #false, and reports an
error.

(or expression expression expression ...)

Evaluates to #true as soon as one of the expressions is #true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are #false, the or
expression evaluates to #false.

If any of the expressions evaluate to a value other than #true or #false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheit->celsius -40) -40)

(define (fahrenheit->celsius f)
(x 5/9 (- £ 32)))

A check-expect expression must be placed at the top-level of a student program. Also it
may show up anywhere in the program, including ahead of the tested function definition. By
placing check-expects there, a programmer conveys to a future reader the intention behind
the program with working examples, thus making it often superfluous to read the function
definition proper. Syntax errors in check-expect (and all check forms) are intentionally
delayed to run time so that students can write tests without necessarily writing complete
function headers.

It is an error for expr or expected-expr to produce an inexact number or a function value.
As for inexact numbers, it is morally wrong to compare them for plain equality. Instead one

143

tests whether they are both within a small interval; see check-within. As for functions
(see Intermediate and up), it is provably impossible to compare functions.

(check-random expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

The form supplies the same random-number generator to both parts. If both parts request
random numbers from the same interval in the same order, they receive the same random
numbers.

Here is a simple example of where check-random is useful:

(define WIDTH 100)
(define HEIGHT (* 2 WIDTH))

(define-struct player (name x y))
; A Player is (make-player String Nat Nat)

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn'")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(make-player name (random WIDTH) (random HEIGHT)))

Note how random is called on the same numbers in the same order in both parts of check-
random. If the two parts call random for different intervals, they are likely to fail:

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(a-helper-function name (random HEIGHT)))

; String Number -> Player
(define (a-helper-function name height)
(make-player name (random WIDTH) height))

Because the argument to a-helper-function is evaluated first, random is first called for
the interval [0,HEIGHT) and then for [0,WIDTH), that is, in a different order than in the
preceding check-random.

144

It is an error for expr or expected-expr to produce a function value or an inexact number;
see note on check-expect for details.

(check-satisfied expression predicate)

Checks that the first expression satisfies the named predicate (function of one argu-
ment). Recall that “satisfies” means “the function produces #true for the given value.”

Here are simple examples for check-satisfied:

> (check-satisfied 1 odd?)
The test passed!

> (check-satisfied 1 even?)
Ran 1 test.
0 tests passed.
Check failures:
[

|1
L

| does not satisfy even?.

Actual value

at line 3, column O

In general check-satisfied empowers program designers to use defined functions to for-
mulate test suites:

; [cons Number [List-of Number]] -> Boolean
; a function for testing htdp-sort

(check-expect (sorted? (list 1 2 3)) #true)
(check-expect (sorted? (list 2 1 3)) #false)

(define (sorted? 1)
(cond
[(empty? (rest 1)) #truel
[else (and (<= (first 1) (second 1)) (sorted? (rest 1)))1))

; [List-of Number] -> [List-of Number]
; create a sorted version of the given list of numbers

(check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)
(define (htdp-sort 1)

(cond
[(empty? 1) 1]

145

[else (insert (first 1) (htdp-sort (rest 1)))1))

; Number [List-of Number] -> [List-of Number]
; insert x into 1 at proper place
; assume 1 is arranged in ascending order
; the result is sorted in the same way
(define (insert x 1)
(cond
[(empty? 1) (list x)]
[else (if (<= x (first 1)) (coms x 1) (comns (first 1) (insert x (rest 1))))]1))

And yes, the results of htdp-sort satisfy the sorted? predicate:

> (check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(check-within expression expected-expression delta)

Checks whether the value of the expression expression is structurally equal to the value
produced by the expected-expression expression; every number in the first expression
must be within delta of the corresponding number in the second expression.

(define-struct roots (x sqrt))
; RT is [List-of (make-roots Number Number)]

(define (root-of a)
(make-roots a (sqrt a)))

(define (roots-table xs)
(cond
[(empty? xs) '(O]
[else (cons (root-of (first xs)) (roots-table (rest xs)))]1))

Due to the presence of inexact numbers in nested data, check-within is the correct choice
for testing, and the test succeeds if delta is reasonably large:

Example:

> (check-within (roots-table (list 1.0 2.0 3.0))
(1list
(make-roots 1.0 1.0)
(make-roots 2 1.414)
(make-roots 3 1.713))
0.1)
The test passed!

146

In contrast, when delta is small, the test fails:
Example:

> (check-within (roots-table (list 2.0))
(list
(make-roots 2 1.414))
#ile-5)
Ran 1 test.
0 tests passed.
Check failures:

Actual value | '((make-roots 2.0 1.4142135623730951)) | is

not within le-5 of expected value | '((make-roots 2 1.414)) |.
x |

at line 5, column O

It is an error for expressions or expected-expression to produce a function value; see
note on check-expect for details.

If delta is not a number, check-within reports an error.

(check-error expression expected-error-message)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of expected-error-message, if it is present.

Here is a typical beginner example that calls for a use of check-error:

(define sample-table
'(("matthias" 10)
("matthew" 20)
("robby" -1)

("shriram" 18)))

; [List-of [list String Number]] String -> Number
; determine the number associated with s in table

(define (lookup table s)
(cond
[(empty? table) (error (string-append s " not found"))]
[else (if (string=7 (first (first table)) s)

147

(second (first table))
(lookup (rest table)))]))
Consider the following two examples in this context:
Example:
> (check-expect (lookup sample-table "matthew") 20)
The test passed!
Example:

> (check-error (lookup sample-table "kathi") "kathi not found")
The test passed!

(check-member-of expression expression expression ...)

Checks that the value of the first expression is that of one of the following expressions.

; [List-of X] -> X
; pick a random element from the given list 1
(define (pick-one 1)
(list-ref 1 (random (length 1))))
Example:
> (check—member—of (pick—one I(Ilall npn IICII)) ngn o npn IICII)

The test passed!

It is an error for any of expressions to produce a function value; see note on check-
expect for details.

(check-range expression low-expression high-expression)
Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

A check-range form is best used to delimit the possible results of functions that compute
inexact numbers:

(define EPSILON 0.001)

148

; [Real -> Real] Real -> Real
; what is the slope of f at x7
(define (differentiate f x)
(slope f (- x EPSILON) (+ x EPSILON)))

; [Real -> Real] Real Real -> Real
(define (slope f left right)
(/ (- (f right) (f left))
2 EPSILON))

(check-range (differentiate sin 0) 0.99 1.0)

Itis an error for expression, low-expression, or high-expression to produce a func-
tion value; see note on check-expect for details.

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), O through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))
(require (planet id))
(require (planet string))

149

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

The full grammar for planet requires is given in §3.2 “Importing and Exporting: require
and provide”, but the best place to find examples of the syntax is on the the PLaneT server,
in the description of a specific package.

3.5 Signatures

Signatures do not have to be comment: They can also be part of the code. When a signature
is attached to a function, DrRacket will check that program uses the function in accordance
with the signature and display signature violations along with the test results.

A signature is a regular value, and is specified as a signature form, a special syntax that only
works with : signature declarations and inside signature expressions.

(: name signature-form)
This attaches the signature specified by signature-form to the definition of name. There
must be a definition of name somewhere in the program.

(: age Integer)
(define age 42)

(: area-of-square (Number -> Number))
(define (area-of-square len)
(sqr len))

On running the program, Racket checks whether the signatures attached with : actually
match the value of the variable. If they don’t, Racket reports signature violation along with
test failures.

For example, this piece of code:

(: age Integer)
(define age "fortytwo")

Yields this output:

1 signature violation.
Signature violations:

got "fortytwo" at line 2, column 12, signature at line 1,
column 7

150

http://planet.racket-lang.org

Note that a signature violation does not stop the running program.

(signature signature-form)

This returns the signature described by signature-form as a value.

3.5.1 Signature Forms

Any expression can be a signature form, in which case the signature is the value returned by
that expression. There are a few special signature forms, however:

In a signature form, any name that starts with a % is a signature variable that stands for any
signature depending on how the signature is used.

Example:
(: same (%a -> %a))

(define (same x) x)

(input-signature-form ... -> output-signature-form)

This signature form describes a function with inputs described by the input-signature-
forms and output described by output-signature-form.

(enum expr ...)

This signature describes an enumeration of the values returned by the exprs.
Example:

(: cute? ((enum "cat" "snake") -> Boolean))

(define (cute? pet)
(cond
[(string=7 pet "cat") #t]
[(string=7 pet "snake") #f]))

(mixed signature-form ...)

151

This signature describes mixed data, i.e. an itemization where each of the cases has a signa-
ture described by a signature-form.

Example:

(define SIGS (signature (mixed Aim Fired)))

(List0f signature-form)

This signature describes a list where the elements are described by signature-form.

(predicate expression)

This signature describes values through a predicate: expression must evaluate to a func-
tion of one argument that returns a boolean. The signature matches all values for which the
predicate returns #true.

3.5.2 Struct Signatures

A define-struct form defines two additional names that can be used in signatures. For a
struct called struct, these are Struct and Struct0f. Note that these names are capital-
ized. In particular, a struct called Struct, will also define Struct and Struct0f. More-
over, when forming the additional names, hyphens are removed, and each letter following a
hyphen is capitalized - so a struct called foo-bar will define FooBar and FooBar0Of.

Struct is a signature that describes struct values from this structure type. StructOf is a
function that takes as input a signature for each field. It returns a signature describing values
of this structure type, additionally describing the values of the fields of the value.

(define-struct pair [fst snd])

(: add-pair ((PairOf Number Number) -> Number))
(define (add-pair p)
(+ (pair-fst p) (pair-snd p)))

3.6 Pre-defined Functions

The remaining subsections list those functions that are built into the programming language.
All other functions are imported from a teachpack or must be defined in the program.

152

3.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

(- x y ...) — number
X : number
y @ number

Subtracts the second (and following) number(s) from the first ; negates the number if there
is only one argument.

> (- 5)

-5

> (- 5 3)

2

> (-531)

1

(< x y z ...) = boolean?
x : real
y : real
z : real

Compares two or more (real) numbers for less-than.

> (< 42 2/5)
#false

(<= x y z ...) — boolean?
x @ real
y : real
z @ real

Compares two or more (real) numbers for less-than or equality.

> (<= 42 2/5)
#false

(>x y z ...) — boolean?
x ! real
y @ real
z @ real

153

Compares two or more (real) numbers for greater-than.

> (> 42 2/5)
#true

(>=x y z ...) — boolean?
x : real
y . real
z : real

Compares two or more (real) numbers for greater-than or equality.

> (>= 42 42)
#true

(abs x) — real
x . real

Determines the absolute value of a real number.

> (abs -12)
12

(acos x) — number
X : number

Computes the arccosine (inverse of cos) of a number.

> (acos 0)
#i1.5707963267948966

(addl x) — number
X : number

Increments the given number.

> (addl 2)
3

154

(angle x) — real
x : number
Extracts the angle from a complex number.

> (angle (make-polar 3 4))
#1-2.2831853071795867

(asin x) — number
X . number

Computes the arcsine (inverse of sin) of a number.

> (asin 0)
0

(atan x) — number
X : number

Computes the arctangent of the given number:

> (atan 0)

0

> (atan 0.5)
#10.46364760900080615

Also comes in a two-argument version where (atan y x) computes (atan (/ y x))
but the signs of y and x determine the quadrant of the result and the result tends to be more
accurate than that of the 1-argument version in borderline cases:

> (atan 3 4)
#10.6435011087932844
> (atan -2 -1)
#1-2.0344439357957027

(ceiling x) — integer
x @ real

Determines the closest integer (exact or inexact) above a real number. See round.

155

> (ceiling 12.3)
#i13.0

(complex? x) — boolean?
x : any/c
Determines whether some value is complex.

> (complex? 1-2i)
#true

(conjugate x) — number
X @ number

Flips the sign of the imaginary part of a complex number.
> (conjugate 3+41i)
3-4i
> (conjugate -2-5i)
-2+b1

> (conjugate (make-polar 3 4))
#i-1.960930862590836+2.2704074859237851

(cos x) — number
X : number

Computes the cosine of a number (radians).

> (cos pi)
#i-1.0

(cosh x) — number
X . number

Computes the hyperbolic cosine of a number.

> (cosh 10)
#i111013.232920103324

156

(current-seconds) — integer

Determines the current time in seconds elapsed (since a platform-specific starting date).

> (current-seconds)
1767549588

(denominator x) — integer
x @ rational?
Computes the denominator of a rational.

> (denominator 2/3)
3

e : real

Euler’s number.

> e
#12.718281828459045

(even? x) — boolean?
x . integer
Determines if some integer (exact or inexact) is even or not.

> (even? 2)
#true

(exact->inexact x) — number
X : number

Converts an exact number to an inexact one.

> (exact->inexact 12)
#i12.0

157

(exact? x) — boolean?
X . number

Determines whether some number is exact.

> (exact? (sqrt 2))
#false

(exp x) — number
X ! number

Determines e raised to a number.

> (exp -2)
#10.1353352832366127

(expt x y) — number
X @ number
y : number

Computes the power of the first to the second number, which is to say, exponentiation.

> (expt 16 1/2)
4

> (expt 3 -4)
1/81

(floor x) — integer
x @ real

Determines the closest integer (exact or inexact) below a real number. See round.

> (floor 12.3)
#i12.0

(ged x y ...) — integer
x : integer
y : integer

158

Determines the greatest common divisor of two integers (exact or inexact).

> (gcd 6 12 8)
2

(imag-part x) — real
X : number
Extracts the imaginary part from a complex number.

> (imag-part 3+4i)
4

(inexact->exact x) — number
X ! number
Approximates an inexact number by an exact one.

> (inexact->exact 12.0)
12

(inexact? x) — boolean?
X . number
Determines whether some number is inexact.

> (inexact? 1-2i)
#false

(integer->char x) — char
X : exact-integer?

Looks up the character that corresponds to the given exact integer in the ASCII table (if any).

> (integer->char 42)
#*

(integer-sqrt x) — complex
X . integer

159

Computes the integer or imaginary-integer square root of an integer.
> (integer-sqrt 11)
3

> (integer-sqrt -11)
0+3i

(integer? x) — boolean?
x : any/c
Determines whether some value is an integer (exact or inexact).

> (integer? (sqrt 2))
#false

(Icm x y ...) — integer
X : integer
y . integer
Determines the least common multiple of two integers (exact or inexact).

> (lcm 6 12 8)
24

(log x) — number
X : number
Determines the base-e logarithm of a number.

> (log 12)
#12.4849066497880004

(magnitude x) — real
X : number

Determines the magnitude of a complex number.

> (magnitude (make-polar 3 4))
#13.0000000000000004

160

(make-polar x y) — number
x @ real
y : real

Creates a complex from a magnitude and angle.

> (make-polar 3 4)
#1-1.960930862590836-2.2704074859237851

(make-rectangular x y) — number
x : real
y : real

Creates a complex from a real and an imaginary part.

> (make-rectangular 3 4)

3+41i

(max x y ...) — real
x @ real
y @ real

Determines the largest number—aka, the maximum.

> (max 3287 29 0)

9

(min x y ...) — real
x @ real
y : real

Determines the smallest number—aka, the minimum.

> (min 3287 2 9 0)
0

(modulo x y) — integer
x . integer
y . integer

161

Finds the remainder of the division of the first number by the second:

> (modulo 9 2)
1
> (modulo 3 -4)
-1

(negative? x) — boolean?
x : real
Determines if some real number is strictly smaller than zero.

> (negative? -2)
#true

(number->string x) — string
X @ number
Converts a number to a string.

> (number->string 42)
n 42 n

(number->string-digits x p) — string
X @ number
p : posint

Converts a number x to a string with the specified number of digits.

> (number->string-digits 0.9 2)
l|0'9||

> (number->string-digits pi 4)
"3.1416"

(number? n) — boolean?
n : any/c

Determines whether some value is a number:

162

> (number? "hello world")
#false

> (number? 42)

#true

(numerator x) — integer
x @ rational?
Computes the numerator of a rational.

> (numerator 2/3)
2

(odd? x) — boolean?
x : integer
Determines if some integer (exact or inexact) is odd or not.

> (0dd? 2)
#false

pi : real

The ratio of a circle’s circumference to its diameter.

> pi
#i3.141592653589793

(positive? x) — boolean?
x : real
Determines if some real number is strictly larger than zero.

> (positive? -2)
#false

(quotient x y) — integer
x . integer
y . integer

163

Divides the first integer—also called dividend—by the second—known as divisor—to obtain
the quotient.

(quotient 9 2)

>
4
> (quotient 3 4)
0

(random x) — natural?
x : (and/c natural? positive?)

Generates a random natural number less than some given exact natural.

> (random 42)
36

(rational? x) — boolean?
x @ any/c

Determines whether some value is a rational number.

> (rational? 1)

#true

> (rational? -2.349)
#true

> (rational? #i1.23456789)
#true

> (rational? (sqrt -1))
#false

> (rational? pi)

#true

> (rational? e)

#true

> (rational? 1-2i)
#false

As the interactions show, the teaching languages considers many more numbers as rationals
than expected. In particular, pi is a rational number because it is only a finite approximation
to the mathematical . Think of rational? as a suggestion to think of these numbers as
fractions.

(real-part x) — real
X : number

164

Extracts the real part from a complex number.

> (real-part 3+4i)
3

(real? x) — boolean?
x : any/c
Determines whether some value is a real number.

> (real? 1-2i)
#false

(remainder x y) — integer
X . integer
y : integer
Determines the remainder of dividing the first by the second integer (exact or inexact).

(remainder 9 2)

>
1
> (remainder 3 4)
3

(round x) — integer
x : real
Rounds a real number to an integer (rounds to even to break ties). See floor and ceiling.

> (round 12.3)
#i12.0

(sgn x) — (union 1 #i1.0 O #i0.0 -1 #i-1.0)
x @ real

Determines the sign of a real number.
> (sgn -12)

-1

165

(sin x) — number
X . number
Computes the sine of a number (radians).

> (sin pi)
#11.2246467991473532e-16

(sinh x) — number
X ! number
Computes the hyperbolic sine of a number.

> (sinh 10)
#i111013.232874703393

(sqr x) — number
X @ number
Computes the square of a number.

> (sqr 8)
64

(sqrt x) — number
X : number

Computes the square root of a number.

> (sqrt 9)

3

> (sqrt 2)
#11.4142135623730951

(subl x) — number
X : number

Decrements the given number.

166

> (subl 2)
1

(tan x) — number
X : number
Computes the tangent of a number (radians).

> (tan pi)
#i-1.2246467991473532e-16

(zero? x) — boolean?
X : number
Determines if some number is zero or not.

> (zero? 2)
#false

3.8 Booleans

(boolean->string x) — string
x @ boolean?

Produces a string for the given boolean

> (boolean->string #false)
"#false"

> (boolean->string #true)
"#true"

(boolean=? x y) — boolean?
x : boolean?
y : boolean?
Determines whether two booleans are equal.
> (boolean=7 #true #false)

#false

167

(boolean? x) — boolean?
x : any/c

Determines whether some value is a boolean.

> (boolean? 42)
#false

> (boolean? #false)
#true

(false? x) — boolean?
x : any/c
Determines whether a value is false.

> (false? #false)
#true

(not x) — boolean?
x : boolean?
Negates a boolean value.

> (not #false)
#true

3.9 Symbols

(symbol->string x) — string
X : symbol

Converts a symbol to a string.

> (symbol->string 'c)
"C"

(symbol=? x y) — boolean?
X : symbol
y . symbol

168

Determines whether two symbols are equal.

> (symbol=7 'a 'b)
#false

(symbol? x) — boolean?
x : any/c

Determines whether some value is a symbol.

> (symbol? 'a)
#true

3.10 Lists

(append 1 ...) — (listof any)
1 : (listof any)

Creates a single list from several, by concatenation of the items. In ISL and up: append also
works when applied to one list or none.

> (append (cons 1 (cons 2 '())) (cons "a" (cons "b" '())))
(1lSt 1 2 llall llbll)

> (append)
"0

(assoc x 1) — (union (listof any) #false)
x @ any/c

1 : (listof any)

Produces the first pair on 1 whose first is equal? to x; otherwise it produces #false

> (assoc "hello" '(("world" 2) ("hello" 3) ("good" 0)))
(list "hello" 3)

(assq x 1) — (union #false cons?)
x : any/c
1 : 1ist?

Determines whether some item is the first item of a pair in a list of pairs. (It compares the
items with eq?.)

169

> a

(1ist (1ist 'a 22) (list 'b 8) (list 'c 70))
> (assq 'b a)
(list 'b 8)

(caaar x) — any/c
x : list?

LISP-style selector: (car (car (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (caaar w)
(list "bye")

(caadr x) — any/c
x @ list?

LISP-style selector: (car (car (cdr x))).

> (caadr (cons 1 (cons (cons 'a '()) (comns (cons 'd ') '0))))
'a

(caar x) — any/c
x @ list?

LISP-style selector: (car (car x)).

>y

(list (1list (list 1 2 3) #false "world"))
> (caar y)

(list 1 2 3)

(cadar x) — any/c
x : list?

LISP-style selector: (car (cdr (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cadar w)
#true

170

(cadddr x) — any/c
x @ list?

LISP-style selector: (car (cdr (cdr (cdr x)))).

> v

(list 1 234567 89 'A)
> (cadddr v)

4

(caddr x) — any/c
x : list?

LISP-style selector: (car (cdr (cdr x))).

> X

(list 2 "hello" #true)
> (caddr x)

#true

(cadr x) — any/c
x : list?

LISP-style selector: (car (cdr x)).

> X

(list 2 "hello" #true)
> (cadr x)

"hello"

(car x) — any/c
X : cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (car x)

2

171

(cdaar x) — any/c
x : list?

LISP-style selector: (cdr (car (car x))).
> w

(list (1list (list (list "bye") 3) #true) 42)
> (cdaar w)

(1ist 3)

(cdadr x) — any/c
x @ list?

LISP-style selector: (cdr (car (cdr x))).

> (cdadr (list 1 (list 2 "a") 3))
(1ist "a")

(cdar x) — 1list?
x : list?

LISP-style selector: (cdr (car x)).

>y
(1ist (1ist (list 1 2 3) #false "world"))
> (cdar y)

(1ist #false "world")

(cddar x) — any/c
x : list?

LISP-style selector: (cdr (cdr (car x)))
> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cddar w)

o)

(cdddr x) — any/c
x : list?

172

LISP-style selector: (cdr (cdr (cdr x))).

> v
(list 1 23456789 'A)
> (cdddr v)

(list 4 56 78 9 'A)

(cddr x) — 1list?
x : list?

LISP-style selector: (cdr (cdr x)).

> x
(list 2 "hello" #true)
> (cddr x)

(list #true)

(cdr x) — any/c
x : cons?

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (cdr x)

(list "hello" #true)

(cons x y) — list?
x : any/c
y . list?

Constructs a list.

> (cons 1 '())
(cons 1 'Q))

(cons? x) — boolean?
x : any/c

Determines whether some value is a constructed list.

173

> (cons? (cons 1 '()))
#true

> (cons? 42)

#false

(eighth x) — any/c
x @ list?

Selects the eighth item of a non-empty list.

> v

(1ist 1 23456789 'A)
> (eighth v)

8

(empty? x) — boolean?
x : any/c

Determines whether some value is the empty list.
> (empty? '())
#true

> (empty? 42)
#false

(fifth x) — any/c
x : list?

Selects the fifth item of a non-empty list.

> v

(1ist 1 23456789 'A)
> (fifth v)

5

(first x) — any/c
X : cons?

Selects the first item of a non-empty list.

174

> x
(list 2 "hello" #true)
> (first x)

2

(fourth x) — any/c
x : list?

Selects the fourth item of a non-empty list.

> v

(list 1 23456789 'A)
> (fourth v)

4

(length 1) — natural?
1 : 1ist?

Evaluates the number of items on a list.

> X

(list 2 "hello" #true)
> (length x)

3

(1ist x ...) — 1list?
x : any/c

Constructs a list of its arguments.

> (list 1 234567 8 9 0)
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8

(cons 9 (cons 0 '()))))))I))

(list* x ... 1) — 1list?
x : any/c
1 : 1list?

Constructs a list by adding multiple items to a list.

175

> X

(1ist 2 "hello" #true)

> (list* 4 3 x)

(list 4 3 2 "hello" #true)

(list-ref x i) — any/c
x @ list?
i : natural?

Extracts the indexed item from the list.

> v

(list 1 23456789 'A)
> (list-ref v 9)

'A

(1list? x) — boolean?
x : any/c

Checks whether the given value is a list.

> (1ist? 42)

#false

> (1ist? ')

#true

> (list? (cons 1 (cons 2 '())))
#true

(make-list i x) — list?
i : natural?
x : any/c

Constructs a list of i copies of x.

> (make-list 3 "hello")
(cons "hello" (cons "hello" (comns "hello" '())))

(member x 1) — boolean?
x @ any/c
1 : list?

176

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member "hello" x)
#true

(member? x 1) — boolean?
x : any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> x

(1ist 2 "hello" #true)
> (member? "hello" x)
#true

(memg x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> x

(list 2 "hello" #true)

> (memq (list (list 1 2 3)) x)
#false

(memg? x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq? (list (list 1 2 3)) x)
#false

177

(memv x 1) — (or/c #false list)
x : any/c
1 : list?

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

> X

(list 2 "hello" #true)

> (memv (list (list 1 2 3)) x)
#false

null : list

Another name for the empty list

> null
O

(null? x) — boolean?
x : any/c

Determines whether some value is the empty list.

> (null? ')
#true

> (null? 42)
#false

(range start end step) — list?
start : number
end : number
step : number

Constructs a list of numbers by stepping from start to end.

> (range 0 10 2)
(cons 0 (cons 2 (cons 4 (cons 6 (cons 8 '(0)))))

178

(remove x 1) — 1list?
x : any/c
1 : list?

Constructs a list like the given one, with the first occurrence of the given item removed
(comparing values with equal?).

> X

(list 2 "hello" #true)

> (remove "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove "hello" hello-2)
(list 2 #true "hello")

(remove-all x 1) — list?
x : any/c
1 : list?

Constructs a list like the given one, with all occurrences of the given item removed (compar-
ing values with equal?).

> X

(list 2 "hello" #true)

> (remove-all "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove-all "hello" hello-2)
(list 2 #true)

(rest x) — any/c
X @ cons?

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (rest x)

(list "hello" #true)

179

(reverse 1) — 1list
1 : list?

Creates a reversed version of a list.

> x

(1ist 2 "hello" #true)
> (reverse x)

(list #true "hello" 2)

(second x) — any/c
x : list?

Selects the second item of a non-empty list.

> X

(list 2 "hello" #true)
> (second x)

"hello"

(seventh x) — any/c
x @ list?

Selects the seventh item of a non-empty list.

> v

(list 1 234567 89 'A)
> (seventh v)

7

(sixth x) — any/c
x : list?

Selects the sixth item of a non-empty list.

> v

(list 1 23456789 'A)
> (sixth v)

6

180

(third x) — any/c
x . list?

Selects the third item of a non-empty list.

> X

(list 2 "hello" #true)
> (third x)

#true

3.11 Posns

(make-posn x y) — posn
x : any/c
y @ any/c

Constructs a posn from two arbitrary values.

> (make-posn 3 3)
(make-posn 3 3)

> (make-posn "hello" #true)
(make-posn "hello" #true)

(posn-x p) — any/c
p : posn

Extracts the x component of a posn.

> p

(make-posn 2 -3)
> (posn-x p)

2

(posn-y p) — any/c
p : posn

Extracts the y component of a posn.

> p

(make-posn 2 -3)
> (posn-y p)

-3

181

(posn? x) — boolean?
x : any/c

Determines if its input is a posn.

>q

(make-posn "bye" 2)
> (posn? q)

#true

> (posn? 42)

#false

3.12 Characters

(char->integer c) — integer
¢ : char

Looks up the number that corresponds to the given character in the ASCII table (if any).

> (char->integer #\a)
97
> (char->integer #\z)
122

(char-alphabetic? c¢c) — boolean?
¢ : char
Determines whether a character represents an alphabetic character.

> (char-alphabetic? #\Q)
#true

(char-ci<=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in an increasing and case-insensitive manner.

182

> (char-ci<=?7 #\b #\B)
#true
> (char<=7 #\b #\B)

#false

(char-ci<? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing and case-insensitive

manner.

> (char-ci<? #\B #\c)

#true
> (char<? #\b #\B)
#false

(char-ci=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether two characters are equal in a case-insensitive manner.

> (char-ci=? #\b #\B)
#true

(char-ci>=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing and case-insensitive manner.

> (char-ci>=? #\b #\C)
#false

> (char>=7 #\b #\C)
#true

183

(char-ci>? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing and case-insensitive

manner.

> (char-ci>? #\b #\B)
#false

> (char>? #\b #\B)
#true

(char-downcase c¢) — char
c : char

Produces the equivalent lower-case character.

> (char-downcase #\T)
#\t

(char-lower-case? c¢) — boolean?
¢ : char

Determines whether a character is a lower-case character.

> (char-lower-case? #\T)
#false

(char-numeric? c¢) — boolean?
c : char

Determines whether a character represents a digit.

> (char-numeric? #\9)
#true

(char-upcase c¢) — char
c : char

184

Produces the equivalent upper-case character.

> (char-upcase #\t)
#\T

(char-upper-case? c) — boolean?
c : char

Determines whether a character is an upper-case character.

> (char-upper-case? #\T)
#true

(char-whitespace? c¢) — boolean?
c : char
Determines whether a character represents space.

> (char-whitespace? #\tab)
#true

(char<=? ¢ d e ...) — boolean?

¢ : char
d : char
e : char

Determines whether the characters are ordered in an increasing manner.
> (char<=7 #\a #\a #\b)

#true

(char<? x d e ...) — boolean?

x : char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing manner.

> (char<? #\a #\b #\c)
#true

185

(char=? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are equal.

> (char=7 #\b #\a)
#false

(char>=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing manner.

> (char>=7 #\b #\b #\a)
#true

(char>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing manner.

> (char>? #\A #\z #\a)
#false

(char? x) — boolean?
x : any/c

Determines whether a value is a character.
> (char? "a")
#false

> (char? #\a)
#true

186

3.13 Strings

(explode s) — (listof string)
s . string
Translates a string into a list of 1-letter strings.

> (explode "cat")
(1ist Ilcll llall lltll)

(format f x ...) — string
f : string
x : any/c

Formats a string, possibly embedding values.

> (format "Dear Dr. “a:" "Flatt")
"Dear Dr. Flatt:"

> (format "Dear Dr. “s:" "Flatt")
"Dear Dr. \"Flatt\":"

(implode 1) — string
1 : 1list?
Concatenates the list of 1-letter strings into one string.

> (implode (comns "c" (cons "a" (coms "t" '()))))
"Cat"

(int->string i) — string
i : integer

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

> (int->string 65)
llAIl

(list->string 1) — string
1 : 1list?

187

Converts a s list of characters into a string.

> (list->string (cons #\c (cons #\a (cons #\t '()))))
"Cat"

(make-string i ¢) — string
i : natural?
c : char

Produces a string of length i from c.

> (make-string 3 #\d)
n ddd"

(replicate i s) — string
i : natural?
s . string
Replicates s i times.

> (replicate 3 "h")
llhhhll

(string ¢ ...) — string?
c @ char
Builds a string of the given characters.

> (string #\d #\o #\g)
"dog"

(string->int s) — integer
s . string

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

> (string->int "a")
97

188

(string->list s) — (listof char)
s . string

Converts a string into a list of characters.

> (string->list "hello")
(list #\h #\e #\1 #\1 #\o)

(string->number s) — (union number #false)
s : string

Converts a string into a number, produce false if impossible.

> (string->number "-2.03")
-2.03

> (string->number "1-2i")
1-21

(string->symbol s) — symbol
s ! string

Converts a string into a symbol.

> (string->symbol "hello")
'hello

(string-alphabetic? s) — boolean?
s @ string

Determines whether all *letters’ in the string are alphabetic.

> (string-alphabetic? "123")
#false

> (string-alphabetic? "cat")
#true

(string-contains-ci? s t) — boolean?
s . string
t . string

189

Determines whether the first string appears in the second one without regard to the case of
the letters.

> (string-contains-ci? "At" "caT")
#true

(string-contains? s t) — boolean?
s . string
t . string

Determines whether the first string appears literally in the second one.

> (string-contains? "at" "cat")
#true

(string-copy s) — string
s . string
Copies a string.

> (string-copy "hello")
"hello"

(string-downcase s) — string
s . string

Produces a string like the given one with all ’letters’ as lower case.

> (string-downcase "CAT")
n Cat n

> (string-downcase "cAt")
"Cat"

(string-ith s i) — 1string?
s : string
i : natural?
Extracts the ith 1-letter substring from s.
> (string-ith "hello world" 1)

llell

190

(string-length s) — nat
s . string
Determines the length of a string.

> (string-length "hello world")
11

(string-lower-case? s) — boolean?
s : string
Determines whether all ’letters’ in the string are lower case.

> (string-lower-case? "CAT")
#false

(string-numeric? s) — boolean?
s @ string
Determines whether all ’letters’ in the string are numeric.
> (string-numeric? "123")
#true

> (string-numeric? "1-2i")
#false

(string-ref s i) — char
s : string
i : natural?

Extracts the ith character from s.

> (string-ref "cat" 2)
#\t

(string-upcase s) — string
s : string

Produces a string like the given one with all ’letters’ as upper case.

191

> (string-upcase '"cat")
llCATlI
> (string-upcase "cAt")
lICATlI

(string-upper-case? s) — boolean?
s . string

Determines whether all ’letters’ in the string are upper case.

> (string-upper-case? "CAT")
#true

(string-whitespace? s) — boolean?
s : string

Determines whether all *letters’ in the string are white space.

> (string-whitespace? (string-append " " (string #\tab #\newline #\return)))
#true

(string? x) — boolean?
x @ any/c

Determines whether a value is a string.

> (string? "hello world")
#true

> (string? 42)

#false

(substring s i j) — string
s . string
i : natural?
J : natural?

Extracts the substring starting at i up to j (or the end if j is not provided).

> (substring "hello world" 1 5)

"ello"

> (substring "hello world" 1 8)
"ello wo"

> (substring "hello world" 4)
"o world"

192

3.14 Images

(image=?7 i j) — boolean?
i : image
Jj : image
Determines whether two images are equal.
> cl
> (image=7 (circle 5 "solid" "green") cl)
#false

> (image=7 (circle 10 "solid" "green") c1)
#true

(image? x) — boolean?
x @ any/c
Determines whether a value is an image.
> cl

> (image? c1)
#true

3.15 Misc

(=" x y eps) — boolean?
X @ number
y : number
eps : non-negative-real

Checks whether x and y are within eps of either other.

> (=7 1.01 1.0 0.1)
#true

> (=7 1.01 1.5 0.1)
#false

eof : eof-object?

193

A value that represents the end of a file:

> eof
#<eof>

(eof-object? x) — boolean?
x : any/c

Determines whether some value is the end-of-file value.

> (eof-object? eof)
#true

> (eof-object? 42)
#false

(eq? x y) — boolean?
x @ any/c
y : any/c

Determines whether two values are equivalent from the computer’s perspective (intensional).

> (eq? (cons 1 '()) (cons 1 'O))
#false

> one

(1ist 1)

> (eq? one one)

#true

(equal? x y) — boolean?
x : any/c
y : any/c

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

> (equal? (make-posn 1 2) (make-posn (- 2 1) (+ 1 1)))
#true

(equal™? x y z) — boolean?
x : any/c
y @ any/c
Z . non-negative-real

194

Compares x and y like equal? but uses =~ in the case of numbers.

> (equal™? (make-posn 1.01 1.0) (make-posn 1.01 0.99) 0.2)
#true

(eqv? x y) — boolean?
x : any/c
y @ any/c

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

> (eqv? (cons 1 ")) (cons 1 '()))
#false

> one

(1ist 1)

> (eqv? one one)

#true

(error x ...) — void?
x : any/c

Signals an error, combining the given values into an error message. If any of the values’
printed representations is too long, it is truncated and “...” is put into the string. If the
first value is a symbol, it is suffixed with a colon and the result pre-pended on to the error
message.

> zero

0

> (if (= zero 0) (error "can't divide by 0") (/ 1 zero))
can't divide by 0

(exit) — void

Evaluating (exit) terminates the running program.

(identity x) — any/c
x : any/c

Returns x.

195

> (identity 42)
42
> (identity c1)

> (identity "hello")
"hello"

(struct? x) — boolean?
x : any/c

Determines whether some value is a structure.

> (struct? (make-posn 1 2))
#true

> (struct? 43)

#false

3.16 Signatures
Any : signature?
Signature for any value.

Boolean : signature?
Signature for booleans.

Char : signature?
Signature for chararacters.

(Cons0f first-sig rest-sig) — signature?
first-sig : signature?
rest-sig : signature?

Signature for a cons pair.
EmptyList : signature?

196

Signature for the empty list.

False : signature?

Signature for just false.

Integer : signature?

Signature for integers.

Natural : signature?

Signature for natural numbers.

Number : signature?

Signature for arbitrary numbers.

Rational : signature?

Signature for rational numbers.

Real : signature?

Signature for real numbers.

String : signature?

Signature for strings.

Symbol : signature?

Signature for symbols.

True : signature?

Signature for just true.

197

3.17 Numbers (relaxed conditions)

(* x ...) — number
X : number

Multiplies all given numbers. In ISL and up: * works when applied to only one number or
none.

> (x 5 3)
15

> (x 5 3 2)
30

(* 2)

>
2
> (%)
1

(+ x ...) — number

X . number

Adds all given numbers. In ISL and up: + works when applied to only one number or none.

> (+ 2/3 1/16)

35/48

> (+3258)

18

> (+ 1)

1

> (+)

0

(/ x y ...) — number

X : number
y : number

Divides the first by all remaining numbers. In ISL and up: / computes the inverse when
applied to one number.

(/ 12 2)

(/ 12 2 3)

vV NV OV

3
1/3

198

(= x ...) — number
X . number

Compares numbers for equality. In ISL and up: = works when applied to only one number.

> (= 10 10)
#true

> (= 11)
#true

> (= 0)
#true

3.18 String (relaxed conditions)

(string-append s ...) — string
s . string
Concatenates the characters of several strings.

> (string-append "hello" " " "world" " " "good bye")
"hello world good bye"

(string-ci<=? s t x ...) — boolean?
s : string
t : string

X ! string

Determines whether the strings are ordered in a lexicographically increasing and case-
insensitive manner.

> (string-ci<=7 "hello" "WORLD" "zoo"
#true

(string-ci<? s t x ...) — boolean?
s : string
t : string
x @ string

Determines whether the strings are ordered in a lexicographically strictly increasing and
case-insensitive manner.

199

> (string-ci<? "hello" "WORLD" "zoo")
#true

(string-ci=? s t x ...) — boolean?
s ! string
t . string
x @ string

Determines whether all strings are equal, character for character, regardless of case.

> (string-ci=?7 "hello" "HellO")
#true

(string-ci>=? s t x ...) — boolean?
s . string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically decreasing and case-
insensitive manner.

n

> (string-ci>? zoo" "WORLD" "hello")

#true

(string-ci>? s t x ...) — boolean?
s @ string
t : string
x @ string

Determines whether the strings are ordered in a lexicographically strictly decreasing and

case-insensitive manner.

> (string-ci>? "zoo" "WORLD" "hello")

#true

(string<=? s t x ...) — boolean?
s . string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically increasing manner.

200

> (string<=7 "hello" "hello" "world" "zoo")
#true

(string<? s t x ...) — boolean?
s @ string
t . string
x : string

Determines whether the strings are ordered in a lexicographically strictly increasing manner.

> (string<? "hello" "world" "zoo")
#true

(string=? s t x ...) — boolean?
s : string
t : string
x @ string

Determines whether all strings are equal, character for character.

> (string=7 "hello" "world")
#false

> (string=7 "bye" "bye")
#true

(string>=? s t x ...) — boolean?
s . string
t . string
x © string

Determines whether the strings are ordered in a lexicographically decreasing manner.

> (string>=? "zoo" "zoo" "world" "hello")
#true

(string>? s t x ...) — boolean?
s . string
t . string
X . string

Determines whether the strings are ordered in a lexicographically strictly decreasing manner.

> (string>? "zoo" "world" "hello")
#true

201

3.19 Posn

(posn) — signature

Signature for posns.

3.20 Higher-Order Functions

(andmap p? 1 ...) — boolean
p? : (X ... -> boolean)
1 : (listof X)

Determines whether p? holds for all items of 1 ...:

(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p x-n))
(andmap p (list x-1 ... x-n) (list y-1 ... y-n)) = (and (p x-1 y-
1) ... (p x-n y-n))

> (andmap odd? '(1 3 57 9))
#true

> (andmap even? '())
#true

Making sure all numbers are below some threshold:
> (define (small-enough? x)

(< x 3))

> (andmap small-enough? '(0 1 2))
#true

Checking that all items in the first list satisfy the corresponding predictate in the 2nd:

> (define (and-satisfies? x f)

(f x))

> (andmap and-satisfies? (list O 1 2) (list odd? even? positive?))
#false

202

(apply f x-1 ... 1) —> Y

f:X-1...X-N->Y)
x-1 : X-1
1 : (list X-i+1 ... X-N)

Applies a function using items from a list as the arguments:
(apply £ (list x-1 ... x-n)) = (f x-1 ... x-n)
> a-list
(1ist 01 234567 809)

> (apply max a-list)
9

(argmax f 1) — X
f : (X -> real)
1 : (listof X)

Finds the (first) element of the list that maximizes the output of the function.

> (argmax second '((sam 98) (carl 78) (vincent 93) (asumu 99)))
(list 'asumu 99)

(argmin f 1) — X
f : (X -> real)
1 : (listof X)

Finds the (first) element of the list that minimizes the output of the function.

> (argmin second '((sam 98) (carl 78) (vincent 93) (asumu 99)))
(list 'carl 78)

(build-list n f) — (listof X)
n : nat
f : (nat -> X)

Constructs a list by applying £ to the numbers between O and (- n 1):

(build-1list n f) = (Qist (f 0) ... (f (- n 1)))

203

> (build-list 22 addl)
(list 1 23456789 10 11 12 13 14 15 16 17 18 19 20 21 22)

Creating a diagonal matrix:

> (define (diagonalize i)
(local ((define (off j)
Gf (=1 3) 1 0)))
(build-list 3 off)))

> (build-list 3 diagonalize)
(list (list 1 0 0) (list 0 1 0) (list 0 O 1))

(build-string n f) — string
n : nat
f : (nat -> char)

Constructs a string by applying £ to the numbers between O and (- n 1):

(build-string n f) = (string (f 0) (f (- n 1))

> (build-string 10 integer->char)
"\u0000\u0001\u0002\u0003\u0004\u0005\u0006\a\b\t"

Making the alphabet:

> (define (starting-at-a x)
(integer->char (+ 65 x)))

> (build-string 26 starting-at-a)
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

(compose f g) — (X -> Z)
f: O ->12
g: X ->Y)

Composes a sequence of procedures into a single procedure:

(compose f g)

204

is equivalent to

(define (f-after-g x)
(f (g x)))

> (map (compose addl second) '((add 3) (sub 2) (mul 4)))
(1ist 4 3 5)

(filter p? 1) — (listof X)
p? : (X -> boolean)
1 : (listof X)

Constructs a list from all those items on a list for which the predicate holds.

> (filter odd? '(0 1 234567 8 9))
(list 1 357 9)

Keep only numbers that are large enough:

> (define (large-enough? x)
(>=x 3))

> (filter large-enough? '(0 1 2 3456 7 8 9))
(1ist 34567 89)

(foldl f base 1 ...) —> Y
f: X ...Y->Y)
base : Y
1 : (listof X)

(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
(foldl f base (list x-1 ... x-n) (list y-1 ... y-n))
= (f x-n y-n ... (f x-1 y-1 base))

> (foldl + 0 '(01 234567 89))
45

> (foldl cons '() '(a b c))
(list 'c 'b 'a)

205

(foldr f base 1 ...) — Y
f: X ...Y->Y)
base : Y
1 : (listof X)

(foldr f base (list x-1 ... x-n)) = (f x-1 ... (£ x-n base))
(foldr f base (list x-1 ... x-n) (list y-1 ... y-n))
= (f x-1 y-1 ... (f x-n y-n base))

> (foldr + 0 '(01 23456738 9))
45

Append all rests of all lists:
> (define (append-rests f r)

(append (rest f) r))

> (foldr append-rests '() '((1 a) (2 bc) (3de £)))
(list 'a 'b 'c 'd 'e 'f)

Add two lists of numbers:
> (define (add-two-lists x y r)

(+xyr))

> (foldr add-two-lists 0 '(1 2 3) '(10 11 12))
39

(map £ 1 ...) — (listof Z)
f: X ... ->172)
1 : (listof X)

Constructs a new list by applying a function to each item on one or more existing lists:

(map £ (list x-1 ... x-n)) = (list (f x-1) ... (f x-n))
(map £ (list x-1 ... x-n) (list y-1 ... y-n)) = (list (f x-1 y-
1) ... (f x-n y-n))

206

> (map addl (list 3 -4.01 2/5))
(list 4 #i-3.01 1.4)

Mapping a user-defined function:
> (define (tag-with-a x)

(1ist "a" (+ x 1)))

> (map tag-with-a (list 3 -4.01 2/5))

(1ist (1ist "a" 4) (list "a" #i-3.01) (list "a" 1.4))
Mapping over two lists:

> (define (add-and-multiply x y)

(+x (x xy)))

> (map add-and-multiply (list 3 -4 2/5) '(1 2 3))
(1ist 6 -12 1.6)

(memf p? 1) — (union #false (listof X))
p? : (X -> any)
1 : (listof X)

Produces #false if p? produces false for all items on 1. If p? produces #true for any of
the items on 1, memf returns the sub-list starting from that item.

> (memf odd? '(2 4 6 3 8 0))

(1ist 3 8 0)
(ormap p? 1 ...) — boolean
p? : (X ... -> boolean)

1 : (listof X)

Determines whether p? holds for at least one items of 1:

(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))
(ormap p (list x-1 ... x-n) (list y-1 ... y-n)) = (or (p x-1 y-
1) ... (p x-n y-n))

207

> (ormap odd? '(1 3 57 9))
#true

> (ormap even? '())
#false

Making sure at least one number is below some threshold:
> (define (a-small-one? x)

(< x 3))

> (ormap a-small-one? '(6 7 8 1 5))
#true

Checking that one item in the first list satisfy the corresponding predictate in the 2nd:
> (define (or-satisfies? x f)

(f x))

> (ormap or-satisfies? (list O 1 2) (list odd? even? positive?))
#true

(procedure? x) — boolean?
X @ any
Produces true if the value is a procedure.
> (procedure? cons)

#true

> (procedure? addl)
#true

Checking a programmer-defined function:

> (define (my-function x)
x)

> (procedure? my-function)
#true

208

(quicksort 1 comp) — (listof X)
1 : (listof X)
comp : (X X -> boolean)

Sorts the items on 1, in an order according to comp (using the quicksort algorithm).

> (quicksort '(6 72134059 8) <)
(list 01 23456789)

(sort 1 comp) — (listof X)
1 : (listof X)
comp : (X X -> boolean)

Sorts the items on 1, in an order according to comp.

> (sort '(6
(list 01 2

209

4 Intermediate Student with Lambda

The grammar notation uses the notation X ... (bold dots) to indicate that X may occur an

arbitrary number of times (zero, one, or more). Separately, the grammar also defines . . .

an identifier to be used in templates.

program

def-or-expr

definition

expr

signature-declaration

signature-form

def-or-expr ..

definition

expr

test-case
library-require

(define (name variable variable ..) expr)
(define name expr)
(define-struct name (name ..))

(lambda (variable variable ..) expr)
(A4 (variable variable ..) expr)
(local [definition ..] expr)
(letrec ([name expr] ..) expr)
(let ([name expr] ..) expr)
(let* ([name expr] ..) expr)
(expr expr expr ..)

(cond [expr expr] .. [expr exprl)
(cond [expr expr] .. [else expr])
(if expr expr expr)

(and expr expr expr ...)

(or expr expr expr ..)

(time expr)

name

prim-op

’quoted

‘quasiquoted

20

number

boolean

string

character

(signature signature-form)

(: name signature-form)
(enum expr ...)

(mixed signature-form ...)

210

as

| (signature-form ... -> signature-form)
| (ListOf signature-form)
| signature-variable
| expr
signature-variable = Yname
quoted = name
| number
| string
| character
| (quoted ...)
| ’quoted
| ‘quoted
| ,quoted
| ,@quoted

quasiquoted = name
| number

| string

| character

| (quasiquoted ...)
| ’quasiquoted

| ‘quasiquoted

| ,expr

| ,Q@expr

test-case = (check-expect expr expr)

| (check-random expr expr)

| (check-within expr expr expr)

| (check-member-of expr expr ...)
| (check-range expr expr expr)

| (check-satisfied expr expr)

| (check-error expr expr)

| (check-error expr)

= (require string)
| (require (1lib string string ...))
| (require (planet string package))

library-require

package = (string string number number)

A name or a variable is a sequence of characters not including a space or one of the
following:

U, BN EN s

211

A number is a number such as 123, 3/2, or 5. 5.
A boolean is one of: #true or #false.

Alternative spellings for the #true constant are #t, true, and #T. Similarly, #f, false, or
#F are also recognized as #false.

A symbol is a quote character followed by a name. A symbol is a value, just like 42, ' (),
or #false.

A string is a sequence of characters enclosed by a pair of ". Unlike symbols, strings may
be split into characters and manipulated by a variety of functions. For example, "abcdef",
"This is a string",and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\Db,
and #\space are characters.

In function calls, the function appearing immediately after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

4.1 Pre-defined Variables
empty : empty?

The empty list.

true : boolean?

The #true value.

false : boolean?

The #false value.

4.2 Template Variables

A placeholder for indicating that a function definition is a template.

212

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

4.3 Syntax for Intermediate with Lambda

(lambda (variable variable ..) expression)

Creates a function that takes as many arguments as given variables, and whose body is
expression.

(A4 (variable variable ..) expression)

The Greek letter A is a synonym for lambda.

(expression expression expression ..)

Calls the function that results from evaluating the first expression. The value of the call
is the value of function’s body when every instance of name’s variables are replaced by the
values of the corresponding expressions.

The function being called must come from either a definition appearing before the function
call, or from a 1ambda expression. The number of argument expressions must be the same
as the number of arguments expected by the function.

(local [definition ...] expression)

Groups related definitions for use in expression. Each definition can be either a de-
fine or adefine-struct.

213

When evaluating local, each definition is evaluated in order, and finally the body ex-
pression is evaluated. Only the expressions within the local (including the right-hand-
sides of the definitions and the expression) may refer to the names defined by the
definitions. If a name defined in the local is the same as a top-level binding, the inner
one “shadows” the outer one. That is, inside the local, any references to that name refer to
the inner one.

(letrec ([name expr-for-let] ...) expression)

Like local, but with a simpler syntax. Each name defines a variable (or a function) with the
value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines
a function, otherwise it defines a variable.

(let* ([name expr-for-let] ...) expression)

Like letrec, but each name can only be used in expression, and in expr-for-lets
occuring after that name.

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the
expr-for-lets next to the names.

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time
prints out the time taken by the evaluation (including real time, time taken by the CPU, and
the time spent collecting free memory). The value of time is the same as that of expres-
sion.

4.4 Common Syntaxes

The following syntaxes behave the same in the Intermediate with Lambda level as they did
in the [§3 “Intermediate Student”|level.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

214

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

’name
’part
(quote name)
(quote part)

A quoted name is a symbol. A quoted part is an abbreviation for a nested lists.

Normally, this quotation is written with a ', like ' (apple banana), but it can also be
written with quote, like (quote (apple banana)).

‘name
‘part
(quasiquote name)
(quasiquote part)

Like quote, but also allows escaping to expression “unquotes.”

Normally, quasi-quotations are written with a backquote, ~, like ~ (apple ,(+ 1 2)), but
they can also be written with quasiquote, like (quasiquote (apple ,(+ 1 2))).

,expression
(unquote expression)

Under a single quasiquote, , expression escapes from the quote to include an evaluated
expression whose result is inserted into the abbreviated list.

Under multiple quasiquotes, , expression is really the literal , expression, decrementing
the quasiquote count by one for expression.

Normally, an unquote is written with ,, but it can also be written with unquote.

,Qexpression
(unquote-splicing expression)

Under a single quasiquote, ,@expression escapes from the quote to include an evaluated
expression whose result is a list to splice into the abbreviated list.

215

Under multiple quasiquotes, a splicing unquote is like an unquote; that is, it decrements the
quasiquote count by one.

Normally, a splicing unquote is written with ,, but it can also be written with unquote-
splicing.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns #true if the value is an instance of
the structure.

The name of the new functions introduced by define-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to #true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to #true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither #true nor #false, cond also reports an error.

else cannot be used outside of cond.

(if question-expression
then-answer-expression
else-answer-expression)

When the value of the question-expression is #true, if evaluates the then-answer-
expression. When the test is #false, if evaluates the else-answer-expression.

If the question-expression is neither #true nor #false, if reports an error.

216

(and expression expression expression ...)

Evaluates to #true if all the expressions are #true. If any expression is #false, the
and expression evaluates to #false (and the expressions to the right of that expression are
not evaluated.)

If any of the expressions evaluate to a value other than #true or #false, and reports an
error.

(or expression expression expression ...)

Evaluates to #true as soon as one of the expressions is #true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are #false, the or
expression evaluates to #false.

If any of the expressions evaluate to a value other than #true or #false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheit->celsius -40) -40)

(define (fahrenheit->celsius f)
(* 5/9 (- £ 32)))

A check-expect expression must be placed at the top-level of a student program. Also it
may show up anywhere in the program, including ahead of the tested function definition. By
placing check-expects there, a programmer conveys to a future reader the intention behind
the program with working examples, thus making it often superfluous to read the function
definition proper. Syntax errors in check-expect (and all check forms) are intentionally
delayed to run time so that students can write tests without necessarily writing complete
function headers.

It is an error for expr or expected-expr to produce an inexact number or a function value.
As for inexact numbers, it is morally wrong to compare them for plain equality. Instead one
tests whether they are both within a small interval; see check-within. As for functions
(see Intermediate and up), it is provably impossible to compare functions.

(check-random expression expected-expression)

217

Checks that the first expression evaluates to the same value as the expected-
expression.

The form supplies the same random-number generator to both parts. If both parts request
random numbers from the same interval in the same order, they receive the same random
numbers.

Here is a simple example of where check-random is useful:

(define WIDTH 100)
(define HEIGHT (* 2 WIDTH))

(define-struct player (name x y))
; A Player is (make-player String Nat Nat)

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(make-player name (random WIDTH) (random HEIGHT)))

Note how random is called on the same numbers in the same order in both parts of check-
random. If the two parts call random for different intervals, they are likely to fail:

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(a-helper-function name (random HEIGHT)))

; String Number -> Player
(define (a-helper-function name height)
(make-player name (random WIDTH) height))

Because the argument to a-helper-function is evaluated first, random is first called for
the interval [0,HEIGHT) and then for [0, WIDTH), that is, in a different order than in the
preceding check-random.

It is an error for expr or expected-expr to produce a function value or an inexact number;
see note on check-expect for details.

(check-satisfied expression predicate)

218

Checks that the first expression satisfies the named predicate (function of one argu-
ment). Recall that “satisfies” means “the function produces #true for the given value.”

Here are simple examples for check-satisfied:

> (check-satisfied 1 o0dd?)
The test passed!

> (check-satisfied 1 even?)
Ran 1 test.
0 tests passed.
Check failures:
1
Actual value | 1 | does not satisfy even?.
L

at line 3, column O

In general check-satisfied empowers program designers to use defined functions to for-
mulate test suites:

; [cons Number [List-of Number]] -> Boolean
; a function for testing htdp-sort

(check-expect (sorted? (list 1 2 3)) #true)
(check-expect (sorted? (list 2 1 3)) #false)

(define (sorted? 1)
(cond
[(empty? (rest 1)) #truel
[else (and (<= (first 1) (second 1)) (sorted? (rest 1)))1))

; [List-of Number] -> [List-of Number]
; create a sorted version of the given list of numbers

(check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(define (htdp-sort 1)
(cond
[(empty? 1) 1]
[else (insert (first 1) (htdp-sort (rest 1)))1))

; Number [List-of Number] -> [List-of Number]
; insert x into 1 at proper place

; assume 1 is arranged in ascending order

; the result is sorted in the same way

219

(define (insert x 1)
(cond
[(empty? 1) (list x)]
[else (if (<= x (first 1)) (cons x 1) (cons (first 1) (imsert x (rest 1))))1))

And yes, the results of htdp-sort satisfy the sorted? predicate:

> (check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(check-within expression expected-expression delta)

Checks whether the value of the expression expression is structurally equal to the value
produced by the expected-expression expression; every number in the first expression
must be within delta of the corresponding number in the second expression.

(define-struct roots (x sqrt))
; RT is [List-of (make-roots Number Number)]

(define (root-of a)
(make-roots a (sqrt a)))

(define (roots-table xs)
(cond
[(empty? xs) '(O]
[else (cons (root-of (first xs)) (roots-table (rest xs)))]1))

Due to the presence of inexact numbers in nested data, check-within is the correct choice
for testing, and the test succeeds if delta is reasonably large:

Example:

> (check-within (roots-table (list 1.0 2.0 3.0))
(list
(make-roots 1.0 1.0)
(make-roots 2 1.414)
(make-roots 3 1.713))
0.1)
The test passed!

In contrast, when delta is small, the test fails:

Example:

220

> (check-within (roots-table (list 2.0))
(list
(make-roots 2 1.414))
#ile-5)
Ran 1 test.
0 tests passed.
Check failures:

Actual value | '((make-roots 2.0 1.4142135623730951)) | is

not within le-5 of expected value | '((make-roots 2 1.414)) |.
L |

at line 5, column O

It is an error for expressions or expected-expression to produce a function value; see
note on check-expect for details.

If delta is not a number, check-within reports an error.

(check-error expression expected-error-message)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of expected-error-message, if it is present.

Here is a typical beginner example that calls for a use of check-error:

(define sample-table
"(("matthias" 10)
("matthew" 20)
("robby" -1)

("shriram" 18)))

; [List-of [list String Number]] String -> Number
; determine the number associated with s in table

(define (lookup table s)
(cond
[(empty? table) (error (string-append s " not found"))]
[else (if (string=7 (first (first table)) s)
(second (first table))
(lookup (rest table)))]))

Consider the following two examples in this context:

221

Example:
> (check-expect (lookup sample-table "matthew") 20)
The test passed!

Example:

> (check-error (lookup sample-table "kathi") "kathi not found")
The test passed!

(check-member-of expression expression expression ...)

Checks that the value of the first expression is that of one of the following expressions.

; [List-of X] -> X
; pick a random element from the given list 1
(define (pick-one 1)

(list-ref 1 (random (length 1))))

Example:
> (check—member—of (pick—one 1 (Ilall nbn "C ")) Ilall nbn ”C ")

The test passed!

It is an error for any of expressions to produce a function value; see note on check-
expect for details.

(check-range expression low-expression high-expression)
Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

A check-range form is best used to delimit the possible results of functions that compute
inexact numbers:

(define EPSILON 0.001)

; [Real -> Real] Real -> Real
; what is the slope of f at x7?
(define (differentiate f x)
(slope f (- x EPSILON) (+ x EPSILON)))

222

; [Real -> Real] Real Real -> Real
(define (slope f left right)
(/ (- (f right) (f left))
2 EPSILON))

(check-range (differentiate sin 0) 0.99 1.0)

It is an error for expression, low-expression, or high-expression to produce a func-
tion value; see note on check-expect for details.

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), O through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (lib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))
(require (planet id))
(require (planet string))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

The full grammar for planet requires is given in §3.2 “Importing and Exporting: require
and provide”, but the best place to find examples of the syntax is on the the PLaneT server,
in the description of a specific package.

223

http://planet.racket-lang.org

4.5 Pre-defined Functions

4.6 Signatures

Signatures do not have to be comment: They can also be part of the code. When a signature
is attached to a function, DrRacket will check that program uses the function in accordance
with the signature and display signature violations along with the test results.

A signature is a regular value, and is specified as a signature form, a special syntax that only
works with : signature declarations and inside signature expressions.

(: name signature-form)

This attaches the signature specified by signature-form to the definition of name. There
must be a definition of name somewhere in the program.

(: age Integer)
(define age 42)

(: area-of-square (Number -> Number))
(define (area-of-square len)
(sqr len))

On running the program, Racket checks whether the signatures attached with : actually
match the value of the variable. If they don’t, Racket reports signature violation along with
test failures.

For example, this piece of code:

(: age Integer)
(define age "fortytwo")

Yields this output:

1 signature violation.

Signature violations:
got "fortytwo" at line 2, column 12, signature at line 1,
column 7

Note that a signature violation does not stop the running program.

(signature signature-form)
This returns the signature described by signature-form as a value.

224

4.6.1 Signature Forms

Any expression can be a signature form, in which case the signature is the value returned by
that expression. There are a few special signature forms, however:

In a signature form, any name that starts with a 7, is a signature variable that stands for any
signature depending on how the signature is used.

Example:

(: same (%a -> %a))

(define (same x) x)

(input-signature-form ... -> output-signature-form)

This signature form describes a function with inputs described by the input-signature-
forms and output described by output-signature-form.

(enum expr ...)

This signature describes an enumeration of the values returned by the exprs.
Example:

(: cute? ((enum "cat" "snake") -> Boolean))

(define (cute? pet)
(cond
[(string=7 pet "cat") #t]
[(string=7 pet "snake") #f]))

(mixed signature-form ...)

This signature describes mixed data, i.e. an itemization where each of the cases has a signa-
ture described by a signature-form.

Example:

(define SIGS (signature (mixed Aim Fired)))

(List0f signature-form)

225

This signature describes a list where the elements are described by signature-form.

(predicate expression)

This signature describes values through a predicate: expression must evaluate to a func-
tion of one argument that returns a boolean. The signature matches all values for which the
predicate returns #true.

4.6.2 Struct Signatures

A define-struct form defines two additional names that can be used in signatures. For a
struct called struct, these are Struct and Struct0f. Note that these names are capital-
ized. In particular, a struct called Struct, will also define Struct and Struct0f. More-
over, when forming the additional names, hyphens are removed, and each letter following a
hyphen is capitalized - so a struct called foo-bar will define FooBar and FooBar0Of.

Struct is a signature that describes struct values from this structure type. StructOf is a
function that takes as input a signature for each field. It returns a signature describing values
of this structure type, additionally describing the values of the fields of the value.

(define-struct pair [fst snd])
(: add-pair ((PairOf Number Number) -> Number))

(define (add-pair p)
(+ (pair-fst p) (pair-snd p)))

The remaining subsections list those functions that are built into the programming language.
All other functions are imported from a teachpack or must be defined in the program.

4.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

(- x y ...) — number
X @ number
y . number

Subtracts the second (and following) number(s) from the first ; negates the number if there
is only one argument.

> (- 5)
-5

> (- 5 3)
2

> (- 531)
1

226

(< x y z ...) - boolean?

X . real
y : real
z : real

Compares two or more (real) numbers for less-than.

> (< 42 2/5)
#false

(<= x y z ...) — boolean?
x @ real
y : real
z @ real

Compares two or more (real) numbers for less-than or equality.

> (<= 42 2/5)
#false

(>x y z ...) — boolean?
x @ real
y : real
z @ real

Compares two or more (real) numbers for greater-than.

> (> 42 2/5)
#true

(>=x y z ...) — boolean?
x ! real
y : real
z @ real

Compares two or more (real) numbers for greater-than or equality.

> (>= 42 42)
#true

227

(abs x) — real
X . real
Determines the absolute value of a real number.

> (abs -12)
12

(acos x) — number
X . number
Computes the arccosine (inverse of cos) of a number.

> (acos 0)
#i1.5707963267948966

(addl x) — number
X ! number
Increments the given number.

> (addl 2)
3

(angle x) — real
X ! number
Extracts the angle from a complex number.

> (angle (make-polar 3 4))
#1-2.2831853071795867

(asin x) — number
X : number

Computes the arcsine (inverse of sin) of a number.

> (asin 0)
0

228

(atan x) — number
X . number

Computes the arctangent of the given number:

> (atan 0)

0

> (atan 0.5)
#10.46364760900080615

Also comes in a two-argument version where (atan y x) computes (atan (/ y x))
but the signs of y and x determine the quadrant of the result and the result tends to be more
accurate than that of the 1-argument version in borderline cases:

> (atan 3 4)
#10.6435011087932844
> (atan -2 -1)
#1-2.0344439357957027

(ceiling x) — integer
x ! real

Determines the closest integer (exact or inexact) above a real number. See round.

> (ceiling 12.3)
#113.0

(complex? x) — boolean?
x : any/c

Determines whether some value is complex.

> (complex? 1-2i)
#true

(conjugate x) — number
X @ number

Flips the sign of the imaginary part of a complex number.

229

> (conjugate 3+41i)

3-4i

> (conjugate -2-5i)

-2+561

> (conjugate (make-polar 3 4))
#1-1.960930862590836+2.2704074859237851

(cos x) — number
x : number
Computes the cosine of a number (radians).

> (cos pi)
#i-1.0

(cosh x) — number
X . number

Computes the hyperbolic cosine of a number.

> (cosh 10)
#i11013.232920103324

(current-seconds) — integer

Determines the current time in seconds elapsed (since a platform-specific starting date).

> (current-seconds)
1767549595

(denominator x) — integer
x : rational?

Computes the denominator of a rational.

> (denominator 2/3)
3

e : real

230

Euler’s number.

> e
#12.718281828459045

(even? x) — boolean?
x ! integer
Determines if some integer (exact or inexact) is even or not.

> (even? 2)
#true

(exact->inexact x) — number
X . number
Converts an exact number to an inexact one.

> (exact->inexact 12)
#i12.0

(exact? x) — boolean?
X : number
Determines whether some number is exact.

> (exact? (sqrt 2))
#false

(exp x) — number
X . number
Determines e raised to a number.

> (exp -2)
#10.1353352832366127

(expt x y) — number
X : number
y . number

231

Computes the power of the first to the second number, which is to say, exponentiation.

> (expt 16 1/2)
4

> (expt 3 -4)
1/81

(floor x) — integer
X @ real

Determines the closest integer (exact or inexact) below a real number. See round.

> (floor 12.3)
#i12.0

(gcd x y ...) — integer
X . integer
y : integer
Determines the greatest common divisor of two integers (exact or inexact).

> (gcd 6 12 8)
2

(imag-part x) — real
x : number
Extracts the imaginary part from a complex number.

> (imag-part 3+4i)
4

(inexact->exact x) — number
X . number

Approximates an inexact number by an exact one.

> (inexact->exact 12.0)
12

232

(inexact? x) — boolean?
X . number
Determines whether some number is inexact.

> (inexact? 1-2i)
#false

(integer->char x) — char
X : exact-integer?
Looks up the character that corresponds to the given exact integer in the ASCII table (if any).

> (integer->char 42)
#\x

(integer-sqrt x) — complex
X : integer
Computes the integer or imaginary-integer square root of an integer.

> (integer-sqrt 11)
3

> (integer-sqrt -11)
0+31

(integer? x) — boolean?
x : any/c

Determines whether some value is an integer (exact or inexact).

> (integer? (sqrt 2))
#false

(lecm x y ...) — integer
x : integer
y : integer

Determines the least common multiple of two integers (exact or inexact).

233

> (lcm 6 12 8)
24

(log x) — number
X @ number
Determines the base-e logarithm of a number.

> (log 12)
#12.4849066497880004

(magnitude x) — real
X @ number

Determines the magnitude of a complex number.

> (magnitude (make-polar 3 4))
#13.0000000000000004

(make-polar x y) — number
x @ real
y : real

Creates a complex from a magnitude and angle.

> (make-polar 3 4)
#1-1.960930862590836-2.2704074859237851

(make-rectangular x y) — number
x : real
y . real
Creates a complex from a real and an imaginary part.

> (make-rectangular 3 4)

3+4i

(max x y ...) — real
x ! real
y . real

234

Determines the largest number—aka, the maximum.

> (max 3287 29 0)

9

(min x y ...) — real
x ! real
y . real

Determines the smallest number—aka, the minimum.

> (min 3287 29 0)
0

(modulo x y) — integer
x : integer
y : integer
Finds the remainder of the division of the first number by the second:

> (modulo 9 2)
1
> (modulo 3 -4)
-1

(negative? x) — boolean?
x : real
Determines if some real number is strictly smaller than zero.

> (negative? -2)
#true

(number->string x) — string
X : number

Converts a number to a string.
> (number->string 42)

l|42|l

235

(number->string-digits x p) — string
x : number
p : posint

Converts a number x to a string with the specified number of digits.

> (number->string-digits 0.9 2)
l|0.9||

> (number->string-digits pi 4)
"3.1416"

(number? n) — boolean?
n : any/c
Determines whether some value is a number:

> (number? "hello world")
#false

> (number? 42)

#true

(numerator x) — integer
x @ rational?

Computes the numerator of a rational.

> (numerator 2/3)
2

(odd? x) — boolean?
x : integer

Determines if some integer (exact or inexact) is odd or not.

> (odd? 2)
#false

pi : real

236

The ratio of a circle’s circumference to its diameter.

> pi
#13.141592653589793

(positive? x) — boolean?
x : real
Determines if some real number is strictly larger than zero.

> (positive? -2)
#false

(quotient x y) — integer
X : integer
y : integer

Divides the first integer—also called dividend—by the second—known as divisor—to obtain
the quotient.

> (quotient 9 2)
4

> (quotient 3 4)
0

(random x) — natural?
x : (and/c natural? positive?)
Generates a random natural number less than some given exact natural.

> (random 42)
39

(rational? x) — boolean?
x : any/c

Determines whether some value is a rational number.

> (rational? 1)
#true

237

> (rational?
#true
> (rational?
#true
> (rational?
#false
> (rational?
#true
> (rational?
#true
> (rational?
#false

-2.349)
#11.23456789)
(sqrt -1))
pi)

e)

1-2i)

As the interactions show, the teaching languages considers many more numbers as rationals
than expected. In particular, pi is a rational number because it is only a finite approximation
to the mathematical 7. Think of rational? as a suggestion to think of these numbers as

fractions.

(real-part x) — real

X : number

Extracts the real part from a complex number.

> (real-part
3

3+41i)

(real? x) — boolean?

x : any/c

> (real? 1-21i)

#false

(remainder x y) — integer
X . integer
y : integer

Determines whether some value is a real number.

Determines the remainder of dividing the first by the second integer (exact or inexact).

(remainder 9 2)

>
1
> (remainder 3 4)
3

238

(round x) — integer
x : real
Rounds a real number to an integer (rounds to even to break ties). See floor and ceiling.

> (round 12.3)
#i12.0

(sgn x) — (union 1 #i1.0 0 #i0.0 -1 #i-1.0)
x @ real
Determines the sign of a real number.

> (sgn -12)
-1

(sin x) — number
X ! number
Computes the sine of a number (radians).

> (sin pi)
#11.2246467991473532e-16

(sinh x) — number
X ! number
Computes the hyperbolic sine of a number.

> (sinh 10)
#111013.232874703393

(sqr x) — number
X @ number

Computes the square of a number.

> (sqr 8)
64

239

(sqrt x) — number
x : number

Computes the square root of a number.

> (sqrt 9)

3

> (sqrt 2)
#11.4142135623730951

(subl x) — number
X : number
Decrements the given number.

> (subl 2)
1

(tan x) — number
X . number

Computes the tangent of a number (radians).

> (tan pi)
#i-1.2246467991473532e-16

(zero? x) — boolean?
X : number

Determines if some number is zero or not.

> (zero? 2)
#false
4.8 Booleans

(boolean->string x) — string
x : boolean?

240

Produces a string for the given boolean

> (boolean->string #false)
"#false"
> (boolean->string #true)
"#true"

(boolean=7 x y) — boolean?
x : boolean?
y : boolean?

Determines whether two booleans are equal.

> (boolean=7 #true #false)
#false

(boolean? x) — boolean?
x : any/c

Determines whether some value is a boolean.

> (boolean? 42)
#false

> (boolean? #false)
#true

(false? x) — boolean?
x : any/c
Determines whether a value is false.

> (false? #false)
#true

(not x) — boolean?
X : boolean?

Negates a boolean value.

> (not #false)
#true

241

4.9 Symbols

(symbol->string x) — string
x : symbol

Converts a symbol to a string.

> (symbol->string 'c)

llCIl

(symbol=? x y) — boolean?
x : symbol
y @ symbol

Determines whether two symbols are equal.

> (symbol=7 'a 'b)
#false

(symbol? x) — boolean?
x : any/c

Determines whether some value is a symbol.

> (symbol? 'a)
#true

4.10 Lists

(append 1 ...) — (listof any)
1 : (listof any)

Creates a single list from several, by concatenation of the items. In ISL and up: append also
works when applied to one list or none.

> (append (cons 1 (coms 2 '())) (cons "a" (coms "b" '()))
(liSt 1 2 "a" nbu)

> (append)
O]

242

(assoc x 1) — (union (listof any) #false)
x @ any/c

1 : (listof any)

Produces the first pair on 1 whose first is equal? to x; otherwise it produces #false.

> (assoc "hello" '(("world" 2) ("hello" 3) ("good" 0)))
(list "hello" 3)

(assq x 1) — (union #false cons?)
x : any/c
1 : 1list?

Determines whether some item is the first item of a pair in a list of pairs. (It compares the
items with eq?.)
> a

(1ist (1ist 'a 22) (list 'b 8) (list 'c 70))
> (assq 'b a)
(list 'b 8)

(caaar x) — any/c
x : list?

LISP-style selector: (car (car (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (caaar w)

(1ist "bye")

(caadr x) — any/c
x @ list?
LISP-style selector: (car (car (cdr x))).

> (caadr (cons 1 (cons (cons
1
a

'a '"()) (cons (cons 'd 'O) "ON)N

243

(caar x) — any/c
x @ list?

LISP-style selector: (car (car x)).

>y
(list (1list (list 1 2 3) #false "world"))

> (caar y)
(list 1 2 3)

(cadar x) — any/c
x : list?

LISP-style selector: (car (cdr (car x))).

> W

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cadar w)

#true

(cadddr x) — any/c
x : list?

LISP-style selector: (car (cdr (cdr (cdr x)))).
> v
(1ist 1 23456789 'A)

> (cadddr v)
4

(caddr x) — any/c
x : list?

LISP-style selector: (car (cdr (cdr x))).

> X

(list 2 "hello" #true)
> (caddr x)

#true

244

(cadr x) — any/c
x @ list?

LISP-style selector: (car (cdr x)).

> X

(list 2 "hello" #true)
> (cadr x)

"hello"

(car x) — any/c
X : cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (car x)

2

(cdaar x) — any/c
x @ list?
LISP-style selector: (cdr (car (car x))).

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cdaar w)

(1ist 3)

(cdadr x) — any/c
x : list?

LISP-style selector: (cdr (car (cdr x))).

> (cdadr (list 1 (list 2 "a") 3))
(list "a")

(cdar x) — list?
x : list?

245

LISP-style selector: (cdr (car x)).

>y
(list (1list (list 1 2 3) #false "world"))
> (cdar y)

(1ist #false "world")

(cddar x) — any/c
x : list?

LISP-style selector: (cdr (cdr (car x)))

> w

(1ist (1ist (list (list "bye") 3) #true) 42)
> (cddar w)

o)

(cdddr x) — any/c
x : list?

LISP-style selector: (cdr (cdr (cdr x))).

> v
(1ist 1 23456789 'A)
> (cdddr v)

(1ist 4 56 78 9 'A)

(cddr x) — 1list?
x . list?

LISP-style selector: (cdr (cdr x)).

> X
(list 2 "hello" #true)
> (cddr x)

(list #true)

(cdr x) — any/c
X : cons?

246

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (cdr x)

(list "hello" #true)

(cons x y) — list?
x : any/c
y @ list?

Constructs a list.

> (cons 1 '())
(cons 1 ')

(cons? x) — boolean?
x : any/c

Determines whether some value is a constructed list.

> (cons? (cons 1 '()))
#true

> (cons? 42)

#false

(eighth x) — any/c
x @ list?
Selects the eighth item of a non-empty list.

> v

(list 1 23456789 'A)
> (eighth v)

8

(empty? x) — boolean?
x : any/c

Determines whether some value is the empty list.

247

> (empty? ')
#true

> (empty? 42)
#false

(fifth x) — any/c
x . list?

Selects the fifth item of a non-empty list.

> v
(list 1 23 4567 89 'A)
> (fifth v)

5

(first x) — any/c
X . cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (first x)

2

(fourth x) — any/c
x : list?
Selects the fourth item of a non-empty list.
> v
(1ist 1 23456789 'A)

> (fourth v)
4

(length 1) — natural?
1 : list?

Evaluates the number of items on a list.

248

> X

(list 2 "hello" #true)
> (length x)
3

(list x ...) — list?
x : any/c

Constructs a list of its arguments.

> (list 1 234567 89 0)
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8

(cons 9 (cons 0 "ONNIMNNN

(Qist* x ... 1) — 1list?
x : any/c
1 : 1list?

Constructs a list by adding multiple items to a list.

> X

(list 2 "hello" #true)

> (list* 4 3 x)

(list 4 3 2 "hello" #true)

(list-ref x i) — any/c
x @ list?
i : natural?

Extracts the indexed item from the list.

> v

(list 1 234567 89 'A)
> (list-ref v 9)
'A

(1list? x) — boolean?
x : any/c

Checks whether the given value is a list.

249

> (list? 42)

#false

> (list? '())

#true

> (list? (cons 1 (cons 2 '())))
#true

(make-list i x) — list?
i : natural?
x : any/c

Constructs a list of i copies of x.

> (make-list 3 "hello")
(cons "hello" (cons "hello" (comns "hello" '())))

(member x 1) — boolean?
x @ any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member "hello" x)
#true

(member? x 1) — boolean?
x @ any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member? "hello" x)
#true

(memg x 1) — boolean?
x @ any/c
1 : 1list?

250

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq (list (list 1 2 3)) x)
#false

(memq? x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq? (list (list 1 2 3)) x)
#false

(memv x 1) — (or/c #false list)
x : any/c
1 : 1list?

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

> X

(list 2 "hello" #true)

> (memv (list (list 1 2 3)) x)
#false

null : list

Another name for the empty list

> null

O

(null? x) — boolean?
x @ any/c

251

Determines whether some value is the empty list.

> (null? ')
#true

> (null? 42)
#false

(range start end step) — list?
start : number
end : number
step : number

Constructs a list of numbers by stepping from start to end.

> (range 0 10 2)
(cons 0 (cons 2 (cons 4 (cons 6 (cons 8 '())))))

(remove x 1) — list?
x : any/c
1 : 1list?

Constructs a list like the given one, with the first occurrence of the given item removed
(comparing values with equal?).

> X

(list 2 "hello" #true)

> (remove "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove "hello" hello-2)
(list 2 #true "hello")

(remove-all x 1) — 1list?
x : any/c
1 : 1list?

Constructs a list like the given one, with all occurrences of the given item removed (compar-
ing values with equal?).

> x

252

(list 2 "hello" #true)

> (remove-all "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove-all "hello" hello-2)
(list 2 #true)

(rest x) — any/c
X : cons?

Selects the rest of a non-empty list.

> x

(list 2 "hello" #true)
> (rest x)

(list "hello" #true)

(reverse 1) — list
1 : list?

Creates a reversed version of a list.

> x

(list 2 "hello" #true)
> (reverse x)

(list #true "hello" 2)

(second x) — any/c
x . list?

Selects the second item of a non-empty list.

> X

(list 2 "hello" #true)
> (second x)

"hello"

(seventh x) — any/c
x @ list?

253

Selects the seventh item of a non-empty list.

> v

(list 1 234567 89 'A)
> (seventh v)

7

(sixth x) — any/c
x : list?

Selects the sixth item of a non-empty list.

> v

(list 1 23456789 'A)
> (sixth v)

6

(third x) — any/c
x @ list?

Selects the third item of a non-empty list.

> x

(list 2 "hello" #true)
> (third x)

#true

4.11 Posns

(make-posn x y) — posn
x @ any/c
y : any/c

Constructs a posn from two arbitrary values.

> (make-posn 3 3)
(make-posn 3 3)

> (make-posn "hello" #true)
(make-posn "hello" #true)

254

(posn-x p) — any/c
p : posn

Extracts the x component of a posn.

> p

(make-posn 2 -3)
> (posn-x p)

2

(posn-y p) — any/c
p : posn

Extracts the y component of a posn.

>p

(make-posn 2 -3)
> (posn-y p)

-3

(posn? x) — boolean?
x : any/c

Determines if its input is a posn.
> q
(make-posn "bye" 2)
> (posn? q)
#true

> (posn? 42)
#false

4.12 Characters

(char->integer c) — integer
¢ : char

Looks up the number that corresponds to the given character in the ASCII table (if any).

255

> (char->integer #\a)
97

> (char->integer #\z)
122

(char-alphabetic? c¢) — boolean?
¢ : char

Determines whether a character represents an alphabetic character.

> (char-alphabetic? #\Q)
#true

(char-ci<=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in an increasing and case-insensitive manner.

> (char-ci<=7 #\b #\B)
#true

> (char<=? #\b #\B)
#false

(char-ci<? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing and case-insensitive
manner.

> (char-ci<? #\B #\c)
#true

> (char<? #\b #\B)
#false

(char-ci=? ¢ d e ...) — boolean?
c : char
d : char
e : char

256

Determines whether two characters are equal in a case-insensitive manner.

> (char-ci=? #\b #\B)
#true

(char-ci>=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing and case-insensitive manner.

> (char-ci>=? #\b #\C)
#false

> (char>=7 #\b #\C)
#true

(char-ci>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing and case-insensitive

manner.

> (char-ci>? #\b #\B)
#false

> (char>? #\b #\B)
#true

(char-downcase c) — char
c : char

Produces the equivalent lower-case character.

> (char-downcase #\T)
#\t

(char-lower-case? c¢) — boolean?
c : char

257

Determines whether a character is a lower-case character.

> (char-lower-case? #\T)
#false

(char-numeric? c¢) — boolean?
¢ : char

Determines whether a character represents a digit.

> (char-numeric? #\9)
#true

(char-upcase ¢) — char
c : char
Produces the equivalent upper-case character.

> (char-upcase #\t)
#\T

(char-upper-case? c) — boolean?
c : char
Determines whether a character is an upper-case character.

> (char-upper-case? #\T)
#true

(char-whitespace? c¢) — boolean?
c : char
Determines whether a character represents space.
> (char-whitespace? #\tab)

#true

(char<=? ¢ d e ...) — boolean?

c : char
d : char
e : char

258

Determines whether the characters are ordered in an increasing manner.
> (char<=7 #\a #\a #\b)

#true

(char<? x d e ...) — boolean?

x . char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing manner.
> (char<? #\a #\b #\c)

#true

(char=7? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are equal.

> (char=7 #\b #\a)
#false

(char>=? ¢ d e ...) — boolean?

¢ : char
d : char
e : char

Determines whether the characters are sorted in a decreasing manner.
> (char>=7 #\b #\b #\a)

#true

(char>? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing manner.

259

> (char>? #\A #\z #\a)
#false

(char? x) — boolean?
x : any/c
Determines whether a value is a character.
> (char? "a")
#false

> (char? #\a)
#true

4.13 Strings

(explode s) — (listof string)
s : string
Translates a string into a list of 1-letter strings.

> (explode "cat")
(list Ilcll llall lltll)

(format f x ...) — string
f . string
x : any/c

Formats a string, possibly embedding values.

> (format "Dear Dr. “a:" "Flatt")
"Dear Dr. Flatt:"

> (format "Dear Dr. “s:" "Flatt")
"Dear Dr. \"Flatt\":"

(implode 1) — string
1 : 1list?

Concatenates the list of 1-letter strings into one string.

260

> (implode (coms "c" (cons "a" (coms "t" '()))))
"Cat"

(int->string i) — string
i : integer
Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

> (int->string 65)
IIAII

(list->string 1) — string
1 : 1list?
Converts a s list of characters into a string.

> (list->string (comns #\c (cons #\a (coms #\t '()))))
"Cat“

(make-string i c¢) — string
i : natural?
c : char

Produces a string of length i from c.

> (make-string 3 #\d)
llddd“

(replicate i s) — string
i : natural?
s : string
Replicates s i times.

> (replicate 3 "h")
llhhhll

(string ¢ ...) — string?
¢ : char

261

Builds a string of the given characters.

> (string #\d #\o #\g)
lldog"

(string->int s) — integer
s ! string
Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

> (string->int "a")
97

(string->list s) — (listof char)
s ! string
Converts a string into a list of characters.

> (string->list "hello")
(1ist #\h #\e #\1 #\1 #\o)

(string->number s) — (union number #false)
s . string
Converts a string into a number, produce false if impossible.

> (string->number "-2.03")
-2.03

> (string->number "1-2i")
1-21

(string->symbol s) — symbol
s @ string

Converts a string into a symbol.

> (string->symbol "hello")
'hello

262

(string-alphabetic? s) — boolean?
s . string

Determines whether all ’letters’ in the string are alphabetic.

> (string-alphabetic? "123")
#false
> (string-alphabetic? "cat")
#true

(string-contains-ci? s t) — boolean?
s : string
t : string

Determines whether the first string appears in the second one without regard to the case of
the letters.

> (string-contains-ci? "At" "caT")
#true

(string-contains? s t) — boolean?
s . string
t . string
Determines whether the first string appears literally in the second one.

> (string-contains? "at" "cat")
#true

(string-copy s) — string
s . string

Copies a string.
> (string-copy "hello")
"hello"

(string-downcase s) — string
s . string

263

Produces a string like the given one with all ’letters’ as lower case.

> (string-downcase "CAT")
n Cat n
> (string-downcase "cAt")
llcat n

(string-ith s i) — 1string?
s . string
i : natural?

Extracts the ith 1-letter substring from s.

> (string-ith "hello world" 1)
llell

(string-length s) — nat
s : string
Determines the length of a string.

> (string-length "hello world")
11

(string-lower-case? s) — boolean?
s . string
Determines whether all ’letters’ in the string are lower case.

> (string-lower-case? "CAT")
#false

(string-numeric? s) — boolean?
s . string

Determines whether all ’letters’ in the string are numeric.
> (string-numeric? "123")
#true

> (string-numeric? "1-2i")
#false

264

(string-ref s i) — char
s . string
i : natural?

Extracts the ith character from s.

> (string-ref "cat" 2)
#\t

(string-upcase s) — string
s . string
Produces a string like the given one with all ’letters’ as upper case.

> (string-upcase '"cat")
n CATlI
> (string-upcase "cAt")
n CATII

(string-upper-case? s) — boolean?
s ! string

Determines whether all ’letters’ in the string are upper case.

> (string-upper-case? "CAT")
#true

(string-whitespace? s) — boolean?
s . string

Determines whether all ’letters’ in the string are white space.

> (string-whitespace? (string-append " " (string #\tab #\newline #\return)))
#true

(string? x) — boolean?
x : any/c

Determines whether a value is a string.

265

> (string? "hello world")
#true

> (string? 42)

#false

(substring s i j) — string
s : string
i : natural?
J : natural?

Extracts the substring starting at i up to j (or the end if j is not provided).

> (substring "hello world" 1 5)

"ello"

> (substring "hello world" 1 8)
"ello wo"

> (substring "hello world" 4)
"o world"

4.14 Images

(image=7 i j) — boolean?
i : image
Jj . image
Determines whether two images are equal.

> ci

> (image=7 (circle 5 "solid" "green") cl)
#false
> (image=7 (circle 10 "solid" "green") cl)
#true

(image? x) — boolean?
x : any/c

Determines whether a value is an image.

> cl

> (image? c1)
#true

266

4.15 Misc

(=7 x y eps) — Dboolean?
X : number
y . number
eps : non-negative-real

Checks whether x and y are within eps of either other.

> (=7 1.01 1.0 0.1)
#true

> (=7 1.01 1.5 0.1)
#false

eof : eof-object?

A value that represents the end of a file:

> eof
#<eof>

(eof-object? x) — boolean?
x : any/c

Determines whether some value is the end-of-file value.

> (eof-object? eof)
#true

> (eof-object? 42)
#false

(eq? x y) — boolean?
x @ any/c
y : any/c

Determines whether two values are equivalent from the computer’s perspective (intensional).

> (eq? (cons 1 '()) (cons 1 'O))
#false

> one

(1ist 1)

> (eq? one one)

#true

267

(equal? x y) — boolean?
x : any/c
y : any/c

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

> (equal? (make-posn 1 2) (make-posn (- 2 1) (+ 1 1)))
#true

(equal™? x y z) — boolean?
x : any/c
y @ any/c
Z . non-negative-real

Compares x and y like equal? but uses =~ in the case of numbers.

> (equal™? (make-posn 1.01 1.0) (make-posn 1.01 0.99) 0.2)
#true

(eqv? x y) — boolean?
x : any/c
y @ any/c

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

> (eqv? (cons 1 '()) (cons 1 '()))
#false

> one

(1ist 1)

> (eqv? one one)

#true

(error x ...) — void?
x : any/c

Signals an error, combining the given values into an error message. If any of the values’
printed representations is too long, it is truncated and “...” is put into the string. If the
first value is a symbol, it is suffixed with a colon and the result pre-pended on to the error

message.

268

> zero

0

> (if (= zero 0) (error "can't divide by 0") (/ 1 zero))
can't divide by 0

(exit) — void
Evaluating (exit) terminates the running program.

(identity x) — any/c
x : any/c
Returns x.

> (identity 42)
42
> (identity cl)

> (identity "hello")
"hello"

(struct? x) — boolean?
x : any/c

Determines whether some value is a structure.

> (struct? (make-posn 1 2))
#true

> (struct? 43)

#false

4.16 Signatures
Any : signature?
Signature for any value.
Boolean : signature?

269

Signature for booleans.

Char : signature?

Signature for chararacters.

(Cons0f first-sig rest-sig) — signature?
first-sig : signature?
rest-sig : signature?

Signature for a cons pair.

EmptyList : signature?

Signature for the empty list.

False : signature?

Signature for just false.

Integer : signature?

Signature for integers.

Natural : signature?

Signature for natural numbers.

Number : signature?

Signature for arbitrary numbers.

Rational : signature?

Signature for rational numbers.

270

Real : signature?
Signature for real numbers.
String : signature?

Signature for strings.
Symbol : signature?

Signature for symbols.
True : signature?

Signature for just true.

4.17 Numbers (relaxed conditions)

4.18 String (relaxed conditions)

(string-append s ...) — string
s . string
Concatenates the characters of several strings.

> (string-append "hello" " " "world" " " "good bye")
"hello world good bye"

(string-ci<=? s t x ...) — boolean?
s : string
t : string

X ! string

Determines whether the strings are ordered in a lexicographically increasing and case-
insensitive manner.
> (string-ci<=?7 "hello" "WORLD" "zoo"

#true

271

(string-ci<? s t x ...) — boolean?
s . string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically strictly increasing and

case-insensitive manner.

> (string-ci<? "hello" "WORLD" "zoo")
#true

(string-ci=? s t x ...) — boolean?
s : string
t : string
x @ string

Determines whether all strings are equal, character for character, regardless of case.

> (string-ci=? "hello" "HellO")
#true

(string-ci>=? s t x ...) — boolean?
s @ string
t : string
x : string

Determines whether the strings are ordered in a lexicographically decreasing and case-

insensitive manner.

> (string-ci>? "zoo" "WORLD" "hello")

#true

(string-ci>? s t x ...) — boolean?
s . string
t . string
x © string

Determines whether the strings are ordered in a lexicographically strictly decreasing and

case-insensitive manner.

272

> (string-ci>? "zoo" "WORLD" "hello")
#true

(string<=? s t x ...) — boolean?
s ! string
t . string
x @ string

Determines whether the strings are ordered in a lexicographically increasing manner.

> (string<=? "hello" "hello" "world" "zoo"
#true

(string<? s t x ...) — boolean?
s . string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically strictly increasing manner.

> (string<? "hello" "world" "zoo"
#true

(string=? s t x ...) — boolean?
s : string
t : string
x ! string

Determines whether all strings are equal, character for character.

> (string=7 "hello" "world")
#false

> (string=7 "bye" "bye")
#true

(string>=? s t x ...) — boolean?
s . string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically decreasing manner.

273

> (string>=? "zoo" "zoo" "world" "hello")
#true

(string>? s t x ...) — boolean?
s @ string
t : string
x : string
Determines whether the strings are ordered in a lexicographically strictly decreasing manner.

> (string>? "zoo" "world" '"hello")
#true

4.19 Posn

(posn) — signature

Signature for posns.

4.20 Higher-Order Functions

4.21 Numbers (relaxed conditions plus)

(¥ x ...) — number
X . number

Multiplies all given numbers. In ISL and up: * works when applied to only one number or
none.

> (x 5 3)
15

> (x 5 3 2)
30

(x 2)

>
2
> (%)
1

(+ x ...) — number
X . number

274

Adds all given numbers. In ISL and up: + works when applied to only one number or none.

> (+ 2/3 1/16)

35/48

> (+ 325 8)

18

> (+ 1)

1

> (+)

0

(/ x y ...) — number

X : number
y : number

Divides the first by all remaining numbers. In ISL and up: / computes the inverse when
applied to one number.

(/ 12 2)

(/ 12 2 3)

vV NV OV

/ 3
1/3

(= x ...) — number
X . number

Compares numbers for equality. In ISL and up: = works when applied to only one number.

> (= 10 10)
#true

> (= 11)
#true

> (= 0)
#true

4.22 Higher-Order Functions (with Lambda)

(andmap p? [1]) — boolean
p?: (X ... -> boolean)
1 : (listof X) = ...

275

Determines whether p? holds for all items of 1 ...:

(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p x-n))
(andmap p (list x-1 ... x-n) (list y-1 ... y-n)) = (and (p x-1 y-
1) ... (p x-n y-n))

> (andmap odd? '(1 3 57 9))

#true

> threshold

3

> (andmap (lambda (x) (< x threshold)) '(0 1 2))

#true

> (andmap even? '())

#true

> (andmap (lambda (x f) (f x)) (list 0 1 2) (list odd? even? positive?))
#false

(apply f x-1 ... 1) —> Y
f: X-1 ... X-N ->Y)
x-1 :X-1
1 : (list X-i+1 ... X-N)

Applies a function using items from a list as the arguments:
(apply £ (list x-1 ... x-n)) = (f x-1 ... x-n)
> a-list
(1ist 01 234567 89)

> (apply max a-list)
9

(argmax f 1) — X
f : (X -> real)
1 : (listof X)

Finds the (first) element of the list that maximizes the output of the function.

> (argmax second '((sam 98) (carl 78) (vincent 93) (asumu 99)))
(list 'asumu 99)

276

(argmin f 1) — X
f : (X -> real)
1 : (listof X)

Finds the (first) element of the list that minimizes the output of the function.

> (argmin second '((sam 98) (carl 78) (vincent 93) (asumu 99)))
(list 'carl 78)

(build-list n f) — (listof X)
n : nat
f : (nat -> X)

Constructs a list by applying £ to the numbers between O and (- n 1):

(build-list n f) = (list (f 0) ... (f (- n 1)))

> (build-list 22 addi)
(list 1 234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22)
> i
3
> (build-list 3 (lambda (j) (+ j i)))
(1ist 3 4 5)
> (build-1list 5

(lambda (i)

(build-list 5
(lambda (j)
(Gf (=1 3) 1000))

(list (1ist 1 0 0 0 0) (1ist 01 0 0 0) (1ist 0 0 1 0 0) (1ist 0 O
010) (1ist 0 0 0 0 1))

(build-string n f) — string
n : nat
f : (nat -> char)

Constructs a string by applying £ to the numbers between O and (- n 1):
(build-string n f) = (string (£ 0) ... (f (- n 1)))
> (build-string 10 integer->char)
"\u0000\u0001\u0002\u0003\u0004\u0005\u0006\a\b\t"

> (build-string 26 (lambda (x) (integer->char (+ 65 x))))
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

277

(compose f g) — (X -> Z)
f: X ->2)
g: X ->Y)

Composes a sequence of procedures into a single procedure:

(compose f g) = (lambda (x) (f (g x)))

> ((compose addl second) '(add 3))

4

> (map (compose addl second) '((add 3) (sub 2) (mul 4)))
(list 4 3 5)

(filter p? 1) — (listof X)
p? : (X -> boolean)
1 : (listof X)

Constructs a list from all those items on a list for which the predicate holds.

> (filter odd? '(0 1 23 4567 8 9))

(list 1 357 9)

> threshold

3

> (filter (lambda (x) (>= x threshold)) '(0 1 23 4567 8 9))
(list 34567 8 9)

(foldl f base 1 ...) —> Y
f: X ...Y->Y)
base : Y
1 : (listof X)

(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
(foldl f base (list x-1 ... x-n) (list x-1 ... x-n))
= (f xxn y-n ... (f x-1 y-1 base))

> (foldl + 0 '(01 234567 829))
45

> a-list

(1ist 01 234567 89)

278

> (foldl (lambda (x r) (if (> x threshold) (cons (* 2 x) r) r)) ') a-
list)

(list 18 16 14 12 10 8)

> (foldl (lambda (x y r) (+ x y r)) 0 '(1 2 3) '(10 11 12))

39

(foldr f base 1 ...) —> Y
f: X ...Y->Y)
base : Y
1 : (listof X)

(foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))
(foldr f base (list x-1 ... x-n) (list y-1 ... y-n))
= (f x-1 y-1 ... (f x-n y-n base))

> (foldr + 0 '(0 1234567 89))

45

> a-list

(list 01 234567 809)

> (foldr (lambda (x r) (if (> x threshold) (cons (* 2 x) r) r)) ') a-
list)

(list 8 10 12 14 16 18)

> (foldr (lambda (x y r) (+ x y r)) 0 '(1 2 3) '(10 11 12))

39

(for-each f 1 ...) — void?
f : (any ... -> any)
1 : (listof any)

Applies a function to each item on one or more lists for effect only.

Although the Intermediate Student with Lambda provides the for-each function, it is in-
tended to be used in the |85 “Advanced Student”|level.

(map £ 1 ...) — (listof Z)
f: X ... ->72)
1 : (listof X)

Constructs a new list by applying a function to each item on one or more existing lists:

279

(map f (list x-1 ... x-n)) = (list (f x-1) ... (f x-n))

(map £ (list x-1 ... x-n) (list y-1 ... y-n)) = (list (f x-1 y-
1) ... (f x-n y-n))

> (map addl (list 3 -4.01 2/5))
(list 4 #i-3.01 1.4)

> (define (tag-with-a x)
(1ist "a" (+ x 1)))

> (map tag-with-a (list 3 -4.01 2/5))
(1ist (1ist "a" 4) (list "a" #i-3.01) (list "a" 1.4))

> (define (add-and-multiply x y)
(+x (x xy)))

> (map add-and-multiply (list 3 -4 2/5) '(1 2 3))
(1ist 6 -12 1.6)

(memf p? 1) — (union #false (listof X))
p? : (X -> any)
1 : (listof X)

Produces #false if p? produces false for all items on 1. If p? produces #true for any of
the items on 1, memf returns the sub-list starting from that item.

> (memf odd? '(2 4 6 3 8 0))
(1ist 3 8 0)

(ormap p? 1) — boolean
p? : (X -> boolean)
1 : (listof X)

Determines whether p? holds for at least one items of 1:

(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))
(ormap p (list x-1 ... x-n) (list y-1 ... y-n)) = (or (p x-1 y-
1) ... (p x-n y-n))

280

> (ormap odd? '(1 3 57 9))

#true

> threshold

3

> (ormap (lambda (x) (< x threshold)) '(6 7 8 1 5))

#true

> (ormap even? '())

#false

> (ormap (lambda (x f) (f x)) (list 0 1 2) (list odd? even? positive?))
#true

(procedure? x) — boolean?
X @ any

Produces true if the value is a procedure.

> (procedure? cons)

#true

> (procedure? addl)

#true

> (procedure? (lambda (x) (> x 22)))
#true

(quicksort 1 comp) — (listof X)
1 : (listof X)
comp : (X X -> boolean)

Sorts the items on 1, in an order according to comp (using the quicksort algorithm).

> (quicksort '(6 72134059 8) <)
(list 01 234567 809)

(sort 1 comp) — (listof X)
1 : (listof X)
comp : (X X -> boolean)

Sorts the items on 1, in an order according to comp.

> (sort '(
(l1ist 0 1

281

5 Advanced Student

The grammar notation uses the notation X ... (bold dots) to indicate that X may occur an
arbitrary number of times (zero, one, or more). Separately, the grammar also defines . .. as
an identifier to be used in templates.

program = def-or-expr ..

def-or-expr = definition
| expr

| test-case
| library-require

| signature-declaration

definition = (define (name variable ..) expr)
| (define name expr)
| (define-struct name (name ...))
| (define-datatype name (name name ..) ..)
expr (begin expr expr ..)

| (beginO expr expr ..)

| (set! variable expr)

| (delay expr)

| (lambda (variable ..) expr)

| (1 (variable ...) expr)

| (local [definition ..] expr)

| (letrec ([name expr] ..) expr)

| (shared ([name expr] ..) expr)

| (let ([name expr] ..) expr)

| (let name ([name expr] ..) expr)

| (let* ([name expr] ..) expr)

| (recur name ([name expr] ..) expr)

| (expr expr ..)

| (cond [expr expr] .. [expr exprl)

| (cond [expr expr] .. [else expr])

| (case expr [(choice choice ..) expr] ..

[(choice choice ..) expr])

| (case expr [(choice choice ..) expr] ..
[else exprl)

(match expr [pattern expr] ...)

(if expr expr expr)

(when expr expr)

(unless expr expr)

(and expr expr expr ...)

(or expr expr expr ..)

282

(time expr)

name

’quoted

‘quasiquoted

70

number

boolean

string

character

(signature signature-form)

choice = name
| number

pattern = _
| name

| number

| true

| false

| string

| character

| ’quoted

| ¢quasiquoted-pattern

| (cons pattern pattern)

| (1ist pattern ...)

| (list* pattern ...)

| (struct id (pattern ...))
| (vector pattern ...)

| (box pattern)
quasiquoted-pattern = name
| number

| string

| character

| (quasiquoted-pattern ..)
| ’quasiquoted-pattern

| ¢quasiquoted-pattern

| ,pattern

| ,@pattern

signature-declaration = (: name signature-form)

(enum expr ...)

signature-form =
| (mixed signature-form ...)
|
|

(signature-form ... -> signature-form)
(ListO0f signature-form)

283

| signature-variable

| expr
signature-variable = Yname

quoted = name

| number
| string
| character
| (quoted ...)
| ’quoted
| ‘quoted
| ,quoted
| ,@quoted

quasiquoted = name
| number

| string

| character

| (quasiquoted ...)
|

|

|

|

’quasiquoted
‘quasiquoted
, €Xpr
,Qexpr
test-case = (check-expect expr expr)
| (check-random expr expr)
| (check-within expr expr expr)
| (check-error expr expr ...)
| (check-member-of expr expr expr)
| (check-satisfied expr expr)
| (check-range expr expr)
| (check-range expr)
library-require = (require string)
| (require (1ib string string ...))
| (require (planet string package))

package (string string number number)

A name or a variable is a sequence of characters not including a space or one of the
following:

WL MEYITL R sk

A number is a number such as 123, 3/2, or 5.5.

284

A boolean is one of: #true or #false.

Alternative spellings for the #true constant are #t, true, and #T. Similarly, #f, false, or
#F are also recognized as #false.

A symbol is a quote character followed by a name. A symbol is a value, just like 42, ' (),
or #false.

A string is a sequence of characters enclosed by a pair of ". Unlike symbols, strings may
be split into characters and manipulated by a variety of functions. For example, "abcdef",
"This is a string",and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,
and #\space are characters.

In function calls, the function appearing immediately after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

5.1 Pre-defined Variables
empty : empty?
The empty list.

true : boolean?

The #true value.

false : boolean?

The #false value.

5.2 Template Variables

A placeholder for indicating that a function definition is a template.

285

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

A placeholder for indicating that a function definition is a template.

5.3 Syntax for Advanced

In Advanced, set! can be used to mutate variables, and define-struct’s structures are
mutatable. define and lambda can define functions of zero arguments, and function calls
can invoke functions of zero arguments.

(lambda (variable ..) expression)

Creates a function that takes as many arguments as given variables, and whose body is
expression.

(4 (variable ...) expression)

The Greek letter A is a synonym for lambda.

(expression expression ...)

Calls the function that results from evaluating the first expression. The value of the call
is the value of function’s body when every instance of name’s variables are replaced by the
values of the corresponding expressions.

The function being called must come from either a definition appearing before the function
call, or from a lambda expression. The number of argument expressions must be the same
as the number of arguments expected by the function.

(define-datatype dataype-name [variant-name field-name ...] ...)

286

A short-hand for defining a group of related structures. The following define-datatype:

(define-datatype datatype-name
[variant-name field-name #, ...]

)

is equivalent to:

(define (datatype-name? x)
(or (variant-name? x) ...))
(define-struct variant-name (field-name ...))

(begin expression expression ..)

Evaluates the expressions in order from left to right. The value of the begin expression
is the value of the last expression.

(begin0O expression expression ..)

Evaluates the expressions in order from left to right. The value of the begin expression
is the value of the first expression.

(set! variable expression)

Evaluates expression, and then changes the value of the variable to have expression’s
value. The variable must be defined by define, letrec, let*, let, or local.

(delay expression)

Produces a “promise” to evaluate expression. The expression is not evaluated until the
promise is forced with force; when the promise is forced, the result is recorded, so that any
further force of the promise immediately produces the remembered value.

(shared ([name expression] ..) expression)

Like letrec, but when an expression nextto an id is a cons, 1ist, vector, quasiquoted
expression, or make-struct-name from a define-struct, the expression can refer
directly to any name, not just names defined earlier. Thus, shared can be used to create
cyclic data structures.

(recur name ([name expression] ..) expression)

287

A short-hand syntax for recursive loops. The first name corresponds to the name of the
recursive function. The names in the parenthesis are the function’s arguments, and each
corresponding expression is a value supplied for that argument in an initial starting call of
the function. The last expression is the body of the function.

More precisely, the following recur:

(recur func-name ([arg-name arg-expression] ...)
body-expression)

is equivalent to:

(local [(define (func-name arg-name ...) body-expression)]
(func-name arg-expression ...))

(let name ([name expression] ..) expression)

An alternate syntax for recur.

(case expression [(choice ..) expression] .. [(choice ..) expression])

A case form contains one or more clauses. Each clause contains a choices (in
parentheses)—either numbers or names—and an answer expression. The initial expres-
sion is evaluated, and its value is compared to the choices in each clause, where the lines
are considered in order. The first line that contains a matching choice provides an answer
expression whose value is the result of the whole case expression. Numbers match with
the numbers in the choices, and symbols match with the names. If none of the lines contains
a matching choice, it is an error.

(case expression [(choice ..) expression] .. [else expression])

This form of case is similar to the prior one, except that the final else clause is taken if no
clause contains a choice matching the value of the initial expression.

(match expression [pattern expression] ...

A match form contains one or more clauses that are surrounded by square brackets. Each
clause contains a pattern—a description of a value—and an answer expression. The initial
expression is evaluated, and its value is matched against the pattern in each clause, where
the clauses are considered in order. The first clause that contains a matching pattern provides
an answer expression whose value is the result of the whole match expression. This
expression may reference identifiers defined in the matching pattern. If none of the clauses
contains a matching pattern, it is an error.

(when question-expression body-expression)

288

If question-expression evaluates to true, the result of the when expression is the re-
sult of evaluating the body-expression, otherwise the result is (void) and the body-
expression is not evaluated. If the result of evaluating the question-expression is
neither true nor false, it is an error.

(unless question-expression body-expression)

Like when, but the body-expression is evaluated when the question-expression pro-
duces false instead of true.

5.4 Common Syntaxes

The following syntaxes behave the same in the Advanced level as they did in the
imediate Student with Lambda™|level.

(local [definition ...] expression)

Groups related definitions for use in expression. Each definition can be either a de-
fine oradefine-struct.

When evaluating local, each definition is evaluated in order, and finally the body ex-
pression is evaluated. Only the expressions within the local (including the right-hand-
sides of the definitions and the expression) may refer to the names defined by the
definitions. If a name defined in the local is the same as a top-level binding, the inner
one “shadows” the outer one. That is, inside the 1ocal, any references to that name refer to
the inner one.

(letrec ([name expr-for-let] ...) expression)

Like 1ocal, but with a simpler syntax. Each name defines a variable (or a function) with the
value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines
a function, otherwise it defines a variable.

(let* ([name expr-for-let] ...) expression)

Like letrec, but each name can only be used in expression, and in expr-for-lets
occuring after that name.

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the
expr-for-lets next to the names.

289

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time
prints out the time taken by the evaluation (including real time, time taken by the CPU, and
the time spent collecting free memory). The value of time is the same as that of expres-
sion.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

e structure-name? : takes any value, and returns #true if the value is an instance of
the structure.

The name of the new functions introduced by define-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

In Advanced, define-struct introduces one additional function:

* set-structure-name-field-name! : takes an instance of the structure and a
value, and mutates the instance’s field to the given value.

290

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])
Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to #true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to #true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither #true nor #false, cond also reports an error.

else cannot be used outside of cond.

(if question-expression
then-answer-expression
else-answer-expression)

When the value of the question-expression is #true, if evaluates the then-answer-
expression. When the test is #false, if evaluates the else-answer-expression.

If the question-expression is neither #true nor #false, if reports an error.

(and expression expression expression ...)

Evaluates to #true if all the expressions are #true. If any expression is #false, the
and expression evaluates to #false (and the expressions to the right of that expression are
not evaluated.)

If any of the expressions evaluate to a value other than #true or #false, and reports an
error.

(or expression expression expression ...)

Evaluates to #true as soon as one of the expressions is #true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are #false, the or
expression evaluates to #false.

If any of the expressions evaluate to a value other than #true or #false, or reports an error.

(check-expect expression expected-expression)

291

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-expect (fahrenheit->celsius 212) 100)
(check-expect (fahrenheit->celsius -40) -40)

(define (fahrenheit->celsius f)
(x 5/9 (- £ 32)))

A check-expect expression must be placed at the top-level of a student program. Also it
may show up anywhere in the program, including ahead of the tested function definition. By
placing check-expects there, a programmer conveys to a future reader the intention behind
the program with working examples, thus making it often superfluous to read the function
definition proper. Syntax errors in check-expect (and all check forms) are intentionally
delayed to run time so that students can write tests without necessarily writing complete
function headers.

It is an error for expr or expected-expr to produce an inexact number or a function value.
As for inexact numbers, it is morally wrong to compare them for plain equality. Instead one
tests whether they are both within a small interval; see check-within. As for functions
(see Intermediate and up), it is provably impossible to compare functions.

(check-random expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

The form supplies the same random-number generator to both parts. If both parts request
random numbers from the same interval in the same order, they receive the same random
numbers.

Here is a simple example of where check-random is useful:

(define WIDTH 100)
(define HEIGHT (* 2 WIDTH))

(define-struct player (name x y))
; A Player is (make-player String Nat Nat)

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(make-player name (random WIDTH) (random HEIGHT)))

292

Note how random is called on the same numbers in the same order in both parts of check-
random. If the two parts call random for different intervals, they are likely to fail:

; String -> Player

(check-random (create-randomly-placed-player "David Van Horn")
(make-player "David Van Horn" (random WIDTH) (random HEIGHT)))

(define (create-randomly-placed-player name)
(a-helper-function name (random HEIGHT)))

; String Number -> Player
(define (a-helper-function name height)
(make-player name (random WIDTH) height))

Because the argument to a-helper-function is evaluated first, random is first called for
the interval [0,HEIGHT) and then for [0, WIDTH), that is, in a different order than in the
preceding check-random.

It is an error for expr or expected-expr to produce a function value or an inexact number;
see note on check-expect for details.

(check-satisfied expression predicate)

Checks that the first expression satisfies the named predicate (function of one argu-
ment). Recall that “satisfies” means “the function produces #true for the given value.”

Here are simple examples for check-satisfied:

> (check-satisfied 1 odd?)
The test passed!

> (check-satisfied 1 even?)
Ran 1 test.
0 tests passed.
Check failures:
1
Actual value | 1 | does not satisfy even?.
I

at line 3, column O

In general check-satisfied empowers program designers to use defined functions to for-
mulate test suites:

293

; [cons Number [List-of Number]] -> Boolean
; a function for testing htdp-sort

(check-expect (sorted? (list 1 2 3)) #true)
(check-expect (sorted? (list 2 1 3)) #false)

(define (sorted? 1)
(cond
[(empty? (rest 1)) #truel
[else (and (<= (first 1) (second 1)) (sorted? (rest 1)))1))

; [List-of Number] -> [List-of Number]
; create a sorted version of the given list of numbers

(check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(define (htdp-sort 1)
(cond
[(empty? 1) 1]
[else (insert (first 1) (htdp-sort (rest 1)))1))

; Number [List-of Number] -> [List-of Number]
; insert x into 1 at proper place
; assume 1 is arranged in ascending order
; the result is sorted in the same way
(define (insert x 1)
(cond
[(empty? 1) (list x)]
[else (if (<= x (first 1)) (coms x 1) (cons (first 1) (insert x (rest 1))))1))

And yes, the results of htdp-sort satisfy the sorted? predicate:

> (check-satisfied (htdp-sort (list 1 2 0 3)) sorted?)

(check-within expression expected-expression delta)

Checks whether the value of the expression expression is structurally equal to the value
produced by the expected-expression expression; every number in the first expression
must be within delta of the corresponding number in the second expression.

(define-struct roots (x sqrt))
; RT is [List-of (make-roots Number Number)]

(define (root-of a)

294

(make-roots a (sqrt a)))

(define (roots-table xs)
(cond
[(empty? xs) '(O]
[else (cons (root-of (first xs)) (roots-table (rest xs)))]))

Due to the presence of inexact numbers in nested data, check-within is the correct choice
for testing, and the test succeeds if delta is reasonably large:

Example:

> (check-within (roots-table (list 1.0 2.0 3.0))
(list
(make-roots 1.0 1.0)
(make-roots 2 1.414)
(make-roots 3 1.713))
0.1)
The test passed!

In contrast, when delta is small, the test fails:

Example:

> (check-within (roots-table (list 2.0))
(1list
(make-roots 2 1.414))
#ile-5)
Ran 1 test.
0 tests passed.
Check failures:

Actual value | '((make-roots 2.0 1.4142135623730951)) | is

not within le-5 of expected value | '((make-roots 2 1.414)) |.
L J

at line 5, column O

It is an error for expressions or expected-expression to produce a function value; see
note on check-expect for details.

If delta is not a number, check-within reports an error.

(check-error expression expected-error-message)
(check-error expression)

295

Checks that the expression reports an error, where the error messages matches the value
of expected-error-message, if it is present.

Here is a typical beginner example that calls for a use of check-error:

(define sample-table
' (("matthias" 10)
("matthew" 20)
("robby" -1)

("shriram" 18)))

; [List-of [list String Number]] String -> Number
; determine the number associated with s in table

(define (lookup table s)
(cond
[(empty? table) (error (string-append s " not found"))]
[else (if (string=7 (first (first table)) s)
(second (first table))
(lookup (rest table)))]))
Consider the following two examples in this context:

Example:
> (check-expect (lookup sample-table "matthew") 20)
The test passed!

Example:

> (check-error (lookup sample-table "kathi") "kathi not found")
The test passed!

(check-member-of expression expression expression ...)

Checks that the value of the first expression is that of one of the following expressions.

; [List-of X] -> X
; pick a random element from the given list 1
(define (pick-one 1)

(list-ref 1 (random (length 1))))

Example:

296

> (check—member—of (pick—one I(Ilall nbn IICII)) Ilall nbn llCll)
The test passed!

It is an error for any of expressions to produce a function value; see note on check-
expect for details.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

A check-range form is best used to delimit the possible results of functions that compute
inexact numbers:

(define EPSILON 0.001)

; [Real -> Real] Real -> Real
; what is the slope of f at x7
(define (differentiate f x)
(slope f (- x EPSILON) (+ x EPSILON)))

; [Real -> Real] Real Real -> Real
(define (slope f left right)
(/ (- (f right) (f left))
2 EPSILON))

(check-range (differentiate sin 0) 0.99 1.0)

It is an error for expression, low-expression, or high-expression to produce a func-
tion value; see note on check-expect for details.

(require string)
Makes the definitions of the module specified by string available in the current module

(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

297

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))
(require (planet id))
(require (planet string))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

The full grammar for planet requires is given in §3.2 “Importing and Exporting: require
and provide”, but the best place to find examples of the syntax is on the the PLaneT server,
in the description of a specific package.

5.5 Pre-Defined Functions

5.6 Signatures

Signatures do not have to be comment: They can also be part of the code. When a signature
is attached to a function, DrRacket will check that program uses the function in accordance
with the signature and display signature violations along with the test results.

A signature is a regular value, and is specified as a signature form, a special syntax that only
works with : signature declarations and inside signature expressions.

(: name signature-form)

This attaches the signature specified by signature-form to the definition of name. There
must be a definition of name somewhere in the program.

(: age Integer)
(define age 42)

298

http://planet.racket-lang.org

(: area-of-square (Number -> Number))
(define (area-of-square len)
(sqr len))

On running the program, Racket checks whether the signatures attached with : actually
match the value of the variable. If they don’t, Racket reports signature violation along with
test failures.

For example, this piece of code:
(: age Integer)
(define age "fortytwo")
Yields this output:

1 signature violation.
Signature violations:

got "fortytwo" at line 2, column 12, signature at line 1,
column 7

Note that a signature violation does not stop the running program.

(signature signature-form)

This returns the signature described by signature-form as a value.

5.6.1 Signature Forms

Any expression can be a signature form, in which case the signature is the value returned by
that expression. There are a few special signature forms, however:

In a signature form, any name that starts with a % is a signature variable that stands for any
signature depending on how the signature is used.

Example:
(: same (%a -> %a))

(define (same x) x)

(input-signature-form ... -> output-signature-form)

299

This signature form describes a function with inputs described by the input-signature-
forms and output described by output-signature-form.

(enum expr ...)

This signature describes an enumeration of the values returned by the exprs.
Example:
(: cute? ((enum "cat" "snake") -> Boolean))
(define (cute? pet)
(cond

[(string=7 pet "cat") #t]
[(string=7 pet "snake") #f]))

(mixed signature-form ...)

This signature describes mixed data, i.e. an itemization where each of the cases has a signa-
ture described by a signature-form.

Example:

(define SIGS (signature (mixed Aim Fired)))

(List0f signature-form)

This signature describes a list where the elements are described by signature-form.

(predicate expression)

This signature describes values through a predicate: expression must evaluate to a func-
tion of one argument that returns a boolean. The signature matches all values for which the
predicate returns #true.

5.6.2 Struct Signatures

A advanced form defines two additional names that can be used in signatures. For a struct
called struct, these are Struct and Struct0f. Note that these names are capitalized. In

300

particular, a struct called Struct, will also define Struct and Struct0f. Moreover, when
forming the additional names, hyphens are removed, and each letter following a hyphen is
capitalized - so a struct called foo-bar will define FooBar and FooBarOf.

Struct is a signature that describes struct values from this structure type. StructOf is a
function that takes as input a signature for each field. It returns a signature describing values
of this structure type, additionally describing the values of the fields of the value.

(define-struct pair [fst snd])

(: add-pair ((PairOf Number Number) -> Number))
(define (add-pair p)
(+ (pair-fst p) (pair-snd p)))

The remaining subsections list those functions that are built into the programming language.
All other functions are imported from a teachpack or must be defined in the program.

5.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

(- x y ...) — number
X : number
y : number

Subtracts the second (and following) number(s) from the first ; negates the number if there
is only one argument.

> (- 5)

-5

> (- 5 3)

2

> (-531)

1

(< xy z ...) — boolean?
x : real
y : real
z : real

Compares two or more (real) numbers for less-than.

> (< 42 2/5)
#false

301

(<=x y z ...) — boolean?

X . real
y : real
z : real

Compares two or more (real) numbers for less-than or equality.

> (<= 42 2/5)
#false

(>x y z ...) - boolean?
X : real
y . real
z : real

Compares two or more (real) numbers for greater-than.

> (> 42 2/5)
#true

(>=x y z ...) — boolean?
x : real
y . real
z @ real

Compares two or more (real) numbers for greater-than or equality.

> (>= 42 42)
#true

(abs x) — real
X : real

Determines the absolute value of a real number.

> (abs -12)
12

(acos x) — number
X . number

302

Computes the arccosine (inverse of cos) of a number.

> (acos 0)
#i1.5707963267948966

(add1l x) — number
X . number

Increments the given number.

> (add1l 2)
3

(angle x) — real
X . number

Extracts the angle from a complex number.

> (angle (make-polar 3 4))
#1-2.2831853071795867

(asin x) — number
X : number

Computes the arcsine (inverse of sin) of a number.

> (asin 0)
0

(atan x) — number
X : number

Computes the arctangent of the given number:

> (atan 0)

0

> (atan 0.5)
#10.46364760900080615

Also comes in a two-argument version where (atan y x) computes (atan (/ y x))
but the signs of y and x determine the quadrant of the result and the result tends to be more
accurate than that of the 1-argument version in borderline cases:

303

> (atan 3 4)
#10.6435011087932844
> (atan -2 -1)
#1-2.0344439357957027

(ceiling x) — integer
x : real
Determines the closest integer (exact or inexact) above a real number. See round.

> (ceiling 12.3)
#113.0

(complex? x) — boolean?
x : any/c

Determines whether some value is complex.

> (complex? 1-2i)
#true

(conjugate x) — number
X @ number

Flips the sign of the imaginary part of a complex number.

> (conjugate 3+41i)

3-4i

> (conjugate -2-5i)

-2+51

> (conjugate (make-polar 3 4))
#i-1.960930862590836+2.2704074859237851

(cos x) — number
X . number

Computes the cosine of a number (radians).

> (cos pi)
#1-1.0

304

(cosh x) — number
X : number
Computes the hyperbolic cosine of a number.

> (cosh 10)
#i11013.232920103324

(current-seconds) — integer

Determines the current time in seconds elapsed (since a platform-specific starting date).

> (current-seconds)
1767549601

(denominator x) — integer
x @ rational?
Computes the denominator of a rational.

> (denominator 2/3)
3

e : real

Euler’s number.

> e
#12.718281828459045

(even? x) — boolean?
x : integer

Determines if some integer (exact or inexact) is even or not.

> (even? 2)
#true

305

(exact->inexact x) — number
X . number

Converts an exact number to an inexact one.

> (exact->inexact 12)
#i12.0

(exact? x) — boolean?
X . number

Determines whether some number is exact.

> (exact? (sqrt 2))
#false

(exp x) — number
X @ number

Determines e raised to a number.

> (exp -2)
#10.1353352832366127

(expt x y) — number
x : number
y . number

Computes the power of the first to the second number, which is to say, exponentiation.

> (expt 16 1/2)
4

> (expt 3 -4)
1/81

(floor x) — integer
X @ real

Determines the closest integer (exact or inexact) below a real number. See round.

306

> (floor 12.3)
#i12.0

(gcd x y ...) — integer
x ! integer
y . integer
Determines the greatest common divisor of two integers (exact or inexact).

> (gcd 6 12 8)
2

(imag-part x) — real
X : number
Extracts the imaginary part from a complex number.

> (imag-part 3+4i)
4

(inexact->exact x) — number
X : number
Approximates an inexact number by an exact one.

> (inexact->exact 12.0)
12

(inexact? x) — boolean?
X : number

Determines whether some number is inexact.

> (inexact? 1-2i)
#false

(integer->char x) — char
x . exact-integer?

307

Looks up the character that corresponds to the given exact integer in the ASCII table (if any).

> (integer->char 42)
#*

(integer-sqrt x) — complex
x . integer
Computes the integer or imaginary-integer square root of an integer.
> (integer-sqrt 11)
3

> (integer-sqrt -11)
0+31i

(integer? x) — boolean?
x @ any/c
Determines whether some value is an integer (exact or inexact).

> (integer? (sqrt 2))
#false

(Iecm x y ...) — integer
x : integer
y . integer
Determines the least common multiple of two integers (exact or inexact).

> (lcm 6 12 8)
24

(log x) — number
X . number

Determines the base-e logarithm of a number.

> (log 12)
#12.4849066497880004

308

(magnitude x) — real
x : number
Determines the magnitude of a complex number.

> (magnitude (make-polar 3 4))
#13.0000000000000004

(make-polar x y) — number
x ! real
y . real

Creates a complex from a magnitude and angle.

> (make-polar 3 4)
#i-1.960930862590836-2.2704074859237851

(make-rectangular x y) — number
x : real
y . real

Creates a complex from a real and an imaginary part.

> (make-rectangular 3 4)
3+4i

(max x y ...) — real
x ! real
y . real

Determines the largest number—aka, the maximum.

> (max 3287 29 0)

9

(min x y ...) — real
x ! real
y . real

309

Determines the smallest number—aka, the minimum.

> (min 3287 29 0)
0

(modulo x y) — integer
x : integer
y : integer

Finds the remainder of the division of the first number by the second:

> (modulo 9 2)
1
> (modulo 3 -4)
-1

(negative? x) — boolean?
x @ real

Determines if some real number is strictly smaller than zero.

> (negative? -2)
#true

(number->string x) — string
X : number

Converts a number to a string.

> (number->string 42)
ll42|l

(number->string-digits x p) — string
X : number
p : posint

Converts a number x to a string with the specified number of digits.

> (number->string-digits 0.9 2)
l|0.9||

> (number->string-digits pi 4)
"3.1416"

310

(number? n) — boolean?
n : any/c
Determines whether some value is a number:

> (number? "hello world")
#false

> (number? 42)

#true

(numerator x) — integer
x : rational?
Computes the numerator of a rational.

> (numerator 2/3)
2

(odd? x) — boolean?
x : integer
Determines if some integer (exact or inexact) is odd or not.

> (odd? 2)
#false

pi : real

The ratio of a circle’s circumference to its diameter.

> pi
#13.141592653589793

(positive? x) — boolean?
x @ real

Determines if some real number is strictly larger than zero.

> (positive? -2)
#false

311

(quotient x y) — integer
x . integer
y : integer

Divides the first integer—also called dividend—by the second—known as divisor—to obtain
the quotient.

(quotient 9 2)

>
4
> (quotient 3 4)
0

(random x) — natural
X : natural

Generates a random number. If given one argument random returns a natural number less
than the given natural. In ASL, if given no arguments, random generates a random inexact
number between 0.0 and 1.0 exclusive.

> (random)

#10.683445576382028

> (random)
#i0.14394991284738806

> (random 42)
22

> (random 42)
0

(rational? x) — boolean?
x : any/c

Determines whether some value is a rational number.

> (rational? 1)
#true

> (rational? -2.349)
#true

312

> (rational? #i1.23456789)
#true

> (rational? (sqrt -1))
#false

> (rational? pi)

#true

> (rational? e)

#true

> (rational? 1-2i)

#false

As the interactions show, the teaching languages considers many more numbers as rationals
than expected. In particular, pi is a rational number because it is only a finite approximation
to the mathematical 7. Think of rational? as a suggestion to think of these numbers as
fractions.

(real-part x) — real
X ! number
Extracts the real part from a complex number.

> (real-part 3+4i)
3

(real? x) — boolean?
x : any/c

Determines whether some value is a real number.

> (real? 1-21i)
#false

(remainder x y) — integer
x ! integer
y . integer

Determines the remainder of dividing the first by the second integer (exact or inexact).

(remainder 9 2)

>
1
> (remainder 3 4)
3

313

(round x) — integer
x : real
Rounds a real number to an integer (rounds to even to break ties). See floor and ceiling.

> (round 12.3)
#i12.0

(sgn x) — (union 1 #i1.0 0 #i0.0 -1 #i-1.0)
x @ real
Determines the sign of a real number.

> (sgn -12)
-1

(sin x) — number
X ! number
Computes the sine of a number (radians).

> (sin pi)
#11.2246467991473532e-16

(sinh x) — number
X ! number
Computes the hyperbolic sine of a number.

> (sinh 10)
#111013.232874703393

(sqr x) — number
X @ number

Computes the square of a number.

> (sqr 8)
64

314

(sqrt x) — number
x : number

Computes the square root of a number.

> (sqrt 9)

3

> (sqrt 2)
#11.4142135623730951

(subl x) — number
X : number
Decrements the given number.

> (subl 2)
1

(tan x) — number
X . number

Computes the tangent of a number (radians).

> (tan pi)
#i-1.2246467991473532e-16

(zero? x) — boolean?
X : number

Determines if some number is zero or not.

> (zero? 2)
#false
5.8 Booleans

(boolean->string x) — string
x : boolean?

315

Produces a string for the given boolean

> (boolean->string #false)
"#false"
> (boolean->string #true)
"#true"

(boolean=7 x y) — boolean?
x : boolean?
y : boolean?

Determines whether two booleans are equal.

> (boolean=7 #true #false)
#false

(boolean? x) — boolean?
x : any/c

Determines whether some value is a boolean.

> (boolean? 42)
#false

> (boolean? #false)
#true

(false? x) — boolean?
x : any/c
Determines whether a value is false.

> (false? #false)
#true

(not x) — boolean?
X : boolean?

Negates a boolean value.

> (not #false)
#true

316

5.9 Symbols

(symbol->string x) — string
x : symbol
Converts a symbol to a string.

> (symbol->string 'c)

IICII

(symbol=? x y) — boolean?
x : symbol
y . symbol

Determines whether two symbols are equal.

> (symbol=7 'a 'b)
#false

(symbol? x) — boolean?
x @ any/c

Determines whether some value is a symbol.

> (symbol? 'a)
#true

5.10 Lists

(append 1 ...) — (listof any)
1 : (listof any)

Creates a single list from several. In ASL, 1ist* also deals with cyclic lists.

(assoc x 1) — (union (listof any) #false)
x : any/c
1 : (listof any)

Produces the first pair on 1 whose first is equal? to x; otherwise it produces #false.

317

> (assoc "hello" '(("world" 2) ("hello" 3) ("good" 0)))
(list "hello" 3)

(assq x 1) — (union #false cons?)
x : any/c
1 : 1list?

Determines whether some item is the first item of a pair in a list of pairs. (It compares the
items with eq?.)

> a

(1ist (1ist 'a 22) (list 'b 8) (list 'c 70))

> (assq 'b a)

(list 'b 8)

(caaar x) — any/c
x . list?

LISP-style selector: (car (car (car x))).

> w

(list (list (list (list "bye") 3) #true) 42)
> (caaar w)
(1ist "bye")

(caadr x) — any/c
x : list?
LISP-style selector: (car (car (cdr x))).
> (caadr (cons 1 (cons (coms 'a '()) (coms (cons 'd ') '(0)))))

'a

(caar x) — any/c
x : list?

LISP-style selector: (car (car x)).
>y
(1ist (1ist (1list 1 2 3) #false "world"))

> (caar y)
(list 1 2 3)

318

(cadar x) — any/c
x : list?

LISP-style selector: (car (cdr (car x))).

> w
(1ist (1ist (list (list "bye") 3) #true) 42)

> (cadar w)
#true

(cadddr x) — any/c
x @ list?

LISP-style selector: (car (cdr (cdr (cdr x)))).

> v

(list 1 23456789 'A)
> (cadddr v)

4

(caddr x) — any/c
x @ list?

LISP-style selector: (car (cdr (cdr x))).

> X

(list 2 "hello" #true)
> (caddr x)

#true

(cadr x) — any/c
x : list?

LISP-style selector: (car (cdr x)).
> X
(list 2 "hello" #true)

> (cadr x)
"hello"

319

(car x) — any/c
X . cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (car x)
2

(cdaar x) — any/c
x : list?

LISP-style selector: (cdr (car (car x))).

> w

(list (list (list (list "bye") 3) #true) 42)
> (cdaar w)

(1ist 3)

(cdadr x) — any/c
x : list?
LISP-style selector: (cdr (car (cdr x))).

> (cdadr (list 1 (list 2 "a") 3))
(list "a"

(cdar x) — 1list?
x : list?

LISP-style selector: (cdr (car x)).
>y

(list (1list (list 1 2 3) #false "world"))
> (cdar y)

(list #false "world")

(cddar x) — any/c
x : list?

320

LISP-style selector: (cdr (cdr (car x)))
> w

(list (list (list (list "bye") 3) #true) 42)
> (cddar w)

O]

(cdddr x) — any/c
x : list?

LISP-style selector: (cdr (cdr (cdr x))).

> v
(list 1 23 4567 89 'A)
> (cdddr v)

(list 4 56 78 9 'A)

(cddr x) — 1list?
x : list?

LISP-style selector: (cdr (cdr x)).

> x
(list 2 "hello" #true)
> (cddr x)

(list #true)

(cdr x) — any/c
X : cons?

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (cdr x)

(list "hello" #true)

(cons x 1) — (listof X)
x : X
1 : (listof X)

321

Constructs a list. In ASL, cons creates a mutable list.

(cons? x) — boolean?
x : any/c

Determines whether some value is a constructed list.

> (cons? (cons 1 '()))
#true

> (cons? 42)

#false

(eighth x) — any/c
x @ list?

Selects the eighth item of a non-empty list.

> v

(1ist 1 23456789 'A)
> (eighth wv)

8

(empty? x) — boolean?
x : any/c

Determines whether some value is the empty list.
> (empty? '())
#true

> (empty? 42)
#false

(fifth x) — any/c
x : list?

Selects the fifth item of a non-empty list.

> v

(1ist 1 23456789 'A)
> (fifth v)

5

322

(first x) — any/c
x : cons?

Selects the first item of a non-empty list.

> X

(list 2 "hello" #true)
> (first x)

2

(for-each f 1 ...) — void?
f : (any ... -> any)
1 : (listof any)
Applies a function to each item on one or more lists for effect only:

(for-each f (list x-1 ... x-n)) = (begin (f x-1) ... (f x-n))
(for-each (lambda (x) (begin (display x) (newline))) '(1 2 3))

>
1
2
3

(fourth x) — any/c
x @ list?

Selects the fourth item of a non-empty list.

> v

(list 1 234567 89 'A)
> (fourth v)

4

(length 1) — natural?
1 : 1list?

Evaluates the number of items on a list.

> X

(list 2 "hello" #true)
> (length x)

3

323

(list x ...) — 1list?
x : any/c

Constructs a list of its arguments.

> (list 1 234567 8 9 0)
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8

(cons 9 (cons 0 'O)))IIIN))

(list* x ... 1) — (listof any)
x @ any
1 : (listof any)

Constructs a list by adding multiple items to a list. In ASL, 1ist* also deals with cyclic
lists.

(list-ref x i) — any/c
x . list?
i : natural?

Extracts the indexed item from the list.

> v

(list 1 23456789 'A)
> (list-ref v 9)

'A

(1list? x) — boolean?
x : any/c

Checks whether the given value is a list.

> (1ist? 42)

#false

> (1ist? 'O))

#true

> (list? (cons 1 (cons 2 '())))
#true

324

(make-list i x) — list?
i : natural?
x : any/c

Constructs a list of i copies of x.

> (make-list 3 "hello")
(cons "hello" (cons "hello" (comns "hello" '())))

(member x 1) — boolean?
x : any/c
1 : list?

Determines whether some value is on the list (comparing values with equal?).

> X

(list 2 "hello" #true)
> (member "hello" x)
#true

(member? x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value is on the list (comparing values with equal?).

> x

(list 2 "hello" #true)
> (member? "hello" x)
#true

(memg x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq (list (list 1 2 3)) x)
#false

325

(memq? x 1) — boolean?
x : any/c
1 : 1list?

Determines whether some value x is on some list 1, using eq? to compare x with items on
1.

> X

(list 2 "hello" #true)

> (memq? (list (list 1 2 3)) x)
#false

(memv x 1) — (or/c #false list)
x : any/c
1 : list?

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

> x

(1ist 2 "hello" #true)

> (memv (list (list 1 2 3)) x)
#false

null : list

Another name for the empty list

> null
O

(null? x) — boolean?
x : any/c

Determines whether some value is the empty list.
> (null? ')
#true

> (null? 42)
#false

326

(range start end step) — list?
start : number
end : number
step : number

Constructs a list of numbers by stepping from start to end.

> (range 0 10 2)
(cons 0 (cons 2 (cons 4 (cons 6 (cons 8 '())))))

(remove x 1) — list?
x : any/c
1 : list?

Constructs a list like the given one, with the first occurrence of the given item removed
(comparing values with equal?).

> X

(list 2 "hello" #true)

> (remove "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove "hello" hello-2)
(list 2 #true "hello")

(remove-all x 1) — list?
x : any/c
1 : list?

Constructs a list like the given one, with all occurrences of the given item removed (compar-
ing values with equal?).

> X

(list 2 "hello" #true)

> (remove-all "hello" x)

(list 2 #true)

> hello-2

(list 2 "hello" #true "hello")
> (remove-all "hello" hello-2)
(list 2 #true)

327

(rest x) — any/c
X . cons?

Selects the rest of a non-empty list.

> X

(list 2 "hello" #true)
> (rest x)

(list "hello" #true)

(reverse 1) — list
1 : list?

Creates a reversed version of a list.

> X

(list 2 "hello" #true)
> (reverse x)

(list #true "hello" 2)

(second x) — any/c
x : list?

Selects the second item of a non-empty list.

> X

(list 2 "hello" #true)
> (second x)

"hello"

(seventh x) — any/c
x @ list?

Selects the seventh item of a non-empty list.

> v

(list 1 23 4567 89 'A)
> (seventh v)
7

328

(sixth x) — any/c
x . list?

Selects the sixth item of a non-empty list.

> v

(1ist 1 23456789 'A)
> (sixth v)

6

(third x) — any/c
x : list?

Selects the third item of a non-empty list.

> X

(list 2 "hello" #true)
> (third x)

#true

5.11 Posns

(make-posn x y) — posn
x : any/c
y @ any/c

Constructs a posn from two arbitrary values.

> (make-posn 3 3)
(make-posn 3 3)

> (make-posn "hello" #true)
(make-posn "hello" #true)

(posn-x p) — any/c
p : posn

Extracts the x component of a posn.

> p

(make-posn 2 -3)
> (posn-x p)

2

329

(posn-y p) — any/c
p : posn

Extracts the y component of a posn.

> p

(make-posn 2 -3)
> (posn-y p)

-3

(posn? x) — boolean?
x : any/c

Determines if its input is a posn.

>q

(make-posn "bye" 2)
> (posn? q)

#true

> (posn? 42)

#false

(set-posn-x! p x) — void?

p : posn
X @ any

Updates the x component of a posn.

> p

(make-posn 2 -3)

> (set-posn-x! p 678)
> p

(make-posn 678 -3)

(set-posn-y! p x) — void

p : posn
X ! any

Updates the y component of a posn.

> q

(make-posn "bye" 2)
> (set-posn-y! q 678)
> q

(make-posn "bye" 678)

330

5.12 Characters

(char->integer c) — integer
c : char

Looks up the number that corresponds to the given character in the ASCII table (if any).

> (char->integer #\a)
97

> (char->integer #\z)
122

(char-alphabetic? c¢) — boolean?
c : char

Determines whether a character represents an alphabetic character.

> (char-alphabetic? #\Q)
#true

(char-ci<=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in an increasing and case-insensitive manner.

> (char-ci<=? #\b #\B)
#true

> (char<=7 #\b #\B)
#false

(char-ci<? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing and case-insensitive
manner.

331

> (char-ci<? #\B #\c)
#true

> (char<? #\b #\B)
#false

(char-ci=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether two characters are equal in a case-insensitive manner.

> (char-ci=? #\b #\B)
#true

(char-ci>=? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing and case-insensitive manner.

> (char-ci>=? #\b #\C)
#false

> (char>=? #\b #\C)
#true

(char-ci>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing and case-insensitive

manner.

> (char-ci>? #\b #\B)
#false

> (char>? #\b #\B)
#true

332

(char-downcase c¢) — char
c @ char
Produces the equivalent lower-case character.

> (char-downcase #\T)
#\t

(char-lower-case? c¢) — boolean?
c : char
Determines whether a character is a lower-case character.

> (char-lower-case? #\T)
#false

(char-numeric? c) — boolean?
c : char
Determines whether a character represents a digit.

> (char-numeric? #\9)
#true

(char-upcase c¢) — char
¢ : char
Produces the equivalent upper-case character.

> (char-upcase #\t)
#\T

(char-upper-case? c) — boolean?
¢ @ char

Determines whether a character is an upper-case character.

> (char-upper-case? #\T)
#true

333

(char-whitespace? c¢) — boolean?
c @ char

Determines whether a character represents space.
> (char-whitespace? #\tab)

#true

(char<=? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are ordered in an increasing manner.
> (char<=?7 #\a #\a #\b)

#true

(char<? x d e ...) — boolean?

x . char
d : char
e : char

Determines whether the characters are ordered in a strictly increasing manner.
> (char<? #\a #\b #\c)

#true

(char=? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are equal.

> (char=7 #\b #\a)
#false

334

(char>=7? ¢ d e ...) — boolean?

c : char
d : char
e : char

Determines whether the characters are sorted in a decreasing manner.

> (char>=?7 #\b #\b #\a)
#true

(char>? ¢ d e ...) — boolean?
c : char
d : char
e : char

Determines whether the characters are sorted in a strictly decreasing manner.

> (char>? #\A #\z #\a)
#false

(char? x) — boolean?
x : any/c
Determines whether a value is a character.
> (char? "a")
#false

> (char? #\a)
#true

5.13 Strings

(explode s) — (listof string)
s : string

Translates a string into a list of 1-letter strings.

> (explode "cat")
(1ist ||C|| llall l|t|l)

335

(format f x ...) — string
f . string
x @ any/c
Formats a string, possibly embedding values.

> (format "Dear Dr. “a:" "Flatt")
"Dear Dr. Flatt:"

> (format "Dear Dr. “s:" "Flatt")
"Dear Dr. \"Flatt\":"

(implode 1) — string
1 : 1ist?
Concatenates the list of 1-letter strings into one string.

> (implode (cons "c" (cons "a" (coms "t" '()))))
llcatll

(int->string i) — string
i : integer

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

> (int->string 65)
IIAII

(list->string 1) — string
1 : 1list?
Converts a s list of characters into a string.

> (list->string (cons #\c (cons #\a (cons #\t '()))))
"Cat n

(make-string i ¢) — string
i : natural?
c : char

336

Produces a string of length i from c.

> (make-string 3 #\d)
n ddd“

(replicate i s) — string
i : natural?
s : string
Replicates s i times.

> (replicate 3 "h")
n hhh“

(string ¢ ...) — string?
c : char
Builds a string of the given characters.

> (string #\d #\o #\g)
"dog"

(string->int s) — integer
s . string
Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

> (string->int "a")
97

(string->list s) — (listof char)
s . string

Converts a string into a list of characters.

> (string->list "hello")
(1ist #\h #\e #\1 #\1 #\o)

337

(string->number s) — (union number #false)
s . string

Converts a string into a number, produce false if impossible.

> (string->number "-2.03")
-2.03

> (string->number "1-2i")
1-2i

(string->symbol s) — symbol
s : string

Converts a string into a symbol.

> (string->symbol '"hello")
'hello

(string-alphabetic? s) — boolean?
s : string

Determines whether all ’letters’ in the string are alphabetic.

> (string-alphabetic? "123")
#false

> (string-alphabetic? "cat")
#true

(string-contains-ci? s t) — boolean?
s ! string
t : string

Determines whether the first string appears in the second one without regard to the case of
the letters.

> (string-contains-ci? "At" "caT")
#true

(string-contains? s t) — boolean?
s . string
t . string

338

Determines whether the first string appears literally in the second one.

> (string-contains? "at" "cat")
#true

(string-copy s) — string
s : string
Copies a string.

> (string-copy "hello")
"hello"

(string-downcase s) — string
s . string
Produces a string like the given one with all ’letters’ as lower case.

> (string-downcase "CAT")
llcatll
> (string-downcase "cAt")
"C&t“

(string-ith s i) — 1string?
s : string
i : natural?

Extracts the ith 1-letter substring from s.

> (string-ith "hello world" 1)
llell

(string-length s) — nat
s : string

Determines the length of a string.

> (string-length "hello world")
11

339

(string-lower-case? s) — boolean?
s . string

Determines whether all ’letters’ in the string are lower case.

> (string-lower-case? "CAT")
#false

(string-numeric? s) — boolean?
s . string

Determines whether all ’letters’ in the string are numeric.

> (string-numeric? "123")
#true
> (string-numeric? "1-2i")
#false

(string-ref s i) — char
s : string
i : natural?

Extracts the ith character from s.

> (string-ref "cat" 2)
#\t

(string-upcase s) — string
s . string

Produces a string like the given one with all ’letters’ as upper case.
> (string-upcase "cat")
n CAT n

> (string-upcase "cAt")
llCATll

(string-upper-case? s) — boolean?
s . string

340

Determines whether all ’letters’ in the string are upper case.

> (string-upper-case? "CAT")
#true

(string-whitespace? s) — boolean?
s . string

Determines whether all ’letters’ in the string are white space.

> (string-whitespace? (string-append " " (string #\tab #\newline #\return)))
#true

(string? x) — boolean?
x : any/c

Determines whether a value is a string.

> (string? "hello world")
#true

> (string? 42)

#false

(substring s i j) — string
s . string
i : natural?
J : natural?

Extracts the substring starting at i up to j (or the end if j is not provided).

> (substring "hello world" 1 5)

llelloll

> (substring "hello world" 1 8)
"ello wo"

> (substring "hello world" 4)
"o world"

5.14 Images
(image=7 i j) — boolean?
i : image

Jj . image

341

Determines whether two images are equal.

> cl

> (image=7 (circle 5 "solid" "green") cl)
#false

> (image=7 (circle 10 "solid" "green") cl)
#true

(image? x) — boolean?
x : any/c

Determines whether a value is an image.

> cl

> (image? c1)
#true

5.15 Misc

(=7 x y eps) — boolean?
X : number
y : number

eps : non-negative-real

Checks whether x and y are within eps of either other.

> (=7 1.01 1.0 0.1)
#true
> (=7 1.01 1.5 0.1)
#false

(current-milliseconds) — exact-integer
Returns the current “time” in fixnum milliseconds (possibly negative).

> (current-milliseconds)
1767549597958

342

eof : eof-object?

A value that represents the end of a file:

> eof
#<eof>

(eof-object? x) — boolean?
x : any/c

Determines whether some value is the end-of-file value.

> (eof-object? eof)
#true

> (eof-object? 42)
#false

(eq? x y) — boolean?
x : any/c
y @ any/c

Determines whether two values are equivalent from the computer’s perspective (intensional).

> (eq? (cons 1 '()) (cons 1 '()))
#false

> one

(1list 1)

> (eq? one one)

#true

(equal? x y) — boolean?
x @ any/c
y : any/c

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

> (equal? (make-posn 1 2) (make-posn (- 2 1) (+ 1 1)))
#true

343

(equal™? x y z) — boolean?
x : any/c
y : any/c
z : non-negative-real

Compares x and y like equal? but uses =~ in the case of numbers.

> (equal™? (make-posn 1.01 1.0) (make-posn 1.01 0.99) 0.2)
#true

(eqv? x y) — boolean?
x : any/c
y @ any/c

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

> (eqv? (cons 1 '()) (cons 1 '()))
#false

> one

(1ist 1)

> (eqv? one one)

#true

(error x ...) — void?
x : any/c

Signals an error, combining the given values into an error message. If any of the values’
printed representations is too long, it is truncated and “...” is put into the string. If the
first value is a symbol, it is suffixed with a colon and the result pre-pended on to the error

message.

> zero

0
> (if (= zero 0) (error '"can't divide by 0") (/ 1 zero))

can't divide by 0

(exit) — void

Evaluating (exit) terminates the running program.

344

(force v) — any
v : any

Finds the delayed value; see also delay.
(gensym) — symbol?

Generates a new symbol, different from all symbols in the program.

> (gensym)
'g1356875

(identity x) — any/c
x @ any/c
Returns x.

> (identity 42)
42
> (identity c1)

> (identity "hello")
"hello"

(promise? x) — boolean?
X @ any

Determines if a value is delayed.

(sleep sec) — void
sec : positive-num

Causes the program to sleep for the given number of seconds.

(struct? x) — boolean?
x : any/c

Determines whether some value is a structure.

345

> (struct? (make-posn 1 2))
#true

> (struct? 43)

#false

(void) — void?
Produces a void value.

> (void)

(void? x) — boolean?
X @ any

Determines if a value is void.

> (void? (void))
#true

> (void? 42)
#false

5.16 Signatures
Any : signature?
Signature for any value.

Boolean : signature?

Signature for booleans.

Char : signature?

Signature for chararacters.

(Cons0f first-sig rest-sig) — signature?
first-sig : signature?
rest-sig : signature?

346

Signature for a cons pair.
EmptyList : signature?
Signature for the empty list.
False : signature?
Signature for just false.
Integer : signature?
Signature for integers.

Natural : signature?

Signature for natural numbers.

Number : signature?

Signature for arbitrary numbers.

Rational : signature?

Signature for rational numbers.

Real : signature?
Signature for real numbers.
String : signature?

Signature for strings.
Symbol : signature?

Signature for symbols.

True : signature?

Signature for just true.

347

5.17 Numbers (relaxed conditions)

5.18 String (relaxed conditions)

(string-append s ...) — string
s : string
Concatenates the characters of several strings.

> (string-append "hello" " " "world" " " "good bye")
"hello world good bye"

(string-ci<=?7 s t x ...) — boolean?
s . string
t . string

x : string

Determines whether the strings are ordered in a lexicographically increasing and case-
insensitive manner.

> (string-ci<=? "hello" "WORLD" "zoo"
#true

(string-ci<? s t x ...) — boolean?
s . string
t . string
x : string

Determines whether the strings are ordered in a lexicographically strictly increasing and
case-insensitive manner.

> (string-ci<? "hello" "WORLD" "zoo"
#true

(string-ci=? s t x ...) — boolean?
s . string
t . string
x @ string

Determines whether all strings are equal, character for character, regardless of case.

348

> (string-ci=? "hello" "HellO")
#true

(string-ci>=? s t x ...) — boolean?
s ! string
t . string
x @ string

Determines whether the strings are ordered in a lexicographically decreasing and case-

insensitive manner.

> (string-ci>? "zoo" "WORLD" "hello")

#true

(string-ci>? s t x ...) — boolean?
s @ string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically strictly decreasing and

case-insensitive manner.

> (string-ci>? "zoo" "WORLD" "hello")
#true

(string<=? s t x ...) — boolean?
s ! string
t . string
x : string

Determines whether the strings are ordered in a lexicographically increasing manner.

> (string<=? "hello" "hello" "world" "zoo"

#true

(string<? s t x ...) — boolean?
s . string
t : string
X ! string

Determines whether the strings are ordered in a lexicographically strictly increasing manner.

349

> (string<? "hello" "world" "zoo")
#true

(string=?7 s t x ...) — boolean?
s : string
t : string
x ! string

Determines whether all strings are equal, character for character.

> (string=7 "hello" "world")
#false

> (string=7 "bye" "bye")
#true

(string>=? s t x ...) — boolean?
s @ string
t : string
x ! string

Determines whether the strings are ordered in a lexicographically decreasing manner.

> (string>=7? "zoo" "zoo" "world" "hello")
#true

(string>? s t x ...) — boolean?
s . string
t . string
x : string

Determines whether the strings are ordered in a lexicographically strictly decreasing manner.

> (string>? "zoo" "world" "hello")
#true

5.19 Posn
(posn) — signature

Signature for posns.

350

5.20 Higher-Order Functions

5.21 Numbers (relaxed conditions plus)

(¥ x ...) — number
X . number

Multiplies all given numbers. In ISL and up: * works when applied to only one number or
none.

> (x 5 3)
15

> (x 5 3 2)
30

(x 2)

>
2
> (%)
1

(+ x ...) — number
X . number

Adds all given numbers. In ISL and up: + works when applied to only one number or none.

> (+ 2/3 1/16)
35/48

> (+3258)
18

> (+ 1)

1

> (+)

0

(/ x y ...) — number
x : number
y . number

Divides the first by all remaining numbers. In ISL and up: / computes the inverse when
applied to one number.

> (/ 12 2)
6

351

> (/12 2 3)
2

> (/ 3)

1/3

(= x ...) — number
X . number

Compares numbers for equality. In ISL and up: = works when applied to only one number.

> (= 10 10)
#true

> (= 11)
#true

> (= 0)
#true

5.22 Higher-Order Functions (with Lambda)

(andmap p? [1]) — boolean
p? . (X ... -> boolean)
1 : (listof X) = ...

Determines whether p? holds for all items of 1 ...

(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p x-n))
(andmap p (list x-1 ... x-n) (list y-1 ... y-n)) = (and (p x-1 y-
1) ... (p x-n y-n))

> (andmap odd? '(1 3 57 9))

#true

> threshold

3

> (andmap (lambda (x) (< x threshold)) '(0 1 2))

#true

> (andmap even? '())

#true

> (andmap (lambda (x f) (f x)) (list 0 1 2) (list odd? even? positive?))
#false

352

(apply f x-1 ... 1) —> Y

f:X-1...X-N->Y)
x-1 : X-1
1 : (list X-i+1 ... X-N)

Applies a function using items from a list as the arguments:
(apply £ (list x-1 ... x-n)) = (f x-1 ... x-n)
> a-list
(1ist 01 234567 809)

> (apply max a-list)
9

(argmax f 1) — X
f : (X -> real)
1 : (listof X)

Finds the (first) element of the list that maximizes the output of the function.

> (argmax second '((sam 98) (carl 78) (vincent 93) (asumu 99)))
(list 'asumu 99)

(argmin f 1) — X
f : (X -> real)
1 : (listof X)

Finds the (first) element of the list that minimizes the output of the function.

> (argmin second '((sam 98) (carl 78) (vincent 93) (asumu 99)))
(list 'carl 78)

(build-list n f) — (listof X)
n : nat
f : (nat -> X)

Constructs a list by applying £ to the numbers between O and (- n 1):

(build-1list n f) = (Qist (f 0) ... (f (- n 1)))

353

> (build-list 22 addil)
(list 1 234567 89 10 11 12 13 14 15 16 17 18 19 20 21 22)
> i
3
> (build-list 3 (lambda (j) (+ j i)))
(list 3 4 5)
> (build-list 5
(lambda (i)
(build-list 5
(lambda (j)
Gf (=13 10NN
(list (1ist 1 0 0 0 0) (list 0 1 0 0 0) (list 0 0 1 0 0) (list 0 O
010) (1ist 00 0 0 1))

(build-string n f) — string
n : nat
f : (nat -> char)

Constructs a string by applying f to the numbers between O and (- n 1):

(build-string n f) = (string (f 0) ... (f (- n 1))

> (build-string 10 integer->char)
"\u0000\u0001\u0002\u0003\u0004\u0005\u0006\a\b\t"

> (build-string 26 (lambda (x) (integer->char (+ 65 x))))
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

(compose f g) — (X -> Z)
f: @ ->2
g: X ->Y)

Composes a sequence of procedures into a single procedure:
(compose f g) = (lambda (x) (f (g x)))

> ((compose addl second) '(add 3))
4

> (map (compose addl second) '((add 3) (sub 2) (mul 4)))
(list 4 3 5)

354

(filter p? 1) — (listof X)
p? : (X -> boolean)
1 : (listof X)

Constructs a list from all those items on a list for which the predicate holds.

> (filter odd? '(0 1 234567 8 9))

(list 1 357 9)

> threshold

3

> (filter (lambda (x) (>= x threshold)) '(0 1 23 4567 8 9))
(1ist 34567 8 9)

(foldl f base 1 ...) —> Y
f: X ...Y->Y)
base : Y
1 : (listof X)

(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
(foldl f base (list x-1 ... x-n) (list x-1 ... x-n))
= (f xn y-n ... (f x-1 y-1 base))

> (foldl + 0 '(01 234567 89))

45

> a-list

(list 01 234567 809)

> (foldl (lambda (x r) (if (> x threshold) (cons (* 2 x) r) r)) ') a-
list)

(list 18 16 14 12 10 8)

> (foldl (lambda (x y r) (+ x y r)) 0 '(1 2 3) '(10 11 12))

39

(foldr f base 1 ...) — Y
f: X ...Y->Y)
base : Y
1 : (listof X)

(foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))

355

(foldr f base (list x-1 ... x-n) (list y-1 ... y-n))
= (f x-1 y-1 ... (f x-n y-n base))

> (foldr + 0 '(01 234567 829))

45

> a-list

(list 01 234567 809)

> (foldr (lambda (x r) (if (> x threshold) (cons (* 2 x) r) r)) ') a-
list)

(list 8 10 12 14 16 18)

> (foldr (lambda (x y r) (+ x y r)) 0 '(1 2 3) '(10 11 12))

39

(map £ 1 ...) — (listof Z)
f: X ... ->72)
1 : (listof X)

Constructs a new list by applying a function to each item on one or more existing lists:

(map £ (list x-1 ... x-n)) = (list (f x-1) ... (f x-n))
(map f (list x-1 ... x-n) (list y-1 ... y-n)) = (list (f x-1 y-
1) ... (f x-n y-n))

> (map addl (list 3 -4.01 2/5))
(1ist 4 #i-3.01 1.4)

> (define (tag-with-a x)
(1ist "a" (+ x 1)))
tag-with-a:this name was defined previously and cannot be re-defined

> (map tag-with-a (list 3 -4.01 2/5))
(1ist (1ist "a" 4) (list "a" #i-3.01) (list "a" 1.4))

> (define (add-and-multiply x y)
(+x (x xy)))
add-and-multiply:this name was defined previously and cannot be re-defined

> (map add-and-multiply (list 3 -4 2/5) '(1 2 3))
(list 6 -12 1.6)

356

(memf p? 1) — (union #false (listof X))
p? : (X -> any)
1 : (listof X)

Produces #false if p? produces false for all items on 1. If p? produces #true for any of
the items on 1, memf returns the sub-list starting from that item.

> (memf odd? '(2 4 6 3 8 0))
(1ist 3 8 0)

(ormap p? 1) — boolean
p? : (X -> boolean)
1 : (listof X)

Determines whether p? holds for at least one items of 1:

(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))
(ormap p (list x-1 ... x-n) (list y-1 ... y-n)) = (or (p x-1 y-
1) ... (p x-n y-n))

> (ormap odd? '(1 357 9))

#true

> threshold

3

> (ormap (lambda (x) (< x threshold)) '(6 7 8 1 5))

#true

> (ormap even? '())

#false

> (ormap (lambda (x f) (f x)) (list 0 1 2) (list odd? even? positive?))
#true

(procedure? x) — boolean?
X @ any

Produces true if the value is a procedure.

> (procedure? cons)

#true

> (procedure? addl)

#true

> (procedure? (lambda (x) (> x 22)))
#true

357

(quicksort 1 comp) — (listof X)
1 : (listof X)
comp : (X X -> boolean)

Sorts the items on 1, in an order according to comp (using the quicksort algorithm).

> (quicksort '(6 72134059 8) <)
(1ist 01 234567 89)

(sort 1 comp) — (listof X)
1 : (listof X)
comp : (X X -> boolean)

Sorts the items on 1, in an order according to comp.

> (sort '(6 7
(list 01 2 3

5.23 Reading and Printing

(display x) — void
X @ any

Prints the argument to stdout (without quotes on symbols and strings, etc.).

> (display 10)

10

> (display "hello")
hello

> (display 'hello)
hello

(newline) — void

Prints a newline.

(pretty-print x) — void
X @ any

Pretty prints S-expressions (like write).

358

> (pretty-print '((1 2 3) ((a) ("hello world" #true) (((false "good
bye"))))))

((1 2 3) ((@) ("hello world" #true) (((false "good bye")))))
> (pretty-print (build-list 10 (lambda (i) (build-
list 10 (lambda (j) (=1 j))))))

((#true #false #false #false #false #false #false #false #false
#false)

(#false #true #false #false #false #false #false #false #false
#false)

(#false #false #true #false #false #false #false #false #false
#false)

(#false #false #false #true #false #false #false #false #false
#false)

(#false #false #false #false #true #false #false #false #false
#false)

(#false #false #false #false #false #true #false #false #false
#false)

(#false #false #false #false #false #false #true #false #false
#false)

(#false #false #false #false #false #false #false #true #false
#false)

(#false #false #false #false #false #false #false #false #true
#false)

(#false #false #false #false #false #false #false #false #false
#true))

(print x) — void
x @ any

Prints the argument as a value.

> (print 10)

10

> (print "hello")
"hello"

> (print 'hello)
'hello

(printf f x ...) — void
f . string
X @ any

Formats the rest of the arguments according to the first argument and print it.

359

(read) — sexp

Reads input from the user.

(with-input-from-file f p) — any
f : string
p : (-> any)

Opens the named input file £ and allows p to read from it.

(with-input-from-string s p) — any
s @ string
p : (-> any)

Turns s into input for read operations in p.
> (with-input-from-string "hello" read)
'hello
> (string-length (symbol->string (with-input-from-

string "hello" read)))
5

(with-output-to-file f p) — any
f : string
p : (-> any)

Opens the named output file £ and allows p to write to it.

(with-output-to-string p) — any
p : (> any)

Produces a string from all write/display/print operations in p.

> (with-output-to-string (lambda () (display 10)))
"10"

(write x) — void
x @ any

360

Prints the argument to stdout (in a traditional style that is somewhere between print and
display).

> (write 10)

10

> (write "hello")
"hello"

> (write 'hello)
hello

5.24 Vectors

(build-vector n f) — (vectorof X)
n : nat
f : (nat -> X)

Constructs a vector by applying £ to the numbers O through (- n 1).

> (build-vector 5 addil)
(vector 1 2 3 4 5)

(list->vector 1) — (vectorof X)
1 : (listof X)
Transforms 1 into a vector.

> (list->vector (list "hello" "world" "good" "bye"))
(vector "hello" "world" "good" "bye")

(make-vector n x) — (vectorof X)
n : number
x : X
Constructs a vector of n copies of x.

> (make-vector 5 0)
(vector 0 0 0 0 0)

(vector x ...) — (vector X ...)
x : X

361

Constructs a vector from the given values.

> (vector 1 2 3 -1 -2 -3)
(vector 1 2 3 -1 -2 -3)

(vector->list v) — (listof X)
v . (vectorof X)

Transforms v into a list.

> (vector->list (vector 'a 'b 'c))
(list 'a 'b 'c)

(vector-length v) — nat
v : (vector X)

Determines the length of v.

> v

(Vector g npn nen o ngn llell)
> (vector-length v)

5

(vector-ref v n) — X
v : (vector X)
n : nat

Extracts the nth element from v.

> v

(Vector g npn nwen o ngn llell)
> (vector-ref v 3)

ngn

(vector-set! v n x) — void
v : (vectorof X)
n : nat
x : X

Updates v at position n to be x.

362

> v

(VeCtor llall Ilbll Ilcll lldll llell)
> (vector-set! v 3 77)

> v

(veCtOr ||a|| Ilbll "C" 77 lle")

(vector? x) — boolean
X @ any

Determines if a value is a vector.

> v
(vector g npn o nwen 77 ||en)
> (vector? v)
#true
> (vector? 42)
#false
5.25 Boxes

(box x) — box?
x @ any/c

Constructs a box.

> (box 42)
(box 42)

(box? x) — boolean?
x : any/c

Determines if a value is a box.

> b

(box 33)

> (box? b)
#true

> (box? 42)
#false

363

(set-box! b x) — void
b : box?
x : any/c

Updates a box.

> b

(box 33)

> (set-box! b 31)
> b

(box 31)

(unbox b) — any
b : box?

Extracts the boxed value.

> b

(box 31)

> (unbox b)
31

5.26 Hash Tables

(hash-copy h) — hash
h : hash

Copies a hash table.

(hash-count h) — integer
h : hash

Determines the number of keys mapped by a hash table.

> ish

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'e 61)))

> (hash-count ish)

4

364

(hash-eq? h) — boolean
h : hash

Determines if a hash table uses eq? for comparisons.

> hsh

(make-hash (list (list 'c 42) (list 'r 999) (1list 'b 69) (list 'e
61)))

> (hash-eq? hsh)

#false

> heq

(make-hasheq (1list (list 'b 69) (list 'e 61) (list 'c 42) (list 'r
999)))

> (hash-eq? heq)

#true

(hash-equal? h) — boolean
h : hash?

Determines if a hash table uses equal? for comparisons.

> ish

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'e 61)))

> (hash-equal? ish)

#true

> ieq

(make-immutable-hasheq (list (list 'b 69) (list 'r 999) (list 'c
42) (list 'e 61)))

> (hash-equal? ieq)

#false

(hash-eqv? h) — boolean
h : hash

Determines if a hash table uses eqv? for comparisons.

> heq

(make-hasheq (list (list 'b 69) (list 'e 61) (list 'c 42) (list 'r
999)))

> (hash-eqv? heq)

#false

365

> heqv

(make-hasheqv (list (list 'b 69) (list 'e 61) (list 'c 42) (list
'r 999)))

> (hash-eqv? heqv)

#true

(hash-for-each h f) — void?
h : (hash X Y)
f: (XY -> any)

Applies a function to each mapping of a hash table for effect only.

> hsh

(make-hash (list (list 'c 42) (list 'r 999) (list 'b 69) (list 'e

61)))

> (hash-for-each hsh (lambda (ky vl) (hash-set! hsh ky (+ vl 1))))
> hsh

(make-hash (list (list 'c 43) (list 'r 1000) (list 'b 70) (list 'e
62)))

(hash-has-key? h x) — boolean
h : (hash X Y)
x X

Determines if a key is associated with a value in a hash table.

> ish

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'e 61)))

> (hash-has-key? ish 'b)

#true

> hsh

(make-hash (list (list 'c 43) (list 'r 1000) (list 'b 70) (list 'e
62)))

> (hash-has-key? hsh 'd)

#false

(hash-map h f) — (listof Z)
h : (hash X Y)
f: XY ->2)

Constructs a new list by applying a function to each mapping of a hash table.

366

> ish

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'e 61)))

> (hash-map ish list)

(list (1list 'b 69) (list 'r 999) (list 'c 42) (list 'e 61))

(hash-ref h k) — Y
h : (hash X Y)
k : X

Extracts the value associated with a key from a hash table; the three argument case allows a
default value or default value computation.

> hsh

(make-hash (list (list 'c 43) (list 'r 1000) (list 'b 70) (list 'e
62)))

> (hash-ref hsh 'b)

70

(hash-ref! h k v) — Y
h : (hash X Y)
k . X
v:Y

Extracts the value associated with a key from a mutable hash table; if the key does not have
an mapping, the third argument is used as the value (or used to compute the value) and is
added to the hash table associated with the key.

> hsh

(make-hash (list (list 'c 43) (list 'r 1000) (list 'b 70) (list 'e
62)))

> (hash-ref! hsh 'd 99)

99

> hsh

(make-hash (list (list 'c 43) (list 'd 99) (list 'r 1000) (list 'b
70) (list 'e 62)))

(hash-remove h k) — (hash X Y)
h : (hash X Y)
k : X

Constructs an immutable hash table with one less mapping than an existing immutable hash
table.

367

> ish

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'e 61)))

> (hash-remove ish 'b)

(make-immutable-hash (list (list 'c 42) (list 'r 999) (list
61)))

'e

(hash-remove! h x) — void
h : (hash X Y)
x : X

Removes an mapping from a mutable hash table.

> hsh

(make-hash (list (list 'c 43) (list 'd 99) (list 'r 1000) (list 'b
70) (list 'e 62)))

> (hash-remove! hsh 'r)

> hsh

(make-hash (list (list 'c 43) (list 'd 99) (list 'b 70) (list
62)))

'e

(hash-set h k v) — (hash X Y)
h : (hash X Y)
k : X
v:yY

Constructs an immutable hash table with one new mapping from an existing immutable hash
table.

> (hash-set ish 'a 23)

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'a 23) (list 'e 61)))

(hash-set! h k v) — void?
h : (hash X Y)
k : X
v .Y

Updates a mutable hash table with a new mapping.

> hsh

368

(make-hash (list (list 'c 43) (list 'd 99) (list 'b 70) (list 'e
62)))

> (hash-set! hsh 'a 23)

> hsh

(make-hash (list (list 'c 43) (list 'a 23) (list 'd 99) (list 'b
70) (list 'e 62)))

(hash-update h k f) — (hash X Y)
h : (hash X Y)
kX
f: 0 ->Y)

Composes hash-ref and hash-set to update an existing mapping; the third argument is used
to compute the new mapping value; the fourth argument is used as the third argument to
hash-ref.

> (hash-update ish 'b (lambda (old-b) (+ old-b 1)))
(make-immutable-hash (list (list 'b 70) (list 'r 999) (list 'c 42)
(list 'e 61)))

(hash-update! h k f) — void?
h : (hash X Y)
kX
f: 0 >V

Composes hash-ref and hash-set! to update an existing mapping; the third argument is used
to compute the new mapping value; the fourth argument is used as the third argument to
hash-ref.

> hsh

(make-hash (list (list 'c 43) (list 'a 23) (list 'd 99) (list 'b
70) (list 'e 62)))

> (hash-update! hsh 'b (lambda (old-b) (+ old-b 1)))

> hsh

(make-hash (list (list 'c 43) (list 'a 23) (list 'd 99) (list 'b
71) (list 'e 62)))

(hash? x) — boolean
X @ any

Determines if a value is a hash table.

369

> ish

(make-immutable-hash (list (list 'b 69) (list 'r 999) (list 'c 42)
(list 'e 61)))

> (hash? ish)

#true

> (hash? 42)

#false

(make-hash) — (hash X Y)

Constructs a mutable hash table from an optional list of mappings that uses equal? for
comparisons.

> (make-hash)

(make-hash)

> (make-hash '((b 69) (e 61) (i 999)))

(make-hash (list (list 'i 999) (list 'b 69) (list 'e 61)))

(make-hasheq) — (hash X Y)

Constructs a mutable hash table from an optional list of mappings that uses eq? for compar-
isons.

> (make-hasheq)

(make-hasheq)

> (make-hasheq '((b 69) (e 61) (i 999)))

(make-hasheq (list (list 'b 69) (list 'e 61) (list 'i 999)))

(make-hasheqv) — (hash X Y)
Constructs a mutable hash table from an optional list of mappings that uses eqv? for com-
parisons.

> (make-hasheqv)

(make-hasheqv)

> (make-hasheqv '((b 69) (e 61) (i 999)))

(make-hasheqv (list (list 'b 69) (list 'e 61) (list 'i 999)))

(make-immutable-hash) — (hash X Y)

370

Constructs an immutable hash table from an optional list of mappings that uses equal? for
comparisons.

> (make-immutable-hash)
(make-immutable-hash)
> (make-immutable-hash '((b 69) (e 61) (i 999)))

(make-immutable-hash (list (list 'b 69) (list

'e 61) (list 'i
999)))

(make-immutable-hasheq) — (hash X Y)

Constructs an immutable hash table from an optional list of mappings that uses eq? for
comparisons.

> (make-immutable-hasheq)
(make-immutable-hasheq)

> (make-immutable-hasheq '((b 69) (e 61) (i 999)))

(make-immutable-hasheq (list (list 'b 69) (list 'e 61) (list 'i
999)))

(make-immutable-hasheqv) — (hash X Y)

Constructs an immutable hash table from an optional list of mappings that uses eqv? for
comparisons.

> (make-immutable-hasheqv)
(make-immutable-hasheqv)
> (make-immutable-hasheqv '((b 69) (e 61) (i 999)))

(make-immutable-hasheqv (list (list 'b 69) (list 'e 61) (list 'i
999)))

371

	1 Beginning Student
	1.1 Pre-defined Variables
	1.2 Template Variables
	1.3 Syntax
	1.4 Signatures
	1.4.1 Signature Forms
	1.4.2 Struct Signatures

	1.5 Pre-defined Functions
	1.6 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	1.7 Booleans
	1.8 Symbols
	1.9 Lists
	1.10 Posns
	1.11 Characters
	1.12 Strings
	1.13 Images
	1.14 Misc
	1.15 Signatures

	2 Beginning Student with List Abbreviations
	2.1 Pre-defined Variables
	2.2 Template Variables
	2.3 Syntaxes for Beginning Student with List Abbreviations
	2.4 Common Syntaxes
	2.5 Signatures
	2.5.1 Signature Forms
	2.5.2 Struct Signatures

	2.6 Pre-defined Functions
	2.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	2.8 Booleans
	2.9 Symbols
	2.10 Lists
	2.11 Posns
	2.12 Characters
	2.13 Strings
	2.14 Images
	2.15 Misc
	2.16 Signatures

	3 Intermediate Student
	3.1 Pre-defined Variables
	3.2 Template Variables
	3.3 Syntax for Intermediate
	3.4 Common Syntaxes
	3.5 Signatures
	3.5.1 Signature Forms
	3.5.2 Struct Signatures

	3.6 Pre-defined Functions
	3.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	3.8 Booleans
	3.9 Symbols
	3.10 Lists
	3.11 Posns
	3.12 Characters
	3.13 Strings
	3.14 Images
	3.15 Misc
	3.16 Signatures
	3.17 Numbers (relaxed conditions)
	3.18 String (relaxed conditions)
	3.19 Posn
	3.20 Higher-Order Functions

	4 Intermediate Student with Lambda
	4.1 Pre-defined Variables
	4.2 Template Variables
	4.3 Syntax for Intermediate with Lambda
	4.4 Common Syntaxes
	4.5 Pre-defined Functions
	4.6 Signatures
	4.6.1 Signature Forms
	4.6.2 Struct Signatures

	4.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	4.8 Booleans
	4.9 Symbols
	4.10 Lists
	4.11 Posns
	4.12 Characters
	4.13 Strings
	4.14 Images
	4.15 Misc
	4.16 Signatures
	4.17 Numbers (relaxed conditions)
	4.18 String (relaxed conditions)
	4.19 Posn
	4.20 Higher-Order Functions
	4.21 Numbers (relaxed conditions plus)
	4.22 Higher-Order Functions (with Lambda)

	5 Advanced Student
	5.1 Pre-defined Variables
	5.2 Template Variables
	5.3 Syntax for Advanced
	5.4 Common Syntaxes
	5.5 Pre-Defined Functions
	5.6 Signatures
	5.6.1 Signature Forms
	5.6.2 Struct Signatures

	5.7 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	5.8 Booleans
	5.9 Symbols
	5.10 Lists
	5.11 Posns
	5.12 Characters
	5.13 Strings
	5.14 Images
	5.15 Misc
	5.16 Signatures
	5.17 Numbers (relaxed conditions)
	5.18 String (relaxed conditions)
	5.19 Posn
	5.20 Higher-Order Functions
	5.21 Numbers (relaxed conditions plus)
	5.22 Higher-Order Functions (with Lambda)
	5.23 Reading and Printing
	5.24 Vectors
	5.25 Boxes
	5.26 Hash Tables

