Parser Tools: lex and yacc-style Parsing

Version 9.0.0.11

Scott Owens

January 4, 2026

This documentation assumes familiarity with 1ex and yacc style lexer and parser generators.

Contents

M TLexers

[I.1 Creatingalexer|.

IE I;Kl:R‘ | } Farsersl

3__Context-Free Parsers!

4 Converting yacc or bison Grammars

Index

[ndex

14

18

19

20

20

1 Lexers

(require parser-tools/lex) package: [parser-tools-1ib

1.1 Creating a Lexer

(lexer empty-match-mode [trigger action-expr] ...)

empty-match-mode =

| #:disallow-empty

| #:suppress-warnings
trigger = re
| (eof)
| (special)

| (special-comment)
re = id

| string

| character

| (repetition lo hi re)
| (union re ...)

| (intersection re ...)
| (complement re)

| (concatenation re ...)
| (char-range char char)
| (char-complement re)

| (id datum ...)

Produces a function that takes an input-port, matches the re patterns against the buffer, and
returns the result of executing the corresponding action-expr. When multiple patterns

match, a lexer will choose the longest match, breaking ties in favor of the rule appearing
first.

An re is matched as follows:

* id — expands to the named lexer abbreviation; abbreviations are defined via def ine-
lex-abbrev or supplied by modules like parser-tools/lex-sre.

* string — matches the sequence of characters in string.
* character — matches a literal character.

e (repetition lo hi re) — matches re repeated between lo and hi times, in-
clusive; hi can be +inf .0 for unbounded repetitions.

The implementation
of
syntax-color/racket-lexer
contains a lexer for
the racket
language. In
addition, files in the
"examples"
sub-directory of the
"parser-tools"
collection contain
simpler example
lexers.

https://pkgs.racket-lang.org/package/parser-tools-lib

e (union re ...) — matches if any of the sub-expressions match
e (intersection re ...) — matches if all of the res match.

* (complement re) — matches anything that re does not.

* (concatenation re ...) — matches each re in succession.

e (char-range char char) — matches any character between the two (inclusive);
a single character string can be used as a char.

¢ (char-complement re) — matches any character not matched by re. The sub-
expression must be a set of characters re.

e (id datum ...) — expands the lexer macro named id; macros are defined via
define-lex-trans.

Note that both (concatenation) and "" match the empty string, (union) matches noth-
ing, (intersection) matches any string, and (char-complement (union)) matches
any single character.

The regular expression language is not designed to be used directly, but rather as a basis
for a user-friendly notation written with regular expression macros. For example, parser-
tools/lex-sre supplies operators from Olin Shivers’s SREs, and parser-tools/lex-
plt-v200 supplies (deprecated) operators from the previous version of this library. Since
those libraries provide operators whose names match other Racket bindings, such as * and
+, they normally must be imported using a prefix:

(require (prefix-in : parser-tools/lex-sre))

The suggested prefix is :, so that :* and :+ are imported. Of course, a prefix other than :
(such as re-) will work too.

Since negation is not a common operator on regular expressions, here are a few examples,
using : prefixed SRE syntax:

e (complement "1")
Matches all strings except the string "1", including "11", "111", "0", "01", "", and
SO on.

e (complement (:% "1"))
Matches all strings that are not sequences of "1", including "0", "00", "11110",
"0111", "11001010" and so on.

e (:& (:: any-string "111" any-string)
(complement (:or (:: any-string "01") (:+ "1"))))

Matches all strings that have 3 consecutive ones, but not those that end in "01" and
not those that are ones only. These include "1110", "0001000111" and "0111" but
not """, "14", "111041", "111" and "11111".

e (:: "/%" (complement (:: any-string "#/" any-string)) "*/")

Matches Java/C block comments. "/** /", " /*xskxx /" " /x// [/*/" " /xasglh*/"
and so on. It does not match "/*x*/x/" "/* %/ */" and soon. (:: any-string
"x/" any-string) matches any string that has a "*/" in is, so (complement (::
any-string "x/" any-string)) matches any string without a "*/" in it.

° (:: n/*n (:* (complement n*/n)) n*/n)

Matches any string that starts with "/*" and ends with "*/", including "/* */ x/
/". (complement "/") matches any string except "*/". This includes "*" and
"/" separately. Thus (:* (complement "*/")) matches "*/" by first matching
"x" and then matching "/". Any other string is matched directly by (complement
"x/"). In other words, (:* (complement "xx")) =any-string. Itis usually not
correct to place a : * around a complement.

The start-pos, end-pos, lexeme, input-port, and return-without-pos forms have
special meaning inside of a lexer.

The lexer raises an exception (exn:read) if none of the regular expressions match the input.
Hint: If (any-char custom-error-behavior) is the last rule, then there will always be
a match, and custom-error-behavior is executed to handle the error situation as desired,
only consuming the first character from the input buffer.

In addition to returning characters, input ports can return eof -objects. Custom input ports
can also return a special-comment value to indicate a non-textual comment, or return
another arbitrary value (a special). The non-re trigger forms handle these cases:

e The (eof) rule is matched when the input port returns an eof-object value. If no
(eof) rule is present, the lexer returns the symbol 'eof when the port returns an
eof-object value.

e The (special-comment) rule is matched when the input port returns a special-
comment structure. If no special-comment rule is present, the lexer automatically
tries to return the next token from the input port.

e The (special) rule is matched when the input port returns a value other than a char-
acter, eof -object, or special-comment structure. If no (special) rule is present,
the lexer returns (void).

End-of-files, specials, special-comments and special-errors cannot be parsed via a rule using
an ordinary regular expression (but dropping down and manipulating the port to handle them
is possible in some situations).

Since the lexer gets its source information from the port, use port-count-1lines! to enable
the tracking of line and column information. Otherwise, the line and column information will
return #£.

When peeking from the input port raises an exception (such as by an embedded XML ed-
itor with malformed syntax), the exception can be raised before all tokens preceding the
exception have been returned.

Each time the racket code for a lexer is compiled (e.g. when a ".rkt" file containing a
lexer form is loaded), the lexer generator is run. To avoid this overhead place the lexer into
a module and compile the module to a " .zo" bytecode file.

If the lexer can accept the empty string, a message is sent to current-logger by default.
This warning can be disabled by giving the #: suppress-warnings flag, or it can be turned
into a syntax error by using #:disallow-empty.

Examples:

> (define sample-input "(lambda (a) (add_number a 42))")
; A function that partially tokenizes the sample input data
> (define (get-tokens a-lexer)
(define p (open-input-string sample-input))
(1ist (a-lexer p)
(a-lexer p)
(a-lexer p)
(a-lexer p)
(a-lexer p)))
; A lexer that uses primitive operations directly
> (define the-lexer/primitive
(lexer
[(eof) eof]
["(" 'left-paren]
[")" 'right-paren]
[(repetition 1 +inf.0 numeric) (string->number lexeme)]
[(concatenation (union alphabetic #_)
(repetition 0 +inf.0 (union alphabetic numeric #_)))
lexeme]
; invoke the lexer again to skip the current token
[whitespace (the-lexer/primitive input-port)]))
> (get-tokens the-lexer/primitive)
'(left-paren "lambda" left-paren "a" right-paren)
; Another lexer that uses SRE operators but has the same function-
ality
> (require (prefix-in : parser-tools/lex-sre))
> (define the-lexer/SRE
(lexer
[(eof) eof]

["(" 'left-paren]
[")" 'right-paren]
[(:+ numeric) (string->number lexeme)]
[(:: (:or alphabetic #_) (:* (:or alphabetic numeric #_)))
lexeme]
[whitespace (the-lexer/SRE input-port)]))
> (get-tokens the-lexer/SRE)
'(left-paren "lambda" left-paren "a" right-paren)

Changed in version 7.7.0.7 of package parser-tools-1ib: Add #:suppress-warnings flag.
Changed in version 9.0: Add #:disallow-empty flag.

(lexer-src-pos maybe-suppress-warnings [trigger action-expr] ...)

Like lexer, but for each action-result produced by an action-expr, returns (make-
position-token action-result start-pos end-pos) instead of simply action-
result.

start-pos

Produces a position struct for the first character matched. Its use outside of a 1lexer action
is a syntax error.

end-pos

Produces a position struct for the character after the last character in the match. Its use
outside of a 1exer action is a syntax error.

lexeme

Produces the matched string. Its use outside of a 1lexer action is a syntax error.

input-port

Produces the input port being processed, which is particularly useful for matching input with
multiple lexers. Its use outside of a 1lexer action is a syntax error.

return-without-pos

Produces a function (continuation) that immediately returns its argument from the lexer.
This is useful in lexer-src-pos to prevent the lexer from adding source information. For
example:

(define get-token
(lexer-src-pos

‘[‘(c‘:omment) (get-token input-port)]
.))

would wrap the source location information for the comment around the value of the re-
cursive call. Using [(comment) (return-without-pos (get-token input-port))]
will cause the value of the recursive call to be returned without wrapping position around it.
Its use outside of a 1exer action is a syntax error.

(struct position (offset line col)
#:extra-constructor-name make-position)
offset : exact-positive-integer?
line : exact-positive-integer?
col : exact-nonnegative-integer?

Instances of position are bound to start-pos and end-pos. The offset field contains
the offset of the character in the input. The line field contains the line number of the
character. The col field contains the offset in the current line. The fields are indexed as in
the position-counting of ports.

(struct position-token (token start-pos end-pos)
#:extra-constructor-name make-position-token)
token : any/c
start-pos : position?
end-pos : position?

Lexers created with lexer-src-pos return instances of position-token.

(file-path) — any/c
(file-path source) — void?
source : any/c

A parameter that the lexer uses as the source location if it raises a exn:fail:read error.
Setting this parameter allows DrRacket, for example, to open the file containing the error.

1.2 Lexer Abbreviations and Macros

(char-set string)

A lexer macro that matches any character in string.

any-char

A lexer abbreviation that matches any character.

any-string

A lexer abbreviation that matches any string.

nothing

A lexer abbreviation that matches no string.

alphabetic
lower-case
upper-case
title-case
numeric
symbolic
punctuation
graphic
whitespace
blank
iso-control

Lexer abbreviations that match char-alphabetic? characters, char-lower-case? char-
acters, etc.

(define-lex-abbrev id re)

Defines a lexer abbreviation by associating a regular expression to be used in place of the
id in other regular expression. The definition of name has the same scoping properties as a
other syntactic binding (e.g., it can be exported from a module).

(define-lex-abbrevs (id re) ...)

Like define-lex-abbrev, but defines several lexer abbreviations.

(define-lex-trans id trans-expr)

Defines a lexer macro, where trans-expr produces a transformer procedure that takes one
argument. When (id datum ...) appears as a regular expression, it is replaced with the
result of applying the transformer to the expression.

1.3 Lexer SRE Operators

(require parser-tools/lex-sre) package: [parser-tools-1ib

(x re ...)

Repetition of re sequence 0 or more times.
(+ re ...)

Repetition of re sequence 1 or more times.
(? re ...)

Zero or one occurrence of re sequence.
(=nre ...)

Exactly n occurrences of re sequence, where n must be a literal exact, non-negative number.
(>=n re ...)

Atleast n occurrences of re sequence, where n must be a literal exact, non-negative number.
(** n m re ...)

Between n and m (inclusive) occurrences of re sequence, where n must be a literal exact,
non-negative number, and m must be literally either #f, +inf .0, or an exact, non-negative
number; a #f value for m is the same as +inf.0.

(or re ...)

Same as (union re ...).
(: re ...)

(seq re ...)

Both forms concatenate the res.

10

https://pkgs.racket-lang.org/package/parser-tools-lib

(& re ...)
Intersects the res.
(- re ...)
The set difference of the res.
(T re ...)
Character-set complement, which each re must match exactly one character.

(/ char-or-string ...)

Character ranges, matching characters between successive pairs of characters.

1.4 Lexer Legacy Operators

(require parser-tools/lex-plt-v200)
package: parser-tools-1ib

The parser-tools/lex-plt-v200 module re-exports *, +, 7, and & from parser-
tools/lex-sre. It also re-exports :oras :, :: as @, : “as ~,and :/ as -.

(epsilon)
A lexer macro that matches an empty sequence.
(" re ...)

The same as (complement re ...).

1.5 Tokens

Each action-expr in a lexer form can produce any kind of value, but for many purposes,
producing a foken value is useful. Tokens are usually necessary for inter-operating with a

11

https://pkgs.racket-lang.org/package/parser-tools-lib

parser generated by parser-tools/yacc or parser-tools/cfg-parser, but tokens may
not be the right choice when using lexer in other situations.

Examples:

> (define-tokens basic-tokens (NUM ID))
> (define-empty-tokens punct-tokens (LPAREN RPAREN EOF))
> (define the-lexer/tokens
(lexer

[(eof) (token-EOF)]

["(" (token-LPAREN)]

[")" (token-RPAREN)]

[(:+ numeric) (token-NUM (string->number lexeme))]

[(:: (:or alphabetic #_)

(:* (:or alphabetic numeric #_)))

(token-ID (string->symbol lexeme))]

[whitespace (the-lexer/tokens input-port)]))
; Use get-tokens defined in [§1.1 ‘“Creating a Lexer’]
> (get-tokens the-lexer/tokens)
(l1ist 'LPAREN (token 'ID 'lambda) 'LPAREN (token 'ID 'a) 'RPAREN)

(define-tokens group-id (token-id ...))

Binds group-id to the group of tokens being defined. For each token-id, a function
token-token-id is created that takes any value and puts it in a token record specific to
token-id. A token can be inspected using token-name and token-value.

A token cannot be named error, since error has a special use in the parser.

(define-empty-tokens group-id (token-id ...))

Like define-tokens, but each token constructor token-token-id takes no arguments
and returns (quote token-id).

(token-name t) — symbol?
t : (or/c token? symbol?)

Returns the name of a token that is represented either by a symbol or a token structure.
(token-value t) — any/c

t : (or/c token? symbol?)

Returns the value of a token that is represented either by a symbol or a token structure,
returning #f for a symbol token.

12

(token? v) — boolean?
v : any/c

Returns #t if val is a token structure, #f otherwise.

13

2 LALR() Parsers

(require parser-tools/yacc) package: parser-tools-1ib
(parser clause ...)
clause = (grammar (non-terminal-id
((grammar-id ...) maybe-prec expr)
S
o)
(tokens group-id ...)
(start non-terminal-id ...)

(end token-id ...)

(error expr)

(precs (assoc token-id ...) ...)
(src-pos)

(suppress)
(expected-SR-conflicts num)
(expected-RR-conflicts num)
(debug filename)

(yacc-output filename)

maybe-prec =
| (prec token-id)

left
right
nonassoc

assoc

Creates a parser. The clauses may be in any order, as long as there are no duplicates and all
non-OPTIONAL declarations are present:

¢ (grammar (non-terminal-id

((grammar-id ...) maybe-prec expr)
L))

)
Declares the grammar to be parsed. Each grammar-id can be a token-id from a
group-id named in a tokens declaration, or it can be a non-terminal-id declared
in the grammar declaration. The optional prec declaration works with the precs
declaration. The expr is a “semantic action,” which is evaluated when the input is
found to match its corresponding production.

Each action is Racket code that has the same scope as its parser’s definition, except
that the variables $1, ..., $i are bound, where i is the number of grammar-ids in the
corresponding production. If the kth grammar symbol on the right of the production

14

https://pkgs.racket-lang.org/package/parser-tools-lib

is a non-terminal, $k is bound to the result of its action; if it is a terminal, $k is
bound to the value stored in the token. If the src-pos option is present in the parser,
then variables $1-start-pos, ..., $i-start-pos and $1-end-pos, ..., $i-end-pos
and are also available, and they refer to the position structures corresponding to the
start and end of the corresponding grammar-symbol. Grammar symbols defined as
empty-tokens have no $k associated, but do have $k-start-pos and $k-end-pos.
Also $n-start-pos and $n-end-pos are bound to the largest start and end positions,
(i.e., $i-start-pos and $i-end-pos).

An error production can be defined by providing a production of the form (error
), where « is a string of grammar symbols, possibly empty.

All of the productions for a given non-terminal must be grouped with it. That is, no
non-terminal-id may appear twice on the left hand side in a parser.

(tokens group-id ...)

Declares that all of the tokens defined in each group-id—as bound by define-
tokens or define-empty-tokens—can be used by the parser in the grammar dec-
laration.

(start non-terminal-id ...)

Declares a list of starting non-terminals for the grammar.

(end token-id ...)

Specifies a set of tokens from which some member must follow any valid parse. For
example, an EOF token would be specified for a parser that parses entire files and a
newline token for a parser that parses entire lines individually.

(error expr)

The expr should evaluate to a function which will be executed for its side-effect
whenever the parser encounters an error.

If the src-pos declaration is present, the function should accept 5 arguments:

(lambda (tok-ok? tok-name tok-value start-pos end-pos)

)

Otherwise it should accept 3:

(lambda (tok-ok? tok-name tok-value)
)

The first argument will be #£f if and only if the error is that an invalid token was
received. The second and third arguments will be the name and the value of the token
at which the error was detected. The fourth and fifth arguments, if present, provide
the source positions of that token.

In both cases, the function is allowed to accept an additional keyword argument named
#:stack. This argument is a representation of the parsing automaton’s stack. This
can, for example, be used to generate context-sensitive error messages as described in
Generating LR syntax error messages from examples, by Clinton L. Jeffrey.

15

https://dl.acm.org/citation.cfm?id=937563.937566

* (precs (assoc token-id ...) ...) OPTIONAL

Precedence declarations to resolve shift/reduce and reduce/reduce conflicts as in
yacc/bison. An assoc must be one of left, right or nonassoc. States with
multiple shift/reduce or reduce/reduce conflicts (or some combination thereof) are not
resolved with precedence.

* (src-pos) OPTIONAL

Causes the generated parser to expect input in the form (make-position-token
token start-pos end-pos) instead of simply token. Include this option when
using the parser with a lexer generated with lexer-src-pos.

* (debug filename) OPTIONAL

Causes the parser generator to write the LALR table to the file named filename
(unless the file exists), where filename is a literal string. Additionally, if a debug
file is specified, when a running generated parser encounters a parse error on some
input file, after the user specified error expression returns, the complete parse stack is
printed to assist in debugging the grammar of that particular parser. The numbers in
the stack printout correspond to the state numbers in the LALR table file.

e (yacc-output filename) OPTIONAL

Causes the parser generator to write a grammar file in approximately the syntax of
yacc/bison. The file might not be a valid yacc file, because the Racket grammar can
use symbols that are invalid in C.

e (suppress) OPTIONAL

Causes the parser generator not to report shift/reduce or reduce/reduce conflicts.

* (expected-SR-conflicts n) OPTIONAL

Causes the parser generator to expect exactly num shift/reduce conflicts, where num
must be a literal number. The suppress option overrides this option.

* (expected-RR-conflicts n) OPTIONAL

Causes the parser generator to expect exactly num reduce/reduce conflicts, where num
must be a literal number. The suppress option overrides this option.

The result of a parser expression with one start non-terminal is a function, parse, that
takes one argument. This argument must be a zero argument function, gen, that produces
successive tokens of the input each time it is called. If desired, the gen may return symbols
instead of tokens, and the parser will treat symbols as tokens of the corresponding name
(with #£ as a value, so it is usual to return symbols only in the case of empty tokens). The
parse function returns the value associated with the parse tree by the semantic actions. If
the parser encounters an error, after invoking the supplied error function, it will try to use
error productions to continue parsing. If it cannot, it raises exn:fail:read.

16

If multiple non-terminals are provided in start, the parser expression produces a list of
parsing functions, one for each non-terminal in the same order. Each parsing function is like
the result of a parser expression with only one start non-terminal.

Each time the Racket code for a parser is compiled (e.g. when a ".rkt" file containing a
parser form is loaded), the parser generator is run. To avoid this overhead place the parser
into a module and compile the module to a " .zo" bytecode file.

Examples:

; Use the lexer and tokens from
; and the sample input from [§1.1 “Creating a Lexer’]
> (define the-parser
(parser
[start expr]
[end EOF]
[error void]
[tokens basic-tokens punct-tokens]
[grammar
[expr [(LPAREN exprs RPAREN) $2]
[(NUM) $1]
[(ID) $1]1]
[exprs [O) 'O]

[(expr exprs) (cons $1 $2)111))
> (define p (open-input-string sample-input))
> (the-parser (4 () (the-lexer/tokens p)))
'(lambda (a) (add_number a 42))

17

3 Context-Free Parsers

(require parser-tools/cfg-parser)
package: parser-tools-1ib

The parser-tools/cfg-parser library provides a parser generator that is an alternative
to that of parser-tools/yacc.

(cfg-parser clause ...)
clause = (grammar (non-terminal-id
((grammar-id ...) maybe-prec expr)
ce)
co)
(tokens group-id ...)
(start non-terminal-id ...)

(end token-id ...)
(error expr)
(src-pos)

Creates a parser similar to that of parser. Unlike parser, cfg-parser, can consume arbi-
trary and potentially ambiguous context-free grammars. Its interface is a subset of parser-
tools/yacc, with the following differences:

e (start non-terminal-id)

Unlike parser, cfg-parser only allows for a single non-terminal-id.

e The cfg-parser form does not support the precs, suppress, expected-
SR-conflicts, expected-RR-conflicts, debug, or yacc-output options of
parser.

18

https://pkgs.racket-lang.org/package/parser-tools-lib

4 Converting yacc or bison Grammars
(require parser-tools/yacc-to-scheme)
package: parser-tools-1ib
(trans file) — any/c
file : path-string?
Reads a C yacc/bison grammar from file and produces an s-expression that represents a

Racket parser for use with parser.

This function is intended to assist in the manual conversion of grammars for use with
parser, and not as a fully automatic conversion tool. It is not entirely robust. For example,
if the C actions in the original grammar have nested blocks, the tool will fail.

Annotated examples are in the "examples" subdirectory of the "parser-tools" collec-
tion.

19

https://pkgs.racket-lang.org/package/parser-tools-lib

Index Lexer SRE Operators,
lexer-src-pos,|[]
Lexers, 3]
lower-case,[9]
make-position,[§]

*

5B

E

+ (10 make-position-token,[§]
-] nothing, 9]

/,[] numeric,[9]

b % or,[10]

parser,[[4]
Parser Tools: lex and yacc-style Parsing, [T]

parser-tools/cfg-parser,[I§]

alphabetic,[9] parser-tools/lex, 3|

any-char, [J] parser-tools/lex-plt-v200,[T]]
any—string,El parser—tools/lex—sre,lml
blank,E| parser—tools/yacc,@
cfg-parser,[I§] parser-tools/yacc-to-scheme,[I9]
cfg-parser, IE position (struct), El

char-set,

Context-Free Parsers, [[8]

Converting yacc or bison Grammars, [T9]
Creating a Lexer, 3]
define-empty-tokens,[12]
define-lex-abbrev,[]]
define-lex-abbrevs,
define-lex-trans,[9

define-tokens,

position-col, El
position-line, El
position-offset,[§|
position-token (struct), [§]
position-token-end-pos, g
position-token-start-pos,[§|
position-token-token,|§|
position-token?,|§|
position?,[§|

end-pos,[7] punctuation,[J]
epsilon,[TT] return-without-pos,[]]
error production, T3] scanner, 3]

file-path,[§] scanning, [3]

graphic,[seq, [T0]

input-port,[7] start-pos,[]]

struct:position,[§
struct:position-token,[§]

iso-control,[9]
LALR(1) Parsers, [T4]

lex, 3] symbolic,
lexeme,[]] title-case,[]
lexer,[3] token, [11]

lexer abbreviation, 3| token-name,[12]
Lexer Abbreviations and Macros, token-value, |'1;Z|
Lexer Legacy Operators, ﬂ;fl token?,[I3]

lexer macro, 4] Tokens, [T1]

20

trans,[19
upper-case,[J]
whitespace,[J]
yacc, [T4]

~ [

~ [

21

	1 Lexers
	1.1 Creating a Lexer
	1.2 Lexer Abbreviations and Macros
	1.3 Lexer SRE Operators
	1.4 Lexer Legacy Operators
	1.5 Tokens

	2 LALR(1) Parsers
	3 Context-Free Parsers
	4 Converting yacc or bison Grammars
	Index
	Index

