OpenSSL: Secure Communication

Version 9.0.0.11

January 4, 2026

(require openssl) package: base

The openssl library provides glue for the OpenSSL library with the Racket port system.
It provides functions nearly identically to the standard TCP subsystem in Racket, plus a
generic ports->ssl-ports interface.

To use this library, you will need OpenSSL installed on your machine, but on many platforms
the necessary libraries are included with the OS or with the Racket distribution. In particular:

* For Windows, openss1 depends on "libeay32.d11" and "ssleay32.d11", which
are included in the Racket distribution for Windows.

* For Mac OS, openssl depends on "1ibssl.dylib" and "libcrypto.dylib". Al-
though those libraries are provided by Mac OS 10.2 and later, their use is deprecated,
so the Racket distribution for Mac OS includes newer versions.

* For Unix, openssl depends on "1ibssl.so" and "libcrypto.so", which must be
installed in a standard library location or in a directory listed by LD_LIBRARY_PATH.
These libraries are included in many OS distributions.

ssl-available? : boolean?

A boolean value that reports whether the system OpenSSL library was successfully loaded.
Calling ss1-connect, etc. when this value is #f (library not loaded) will raise an exception.

ssl-load-fail-reason : (or/c #f string?)

Either #f (when ssl-available? is #t) or an error string (when ssl-available? is #f).

https://pkgs.racket-lang.org/package/base

1 TCP-like Client Procedures

Use ssl-connect or ssl-connect/enable-break to create an SSL connection over TCP.
To create a secure connection, supply the result of ssl-secure-client-context or cre-
ate a client context with ssl-make-client-context and configure it using the functions
described in[§4 “Context Procedures™|

(ssl-connect hostname
port-no
[client-protocol
#:alpn alpn-protocols]) — input-port? output-port?
hostname : string?
port-no : (integer-in 1 65535)
client-protocol : (or/c ssl-client-context? ssl-protocol-symbol/c)
= 'auto
alpn-protocols : (listof bytes?) = null

Connect to the host given by hostname, on the port given by port-no. This connection
will be encrypted using SSL. The return values are as for tcp-connect: an input port and
an output port.

The default 'auto protocol is insecure. Use 'secure for a secure connection. See ssl-
secure-client-context for details.

The optional client-protocol argument determines which encryption protocol is used,
whether the server’s certificate is checked, etc. The argument can be either a client context
created by ss1-make-client-context a symbol specifying the protocol to use; see ss1-
make-client-context for further details, including the meanings of the protocol symbols.

Closing the resulting output port does not send a shutdown message to the server. See also
ports->ssl-ports.

If hostname verification is enabled (see ssl-set-verify-hostname!), the peer’s certifi-
cate is checked against hostname.

If alpn-protocols is not empty, the client attempts to use |[ALPN| to negotiate the
application-level protocol. The protocols should be listed in order of preference, and each
protocol must be a byte string with a length between 1 and 255 (inclusive). See also ss1-
get-alpn-selected.

Changed in version 6.3.0.12 of package base: Added 'secure for client-protocol.
Changed in version 8.0.0.13: Added #:alpn argument.

(ssl-connect/enable-break hostname
port-no
[client-protocol])
— input-port? output-port?

https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

hostname : string?

port-no : (integer-in 1 65535)

client-protocol : (or/c ssl-client-context? ssl-protocol-symbol/c)
= 'auto

Like ss1-connect, but breaking is enabled while trying to connect.

(ssl-secure-client-context) — ssl-client-context?

Returns a client context that verifies certificates using the default verification sources from
(ssl-default-verify-sources), verifies hostnames, and avoids using weak ciphers.
The result is essentially equivalent to the following:

(let ([ctx (ssl-make-client-context 'auto)])
; Load default verification sources (root certificates)
(ssl-load-default-verify-sources! ctx)
; Require certificate verification
(ssl-set-verify! ctx #t)
; Require hostname verification
(ssl-set-verify-hostname! ctx #t)
; No weak cipher suites
(ssl-set-ciphers! ctx "DEFAULT:!aNULL:'!eNULL:!LOW: !EXPORT: !SSLv2")
; Seal context so further changes cannot weaken it
(ssl-seal-context! ctx)
ctx)

The context is cached, so different calls to ssl-secure-client-context return the same
context unless (ssl-default-verify-sources) has changed.

Note that (ssl-secure-client-context) returns a sealed context, so it is not possible
to add a private key and certificate chain to it. If client credentials are required, use ss1-
make-client-context instead.
(ssl-make-client-context
[protocol
#:private-key private-key
#:certificate-chain certificate-chain])
— ssl-client-context?
protocol : ssl-protocol-symbol/c = 'auto
private-key : (or/c (list/c 'pem path-string?) = #f
(list/c 'pem-data bytes?)
(1ist/c 'der path-string?)
#£)
certificate-chain : (or/c path-string? #f) = #f

Creates a context to be supplied to ss1-connect. The context is insecure unless 'secure
is supplied or additional steps are taken; see ssl-secure-client-context for details.

The client context identifies a communication protocol (as selected by protocol), and also
holds certificate information (i.e., the client’s identity, its trusted certificate authorities, etc.).
See the section|§4 “Context Procedures’|below for more information on certificates.

The protocol should be one of the following:

e 'secure : Equivalent to (ssl-secure-client-context).

e 'auto : Automatically negotiates the protocol version from those that this library
considers sufficiently secure—currently TLS versions 1.0 and higher, but subject to
change.

e 't1s12: Only TLS protocol version 1.2.

e 't1s13: Only TLS protocol version 1.3.

The following protocol symbols are deprecated but still supported:

e 'sslv2-or-v3: Alias for 'auto. Note that despite the name, neither SSL 2.0 nor 3.0
are considered sufficiently secure, so this protocol no longer allows either of them.

e 'sslv2: SSL protocol version 2.0. Deprecated by RFC 6176 (2011). Note that SSL
2.0 support has been removed from many platforms.

e 'sslv3: SSL protocol version 3.0. Deprecated by RFC 7568 (2015).
e 'tls: Only TLS protocol version 1.0. Deprecated by RFC 8996 (2021).
e 'tls11: Only TLS protocol version 1.1. Deprecated by RFC 8996 (2021).

Not all protocol versions are supported by all servers. The 'secure and 'auto options offer
broad compatibility at a reasonable level of security. Note that the security of connections
depends on more than the protocol version; see ssl-secure-client-context for details.
See also supported-client-protocols and supported-server-protocols.

If private-key and certificate-chain are provided, they are loaded into the con-
text using ssl-load-private-key! and ssl-load-certificate-chain!, respectively.
Client credentials are rarely used with HTTPS, but they are occasionally used in other kind
of servers.

Changed in version 6.1 of package base: Added 't1s11 and 't1ls12.

Changed in version 6.1.1.3: Default to new 'auto and disabled SSL 2.0 and 3.0 by default.
Changed in version 6.3.0.12: Added 'secure.

Changed in version 7.3.0.10: Added #:private-key and #:certificate-chain arguments.
Changed in version 8.11.1.4: Added the 'pem-data method for private-key.

ssl-protocol-symbol/c : contract?
= (or/c 'secure 'auto 'sslv2-or-v3
'sslv2 'sslv3 'tls 'tlsll 'tls12 't1s13)

Contract for symbols representing SSL/TLS protocol versions. See ssl-make-client-
context for an explanation of how the symbols are interpreted.

Added in version 8.6.0.4 of package base.
Changed in version 8.6.0.4: Added 't1s13.

(supported-client-protocols) — (listof ssl-protocol-symbol/c)
Returns a list of symbols representing protocols that are supported for clients on the current
platform.
Changed in version 6.3.0.12 of package base: Added 'secure.
(ssl-client-context? v) — boolean?
v : any/c
Returns #t if v is a value produced by ssl-make-client-context, #f otherwise.

Added in version 6.0.1.3 of package base.

(ssl-max-client-protocol) — (or/c ssl-protocol-symbol/c #f)
Returns the most recent SSL/TLS protocol version supported by the current platform for
client connections.

Added in version 6.1.1.3 of package base.
(ssl-protocol-version p) — ssl-protocol-symbol/c
p : ssl-port?
Returns a symbol representing the SSL/TLS protocol version negotiated for the connection

represented by p.

Added in version 8.6.0.4 of package base.

2 TCP-like Server Procedures

(ssl-listen port-no

[queue-k

reuse’?

hostname-or-#f

server-protocol]) — ssl-listener?
port-no : listen-port-number?
queue-k : exact-nonnegative-integer? = 5
reuse? : any/c = #f
hostname-or-#f : (or/c string? #f) = #f
server-protocol : (or/c ssl-server-context? ssl-protocol-symbol/c)

= 'auto

Like tcp-1listen, but the result is an SSL listener. The extra optional server-protocol
is as for ssl-connect, except that a context must be a server context instead of a client
context, and 'secure is simply an alias for 'auto.

Call ssl-load-certificate-chain! and ssl-load-private-key! to avoid a no
shared cipher error on accepting connections. The file "test.pem" in the "openssl" col-
lection is a suitable argument for both calls when testing. Since "test.pem" is public,
however, such a test configuration obviously provides no security.

An SSL listener is a synchronizable value (see sync). It is ready—with itself as its value—
when the underlying TCP listener is ready. At that point, however, accepting a connection
with ssl-accept may not complete immediately, because further communication is needed
to establish the connection.

Changed in version 6.3.0.12 of package base: Added 'secure.

(ssl-close listener) — void?
listener : ssl-listener?
(ssl-listener? v) — boolean?

v : any/c

Analogous to tcp-close and tcp-listener?.

(ssl-accept listener) — input-port? output-port?
listener : ssl-listener?

(ssl-accept/enable-break listener) — input-port? output-port?
listener : ssl-listener?

Analogous to tcp-accept.

Closing the resulting output port does not send a shutdown message to the client. See also
ports->ssl-ports.

See also ssl-connect about the limitations of reading and writing to an SSL connection
(i.e., one direction at a time).

The ssl-accept/enable-break procedure is analogous to tcp-accept/enable-break.

(ssl-abandon-port p) — void?
p : ssl-port?

Analogous to tcp-abandon-port.

(ssl-addresses p [port-numbers?])
— (or/c (values string? string?)
(values string? port-number? string? listen-port-number?))
p : (or/c ssl-port? ssl-listener?)
port-numbers? : any/c = #f

Analogous to tcp-addresses.

(ssl-port? v) — boolean?
v : any/c

Returns #t of v is an SSL port produced by ss1-connect, ssl-connect/enable-break,
ssl-accept, ssl-accept/enable-break, or ports->ssl-ports

(ssl-make-server-context
[protocol
#:private-key private-key
#:certificate-chain certificate-chain])
— ssl-server-context?
protocol : ssl-protocol-symbol/c = 'auto
private-key : (or/c (list/c 'pem path-string?) = #f
(list/c 'pem-data bytes?)
(1ist/c 'der path-string?)
#1)
certificate-chain : (or/c path-string? #f) = #f

Like ssl-make-client-context, but creates a server context. For a server context, the
"secure protocol is the same as 'auto.

If private-key and certificate-chain are provided, they are loaded into the context
using ssl-load-private-key! and ssl-load-certificate-chain!, respectively.

Changed in version 6.3.0.12 of package base: Added 'secure.
Changed in version 7.3.0.10: Added #:private-key and #:certificate-chain arguments.
Changed in version 8.11.1.4: Added the 'pem-data method for private-key.

(ssl-server-context? v) — boolean?
v : any/c
Returns #t if v is a value produced by ss1-make-server-context, #f otherwise.
(supported-server-protocols) — (listof ssl-protocol-symbol/c)
Returns a list of symbols representing protocols that are supported for servers on the current
platform.

Added in version 6.0.1.3 of package base.
Changed in version 6.3.0.12: Added 'secure.

(ssl-max-server-protocol) — (or/c ssl-protocol-symbol/c #f)

Returns the most recent SSL/TLS protocol version supported by the current platform for
server connections.

Added in version 6.1.1.3 of package base.

3 SSL-wrapper Interface

(ports->ssl-ports input-port
output-port
:mode mode
:context context
:encrypt protocol
:close-original? close-original?
:shutdown-on-close? shutdown-on-close?
rerror/ssl error
:hostname hostname
:alpn alpn-protocols])
— input-port? output-port?
input-port : input-port?
output-port : output-port?
mode : (or/c 'connect 'accept) = 'accept
context : (or/c ssl-client-context? ssl-server-context?)
= ((if (eq? mode 'accept)
ssl-make-server-context
ssl-make-client-context)
protocol)
protocol : ssl-protocol-symbol/c = 'auto
close-original? : any/c = #f
shutdown-on-close? : any/c = #f
error . procedure? = error
hostname : (or/c string? #f) = #f
alpn-protocols : (listof bytes?) = null

,_,
HOoH OH H H H HH

Returns two values—an input port and an output port—that implement the SSL protocol over
the given input and output port. (The given ports should be connected to another process that
runs the SSL protocol.)

The mode argument can be 'connect or 'accept. The mode determines how the SSL
protocol is initialized over the ports, either as a client or as a server. As with ssl-1listen, in
'accept mode, supply a context that has been initialized with ss1-load-certificate-
chain! and ssl-load-private-key! to avoid a no shared cipher error.

The context argument should be a client context for 'connect mode or a server context
for 'accept mode. If it is not supplied, a context is created using the protocol specified by
a protocol argument.

If the protocol argument is not supplied, it defaults to 'auto. See ssl-make-client-
context for further details (including all options and the meanings of the protocol symbols).
This argument is ignored if a context argument is supplied.

If close-original? is true, then when both SSL ports are closed, the given input and

output ports are automatically closed.

If shutdown-on-close? is true, then when the output SSL port is closed, it sends a shut-
down message to the other end of the SSL connection. When shutdown is enabled, closing
the output port can fail if the given output port becomes unwritable (e.g., because the other
end of the given port has been closed by another process).

The error argument is an error procedure to use for raising communication errors. The
default is error, which raises exn:fail; in contrast, ssl-accept and ssl-connect use
an error function that raises exn:fail :network.

See also ssl-connect about the limitations of reading and writing to an SSL connection
(i.e., one direction at a time).

If hostname verification is enabled (see ssl-set-verify-hostname!), the peer’s certifi-
cate is checked against hostname.

If alpn-protocols is not empty and mode is 'connect, then the client attempts to use
ALPN; see also ssl-connect and ssl-get-alpn-selected. If alpn-protocols is not
empty and mode is 'accept, an exception (exn:fail) is raised; use ssl-set-server-
alpn! to set the ALPN protocols for a server context.

Changed in version 8.0.0.13 of package base: Added #:alpn argument.

10

https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

4 Context Procedures

(ssl-load-verify-source! context
src
[#:try? try?]) — void?
context : (or/c ssl-client-context? ssl-server-context?)
src : (or/c path-string?
(list/c 'directory path-string?)
(1ist/c 'win32-store string?)
(list/c 'macosx-keychain (or/c #f path-string?)))
try? : any/c = #f

Loads verification sources from src into context. Currently, only certificates are loaded;
the certificates are used to verify the certificates of a connection peer. Call this procedure
multiple times to load multiple sets of trusted certificates.

The following kinds of verification sources are supported:

 If src is a path or string, it is treated as a PEM file containing root certificates. The
file is loaded immediately.

e If srcis (list 'directory dir),then dir should contain PEM files with hashed
symbolic links (see the openssl c_rehash utility). The directory contents are not
loaded immediately; rather, they are searched only when a certificate needs verifica-
tion.

e If srcis (list 'win32-store store), then the certificates from the store named
store are loaded immediately. Only supported on Windows.

e If src is (list 'macosx-keychain #f), then the certificates from the Mac OS
trust anchor (root) certificates (as returned by SecTrustCopyAnchorCertificates)
are loaded immediately. Only supported on Mac OS.

e If srcis (1ist 'macosx-keychain path), then the certificates from the keychain
stored at path are loaded immediately. Only supported on Mac OS.

If try?is #f and loading src fails (for example, because the file or directory does not exist),
then an exception is raised. If try? is a true value, then a load failure is ignored.

You can use the file "test.pem" of the "openssl" collection for testing purposes. Since
"test.pem" is public, such a test configuration obviously provides no security.

Changed in version 8.4.0.5 of package base: Added (list 'macosx-keychain #f) variant.

Changed in version 9.0.0.4: Exposed the #:try? argument, which was documented but previously available only

internally.

11

https://developer.apple.com/documentation/security/1401507-sectrustcopyanchorcertificates

(ssl-default-verify-sources)
— (let ([source/c (or/c path-string?
(list/c 'directory path-string?)
(list/c 'win32-store string?)
(list/c 'macosx-keychain (or/c #f path-string?)))])
(listof source/c))
(ssl-default-verify-sources srcs) — void?
srcs : (let ([source/c (or/c path-string?
(list/c 'directory path-string?)
(list/c 'win32-store string?)
(list/c 'macosx-keychain (or/c #f path-string?)))])
(listof source/c))

Holds a list of verification sources, used by ss1-load-default-verify-sources!. The
default sources depend on the platform:

* On Linux, the default sources are determined by the SSL_CERT_FILE and
SSL_CERT_DIR environment variables, if the variables are set, or the system-wide
default locations otherwise.

e On Mac OS, the default sources consist of the OS trust anchor (root) certificates:
' (macosx-keychain #f).

* On Windows, the default sources consist of the system certificate store for root certifi-
cates: ' (win32-store "ROOT").

Changed in version 8.4.0.5 of package base: Changed default source on Mac OS.

(ssl-load-default-verify-sources! context) — void?
context : (or/c ssl-client-context? ssl-server-context?)

Loads the default verification sources, as determined by (ssl-default-verify-
sources), into context. Load failures are ignored, since some default sources may refer
to nonexistent paths.

(ssl-load-verify-root-certificates! context-or-listener
pathname)
— void?
context-or-listener : (or/c ssl-client-conntext? ssl-server-context?
ssl-listener?)
pathname : path-string?

Deprecated; like ss1-load-verify-source!, but only supports loading certificate files in
PEM format.

12

(ssl-set-ciphers! context cipher-spec) — void?
context : (or/c ssl-client-context? ssl-server-context?)
cipher-spec : string?

Specifies the cipher suites that can be used in connections created with context. The mean-
ing of cipher-spec is the same as for the openssl ciphers command,

(ssl-seal-context! context) — void?
context : (or/c ssl-client-context? ssl-server-context?)

Seals context, preventing further modifications. After a context is sealed, passing it to
functions such as ssl-set-verify! and ssl-load-verify-root-certificates! re-
sults in an error.

(ssl-load-certificate-chain! context-or-listener
pathname) — void?
context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)
pathname : path-string?

Loads a PEM-format certification chain file for connections to made with the given server
context (created by ssl-make-server-context) or listener (created by ssl-listen). A
certificate chain can also be loaded into a client context (created by ssl-make-client-
context) when connecting to a server requiring client credentials, but that situation is un-
common.

This chain is used to identify the client or server when it connects or accepts connections.
Loading a chain overwrites the old chain. Also call ssl-load-private-key! to load the
certificate’s corresponding key.

You can use the file "test.pem" of the "openssl" collection for testing purposes. Since
"test.pem" is public, such a test configuration obviously provides no security.

(ssl-load-private-key! context-or-listener
path-or-data
[rsa?
asnl?]) — void?
context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)
path-or-data : (or/c path-string? (list/c 'data bytes?))
rsa? : any/c = #t
asnl? : any/c = #f

Loads the first private key from path-or-data for the given context or listener. The key
goes with the certificate that identifies the client or server. Like ss1-load-certificate-

13

https://docs.openssl.org/master/man1/openssl-ciphers/

chain!, this procedure is usually used with server contexts or listeners, seldom with client
contexts.

If path-or-data is a path or string, the private key is loaded from a file at the given path.
Otherwise, path-or-data must be a list of the form (1ist 'data data-bytes), and
the key is parsed from data-bytes directly.

If rsa? is #t (the default), the first RSA key is read (i.e., non-RSA keys are skipped). If
asn17?is #t, the file is parsed as ASN1 format instead of PEM. Currently asn1? parsing is
only supported with when path-or-data is a path-string?.

You can use the file "test.pem" of the "openssl" collection for testing purposes. Since
"test.pem" is public, such a test configuration obviously provides no security.

Changed in version 8.11.1.4 of package base: Added support for specifying key data directly by providing a list of
the form (1ist 'data data-bytes) for path-or-data.

(ssl-load-suggested-certificate-authorities!

context-or-listener

pathname)

— void?

context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)

pathname : path-string?

Loads a PEM-format file containing certificates that are used by a server. The certificate list
is sent to a client when the server requests a certificate as an indication of which certificates
the server trusts.

Loading the suggested certificates does not imply trust, however; any certificate presented
by the client will be checked using the trusted roots loaded by ssl-load-verify-root-
certificates!.

You can use the file "test.pem" of the "openssl" collection for testing purposes where
the peer identifies itself using "test.pem".

(ssl-server-context-enable-dhe! context
[dh-param]) — void?

context : ssl-server-context?

dh-param : (or/c path-string? bytes?) = ssl-dh4096-param-bytes
(ssl-server-context-enable-ecdhe! context

[curve-name]) — void?
context : ssl-server-context?
curve-name : symbol? = 'ignored

Deprecated. Provided for backwards compatibility only. These procedures have no effect
on context, but they log a warning if called.

14

Ciphers supporting perfect forward secrecy| via ephemeral Diffie-Hellman (DHE) or
ephemeral elliptic-curve Diffie-Hellman (ECDHE) key exchange are enabled by default,
with automatic selection of key-exchange groups. Customization of the groups (DH param-
eters and EC curves) is no longer supported.

Changed in version 7.7.04 of package base: Allow a byte string as the dh-param argument to
ssl-server-context-enable-dhe!.

Changed in version 8.14.0.2: Deprecated, changed to have no effect.

ss1-dh4096-param-bytes : bytes?

Deprecated. Provided for backwards compatibility only. Defined as #"". See ssl-
server-context-enable-dhe!.

Changed in version 7.7.0.4 of package base: Added as a replacement for ss1-dh4096-param-path.
Changed in version 8.14.0.2: Deprecated, redefined to empty byte string.

(ssl-set-server-name-identification-callback! context
callback) — void?
context : ssl-server-context?
callback : (string? . -> . (or/c ssl-server-context? #f))

Provides an SSL server context with a procedure it can use for switching to alternative con-
texts on a per-connection basis. The procedure is given the hostname the client was attempt-
ing to connect to, to use as the basis for its decision.

The client sends this information via the TLS Server Name Identification extension, which
was created to allow [virtual hosting| for secure servers.

The suggested use is to prepare the appropriate server contexts, define a single callback
which can dispatch between them, and then apply it to all the contexts before sealing them.
A minimal example:

(define ctx-a (ssl-make-server-context 'tls))
(define ctx-b (ssl-make-server-context 'tls))

(ssl-load-certificate-chain! ctx-a "cert-a.pem")
(ssl-load-certificate-chain! ctx-b "cert-b.pem")

(ssl-load-private-key! ctx-a "key-a.pem")
(ssl-load-private-key! ctx-b "key-b.pem")

(define (callback hostname)

(cond [(equal? hostname "a") ctx-al
[(equal? hostname "b") ctx-b]

15

http://en.wikipedia.org/wiki/Forward_secrecy
http://en.wikipedia.org/wiki/Server_Name_Indication
http://en.wikipedia.org/wiki/Virtual_hosting

[else #f]))
(ssl-set-server-name-identification-callback! ctx-a callback)
(ssl-set-server-name-identification-callback! ctx-b callback)

(ssl-seal-context! ctx-a)
(ssl-seal-context! ctx-b)

(ssl-listen 443 5 #t #f ctx-a)

If the callback returns #f£, the connection attempt will continue, using the original server
context.

(ssl-set-server-alpn! context
alpn-protocols
[allow-no-match?]) — void?
context : ssl-server-context?
alpn-protocols : (listof bytes?)
allow-no-match? : boolean? = #t

Sets the ALPN protocols supported by the server context. The protocols are listed in order
of preference, most-preferred first. That is, when a client connects, the server selects the
first protocol in its alpn-protocols that is supported by the client. If the client does not
use ALPN, then the connection is accepted and no protocol is selected. If the client uses
ALPN but has no protocols in common with the server, then if allow-no-match? is true,
the connection is accepted and no protocol is selected; if allow-no-match? is false, then
the connection is refused.

Added in version 8.4.0.5 of package base.

(ssl-set-keylogger! context logger) — void?
context : (or/c ssl-server-context? ssl-client-context?)
logger : (or/c #f logger?)

Instructs the context to log a message to 1ogger whenever TLS key material is generated
or received. The message is logged with its level set to 'debug, its topic set to 'openssl-
keylogger, and its associated data is a byte string representing the key material. When
logger is #f, the context is instructed to stop logging this information.

Warning: if 1ogger has any ancestors, then this information may also be available to them,
depending on the logger’s propagation settings.

Debugging is the typical use case for this functionality. The owner of a context can use it
to write key material to a file to be consumed by tools such as Wireshark. In the following
example, anyone with access to "keylogfile.txt" is able to decrypt connections made
via ctx:

16

https://en.wikipedia.org/wiki/Application-Layer_Protocol_Negotiation

(define out
(open-output-file
#:exists 'append
"keylogfile.txt"))
(define logger
(make-logger))
(void
(thread
(lambda ()
(define receiver
(make-log-receiver logger 'debug 'openssl-keylogger))
(let loop O
(match-define (vector
(sync receiver))
(write-bytes key-data out)
(newline out)
(flush-output out)
(Loop)))))

_ key-data _)

(define ctx (ssl-make-client-context 'auto))
(ssl-set-keylogger! ctx logger)

Added in version 8.7.0.8 of package base.

17

5 Peer Verification

(ssl-set-verify! clp on?) — void?
clp : (or/c ssl-client-context? ssl-server-context?
ssl-listener? ssl-port?)
on? : any/c

Requires certificate verification on the peer SSL connection when on?is #t. If c1p is an SSL
port, then the connection is immediately renegotiated, and an exception is raised immediately
if certificate verification fails. If c1p is a context or listener, certification verification happens
on each subsequent connection using the context or listener.

Enabling verification also requires, at a minimum, designating trusted certificate authorities
with ss1-load-verify-source!.

Verifying the certificate is not sufficient to prevent attacks by active adversaries, such as
man-in-the-middle attacks| See also ssl-set-verify-hostname!.

(ssl-try-verify! clp on?) — void?
clp : (or/c ssl-client-context? ssl-server-context?
ssl-listener? ssl-port?)
on? : any/c

Like ssl-set-verify!, but when peer certificate verification fails, then connection con-
tinues to work. Use ssl-peer-verified? to determine whether verification succeeded.

(ssl-peer-verified? p) — boolean?
p @ ssl-port?

Returns #t if the peer of SSL port p has presented a valid and verified certificate, #f other-
wise.

(ssl-set-verify-hostname! ctx on?) — void?
ctx : (or/c ssl-client-context? ssl-server-context?)
on? : any/c

Requires hostname verification of SSL peers of connections made using ctx when on? is
#t. When hostname verification is enabled, the hostname associated with a connection (see
ssl-connect or ports->ssl-ports) is checked against the hostnames listed in the peer’s
certificate. If the peer certificate does not contain an entry matching the hostname, or if the
peer does not present a certificate, the connection is rejected and an exception is raised.

Hostname verification does not imply certificate verification. To verify the certificate itself,
also call ssl-set-verify!.

18

http://en.wikipedia.org/wiki/Man-in-the-middle_attack

(ssl-peer-certificate-hostnames p) — (listof string?)
p : ssl-port?

Returns the list of hostnames for which the certificate of p’s peer is valid according to RFC
2818, If the peer has not presented a certificate, ' () is returned.

The result list may contain both hostnames such as "www.racket-lang.org" and host-
name patterns such as "*.racket-lang.org".

(ssl-peer-check-hostname p hostname) — boolean?
p : ssl-port?
hostname : string?

Returns #t if the peer certificate of p is valid for hostname according to RFC 2818,

(ssl-peer-subject-name p) — (or/c bytes? #f)
p : ssl-port?

If ssl-peer-verified? would return #t for p, the result is a byte string for the subject
field of the certificate presented by the SSL port’s peer, otherwise the result is #f.

Use ssl-peer-check-hostname or ssl-peer-certificate-hostnames instead to
check the validity of an SSL connection.

(ssl-peer-issuer-name p) — (or/c bytes? #f)
p : ssl-port?

If ssl-peer-verified? would return #t for p, the result is a byte string for the issuer field
of the certificate presented by the SSL port’s peer, otherwise the result is #£.

(ssl-default-channel-binding p) — (list/c symbol? bytes?)
p : ssl-port?

Returns the default channel binding type and value for p, based on the connection’s TLS
protocol version. Following RFC 9266 Section 3, the result uses 'tls-exporter for TLS
1.3 and later; it uses 'tls-unique for TLS 1.2 and earlier.

Added in version 8.6.0.4 of package base.

(ssl-channel-binding p type) — bytes?
p : ssl-port?
type : (or/c 'tls-exporter
'tls-unique
'tls-server-end-point)

19

http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2818.txt
https://datatracker.ietf.org/doc/html/rfc9266#section-3

Returns channel binding information for the TLS connection of p. An authentication pro-
tocol run over TLS can incorporate information identifying the TLS connection ('tls-
exporter or 'tls-unique) or server certificate (' tls-server-end-point) into the au-
thentication process, thus preventing the authentication steps from being replayed on another
channel. Channel binding is described in general in RFC 5056} channel binding for TLS is
described in RFC 5929/ and REC 9266.

If the channel binding cannot be retrieved (for example, if the connection is closed), an
exception is raised.

Added in version 7.7.0.9 of package base.
Changed in version 8.6.0.4: Added 'tls-exporter. An exception is raised for 'tls-unique with a TLS 1.3
connection.

(ssl-get-alpn-selected p) — (or/c bytes? #f)
p : ssl-port?
Returns the ALPN protocol selected during negotiation, or #£ if no protocol was selected.

If a server does not support any of the protocols proposed by a client, it might reject the
connection or it might accept the connection without selecting an application protocol. So it
is recommended to always check the selected protocol after making a connection.

Added in version 8.0.0.13 of package base.

20

https://tools.ietf.org/html/rfc5056
https://tools.ietf.org/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc9266

6 SHA-1 Hashing

(require openssl/shal) package: [base

The openssl/shal library provides a Racket wrapper for the OpenSSL library’s SHA-1
hashing functions. If the OpenSSL library cannot be opened, this library logs a warning and
falls back to the implementation in file/shal.

(shal in) — string?

in : input-port?

Returns a 40-character string that represents the SHA-1 hash (in hexadecimal notation) of
the content from in, consuming all of the input from in until an end-of-file.

The shal function composes bytes->hex-string with shal-bytes.
(shal-bytes in) — bytes?
in : input-port?
Returns a 20-byte byte string that represents the SHA-1 hash of the content from in, con-

suming all of the input from in until an end-of-file.

The shal-bytes function from racket/base computes the same result and is only slightly
slower.

(bytes->hex-string bstr) — string?
bstr : bytes?

Converts the given byte string to a string representation, where each byte in bstr is con-
verted to its two-digit hexadecimal representation in the resulting string.
(hex-string->bytes str) — bytes?

str : string?

The inverse of bytes->hex-string.

21

https://pkgs.racket-lang.org/package/base

7 MDS Hashing

(require openssl/md5) package: [base

The openss1/md5 library provides a Racket wrapper for the OpenSSL library’s MDS5 hash-
ing functions. If the OpenSSL library cannot be opened, this library logs a warning and falls
back to the implementation in file/md5.

Added in version 6.0.0.3 of package base.
(md5 in) — string?

in : input-port?

Returns a 32-character string that represents the MD35 hash (in hexadecimal notation) of the
content from in, consuming all of the input from in until an end-of-file.

The md5 function composes bytes->hex-string with md5-bytes.

(md5-bytes in) — bytes?
in : input-port?

Returns a 16-byte byte string that represents the MDS5 hash of the content from in, consum-
ing all of the input from in until an end-of-file.

22

https://pkgs.racket-lang.org/package/base

8 The "libcrypto" Shared Library

(require openssl/libcrypto) package: base

The openssl/libcrypto library provides a foreign-library value for the "libcrypto"
shared library.

libcrypto : (or/c #f ffi-1ib7)

Returns a foreign-library value for "libcrypto", or #£ if the library could not be found or
loaded. The load attempt uses the versions specified by openssl-lib-versions.

libcrypto-load-fail-reason : (or/c #f string?)
Either #f when 1libcrypto is non-#f, or a string when 1ibcrypto is #£. In the latter case,
the string provides an error message for the attempt to load "libcrypto".

openssl-lib-versions : (listof string?)

A list of versions that are tried for loading "libcrypto". The list of version strings is
suitable as a second argument to ffi-1ib.

23

https://pkgs.racket-lang.org/package/base

9 The "1ibssl" Shared Library

(require openssl/libssl) package: [base

The openssl/libssl library provides a foreign-library value for the "libssl" shared
library.

libssl : (or/c #f ffi-1ib7)
Returns a foreign-library value for "1ibssl", or #f if the library could not be found or
loaded. The load attempt uses the versions specified by openssl-1lib-versions.

libssl-load-fail-reason : (or/c #f string?)

Either #f when 1ibssl is non-#f, or a string when libssl is #f. In the latter case, the
string provides an error message for the attempt to load "1ibss1".

24

https://pkgs.racket-lang.org/package/base

10 Legacy Providers

(require openssl/legacy) package: [base

The openssl/legacy library does not provide any definitions, but when the module is
instantiated, it attempts to load OpenSSL legacy algorithms. It also creates a dependency on
a legacy-provider shared library, if one is installed as part of the Racket installation, to be
included with a stand-alone executable distribution.

Added in version 9.0.0.4 of package base.

25

https://pkgs.racket-lang.org/package/base

	1 TCP-like Client Procedures
	2 TCP-like Server Procedures
	3 SSL-wrapper Interface
	4 Context Procedures
	5 Peer Verification
	6 SHA-1 Hashing
	7 MD5 Hashing
	8 The "libcrypto" Shared Library
	9 The "libssl" Shared Library
	10 Legacy Providers

