Plot: Graph Plotting

Version 9.0.0.11

Neil Toronto <neil. toronto@gmail . com>

January 4, 2026

(require plot) package: plot-gui-1ib

The Plot library provides a flexible interface for producing nearly any kind of plot. It in-
cludes many common kinds of plots already, such as scatter plots, line plots, contour plots,
histograms, and 3D surfaces and isosurfaces. Thanks to Racket’s excellent multiple-backend
drawing library, Plot can render plots as interactive snips in DrRacket, as picts in slideshows,
as PNG, PDF, PS and SVG files, or on any device context.

Plot is a Typed Racket library, but it can be used in untyped Racket programs with little
to no performance loss. The old typed interface module plot/typed is still available for
old Typed Racket programs. New Typed Racket programs should use plot.

For plotting without a GUI, see plot/no-gui. For plotting in REPL-like environments
outside of DrRacket, including Scribble manuals, see plot/pict and plot/bitmap.

mailto:neil.toronto@gmail.com
https://pkgs.racket-lang.org/package/plot-gui-lib

Contents

I Tntroduction|

[I.1 Plotting 2D Graphs| o

I1.2 Terminology|.

|1.6 Plotting Multiple 3D Renderers|.

[1.7 PlottingtoFiles|

I1.8 Colorsand Styles|

2 2D and 3D Plotting Procedures|

2.1 GUI Plotting Procedures|

2.2 Non-GUI Plotting Procedures|.

2.3 Pict-Plotting Work-a-Likes| oo

2.4 Bitmap-Plotting Work-a-Likes|,

3 2D Renderers!

3.1 2D Renderer Function Arguments|

13.5 2D Contour (Isoline) Renderers|.

3.6 2D Rectangle Renderers|00,

12

14

15

15

18

18

23

25

26

27

13.9 Interactive Overlays for 2D plots|

4__3D Renderersl

4.1 3D Renderer Function Arguments|

4.7 3D Rectangle Renderers|

98

98

98

102

106

116

122

126

134

137

137

150

156

157

158

159

161

163

168

170

170

172

7.2 Sampling] 174
[7.3 Plot Colors and Styles|., 178
7.4 Plot-SpecificMath| 185
(41 RealFunctions| 185
(/42 Vector Functions| 187
[/.4.3 Intervals and Interval Functions| 190
[75 DatesandTimesl. 191
PlotMetrics| 192

8 Plot and Renderer Parametersl 196
8.1 Compatibility] 196
8 Output] 196
8.3 General Appearance|. Lo 197
8.4 Tames| 208
B3 Tntervalslo 209
8.6 Points and Point Labelsl 210
87 VectorFrelds & Arrows| oo 212
BB ErmorBarsot 213
B9 Candlesticks]. 214
BIO Colorfields]o vi i 215
8.11 Contours and Contour Intervalsl. 215
812 Contour Surfacesl oo 217
8 R gles|. 217
[8.14 Non-BorderAxes| 219
BISSurfaces 220

9 Plot Contracts

9.2 Appearance Argument Contracts|

9.3 Appearance Argument List Contracts|

[T0_Porting From Plot <=5.1.3|

|110.1 Replacing Deprecated Functions|

|10.2" Ensuring That Plots Have Bounds|

|110.3 Changing

Keyword Arguments| Lo L oL

|110.4 Fixing Broken Calls topoints|.

[10.5 Replacing Uses of plot-extend|.

110.6 Deprecated Functions| L.

11 Legacy Typed Interface|

[12 Compatibility Module|

223

223

223

228

232

232

233

235

237

238

238

240

241

1 Introduction

(require plot) package: plot-gui-1ib

1.1 Plotting 2D Graphs

To plot a one-input, real-valued function, do something like

> (require plot)

> (plot (function sin (- pi) pi #:label "y
|] | | |
. | . | .

sin(x)"))

1|y =sin(x)

y axis

Xis

X

&

The first argument to function is the function to be plotted, and the #:1abel argument
becomes the name of the function in the legend.

If you’re not using DrRacket, start with

(require plot)

https://pkgs.racket-lang.org/package/plot-gui-lib

(plot-new-window? #t)

to open each plot in a new window.

1.2 Terminology

In the above example, (- pi) and pi define the x-axis bounds, or the closed interval in
which to plot the sin function. The function function automatically determines that the
y-axis bounds should be [-1,1].

The function function constructs a renderer, which does the actual drawing. A renderer
also produces legend entries, requests bounds to draw in, and requests axis ticks and tick
labels.

The plot function collects legend entries, bounds and ticks. It then sets up a plot area
with large enough bounds to contain the renderers, draws the axes and ticks, invokes the
renderers’ drawing procedures, and then draws the legend.

1.3 Plotting 3D Graphs

To plot a two-input, real-valued function as a surface, try something like

> (plot3d (surface3d (1 (x y) (* (cos x) (sin y)))
(- pi) pi (- pi) pi)
#:title "An R X R — R function"
#:x-label "x" #:y-label "y" #:z-label "cos(x) sin(y)")

The documentation
can’t show it, but in
DrRacket you can
rotate 3D plots by
clicking on them
and dragging the
mouse. Try it!

An R x R - R function

\:\\\\\\\“‘

N
AT e
‘\\\\\\“\\\S\‘l\\\\\““ 0,

=

s

n
W

==

This example also demonstrates using keyword arguments that change the plot, such as
#:title. In Plot, every keyword argument is optional and almost all have parameterized de-
fault values. In the case of plot3d’s #:title, the corresponding parameter is plot-title.
That is, keyword arguments are usually shortcuts for parameterizing plots or renderers:

> (parameterize ([plot-title "An R X R — R function"]
[plot-x-label "x"]
[plot-y-label "y"]
[plot-z-label "cos(x) sin(y)"])
(plot3d (contour-intervals3d (4 (x y) (* (cos x) (sin y)))
(- pi) pi (- pi) pi)))

When
parameterizing
more than one plot,
it is often easier to
set parameters
globally, as in
(plot-title
"Untitled") and
(plot3d-angle
45).

There are many
parameters that do
not correspond to
keyword arguments,
such as
plot-font-size.

See[38 “Plotand]
Renderer 1]

[Parameters™ for the
full listing.

An R x R - R function

This example also demonstrates contour-intervals3d, which colors the surface between
contour lines, or lines of constant height. By default, contour-intervals3d places the
contour lines at the same heights as the ticks on the z axis.

1.4 Plotting Multiple 2D Renderers

Renderers may be plotted together by passing them in a list:

> (plot (list (axes)
(function sqr -2 2)
(function (4 (x) x) #:color O #:style 'dot)
(inverse sqr -2 2 #:color 3)))

y axis
—_
I
|
I
|
I

X axis

Here, inverse plots the inverse of a function. (Both function and inverse plot the
reflection line (1 (x) x) identically.)

Notice the numbered colors. Plot additionally recognizes, as colors, lists of RGB values
such as ' (128 128 0), colorY instances, and strings like "red" and "navajowhite".
(The last are turned into RGB triples using a color-database<y>.) Use numbered colors
when you just need different colors with good contrast, but don’t particularly care what they
are.

The axes function returns a list of two renderers, one for each axis. This list is passed in a
list to plot, meaning that plot accepts lists of lists of renderers. In general, both plot and
plot3d accept a treeof renderers.

Renderers generate legend entries when passed a #: label argument. For example,
> (plot (list (axes)

(function sqr -2 2 #:label "y = x~2")
(function (4 (x) x) #:label "y =

10

x" #:color O #:style 'dot)
(inverse sqr -2 2 #:label "x = y~2" #:color 3)))
| | | | | | | | |

4 f } f f } f f } f
y=x"2 .
4 y =X eemeeeeeeee 4 ‘,'l 4
X=yN2 — :
34 4 4
21 4 L
2
£ 14+ 1 4
>
14 4 4
-2 } } } } } } } } } }
-2 -1 0 1 2 3 4

X axis

Lists of renderers are f1lattened, and then plotted in order. The order is more obvious with
interval plots:

> (plot (list (function-interval (1 (x) (- (sin x) 3))
(1 (x) (+ (sin x) 3)))
(function-interval (41 (x) (- (sqr x))) sqr #:color 4
#:1linel-color 4 #:1line2-color 4))
#:x-min (- pi) #:x-max pi)

11

y axis
=)
I
I

o
o4
S}

X axis

o

Clearly, the blue-colored interval between sine waves is drawn first.

1.5 Renderer and Plot Bounds

In the preceeding example, the x-axis bounds are passed to plot using the keyword ar-
guments #:x-min and x-max. The bounds could easily have been passed in either call to
function-interval instead. In both cases, plot and function-interval work together
to determine y-axis bounds large enough for both renderers.

It is not always possible for renderers and plot or plot3d to determine the bounds:

> (plot (function sqr))

plot: could not determine sensible plot bounds; got x € [#f,#f], y € [#].#f]
> (plot (function sqr #f #f))

plot: could not determine sensible plot bounds; got x € [#f,#f], y € [#f,#f]
> (plot (function sqr -2))

12

plot: could not determine sensible plot bounds; got x € [-2,#f], y € [#f,#f]

There is a difference between passing bounds to renderers and passing bounds to plot or
plot3d: bounds passed to plot or plot3d cannot be changed by a renderer that requests
different bounds. We might say that bounds passed to renderers are suggestions, and bounds
passed to plot and plot3d are commandments.

Here is an example of commanding plot3d to override a renderer’s bounds. First, consider
the plot of a sphere with radius 1:

> (plot3d (polar3d (A4 (8 p) 1) #:color 2 #:line-
style 'transparent)
#:altitude 25)

Passing bounds to plot3d that are smaller than [-1..1] x [-1..1] x [-1..1] cuts off the six
axial poles:

> (plot3d (polar3d (4 (0 p) 1) #:color 2 #:line-
style 'transparent)

13

#:x-min -0.8 #:x-max 0.8
#:y-min -0.8 #:y-max 0.8
#:z-min -0.8 #:z-max 0.8
#:altitude 25)

1.6 Plotting Multiple 3D Renderers

Unlike with rendering 2D plots, rendering 3D plots is order-independent. Their constituent
shapes (such as polygons) are merged, sorted by view distance, and drawn back-to-front.

> (define ((dist cx cy cz) x y z)
(sqrt (+ (sqr (- x cx)) (sqr (- y cy)) (sqr (- z cz)))))
> (plot3d (list (isosurface3d (dist 1/4 -1/4 -1/4) 0.995
#:color 4 #:alpha 0.8 #:samples 21)
(isosurface3d (dist -1/4 1/4 1/4) 0.995
#:color 6 #:alpha 0.8 #:samples 21))
#:x-min -1 #:x-max 1
#:y-min -1 #:y-max 1

14

#:z-min -1 #:z-max 1
#:altitude 25)

1 -1
54+ 3 i
1 < —+.5
0+
1 SIS -0
= i \ 7 [
T -d 4.5
1T > 1
-1 ~
1 5
5 T -1
<i1
N 0
t?*{(-y 5
-5 0
-5 % axis
-1 -1

1.7 Plotting to Files

Any plot can be rendered to PNG, PDF, PS and SVG files using plot-file and plot3d-
file, to include in papers and other published media.

1.8 Colors and Styles

In papers, stick to dark, fully saturated colors for lines, and light, desaturated colors for areas
and surfaces. Papers are often printed in black and white, and sticking to this guideline will
help black-and-white versions of color plots turn out nicely.

To make this easy, Plot provides numbered colors that follow these guidelines, that are de-
signed for high contrast in color as well. When used as line colors, numbers are interpreted

15

as dark, fully saturated colors. When used as area or surface colors, numbers are interpreted
as light, desaturated colors.

> (parameterize ([interval-linel-width 3]
[interval-line2-width 3])
(plot (for/list ([i (in-range -7 13)1)
(function-interval
1 (xi1.3)) (1 x) (+1 (x1i1.3)))
#:color i #:linel-color i #:line2-color 1))
#:x—m%n -8 #:x-max 8))I |

155 =

y axis

-5 0 5

X axis
Color 0 is black for lines and white for areas. Colors 1..120 are generated by rotating hues

and adjusting to make neighbors more visually dissimilar. Colors 121..127 are grayscale.

Colors -7..-1 are also grayscale because before 0, colors repeat. That is, colors -128..-1
are identical to colors 0..127. Colors also repeat after 127.

If the paper will be published in black and white, use styles as well as, or instead of, colors.
There are 5 numbered pen styles and 7 numbered brush styles, which also repeat.

16

> (parameterize ([line-color "black"]
[interval-color '"black"]
[interval-linel-color "black"]
[interval-line2-color "black"]
[interval-linel-width 3]
[interval-line2-width 3])
(plot (for/list ([i (in-range 7)])

(function-interval

(1 x) (x1i1.85) (A & (+1 (1i1.5)))

#:style i #:linel-style i #:line2-style i))

#:x-min -8 #:x-max 8))

10 -+ }

6 WS S S S ST S G T S s e Gl e Al s s s

y axis

[\
|

A\

T e T e et e T T T e e T T e e T T e T o A 2 2L 2 00202
00 IIRIIIRIERILIIIKIKRLIIRIKIKNERS
KKK
QKKK

\

I

X axis

17

2 2D and 3D Plotting Procedures

The plotting procedures exported by plot/no-gui produce bitmap% and pict instances,
and write to files. They do not require racket/gui, so they work in headless environments;
for example, a Linux terminal with DISPLAY unset.

The plot module re-exports everything exported by plot/no-gui, as well as plot,
plot3d, and other procedures that create interactive plots and plot frames. Interactive plot-
ting procedures can always be imported, but fail when called if there is no working display
or racket/gui is not present.

Each 3D plotting procedure behaves the same way as its corresponding 2D procedure, but
takes the additional keyword arguments #:z-min, #:z-max, #:angle, #:altitude and
#:z-label.

2.1 GUI Plotting Procedures

(require plot) package: plot-gui-1ib

(plot renderer-tree
#:x-min x-min

—

:X-max X-max
:y-min y-min
(y-max y-max
:width width
:height height
:title title
:x-label x-label
:y-label y-label
:aspect-ratio aspect-ratio
:legend-anchor legend-anchor
cout-file out-file
#:out-kind out-kind])
— (or/c (and/c (is-a?/c snip%) (is-a?/c plot-metrics<’%>)) void?)
renderer-tree : (treeof (or/c renderer2d? nonrenderer?))
x-min : (or/c rational? #f) = #f

HoH HF HHHHHEHHEH

x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f

width : exact-positive-integer? = (plot-width)
height : exact-positive-integer? = (plot-height)
title : (or/c string? pict? #f) = (plot-title)
x-label : (or/c string? pict? #f) = (plot-x-label)
y-label : (or/c string? pict? #f) = (plot-y-label)

18

https://pkgs.racket-lang.org/package/plot-gui-lib

aspect-ratio : (or/c (and/c rational? positive?) #f)
= (plot-aspect-ratio)

legend-anchor : legend-anchor/c = (plot-legend-anchor)

out-file : (or/c path-string? output-port? #f) = #f

out-kind : plot-file-format/c = 'auto

Plots a 2D renderer or list of renderers (or more generally, a tree of renderers), as returned
by points, function, contours, discrete-histogram, and others.

By default, plot produces a Racket value that is displayed as an image and can be manipu-
lated like any other value. For example, they may be put in lists:

> (parameterize ([plot-width 150]
[plot-height 150]
[plot-x-label #f]
[plot-y-label #£f])
(l1ist (plot (function sin (- pi) pi))
(plot (function sqr -2 2))))
! | ! | !

1 b4ttt
st Ts] 1
04 Lol 1
eE: 1. 1

:: | |:: L | L | , | L

— =
' (0 2 2 -0 1 2y

When the parameter plot-new-window? is #t, plot opens a new window to display the
plot and returns (void).

When #:out-file is given, plot writes the plot to a file using plot-file as well as
returning a snipy or opening a new window.

When given, the x-min, x-max, y-min and y-max arguments determine the bounds of the
plot, but not the bounds of the renderers. For example,

When given, the aspect-ratio argument defines the aspect ratio of the plot area, see
plot-aspect-ratio for more details.

> (plot (function (4 (x) (sin (* 4 x))) -1 1)
#:x-min -1.5 #:x-max 1.5 #:y-min -1.5 #:y-max 1.5)

19

y axis
=)
I
|
I

]
1
-15 -1 -5 0 S 1 15

Here, the renderer draws in [-1,1] x [-1,1], but the plot area is [-1.5,1.5] x [-1.5,1.5].

Deprecated keywords. The #:fgcolor and #:bgcolor keyword arguments are currently
supported for backward compatibility, but may not be in the future. Please set the plot-
foreground and plot-background parameters instead of using these keyword arguments.
The #:1ncolor keyword argument is also accepted for backward compatibility but depre-
cated. It does nothing.

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:title, #:x-label and #:y-label.
And to plot the legend outside the plot-area with #:legend-anchor

Changed in version 8.1 of package plot-gui-1ib: Added #:aspect-ratio

20

(plot3d renderer-tree

:X-min x-min

1X-max X-max

:y-min y-min

jy-max y-max

:Zz-min z-min

!zZ-max z-max

:width width

:height height

:angle angle

:altitude altitude

ititle title

:x-label x-label

:y-label y-label

:z-label z-label

:aspect-ratio aspect-ratio

:legend-anchor legend-anchor

:out-file out-file

:out-kind out-kind])

— (or/c (and/c (is-a?/c snip}) (is-a/c plot-metrics<¥%>)) void?)
renderer-tree : (treeof (or/c renderer3d? nonrenderer?))
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
width : exact-positive-integer? = (plot-width)
height : exact-positive-integer? = (plot-height)
angle : real? = (plot3d-angle)
altitude : real? = (plot3d-altitude)
title : (or/c string? pict? #f) = (plot-title)
x-label : (or/c string? pict? #f) = (plot-x-label)
y-label : (or/c string? pict? #f) (plot-y-label)
z-label : (or/c string? pict? #f) (plot-z-label)
aspect-ratio : (or/c (and/c rational? positive?) #f)

= (plot-aspect-ratio)
legend-anchor : legend-anchor/c = (plot-legend-anchor)
out-file : (or/c path-string? output-port? #f) = #f
out-kind : plot-file-format/c = 'auto

B N Y R

Plots a 3D renderer or list of renderers (or more generally, a tree of renderers), as returned
by points3d, parametric3d, surface3d, isosurface3d, and others.

When the parameter plot-new-window? is #t, plot3d opens a new window to display the
plot and returns (void).

21

When #:out-file is given, plot3d writes the plot to a file using plot3d-file as well as
returning a snip% or opening a new window.

When given, the x-min, x-max, y-min, y-max, z-min and z-max arguments determine
the bounds of the plot, but not the bounds of the renderers.

When given, the aspect-ratio argument defines the aspect ratio of the plot area, see
plot-aspect-ratio for more details.

Deprecated keywords. The #:fgcolor and #:bgcolor keyword arguments are currently
supported for backward compatibility, but may not be in the future. Please set the plot-
foreground and plot-background parameters instead of using these keyword arguments.
The #:1ncolor keyword argument is also accepted for backward compatibility but depre-
cated. It does nothing.

The #:az and #:alt keyword arguments are backward-compatible, deprecated aliases for
#:angle and #:altitude, respectively.

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:title, #:x-label and #:y-label.
And to plot the legend outside the plot-area with #:legend-anchor

Changed in version 8.1 of package plot-gui-1ib: Added #:aspect-ratio

(plot-snip <plot-argument> ...)
— (and/c (is-a?/c 2d-plot-snip}%) (is-a?/c plot-metrics<y>))
<plot-argument> : <plot-argument-contract>

(plot3d-snip <plot-argument> ...)
— (and/c (is-a?/c snip%) (is-a?/c plot-metrics<i>))
<plot-argument> : <plot-argument-contract>

(plot-frame <plot-argument> ...) — (is-a?/c frame,)
<plot-argument> : <plot-argument-contract>

(plot3d-frame <plot-argument> ...) — (is-a?/c frame’,)
<plot-argument> : <plot-argument-contract>

Plot to different GUI backends. These procedures accept the same arguments as plot and
plot3d, except deprecated keywords, and #:out-file and #:out-kind.
Use plot-frame and plot3d-frame to create a frame?, regardless of the value of plot-

new-window?. The frame is initially hidden.

22

Use plot-snip and plot3d-snip to create an interactive snip regardless of the value of
plot-new-window?.

The snipY objects returned by plot-snip can be used to construct interactive plots. See
[§3.9 “Interactive Overlays for 2D plots”| for more details.

2.2 Non-GUI Plotting Procedures

(require plot/no-gui) package: [plot-1ib

(plot-file renderer-tree

output

[kind]

#:<plot-keyword> <plot-keyword> ...) — void?
renderer-tree : (treeof (or/c renderer2d? nonrenderer?))
output : (or/c path-string? output-port?)
kind : plot-file-format/c = 'auto
<plot-keyword> : <plot-keyword-contract>

(plot3d-file renderer-tree

output

[kind]

#:<plot3d-keyword> <plot3d-keyword> ...) — void?
renderer-tree : (treeof (or/c renderer3d? nonrenderer?))
output : (or/c path-string? output-port?)
kind : plot-file-format/c = 'auto
<plot3d-keyword> : <plot3d-keyword-contract>

(plot-pict <plot-argument> ...) — plot-pict?
<plot-argument> : <plot-argument-contract>

(plot3d-pict <plot3d-argument> ...) — plot-pict?
<plot3d-argument> : <plot3d-argument-contract>

(plot-bitmap <plot-argument> ...)
— (and/c (is-a?/c bitmap}) (is-a?/c plot-metrics<}>))
<plot-argument> : <plot-argument-contract>

23

https://pkgs.racket-lang.org/package/plot-lib

(plot3d-bitmap <plot3d-argument> ...)
— (and/c (is-a?/c bitmap%) (is-a?/c plot-metrics<¥%>))
<plot3d-argument> : <plot3d-argument-contract>

Plot to different non-GUI backends. These procedures accept the same arguments as plot
and plot3d, except deprecated keywords, and #:out-file and #:out-kind.

Use plot-file or plot3d-file to save a plot to a file. When creating a JPEG file, the
parameter plot-jpeg-quality determines its quality. When creating a PostScript or PDF
file, the parameter plot-ps/pdf-interactive? determines whether the user is given a
dialog to set printing parameters. (See post-script-dc) and pdf-dc?%.) When kind is
'auto, plot-file and plot3d-file try to determine from the file name extension the
kind of file to write.

Use plot-pict or plot3d-pict to create a pict. For example, this program creates a
slide containing a 2D plot of a parabola:

#lang slideshow
(require plot)

(plot-font-size (current-font-size))
(plot-width (current-para-width))
(plot-height 600)
(plot-background-alpha 1/2)

(slide
#:title "A 2D Parabola"
(plot-pict (function sqr -1 1 #:label "y = x~2")))

Use plot-bitmap or plot3d-bitmap to create a bitmap’,.

(plot/dc renderer-tree
dc
b'e
y
width
height
#:<plot-keyword> <plot-keyword> ...)
— (is-a?/c plot-metrics<y>)
renderer-tree : (treeof (or/c renderer2d? nonrenderer?))
dc : (is-a?/c dc<¥>)
X : real?
y @ real?
width : (>=/c 0)
height : (>=/c 0)
<plot-keyword> : <plot-keyword-contract>

24

(plot3d/dc renderer-tree
dc
x
y
width
height
#:<plot3d-keyword> <plot3d-keyword> ...)
— (is-a?/c plot-metrics<y>)
renderer-tree : (treeof (or/c renderer3d? nonrenderer?))
dc : (is-a?/c dc<%>)
x @ real?
y . real?
width : (>=/c 0)
height : (>=/c 0)
<plot3d-keyword> : <plot3d-keyword-contract>

Plot to an arbitrary device context, in the rectangle with width width, height height, and
upper-left corner x,y. These procedures accept the same arguments as plot and plot3d,
except deprecated keywords, and #:out-file and #:out-kind.

Use these if you need to continually update a plot on a canvasy, or to create other plot-like
functions with different backends.

2.3 Pict-Plotting Work-a-Likes

(require plot/pict) package: plot-1ib

When setting up an evaluator for a Scribble manual, require plot/pict instead of plot.
Evaluation will produce picts instead of snips, which scale nicely in PDF-rendered docu-
mentation.

For example, this is how the evaluator for the Plot documentation is defined:

(define plot-eval
(let ([eval (make-base-eval)])
(eval '(begin
(require racket/math
racket/match
racket/list
racket/draw
racket/class
plot/pict
plot/utils)))
eval))

25

https://pkgs.racket-lang.org/package/plot-lib

If you use (require (for-label plot)), links in example code should resolve to docu-
mentation for the functions exported by plot.

(plot <plot-argument> ...) — pict?
<plot-argument> : <plot-argument-contract>

(plot3d <plot3d-argument> ...) — pict?
<plot3d-argument> : <plot3d-argument-contract>

Like the functions of the same name exported from plot, but these produce pict instances
instead of interactive snips.

2.4 Bitmap-Plotting Work-a-Likes

(require plot/bitmap) package: [plot-1ib

When plotting in an environment where bitmap instances can be shown but snip’,
instances cannot (for example, on a web page that evaluates Racket code), require
plot/bitmap instead of plot.

(plot <plot-argument> ...) — (is-a?/c bitmap%)
<plot-argument> : <plot-argument-contract>

(plot3d <plot3d-argument> ...) — (is-a?/c bitmapl)
<plot3d-argument> : <plot3d-argument-contract>

Like the functions of the same name exported from plot, but these produce bitmap} in-
stances instead of interactive snips.

26

https://pkgs.racket-lang.org/package/plot-lib

3 2D Renderers

(require plot) package: plot-gui-1ib

3.1 2D Renderer Function Arguments

Functions that return 2D renderers always have these kinds of arguments:

* Required (and possibly optional) arguments representing the graph to plot.

* Optional keyword arguments for overriding calculated bounds, with the default value
#E.

* Optional keyword arguments that determine the appearance of the plot.

* The optional keyword argument #: 1abel, which specifies the name of the renderer in
the legend.

We will take function, perhaps the most commonly used renderer-producing function, as
an example.

Graph arguments. The first argument to function is the required £, the function to plot.
It is followed by two optional arguments x-min and x-max, which specify the renderer’s x
bounds. (If not given, the x bounds will be the plot area x bounds, as requested by another
renderer or specified to plot using #:x-min and #:x-max.)

These three arguments define the graph of the function f, a possibly infinite set of pairs of
points x,(f x). An infinite graph cannot be plotted directly, so the renderer must approxi-
mately plot the points in it. The renderer returned by function does this by drawing lines
connected end-to-end.

Overriding bounds arguments. Next in function’s argument list are the keyword argu-
ments #:y-min and #: y-max, which override the renderer’s calculated y bounds if given.

Appearance arguments. The next keyword argument is #:samples, which determines
the quality of the renderer’s approximate plot (higher is better). Following #:samples are
#:color, #:width, #:style and #:alpha, which determine the color, width, style and
opacity of the lines comprising the plot.

In general, the keyword arguments that determine the appearance of plots follow consistent
naming conventions. The most common keywords are #:color (for fill and line colors),
#:width (for line widths), #:style (for fill and line styles) and #:alpha. When a function
needs both a fill color and a line color, the fill color is given using #:color, and the line

27

https://pkgs.racket-lang.org/package/plot-gui-lib

color is given using #:1line-color (or some variation, such as #:1inel-color). Styles
follow the same rule.

Every appearance keyword argument defaults to the value of a parameter. This allows whole
families of plots to be altered with little work. For example, setting (1ine-color 3) causes
every subsequent renderer that draws connected lines to draw its lines in blue.

Label argument. Lastly, there is #:1abel. If given, the function renderer will generate
a label entry that plot puts in the legend. The label argument can be a string or a pict.
For most use cases, the string will be sufficient, especially since it allows using Unicode
characters, and thus some mathematical notation. For more complex cases, a pict can be
used, whic allows arbitrary text and graphics to be used as label entries.

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

Not every renderer-producing function has a #: 1abel argument; for example, error-bars.

3.2 2D Point Renderers

(points vs

:x-min x-min

!X-max x-max

:y-min y-min

ly-max y-max

(sym sym

:color color

:fill-color fill-color

:x-jitter x-jitter

iy-jitter y-jitter

:size size

:line-width Iine-width

:alpha alpha

:label labell) — renderer2d?
vs : (sequence/c (sequence/c #:min-count 2 real?))
x-min : (or/c rational? #f) = #f

T U T T T O T TSN T S

x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f

sym : point-sym/c = (point-sym)

color : plot-color/c = (point-color)
fill-color : (or/c plot-color/c 'auto) = 'auto
x-jitter : (>=/c 0) = (point-x-jitter)
y-jitter : (>=/c 0) = (point-y-jitter)

size : (>=/c 0) = (point-size)

line-width : (>=/c 0) = (point-line-width)

28

alpha : (real-in 0 1) = (point-alpha)
label : (or/c string? pict? #f) = #f

Returns a renderer that draws points. Use it, for example, to draw 2D scatter plots.

The renderer sets its bounds to the smallest rectangle that contains the points. Still, it is often
necessary to override these bounds, especially with randomized data. For example,

> (parameterize ([plot-width 150]
[plot-height 150]
[plot-x-label #f]
[plot-y-label #f])
(define xs (build-list 20 (1 _ (random))))
(define ys (build-list 20 (4 _ (random))))
(1ist (plot (points (map vector xs ys)))
(plot (points (map vector xs ys)
#:x-min O #:x-max 1
#:y-min O #:y-max 1))))

B —t——t—t——t 14— ol ——
8+—0 O [o) =+ + 1
1 o E .8—90 o o 8 .
D -4 T T
6 o) 6D o 1
1 o i T . T
4 - 44 £
| o° o I 7] o° 0 1
»L o o o »b o oo 1
®, + 2P0 T
—— 4+ 0+ P F—=————
X 2 4 6 8 0 2 4 6 8 1)

Readers of the first plot could only guess that the random points were generated in [0,1] x
[0,1].

The #:sym argument may be any integer, a Unicode character or string, or a symbol in
known-point-symbols. Use an integer when you need different points but don’t care
exactly what they are.

When x-jitter is non-zero, all points are translated by a random amount at most x-
jitter from their original position along the x-axis. A non-zero y-jitter similarly trans-
lates points along the y-axis. Jitter is added in both directions so total spread is twice the
value given. To be precise, each point p is moved to a random location inside a rectangle
centered at p with width at most twice x-jitter and height at most twice y-jitter sub-
ject to the constraint that new points lie within [x-min, x-max] and [y-min, y-max] if these
bounds are non-#£.

> (plot

29

(points (for/list ([i (in-range 1000)])
(list 0 0))
:alpha 0.4
:x-jitter 1
ry-jitter 1
:sym 'fullcirclel
#:color "blue")
#:x-min -2 #:x-max 2 #:y-min -2 #:y-max 2)
2 : } : } : } :

H OH B H

¥
:.:' ..
° .‘. ®
:".:o

o ®

°
®8q o, & o
..

5 P
8 Sons

y axis
=
|
I

2 ! } !
-2 -1

o+
—
[\8}

X axis

Randomly moving data points is almost always a bad idea, but jittering in a controlled man-

ner can sometimes be useful. For example: More examples of
jittering: |Another
Look at the

» To highlight the size of a dense (or overplotted) sample. California
Vaccination Data

* To see the distribution of 1-dimensional data; as a substitute for box or violin plots. la:ild Typing with
easure

* To anonymize spatial data, showing i.e. an office’s neighborhood but hiding its ad-
dress.

30

http://kieranhealy.org/blog/archives/2015/02/03/another-look-at-the-california-vaccination-data/
http://kieranhealy.org/blog/archives/2015/02/03/another-look-at-the-california-vaccination-data/
http://kieranhealy.org/blog/archives/2015/02/03/another-look-at-the-california-vaccination-data/
http://kieranhealy.org/blog/archives/2015/02/03/another-look-at-the-california-vaccination-data/
https://pavelfatin.com/typing-with-pleasure/
https://pavelfatin.com/typing-with-pleasure/
https://en.wiktionary.org/wiki/overplotting

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:label

(vector-field f
[x-min
x-max

#:samples samples
:scale scale
:color color
:line-width line-width
:line-style line-style
:alpha alpha
:label labell]) — renderer2d?
f : (or/c (-> real? real? (sequence/c real?))
(-> (vector/c real? real?) (sequence/c real?)))

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
samples : exact-positive-integer? = (vector-field-samples)
scale : (or/c real? (one-of/c 'auto 'mormalized))

= (vector-field-scale)
color : plot-color/c = (vector-field-color)
line-width : (>=/c 0) = (vector-field-line-width)
line-style : plot-pen-style/c = (vector-field-line-style)
alpha : (real-in 0 1) = (vector-field-alpha)
label : (or/c string? pict? #f) = #f

Returns a renderer that draws a vector field.

If scale is a real number, arrow lengths are multiplied by scale. If 'auto, the scale is
calculated in a way that keeps arrows from overlapping. If 'normalized, each arrow is
made the same length: the maximum length that would have been allowed by 'auto.

The shape of the arrow-head can be controlled with arrow-head-size-or-scale and
arrow-head-angle.

An example of automatic scaling:

> (plot (vector-field (1 (x y) (vector (+ x y) (- x y)))
-2 2 -2 2))

31

’ ¢ x: Vo HN vV VN o TS S TS
¢ R R R R R e —_— >
A A R R R - = ==
\L\L\L\Lx\r\:\\\\\\)ﬂﬁe—ea
1 \Z\L\L\Lb\/&\\\\\sﬁeaag
__\Z\[\ZJ«\l&&\\\\\)\)_)_%/)gﬁ__
\/\Z\l\LJl&&\\\‘)_,_,,,))Z
“l/llx/‘l‘lilxx*.,_,/,/,ﬂﬂﬂﬁ
A2 A L R A A 4
éo-_l/x//z.z., ,,,/},/},/__
> v ¥ ¥ ¥ ¢ ¥ < , P Y A
Y v e e e e < -~ ' T I B
S L L N N N A
T T L T T T A A
[T S
N T
eé—e$$<\x\\\\\'\'?¢']\'r’f
e« == ~ ~ N X X N NN A x ¢ T T 1
< < s N~ N NN x N N N N Q T T T
2 ef\&ﬂ&\,\\i‘\‘\ AN 'yify /V/V/P
2 1 0 ' 1
X axis

Changed in version 7.9 of package plot-gui-1ib:

arrowhead

(error-bars bars
[#:x-min
#:x-max
#:y-min
#:y-max
#:color

xX-min
x-max
y-min
y-max
color

#:width width
#:alpha alpha
#:invert? invert?])

x-min : (or/c rational? #f) =
x-max : (or/c rational? #f) =
y-min : (or/c rational? #f)

Added support for pictures for #:label and controlling the

#f
#f

= #f

32

#:1line-width line-width
#:1line-style line-style

— renderer2d?

bars : (sequence/c (sequence/c #:min-count 3 real?))

y-max : (or/c rational? #f) = #f
color : plot-color/c = (error-bar-color)
line-width : (>=/c 0) = (error-bar-line-width)

line-style : plot-pen-style/c = (error-bar-line-style)

width : (>=/c 0) = (error-bar-width)
alpha : (real-in 0 1) = (error-bar-alpha)
invert? : boolean? = #f

Returns a renderer that draws error bars. The first and second element in each vector in bars

comprise the coordinate; the third is the height.

> (plot (list (function sqr 1 7)
(error-bars (list (vector 2 4 12)
(vector 4 16 20)

(Ivector 6 36 10))))1)

40+

y axis
)
S
]
I

|
1
2 4

X axis

If invert?is #t, the x and y coordinates are inverted, and the bars are drawn horizontally
rather than vertically. This is intended for use with the corresponding option of discrete-

histogram and stacked-histogram.

33

Changed in version 1.1 of package plot-gui-1ib: Added the #:invert? option.

(candlesticks candles

[#:x-min x-min

#:x-max Xx-max

#:y-min y-min

#:y-max y-max

#:up-color up-color

#:down-color down-color

#:1line-width line-width

#:1line-style line-style

#:width width

#:alpha alpha]) — renderer2d?

candles : (sequence/c (sequence/c #:min-count 5 real?))

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f

up-color : plot-color/c = (candlestick-up-color)
down-color : plot-color/c = (candlestick-down-color)
line-width : (>=/c 0) = (candlestick-line-width)
line-style : plot-pen-style/c = (candlestick-line-style)
width : (>=/c 0) = (candlestick-width)

alpha : (real-in 0 1) = (candlestick-alpha)

Returns a renderer that draws candlesticks. This is most common when plotting historical
prices for financial instruments. The first element in each vector of candles comprises the
x-axis coordinate; the second, third, fourth, and fifth elements in each vector comprise the
open, high, low, and close, respectively, of the y-axis coordinates.

> (plot (list (candlesticks (list (vector 2 4 12 4 8)
(vector 4 16 20 8 12)
(vector 6 24 36 10 24)))))

34

304 +

(color-field f

[x-min

X-max

y-min

y-max

#:samples samples

#:alpha alphal) — renderer2d?
f : (or/c (-> real? real? plot-color/c)

(-> (vector/c real? real?) plot-color/c))

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) #£
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
samples : exact-positive-integer? = (color-field-samples)
alpha : (real-in 0 1) = (color-field-alpha)

Returns a renderer that draws rectangles filled with a color based on the center point.

35

> (plot (color-field (A (x y) (if (< (+ (sqr x) (sqr y)) 1) (random 10) 'black))
-2 2 -2 2))

2

y axis
=)

X axis

Added in version 7.9 of package plot-gui-1lib.

3.3 2D Line Renderers

36

(function f
[x-min
x-max
#:y-min y-min

#:y-max y-max
#:samples samples
#:color color
#:width width
#:style style
#:alpha alpha
#:marker marker
#:marker-color marker-color
#:marker-fill-color marker-fill-color
#:marker-size marker-size
#:marker-line-width marker-line-width
#:marker-alpha marker-alpha
#:marker-count marker-count
#:1abel labell]) — renderer2d?
f : (real? . -> . real?)
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

alpha : (real-in O 1) = (line-alpha)

marker : point-sym/c = 'none

marker-color : (or/c 'auto plot-color/c) = 'auto
marker-fill-color : (or/c 'auto plot-color/c) = 'auto
marker-size : (>=/c 0) = (point-size)

marker-line-width : (>=/c 0) = (point-line-width)
marker-alpha : (real-in O 1) = (point-alpha)
marker-count : positive-integer? = 20

label : (or/c string? pict? #f) = #f

Returns a renderer that plots a function of x. For example, a parabola:

> (plot (function sqr -2 2))

37

4 . } . } . } .
3L 4
£,1 1
-
14 _+
.] .] .] .
: } : - : } :
-2 -1 0 1 2
X axis

When marker is not 'none, markers will be placed on the on the line drawn for the function
at equal intervals. The marker and related arguments are the same as for the points renderer.
The number of markers shown on the plot is specified by marker-count parameter.

Using markers has the same effect as using both a function and a points renderer in a
single plot, exept that using markers will show the marker super-imposed over the line style
in the plot legend.

Changed in version 7.9 of package plot-gui-1ib: #:label argument supports pictures

Changed in version 8.10 of package plot-gui-1ib: #:marker and related arguments added

38

(inverse f
[y-min
y-max
#:x-min x-min

#:x-max x-max
#:samples samples
#:color color
#:width width
#:style style
#:alpha alpha
#:marker marker
#:marker-color marker-color
#:marker-fill-color marker-fill-color
#:marker-size marker-size
#:marker-line-width marker-line-width
#:marker-alpha marker-alpha
#:marker-count marker-count
#:1abel labell]) — renderer2d?
f : (real? . -> . real?)
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
x-min : (or/c rational? #f) = #f

x-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

alpha : (real-in O 1) = (line-alpha)

marker : point-sym/c = 'none

marker-color : (or/c 'auto plot-color/c) = 'auto
marker-fill-color : (or/c 'auto plot-color/c) = 'auto
marker-size : (>=/c 0) = (point-size)

marker-line-width : (>=/c 0) = (point-line-width)
marker-alpha : (real-in O 1) = (point-alpha)
marker-count : positive-integer? = 20

label : (or/c string? pict? #f) = #f

Like function, but regards f as a function of y. For example, a parabola, an inverse
parabola, and the reflection line:

> (plot (list (axes)

(function sqr -2 2 #:label "y = x°")

(function (4 (x) x) #:color O #:style 'dot #:label "y
= x")

(inverse sqr -2 2 #:color 3 #:label "x = y°")))

39

y axis
—_
I
|
I
|
I

X axis

o

The marker and related arguments have the same meaning as for the function renderer.
Changed in version 7.9 of package plot-gui-1ib: #:label argument supports pictures

Changed in version 8.10 of package plot-gui-1ib: #:marker and related arguments added

40

(lines vs
:X-min x-min
!X-max x-max
:y-min y-min
ly-max y-max
:color color
:width width
:style style
:alpha alpha
:marker marker
:marker-color marker-color
:marker-fill-color marker-fill-color
:marker-size marker-size
:marker-line-width marker-line-width
:marker-alpha marker-alpha
:label label
rignore-axis-transforms? ignore-axis-transforms?])
— renderer2d?

vs : (sequence/c (sequence/c #:min-count 2 real?))
x-min : (or/c rational? #f) = #f

x-max : (or/c rational? #f) = #f

y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)
alpha : (real-in 0 1) = (line-alpha)

B T

marker : point-sym/c = 'none

marker-color : (or/c 'auto plot-color/c) = 'auto
marker-fill-color : (or/c 'auto plot-color/c) = 'auto
marker-size : (>=/c 0) = (point-size)

marker-line-width : (>=/c 0) = (point-line-width)
marker-alpha : (real-in O 1) = (point-alpha)
label : (or/c string? pict? #f) = #f
ignore-axis-transforms? : boolean? = #f

Returns a renderer that draws lines connecting the points in the input sequence vs.
This is directly useful for plotting a time series, such as a random walk:

> (plot (lines
(reverse
(for/fold ([lst (list (vector 0 0))1) ([i (in-
range 1 200)]1)
(match-define (vector x y) (first 1lst))
(cons (vector i (+ y (* 1/100 (- (random) 1/2)))) 1lst)))

41

#:color 6 #:label "Random walk"))
| | | |] | | | |] | | |

T |Random walk

04+ —+

02+ —+

y axis

If any of the points in vs is +nan. 0, no line segment will be drawn at that position. This can
be used to draw several independent data sets with one 1ines renderer, improving rendering
performence for large datasets.

When marker is not 'none, markers will be placed on the on the line at each point in vs.
The marker and related arguments are the same as for the points renderer.

Using markers has the same effect as using both a 1ines and a points renderer in a single
plot, exept that using markers will show the marker super-imposed over the line style in the
plot legend.

When ignore-axis-transforms? is #t, only the individual points in vs are affected by
axis transforms, not the lines that connect these points. This feature can be used, for example,
to plot a convergence line on a log-log plot.

NOTE: It is undesirable to ignore axis transforms in plots, but this feature can be used to
replicate functionality of other plotting libraries and it is meant for users familiar with those

42

libraries. In Racket, it is preferable show the convergence line on log-log plots using the
function renderer with the power function based on slope and intercept.

> (let ([data '((5 1.24) (203 510))]
[slope 1.6252]
[intercept -2.4005])
(parameterize ([plot-x-transform log-transform]
[plot-y-transform log-transform])
(plot
(list
(tick-grid)
(lines data
#:ignore-axis-transforms? #f
#:label "ignore-axis-transforms? #f"
#:color 1)
(lines data
#:ignore-axis-transforms? #t
#:1label "ignore-axis-transforms? #t"
#:color 2)
(function (lambda (x) (* (exp intercept)) (expt x slope))
#:style 'long-dash
#:label "convergence line"
#:color 3)))))

43

5000 F —————————— —— T
4000 | ignore-axis-transforms? #f

3000 —:‘ ignore-axis-transforms? #t ———

2000 | convergence line - | _ |
|\ T _d
[I \ i
1000 : “ : :
\ L7 \ \
[- [[[
[4 [[[
B ———-—- 7l niis ths s Bl g >
| 7 |
[s [[
7
I [
I’ |
d \
7
_ [[
R s \
» s | |
< e
o ~ [[
s | [
d I I
7
Va | |
s \ [
4 [[
7
7/ | |
[
[
[
[
[
[
[
[
[
[
[
[
Il

50 100 150 200

X axis

Changed in version 7.9 of package plot-gui-1ib: #:label argument supports pictures
Changed in version 8.9 of package plot-gui-1ib: #:ignore-axis-transforms? argument added

Changed in version 8.10 of package plot-gui-1ib: #:marker and related arguments added

(parametric f

t-min

t-max
:X-min x-min
IX-max x-max
:y-min y-min
ly-max y-max
:samples samples
:color color
:width width
:style style
:alpha alpha
:label label]) — renderer2d?

,_,
H o HF O H O HHFHH

44

f : (real? . -> . (sequence/c real?))
t-min : rational?
t-max : rational?

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

alpha : (real-in 0 1) = (line-alpha)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots vector-valued functions of time. For example, the circle as a
function of time can be plotted using

> (plot (parametric (4 (t) (vector (cos t) (sin t))) 0 (* 2 pi)))

y axis

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:label

(polar f

[0-min

6-max

#:x-min x-min
IX-max x-max
:y-min y-min
ly-max y-max
:samples samples
:color color
:width width
:style style
:alpha alpha

#:1label label]) — renderer2d?

f : (real? . -> . real?)
f-min : real? = 0
f-max : real? = (x 2 pi)

HoH HF HHHHH

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

alpha : (real-in 0 1) = (line-alpha)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots functions from angle to radius. Note that the angle parameters
60-min and f-max default to O and (* 2 pi).

For example, drawing a full circle:

> (plot (polar (1 (6) 1)))

46

y axis

X axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(density xs

[bw-adjust

WS
:x-min x-min
!X-Max X-max
:y-min y-min
!y-max y-max
:samples samples
:color color
:width width
:style style
:alpha alpha

#:1label labell]) — renderer2d?

xs : (sequence/c real?)
bw-adjust : (>/c 0) =1
ws : (or/c (sequence/c (>=/c 0)) #f) = #f

HOH OH H HH H HFH

47

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

alpha : (real-in 0 1) = (line-alpha)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots an estimated density for the given points, which are optionally
weighted by ws. The bandwidth for the kernel is calculated as (* bw-adjust 1.06 sd
(expt n -0.2)), where sd is the standard deviation of the data and n is the number of
points. Currently, the only supported kernel is the Gaussian.

For example, to plot an estimated density of the triangle distribution:

> (plot (list (function (4 (x) (cond [(or (x . < . -1) (x . >
1)) o]
[(x . <. 0) (+ 1 x)]
[(x . > .0 (1x1))
-1.5 1.5 #:label "Density")
(density (build-list
2000 (4 (m) (- (+ (random) (random)) 1)))
#:color O #:width 2 #:style 'dot
#:label "Est. density")))

48

Est. density eeeee-

Density
8
61
E 1
<
>
A
2+
0 4
-1.5

]
I
0 S 1 15

axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(arrows vs
:X-min

R e

:X-max
:y-min
ly-max
:color
:width
:style
:alpha
rarrow-head-size-or-scale size
:arrow-head-angle angle

:label labell)

x-min
x-max
y-min
y-max
color
width
style
alpha

— renderer2d?

vs : (or/c (listof (sequence/c #:min-count 2 real?))
(vectorof (vector/c (sequence/c #:min-count 2 real?)

(sequence/c #:min-count 2 real?))))

x-min : (or/c rational? #f) = #f

49

X-max
y-min :
y-max :
color :
width :
style :
alpha :
size :

angle :
label :

(or/c rational? #f) = #f

(or/c rational? #f) = #f

(or/c rational? #f) = #f
plot-color/c = (arrows-color)

(>=/c 0) = (arrows-line-width)
plot-pen-style/c = (arrows-line-style)
(real-in 0 1) = (arrows-alpha)
(or/c (1ist/c '= (>=/c 0)) (>=/c 0))
(arrow-head-size-or-scale)

(>=/c 0) = (arrow-head-angle)

(or/c string? pict? #f) = #f

Returns a renderer which draws arrows. Arrows can be specified either as sequences of 2D
points, in this case they will be drawn as connected arrows between each two adjacent points,
or they can be specified as an origin point and a rectangular magnitude vector, in which case
each arrow is drawn individually. See example below.

In vs list and vector are interchangeable. Arrow-heads are only drawn when the endpoint is
inside the drawing area.

> (plot (list

(arrows

(0 0) (21) (33) (00)
#:arrow-head-size-or-scale '(= 20)
#:arrow-head-angle 0.2

#:color 6 #:label "a+b+c=0")
(arrows

T(((20) (0 1)) ((30) (-1 1))
#:arrow-head-size-or-scale 0.2
#:color 2 #:1label "d")))

50

3 : } : } : } : } : }
atb+c=0 —>
11d —

y axis
—_
(9]
|
I

Added in version 7.9 of package plot-gui-1lib.

(hrule y

[x-min

X-max

#:color color
:width width
:style style
:alpha alpha

#:1abel label]) — renderer2d?

y . real?
x-min : (or/c rational? #f) #£
x-max : (or/c rational? #f) = #f
color : plot-color/c = (line-color)
width : (>=/c 0) = (line-width)
style : plot-pen-style/c = (line-style)
alpha : (real-in 0 1) = (line-alpha)
label : (or/c string? pict? #f) = #f

H OB H

51

Draws a horizontal line at y. By default, the line spans the entire plot area width.

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(vrule x

[y-min

y-max

#:color color
:width width
:style style
:alpha alpha

#:1label label]) — renderer2d?

X @ real?
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
color : plot-color/c = (line-color)
width : (>=/c 0) = (line-width)
style : plot-pen-style/c = (line-style)
alpha : (real-in 0 1) = (line-alpha)
label : (or/c string? pict? #f) = #f

H O H H

Draws a vertical line at x. By default, the line spans the entire plot area height.

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:label

3.4 2D Interval Renderers

These renderers each correspond with a line renderer, and graph the area between two lines.

(function-interval f1

f2

[x-min

xX-max

#:y-min y-min
ly-max y-max
:samples samples
:color color
:style style
:linel-color linel-color
:linel-width linel-width
:linel-style linel-style
:line2-color line2-color
:line2-width line2-width
:line2-style line2-style
:alpha alpha
:label labell]) — renderer2d?

HOoH H HHHHEHFHHHH

52

f1 : (real? . -> . real?)
f2 : (real? . -> . real?)

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (interval-color)

style : plot-brush-style/c = (interval-style)
linel-color : plot-color/c = (interval-linel-color)
linel-width : (>=/c 0) = (interval-linel-width)
linel-style : plot-pen-style/c = (interval-linel-style)
line2-color : plot-color/c = (interval-line2-color)
line2-width : (>=/c 0) = (interval-line2-width)
line2-style : plot-pen-style/c = (interval-line2-style)
alpha : (real-in 0 1) = (interval-alpha)

label : (or/c string? pict? #f) =

Corresponds with function.

> (plot (function-interval (4 (x) 0) (1 (x) (exp (* -1/2 (sqr x))))
-4 4 #:linel-style 'transparent))

53

y axis

X axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

54

f1 : (real? .
£2 : (real? .
y-min : (or/c
y-max : (or/c
x-min : (or/c
x-max : (or/c
samples :
color

style :

linel-color
linel-width :
linel-style
line2-color
line2-width :
line2-style :
alpha : (real-
label :

: plot-color/c =

: plot-color/c =

(inverse-interval f1

f2

[y-min

y-max

#:x-min x-min
:X-max x-max

:color color
:style style
:linel-color
:linel-width
:linel-style
:line2-color
:line2-width
:line2-style
:alpha alpha

H O H OHH HEHHEHHH B H

-> . real?)
-> . real?)
rational? #f)
rational? #f)
rational? #f)
rational? #f)

(>=/c 0) =

(>=/c 0) =

in 0 1) =

Corresponds with inverse.

:samples samples

linel-color
linel-width
linel-style
line2-color
line2-width
line2-style

:label label])

#f

#f

#f

= #f

(and/c exact-integer? (>=/c 2))
(interval-color)
plot-brush-style/c = (interval-style)

— renderer2d?

= (line-samples)

: plot-color/c = (interval-linel-color)
= (interval-linel-width)
: plot-pen-style/c

= (interval-linel-style)

(interval-line2-color)
= (interval-line2-width)
: plot-pen-style/c

= (interval-line2-style)

(interval-alpha)
(or/c string? pict? #f) =

> (plot (inverse-interval sin (1 (x) 0) (- pi) pi
#:1ine2-style 'long-dash))

55

y axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

B T T T T

!X-max
(y-min
ry-max
:color
:style
:linel-color
:linel-width
:linel-style
:line2-color
:line2-width
:1line2-style
:alpha alpha
:label labell)

(lines-interval vlis
v2s
:x-min

X-min
X-max
y-min
y-max
color
style

X axis

linel-color
linel-width
linel-style
line2-color
line2-width
line2-style

56

— renderer2d?

vls : (sequence/c (sequence/c #:min-count 2 real?))

v2s : (sequence/c (sequence/c #:min-count 2 real?))
x-min : (or/c rational? #f) = #f

x-max : (or/c rational? #f) = #f

y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

color : plot-color/c = (interval-color)

style : plot-brush-style/c = (interval-style)
linel-color : plot-color/c = (interval-linel-color)
linel-width : (>=/c 0) = (interval-linel-width)
linel-style : plot-pen-style/c = (interval-linel-style)
line2-color : plot-color/c = (interval-line2-color)
line2-width : (>=/c 0) = (interval-line2-width)
line2-style : plot-pen-style/c = (interval-line2-style)
alpha : (real-in O 1) = (interval-alpha)

label : (or/c string? pict? #f) =

Corresponds with lines.

> (plot (list
(tick-grid)
(lines-interval (list #(0 0) #(1 1/2)) (list #(0 1) #(1 3/2))
#:color 4 #:1linel-color 4 #:1line2-color 4
#:1abel "Parallelogram")))

57

1.5

1.25

i

Parallelogram

51

y axis

251

|
|
|
}
t
|
|
|

/‘/

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

58

(parametric-interval f1
f2
t-min
t-max
:x-min x-min
!X-max
(y-min
ly-max

X-max
y-min
y-max

:color color
:style style
:linel-color
:linel-width
:linel-style
:line2-color
:line2-width
:line2-style
:alpha alpha

ST T T T T T T TS T S T Ty

f1
f2
t-min

(real? . -> .
(real? . -> .

: rational?

: rational?
x-min : (or/c rational?
x-max : (or/c rational?
y-min : (or/c rational?
y-max : (or/c rational?
samples :
color
style :
linel-color
linel-width :
linel-style : plot-pen-style/c =
line2-color : plot-color/c =
line2-width : (>=/c 0) =
line2-style : plot-pen-style/c =
alpha : (real-in 0 1) =
label : (or/c string? pict? #f) =

t-max
#£
#f
#t
= #f

#1)
#1)
#1)
#1)

: plot-color/c =

(>=/c 0) =

Corresponds with parametric.

2 (cos
2 (sin

> (define (f1 t) (vector (x
(*
> (define (£f2 t) (vector (x*
(*
> (plot (parametric-interval f1 f2

59

(and/c exact-integer? (>=/c 2))
(interval-color)
plot-brush-style/c = (interval-style)
: plot-color/c = (interval-linel-color)
(interval-linel-width)
(interval-linel-style)
(interval-line2-color)

= (interval-line2-width)
(interval-line2-style)
(interval-

:samples samples

linel-color
linel-width
linel-style
line2-color
line2-width
line2-style

:label labell)
(sequence/c real?))
(sequence/c real?))

alpha)

(*x 4/5 t)))
(* 4/5 £)))))

1/2 (cos t))
1/2 (sin t))))

(- pi) pi))

— renderer2d?

= (line-samples)

y axis
=)
|
I

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

60

(polar-interval f£1

2

[0-min

6-max

#:x-min x-min

#:xX-max Xx-max

#:y-min y-min

#:y-max y-max

#:samples samples

#:color color

#:style style

#:1linel-color linel-color

#:1linel-width linel-width

#:1linel-style linel-style

#:1line2-color line2-color

#:1ine2-width line2-width

#:1ine2-style line2-style

#:alpha alpha

#:1abel labell]) — renderer2d?
f1 : (real? . -> . real?)
£2 : (real? . -> . real?)
0-min : rational? = 0O
f-max : rational? = (* 2 pi)
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (interval-color)
style : plot-brush-style/c = (interval-style)
linel-color : plot-color/c = (interval-linel-color)
linel-width : (>=/c 0) = (interval-linel-width)
linel-style : plot-pen-style/c = (interval-linel-style)
line2-color : plot-color/c = (interval-line2-color)
line2-width : (>=/c 0) = (interval-line2-width)
line2-style : plot-pen-style/c = (interval-line2-style)
alpha : (real-in 0 1) = (interval-alpha)
label : (or/c string? pict? #f) = #f

Corresponds with polar.

> (define (f1 0) (+ 1/2 (* 1/6 (cos (* 5 6)))))
> (define (f2 0) (+ 1 (* 1/4 (cos (x 10 6)))))
> (plot (list (polar-axes #:number 10)
(polar-interval f1 f2 #:label "[f1,£f2]")))

61

y axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

3.5 2D Contour (Isoline) Renderers

(isoline f
z

[x-
x-
y-
y-
#:

min
max
min
max

samples samples

#:color
#:width
#:
#
#

style

:alpha
:label

color
width
style
alpha
label]) — renderer2d?

62

f : (real? real? . -> . real?)
z . real?

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (contour-samples)
color : plot-color/c = (line-color)

width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

alpha : (real-in 0 1) = (line-alpha)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots a contour line, or a line of constant value (height). A circle of
radius r, for example, is the line of constant value r for the distance function:

> (plot (isoline (1 (x y) (sqrt (+ (sqr x) (sqr y)))) 1.5
-2 2 -2 2 #:label "z"))
2 = i ‘ i ’

y axis
=
I
|
I

'
)

1
—_
o+
—_
[\

X axis

&

63

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:label
In this case, r =1.5.

This function would have been named contour, except the name was already used by a
deprecated function. It may be renamed in the future, with isoline as an alias.

(contours f
[x-min
x-max

#:samples samples
:levels levels

:colors colors

:widths widths

:styles styles

:alphas alphas

:label labell) — renderer2d?
f : (real? real? . -> . real?)
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (contour-samples)

levels : (or/c 'auto exact-positive-integer? (listof real?))
= (contour-levels)

colors : (plot-colors/c (listof real?)) = (contour-colors)

widths : (pen-widths/c (listof real?)) = (contour-widths)
styles : (plot-pen-styles/c (listof real?)) = (contour-styles)
alphas : (alphas/c (listof real?)) = (contour-alphas)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots contour lines, or lines of constant value (height).

When levels is 'auto, the number of contour lines and their values are chosen the same
way as axis tick positions; i.e. they are chosen to be simple. When Ievels is a number,
contours chooses that number of values, evenly spaced, within the output range of £. When
levels is alist, contours plots contours at the values in levels.

For example, a saddle:

> (plot (contours (1 (x y) (- (sqr x) (sqr y)))
-2 2 -2 2 #:label "z"))

64

2 . } . } . } . —
z.=2 //
z=0 —-—-—- s

1llz=-2 // 1
\. /
N 7
N /
1 AN 7 €
\. /
N 7
\ 7/
N /
N /
1 N P 1
N /
\ /
2 A
>
0+ > +
> / N
4 \
7/ \.
7 N
1 P N 1
4 AN
4 \
7 AN
7 AN
14 y N £
4 N\
7 AN
4 N
7 N\
1 , N 1
e N
4 N\
7 N\
7 N\

-2 } } } } } } }

2 -1 0 1 2
X axis

The appearance keyword arguments assign a color, width, style and opacity fo each contour
line. Each can be given as a list or as a function from a list of output values of £ to a list of
appearance values. In both cases, when there are more contour lines than list elements, the
colors, widths, styles and alphas in the list repeat.

For example,

> (plot (contours (4 (x y) (- (sqr x) (sqr y)))
-2 2 -2 2 #:levels 4
#:colors '("blue" "red")
#:widths '(4 1)
#:styles '(solid dot)))

65

y axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(contour-intervals f

— renderer2d?

f

(real? real?

[x-min

X-max

#:samples samples

:levels levels

:colors colors

:styles styles

:contour-colors contour-colors
:contour-widths contour-widths
:contour-styles contour-styles
:alphas alphas

:label labell])

H OH OH H H H H H

-> . real?)

66

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (contour-samples)
levels : (or/c 'auto exact-positive-integer? (listof real?))
= (contour-levels)
colors : (plot-colors/c (listof ivl1?))
= (contour-interval-colors)
styles : (plot-brush-styles/c (listof ivl?))
= (contour-interval-styles)
contour-colors : (plot-colors/c (listof real?))
= (contour-colors)
contour-widths : (pen-widths/c (listof real?))
= (contour-widths)
contour-styles : (plot-pen-styles/c (listof real?))
= (contour-styles)
alphas : (alphas/c (listof ivl?)) = (contour-interval-alphas)
label : (or/c string? pict? #f) = #f

Returns a renderer that fills the area between contour lines, and additionally draws contour
lines.
For example, the canonical saddle, with its gradient field superimposed:
> (plot (list (contour-intervals (4 (x y) (- (sqr x) (sqr y)))
-2 2 -2 2 #:1abel "z"

(vector-field (1 (x y) (vector (x 2 x) (* -2 y)))
#:color "black" #:label "Gradient")))

67

A el

ze[24]
z €10,2]
z €[-20]
z €[-4,-2]
Gradient

=~

T

A~

L]

P

y axis

/

NACN Y

TR ™SS ™M\

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

3.6 2D Rectangle Renderers

(rectangles rects

[#:
:X-max

+*

H o HF H H O HHEH

X-min

:y-min
ly-max
:color
:style
:line-c
:line-w
:line-s
:alpha
:label

x-min
x-max
y-min
y-max
color
style
olor line-color
idth line-width
tyle line-style
alpha

labell]) — renderer2d?

68

rects :
x-min :
x-max :
y-min :
y-max :
: plot-color/c = (rectangle-color)

color

style :

(sequence/c (sequence/c #:min-count 2 ivl?))
(or/c rational? #f) = #f

(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f

plot-brush-style/c = (rectangle-style)

line-color : plot-color/c = (rectangle-line-color)
line-width : (>=/c 0) = (rectangle-line-width)
line-style : plot-pen-style/c = (rectangle-line-style)

alpha :
label :

(real-in 0 1) = (rectangle-alpha)
(or/c string? pict? #f) = #f

Returns a renderer that draws rectangles.

The rectangles are given as a sequence of sequences of intervals—each inner sequence de-
fines the bounds of a rectangle. Any of the bounds can be -inf .0 or +inf .0, in which case
the rectangle extents to the edge of the plot area in the respective direction.

For example,

> (plot (rectangles (list (vector (ivl -1 0) (ivl -1 1))

(vector (ivl 0 2) (ivl 1 2)))))

69

y axis
(9]
1

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(area-histogram f

bin-bounds
:X-min x-min
!X-max x-max
:y-min y-min
!y-max y-max
:samples samples
:color color
:style style
:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha
:label labell]) — renderer2d?
f : (real? . -> . real?)
bin-bounds : (sequence/c real?)

R E E

70

x-min
X-max
y-min :
y-max :

samples :
color : plot-color/c = (rectangle-color)

(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = 0
(or/c rational? #f) = #f
(and/c exact-integer? (>=/c 2)) = (line-samples)

style : plot-brush-style/c

line-color : plot-color/c

line-width :
line-style : plot-pen-style/c

alpha :
label :

Returns a renderer that draws a histogram approximating the area under a curve.
#:samples argument determines the accuracy of the calculated areas.

> (require (only-in plot/utils linear-seq))
> (define (f x) (exp (* -1/2 (sqr x))))
> (plot (list (area-histogram f (linear-seq -4 4 10))

(rectangle-style)
(rectangle-line-color)
(>=/c 0) = (rectangle-line-width)
(rectangle-line-style)
(real-in 0 1) = (rectangle-alpha)

(or/c string? pict? #f) = #f

(function f -4 4)))

71

The

: I : 1. : I :
} } } N } } }
8+ —
6+ —
.g |
>
4+ —
2+ —
0 T T T T T T T
-4 -2 0 2
X axis

(discrete-histogram cat-vals

[#:x-min x-min
!X-max Xx-max
:y-min y-min
ly-max y-max
-gap gap
:skip skip
rinvert? invert?
:color color
:style style
:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha
:label label
radd-ticks? add-ticks?
:far-ticks? far-ticks?]) — renderer2d?

H o HF HHFHHHHHHHHEHHE

72

cat-vals : (sequence/c (or/c (vector/c any/c (or/c real? ivl? #f))
(list/c any/c (or/c real? ivl? #£))))

x-min : (or/c rational? #f) = 0
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = 0

y-max : (or/c rational? #f) = #f

gap : (real-in 0 1) = (discrete-histogram-gap)
skip : (>=/c 0) = (discrete-histogram-skip)
invert? : boolean? = (discrete-histogram-invert?)
color : plot-color/c = (rectangle-color)

style : plot-brush-style/c = (rectangle-style)
line-color : plot-color/c = (rectangle-line-color)
line-width : (>=/c 0) = (rectangle-line-width)
line-style : plot-pen-style/c = (rectangle-line-style)
alpha : (real-in 0 1) = (rectangle-alpha)

label : (or/c string? pict? #f) = #f

add-ticks? : boolean? = #t

far-ticks? : boolean? = #f

Returns a renderer that draws a discrete histogram.
Example:

> (plot (discrete-histogram (list #(A 1) #(B 2) #(B 3)
(vector 'C (ivl 0.5 1.5)))))

73

y axis
—_
(9]
|
I

X axis

o

Use #:invert? #t to draw horizontal bars. See stacked-histogram for an example.

Each bar takes up exactly one plot unit, and is drawn with (* 1/2 gap) empty space on
each side. Bar number i is drawn at (+ x-min (* i skip)). Thus, the first bar (i = 0)
is drawn in the interval between x-min (default 0) and (+ x-min 1).

To plot two histograms side-by-side, pass the appropriate x-min value to the second ren-
derer. For example,

> (plot (list (discrete-histogram (list #(a 1) #(b 2) #(c 3) #(d 2)
#(e 4) #(f 2.5) #(g 1))
#:1abel "Numbers per letter")
(discrete-histogram (list #(1 1) #(4 2) #(3 1.5))
#:x-min 8
#:1label "Numbers per number"
#:color 2 #:line-color 2)))

74

4
|
Numbers per letter [___]
Numbers per number []

31 €
.g 5L 1
>

1 |

0 T T T T T T T T T T

a b c d e f g 1 4 3
X axis

Here, the first histogram has 7 bars, so the second is drawn starting at x-min = 8.

To interleave histograms, such as when plotting benchmark results, use a skip value larger
than or equal to the number of histograms, and give each histogram a different x-min. For
example,

> (plot (list (discrete-histogram
"(#(Eggs 1.5) #(Bacon 2.5) #(Pancakes 3.5))
#:skip 2.5 #:x-min O
#:label "AMD")
(discrete-histogram
"(#(Eggs 1.4) #(Bacon 2.3) #(Pancakes 3.1))
#:skip 2.5 #:x-min 1
#:1label "Intel" #:color 2 #:line-color 2))
#:x-label "Breakfast Food" #:y-label "Cooking Time (min-
utes)"
#:title "Cooking Times For Breakfast Food, Per Processor")

75

Cooking Times For Breakfast Food, Per Processor

AMD [
Intel []
34 -
3
E
Chl I
Q
£
F
o0
g i
£
o]
3
@)
1-H -
0 % % %
Eggs Bacon Pancakes

Breakfast Food

When interleaving many histograms, consider setting the discrete-histogram-skip pa-
rameter to change skip’s default value.

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:label

76

(stacked-histogram cat-vals
:X-min x-min
IX-max Xx-max
:y-min y-min
ly-max y-max
-gap gap
:skip skip
:invert? invert?
:colors colors
:styles styles
:line-colors line-colors
:line-widths line-widths
:line-styles line-styles
:alphas alphas
:labels labels
radd-ticks? add-ticks?
:far-ticks? far-ticks?])
— (listof renderer2d?)
cat-vals : (sequence/c (or/c (vector/c any/c (sequence/c real?))
(list/c any/c (sequence/c real?))))

ET T T T T T T T T T T Ty

x-min : (or/c rational? #f) = 0
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = 0
y-max : (or/c rational? #f) = #f

gap : (real-in 0 1) = (discrete-histogram-gap)
skip : (>=/c 0) = (discrete-histogram-skip)
invert? : boolean? = (discrete-histogram-invert?)
colors : (plot-colors/c nat/c) = (stacked-histogram-colors)
styles : (plot-brush-styles/c nat/c)
= (stacked-histogram-styles)

line-colors : (plot-colors/c nat/c)

= (stacked-histogram-line-colors)
line-widths : (pen-widths/c nat/c)

= (stacked-histogram-line-widths)
line-styles : (plot-pen-styles/c nat/c)

= (stacked-histogram-line-styles)
alphas : (alphas/c nat/c) = (stacked-histogram-alphas)
labels : (labels/c nat/c) = '(#f)
add-ticks? : boolean? = #t
far-ticks? : boolean? = #f

Returns a list of renderers that draw parts of a stacked histogram. The heights of each bar
section are given as a list.

Example:

71

> (plot (stacked-histogram (list #(a (1 1 1)) #(b (1.5 3))
#(c O) #(d (1/2)))
#:invert? #t
#:1labels '("Red" #f "Blue"))
#:legend-anchor 'top-right)
|] |] |

] v]
1 ' 1 ' 1 ' 1
Red [
Blue]
d-
e
el
b4
a—.
| | | | {
0 1 2 3 4

X axis

3.7 Violin and Box Plot Renderers

78

(violin vs

X X

:width width

:bandwidth bandwidth

:invert? invert?

:label label

radd-ticks? add-ticks?

:far-ticks? far-ticks?

:y-min y-min

ly-max y-max

:samples samples

:color color

:style style

:line-color linel-color

:line-width linel-width

:line-style linel-style

:alpha alphal) — renderer2d?
vs : (sequence/c real?)

x @ real? =0

width : (>=/c 0) =1

bandwidth : (or/c real? #f) = #f

invert? : boolean? = #f

label : (or/c string? pict? #f) = #f
add-ticks? : boolean? = #t

far-ticks? : boolean? = #f

y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (interval-color)

style : plot-brush-style/c = (interval-style)
linel-color : plot-color/c = (interval-linel-color)
linel-width : (>=/c 0) = (interval-linel-width)
linel-style : plot-pen-style/c = (interval-linel-style)
alpha : (real-in 0 1) = (interval-alpha)

B N N

Draws a violin/ plot from the list of real values vs. The plot is centered at x and the width
parameter is used as a scaling factor to control the width of the violin.

The default kernel density bandwidth is determined by silverman-bandwidth.

When invert?is #£, the violin plot is drawn vertically, when it is #t, the X and y coordinates
are inverted, and the violin is drawn horizontally.

label defines the plot label, it is the value shown in the plot legend as well as on the X axis

under the violin plot (or Y axis if the plot is inverted). The label is shown on the X axis on
only if add-ticks?is #t, and, if far-ticks? is #t the label is placed on the far axis.

79

https://en.wikipedia.org/wiki/Violin_plot

y-min and y-max define the vertical range to draw the violin, by default, the entire violin is
drawn.

samples defines the number of samples used by the function renderer while drawing the
violin outline.

See[§3.1 *“2D Renderer Function Arguments’|for the meaning of the other arguments.

> (parameterize ([plot-pen-color-map 'tab20]
[plot-brush-color-map 'tab20]
[plot-x-label #f]
[plot-y-label #f])
(define (rnorm sample-count mean stddev)
(sample (normal-dist mean stddev) sample-count))
(define a (rnorm 50 10 5))
(define b (append (rnorm 50 13 1) (rnorm 50 18 1)))
(define c (rnorm 20 25 4))
(define d (rnorm 10 12 2))
(plot
(for/list ([data (list a b ¢ d)]
[label (list "a" "b" "c" "d")]
[index (in-naturals)])
(violin data
#:1label label
rinvert? #t
:x index
:width 5/4
:color (+ (* index 2) 1)
#:1line-color (* index 2)))
#:legend-anchor 'no-legend))

H oH

80

OO,
\//\\//

Added in version 8.5 of package plot-gui-1lib.

81

(box-and-whisker vs

:weights ws

X X

:width width

:igr-scale iqr-scale

rinvert? invert?

:label label

radd-ticks? add-ticks?
:far-ticks? far-ticks?
:box-color box-color
:box-style box-style
:box-line-color box-line-color
:box-line-width box-line-width
:box-line-style box-line-style
:box-alpha box-alpha
:show-outliers? show-outliers?
:outlier-color outlier-color
:outlier-sym outlier-sym
:outlier-fill-color outlier-fill-color
:outlier-size outlier-size
:outlier-line-width outlier-line-width
:outlier-alpha outlier-alpha
:show-whiskers? show-whiskers?

e e E E E E E E E E T T E TR T TR

:whisker-color
:whisker-width
:whisker-style
:whisker-alpha
:show-median?
:median-color
:median-width
:median-style
:median-alpha

whisker-color
whisker-width
whisker-style
whisker-alpha
show-median?
median-color
median-width
median-style
median-alphal)

— renderer2d?

Vs
WS
X . real?
width :

0

(>=/c 0) =

igr-scale : (>=/c

invert? : boolean?
(or/c string?
add-ticks? : boolean?
far-ticks? : boolean?
box-color : plot-color/c

label :

(sequence/c real?)
(sequence/c real?) = #f

=1.5

£

pict? #f)
#t

#f

1
0)

(rec

= #f

tangle-color)

box-style : plot-brush-style/c = (rectangle-style)
box-line-color : plot-color/c = (rectangle-line-color)
box-line-width : (>=/c 0) = (rectangle-line-width)

82

box-line-style : plot-pen-style/c = (rectangle-line-style)
box-alpha : (real-in O 1) = (rectangle-alpha)
show-outliers? : boolean? = #t

outlier-color : plot-color/c = (point-color)
outlier-sym : point-sym/c = (point-sym)
outlier-fill-color : (or/c plot-color/c 'auto) = 'auto
outlier-size : (>=/c 0) = (point-size)

outlier-line-width : (>=/c 0) (point-line-width)
outlier-alpha : (real-in 0 1) = (point-alpha)
show-whiskers? : boolean? = #t

whisker-color : plot-color/c = (line-color)
whisker-width : (>=/c 0) = (line-width)
whisker-style : plot-pen-style/c = (line-style)
whisker-alpha : (real-in 0 1) = (line-alpha)
show-median? : boolean? = #t

median-color : plot-color/c = (line-color)
median-width : (>=/c 0) = (line-width)
median-style : plot-pen-style/c = (line-style)
median-alpha : (real-in O 1) = (line-alpha)

Draws abox and whisker plot from the list of real values vs, possibly weighted by the values
in ws. The plot is centered at x and the width parameter is used as a scaling factor to control
the width of the box.

The igr-scale controls the scaling factor for the inter-quantile range, which decides how
far the whiskers extent and which points are considered outliers.

When invert?is #f, the box plot is drawn vertically, when it is #t, the x and y coordinates
are inverted, and the box plot is drawn horizontally.

label defines the plot label, it is the value shown in the plot legend as well as on the X axis
under the box plot (or Y axis if the plot is inverted). The label is shown on the X axis on
only if add-ticks?is #t, and, if far-ticks?is #t the label is placed on the far axis.

See|§3.1 *“2D Renderer Function Arguments’| for the meaning of the other arguments.

> (parameterize ([plot-pen-color-map 'tab20]
[plot-brush-color-map 'tab20]
[plot-x-label #f]
[plot-y-label #f])
(define (rnorm sample-count mean stddev)
(sample (normal-dist mean stddev) sample-count))
(define a (rnorm 50 10 5))
(define b (append (rnorm 50 13 1) (rnorm 50 18 1)))
(define ¢ (rmorm 20 25 4))
(define d (rnorm 10 12 2))

83

https://en.wikipedia.org/wiki/Box_plot

(plot

(for/list ([data (list a b c d)]
[label (1:I.St Ilall llbll llcll lldll)]
[index (in-naturals)])
(box-and-whisker data

#

H oH O H HH

:label label

rinvert? #f

:X index

:width 3/4

:box-color (+ (* index 2) 1)
:box-line-color (* index 2)
:whisker-color (* index 2)
#:

median-color "red"))

#:legend-anchor 'no-legend))

30—+

20—+

(0]

10+

Added in version 8.5 of package plot-gui-1ib.

84

3.8 2D Plot Decoration Renderers

(x-axis [y

#:ticks? ticks?

#:1labels? labels?

#:far? far?

#:alpha alpha]) — renderer2d?
y : real? =0
ticks? : boolean? = (x-axis-ticks?)
labels? : boolean? = (x-axis-labels?)
far? : boolean? = (x-axis-far?)
alpha : (real-in 0 1) = (x-axis-alpha)

Returns a renderer that draws an x axis.
(y-axis [x
#:ticks? ticks?
#:1labels? labels?
#:far? far?
#:alpha alphal) — renderer2d?
x : real? =0
ticks? : boolean? = (y-axis-ticks?)
labels? : boolean? = (y-axis-labels?)
far? : boolean? = (y-axis-far?)
alpha : (real-in 0 1) = (y-axis-alpha)

Returns a renderer that draws a y axis.

(axes [x

:x-ticks? x-ticks?
:y-ticks? y-ticks?
:x-labels? x-labels?
:y-labels? y-labels?
:x-alpha x-alpha

#:y-alpha y-alpha]) — (listof renderer2d?)
x ' real? =0
y : real? =0
x-ticks? : boolean? = (x-axis-ticks?)
y-ticks? : boolean? = (y-axis-ticks?)
x-labels? : boolean? = (x-axis-labels?)
y-labels? : boolean? = (y-axis-labels?)
x-alpha : (real-in O 1) = (x-axis-alpha)
y-alpha : (real-in O 1) = (y-axis-alpha)

HOH OO OHS

Returns a list containing an x-axis renderer and a y-axis renderer. See inverse for an
example.

85

(polar-axes [#:number num
#:ticks? ticks?
#:1labels? labels?
#:alpha alphal) — renderer2d?
num : exact-nonnegative-integer? = (polar-axes-number)
ticks? : boolean? = (polar-axes-ticks?)
labels? : boolean? = (polar-axes-labels?)
alpha : (real-in 0 1) = (polar-axes-alpha)

Returns a renderer that draws polar axes. See polar-interval for an example.

(x-tick-lines) — renderer2d?

Returns a renderer that draws vertical lines from the lower x-axis ticks to the upper.

(y-tick-lines) — renderer2d?

Returns a renderer that draws horizontal lines from the left y-axis ticks to the right.

(tick-grid) — (listof renderer2d?)

Returns a list containing an x-tick-lines renderer and a y-tick-lines renderer. See
lines-interval for an example.

(point-label v

[Iabel

#:color color
:size size
:face face
:family family
:anchor anchor
:angle angle
:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym

#:alpha alpha]) — renderer2d?

v : (sequence/c real?)
label : (or/c string? #f) = #f
color : plot-color/c = (plot-foreground)
size : (>=/c 0) = (plot-font-size)
face : (or/c string? #f) = (plot-font-face)
family : font-family/c = (plot-font-family)

HoH OH HHHHHEHH

86

anchor : anchor/c = (label-anchor)

angle : real? = (label-angle)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a labeled point. If 1abel is #f, the point is labeled with its
position.

> (plot (list (function sqr 0 2)
(point-label (vector 1 1))))

4 —tttt——
3L £
£,0 1
>
1+ .D +
0 =t
0 5 1 1.5 2
X axis

The remaining labeled-point functions are defined in terms of this one.

87

(point-pict v

pict
[#:anchor anchor
#:point-color point-color
#:point-fill-color point-fill-color
#:point-size point-size
#:point-line-width point-line-width
#:point-sym point-sym
#:alpha alpha]) — renderer2d?

v : (sequence/c real?)

pict : pict?

anchor : anchor/c = (label-anchor)
point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto

point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a point with a pict as the label.
> (require pict)

> (plot (list (function sqr 0 2)
(point-pict (vector 1 1) (standard-fish 40 15))))

88

y axis
[\S)
|
I

The remaining labeled-pict functions are defined in terms of this one.

(function-label f

X

[1abel

#:color color
:size size
:face face
:family family
:anchor anchor
:angle angle
:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
ralpha alphal)

HoH HF HHFHHHEHHEH

— renderer2d?

&9

f : (real? . -> . real?)

X : real?

label : (or/c string? #f) = #f

color : plot-color/c = (plot-foreground)

size : (>=/c 0) = (plot-font-size)

face : (or/c string? #f) = (plot-font-face)
family : font-family/c = (plot-font-family)
anchor : anchor/c = (label-anchor)

angle : real? = (label-angle)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a labeled point on a function’s graph.
> (plot (list (function sin (- pi) pi)

(function-label sin (x 1/6 pi) "(1/6 =n, 1/2)"
#:anchor 'right)))

90

(1/6 7, 1/2)

y axis

Xis

X

&

(function-pict f
X
pict
[#:anchor anchor
#:point-color point-color
#:point-fill-color point-fill-color
#:point-size point-size
#:point-line-width point-line-width
#:point-sym point-sym
#:alpha alphal)
— renderer2d?
f : (real? . -> . real?)
X @ real?
pict : pict?
anchor : anchor/c = (label-anchor)
point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)

91

point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle
alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a point with a pict as the label on a function’s graph.

(inverse-label f

y

[label

#:color color
:size size
:face face
:family family
:anchor anchor
:angle angle
:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
:alpha alphal)

H O HF HHHHHFH H R

— renderer2d?

f : (real? . -> . real?)

y : real?

label : (or/c string? #f) = #f

color : plot-color/c = (plot-foreground)

size : (>=/c 0) = (plot-font-size)

face : (or/c string? #f) = (plot-font-face)
family : font-family/c = (plot-font-family)
anchor : anchor/c = (label-anchor)

angle : real? = (label-angle)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a labeled point on a function’s inverted graph.

92

(inverse-pict f
y
pict
[#:anchor anchor
#:point-color point-color

#:point-fill-color point-fill-color
#:point-size point-size
#:point-line-width point-line-width
#:point-sym point-sym
#:alpha alphal)

— renderer2d?

f : (real? . -> . real?)

y @ real?

pict : pict?

anchor : anchor/c = (label-anchor)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a point with a pict as the label on a function’s inverted graph.

(parametric-label f

t

[1abel

#:color color
:size size
:face face
:family family
:anchor anchor
:angle angle
:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
:alpha alphal)

HoH OHF HH HHHEHHER

— renderer2d?

f : (real? . -> . (sequence/c real?))

t @ real?

label : (or/c string? #f) = #f

color : plot-color/c = (plot-foreground)
size : (>=/c 0) = (plot-font-size)

face : (or/c string? #f) = (plot-font-face)

93

family : font-family/c = (plot-font-family)

anchor : anchor/c = (label-anchor)

angle : real? = (label-angle)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a labeled point on a parametric function’s graph.

(parametric-pict f

t

pict

[#:anchor anchor

#:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
:alpha alpha])

H oH O H H

— renderer2d?

f : (real? . -> . (sequence/c real?))

t : real?

pict : pict?

anchor : anchor/c = (label-anchor)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a point with a pict as the label on a parametric function’s
graph.

94

(polar-label f

0

[Iabel

#:color color
:size size
:face face
:family family
:anchor anchor
:angle angle
:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
:alpha alphal) — renderer2d?
f : (real? . -> . real?)
0 : real?
label : (or/c string? #f) = #f
color : plot-color/c = (plot-foreground)
size : (>=/c 0) = (plot-font-size)
face : (or/c string? #f) = (plot-font-face)
family : font-family/c = (plot-font-family)
anchor : anchor/c = (label-anchor)
angle : real? = (label-angle)
point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle
alpha : (real-in 0 1) = (label-alpha)

HOoH H OHH HHHEHHEHR

Returns a renderer that draws a labeled point on a polar function’s graph.

(polar-pict f

0

pict

[#:anchor anchor

#:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
:alpha alphal) — renderer2d?
f : (real? . -> . real?)
0 : real?
pict : pict?

H O H O H

95

anchor : anchor/c = (label-anchor)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a point with a pict as the label on a polar function’s graph.

3.9 Interactive Overlays for 2D plots

(require plot/snip) package: plot-gui-1ib

A plot snip% object returned by plot-snip can be set up to provide interactive overlays.
This feature can be used, for example, to show the current value of the plot function at the
mouse cursor.

If the code below is evaluated in DrRacket, the resulting plot will show a vertical line track-
ing the mouse and the current plot position is shown on a label. This is achieved by adding
a mouse callback to the plot snip returned by plot-snip. When the mouse callback is in-
voked, it will add a vrule at the current X position and a point-1label at the current value
of the plotted function.

(require plot)
(define snip (plot-snip (function sin) #:x-min -5 #:x-max 5))
(define (mouse-callback snip event x y)
(if (and x y)
(send snip set-overlay-renderers
(list (vrule x)
(point-label (vector x (sin x)))))

(send snip set-overlay-renderers #f)))
(send snip set-mouse-event-callback mouse-callback)
snip

Here are a few hints for adding common interactive elements to racket plots:

e The hrule and vrule renderers can be used to draw horizontal and vertical lines that
track the mouse position

* The rectangles renderer can be used to highlight a region on the plot. For example,
to highlight a vertical region between xmin and xmax, you can use:

(rectangles (1list (vector (ivl xmin xmax) (ivl -inf.0 +inf.0)))
#:alpha 0.2)

96

https://pkgs.racket-lang.org/package/plot-gui-lib

* A point-label renderer can be used to add a point with a string label to the plot. To
add only the label, use 'none as the value for the #: point-sym argument.

* A point-pict renderer can be used to add a point with an attached pict instead of a
string label. This can be used to draw fancy labels (for example with rounded corners),
or any other type of graphics element.

* A points renderer can be used to mark specific locations on the plot, without speci-
fying a label for them

2d-plot-snip% : class?
superclass: snip’

An instance of this class is returned by plot-snip.

(send a-2d-plot-snip set-mouse-event-

callback callback) — any/c
callback : (or/c plot-mouse-event-callback/c #f)

Set a callback function to be invoked with mouse events from the snip. The
callback is invoked with the actual snip object, the mouse-event and the X,
Y position of the mouse in plot coordinates (i.e., the coordinate system used by
the renderers in the plot). The X and Y values are #f when the mouse is outside
the plot area (for example, when the mouse is over the axis area).

When a callback is installed, the default zoom functionality of the plot snips is
disabled. This can be restored by calling set-mouse-event-callback with a
#f argument.

(send a-2d-plot-snip set-overlay-renderers renderers) — any/c
renderers : (or/c (treeof renderer2d?) #f)

Set a collection of renderers to be drawn on top of the existing plot. This can
be any combination of 2D renderers, but it will not be able to modify the axes
or the dimensions of the plot area. Only one set of overlay renderers can be
installed; calling this method a second time will replace the previous overlays.
Specifying #f as the renderers will cause overlays to be disabled.

plot-mouse-event-callback/c : contract?
= (-> (is-a?/c snip%)

(is-a?/c mouse-event?)

(or/c real? #f)

(or/c real? #f)

any/c)

A contract for callback functions passed to set-mouse-event-callback.

97

4 3D Renderers

(require plot) package: plot-gui-1ib

4.1 3D Renderer Function Arguments

As with functions that return 2D renderers, functions that return 3D renderers always have
these kinds of arguments:

* Required (and possibly optional) arguments representing the graph to plot.

* Optional keyword arguments for overriding calculated bounds, with the default value
#1.

» Optional keyword arguments that determine the appearance of the plot.

» The optional keyword argument #: 1abel, which specifies the name of the renderer in
the legend.

See[§3.1 *“2D Renderer Function Arguments”|for a detailed example.

4.2 3D Point Renderers

(points3d vs

:X-min x-min

!X-max X-max

:y-min y-min

ly-max y-max

:z-min z-min

1Z-max Zz-max

1sym sym

:color color

:fill-color fill-color

:x-jitter x-jitter

iy-jitter y-jitter

:z-jitter z-jitter

:size size

:line-width line-width

:alpha alpha

:label labell) — renderer3d?
vs : (sequence/c (sequence/c #:min-count 3 real?))
x-min : (or/c rational? #f) = #f

e E E E E E R E T

98

https://pkgs.racket-lang.org/package/plot-gui-lib

x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f

z-max : (or/c rational? #f) = #f

sym : point-sym/c = (point-sym)

color : plot-color/c = (point-color)
fill-color : (or/c plot-color/c 'auto) = 'auto
x-jitter : (>=/c 0) = (point-x-jitter)
y-jitter : (>=/c 0) = (point-y-jitter)
z-jitter : (>=/c 0) = (point-z-jitter)
size : (>=/c 0) = (point-size)

line-width : (>=/c 0) = (point-line-width)
alpha : (real-in 0 1) = (point-alpha)
label : (or/c string? pict? #f) = #f

Returns a renderer that draws points in 3D space.

For

V V. V V V V

vV V V V

example, a scatter plot of points sampled uniformly from the surface of a sphere:

(define (runif) (- (x 2 (random)) 1))

(define (rnormish) (+ (runif) (runif) (runif) (runif)))

(define xsO (build-list 1000 (4 _ (rnormish))))

(define ysO (build-list 1000 (4 _ (rnormish))))

(define zsO (build-list 1000 (A _ (rnormish))))

(define mags (map (4 (x y z) (sqrt (+ (sqr x) (sqr y) (sqr z))))

xs0 ysO zs0))

(define xs (map / xsO mags))

(define ys (map / ysO mags))

(define zs (map / zsO mags))

(plot3d (points3d (map vector xs ys zs) #:sym 'dot)
#:altitude 25)

99

When x-jitter, y-jitter, or z-jitter is non-zero, each point p is translated along the
matching axis by a random distance no greater than the given value. Jitter may be applied
in either the positive or negative direction, so total spread along e.g. the x-axis is twice
x-jitter.

Note that adding random noise to data, via jittering or otherwise, is usually a bad idea. See
the documentation for points for examples where jittering may be appropriate.

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

100

(vector-field3d f
[x-min
x-max
y-min
y-max
Z-min
zZ-max
#:samples samples

#:scale scale

#:color color

#:1line-width line-width

#:1line-style line-style

#:alpha alpha

#:1label label]) — renderer3d?

f : (or/c (real? real? real? . -> . (sequence/c real?))
((vector/c real? real? real?) . -> . (sequence/c real?)))

x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
samples : exact-positive-integer? = (vector-field3d-samples)
scale : (or/c real? (one-of/c 'auto 'normalized))
= (vector-field-scale)
color : plot-color/c = (vector-field-color)
line-width : (>=/c 0) = (vector-field-line-width)
line-style : plot-pen-style/c = (vector-field-line-style)
alpha : (real-in 0 1) = (vector-field-alpha)
label : (or/c string? pict? #f) = #f

Returns a renderer that draws a vector field in 3D space. The arguments are interpreted
identically to the corresponding arguments to vector-field.
Example:

> (plot3d (vector-field3d (1 (x y z) (vector x z y))
-2 2 -22 -22))

101

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label and controlling the
arrowhead

4.3 3D Line Renderers

(lines3d vs
[#:x-min x-min
(X-max X-max

*+

:y-min y-min
(y-max y-max
:z-min z-min
{zZ-max z-max
:color color
:width width
:style style
:alpha alpha
:label label]) — renderer3d?

HOH OH H HH H HEFH

102

vs : (sequence/c (sequence/c #:min-count 3 real?))

xX-min
xX-max
y-min :
y-max :
z-min
z-max
color
width :
style
alpha :
label :

(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f

: plot-color/c = (line-color)

(>=/c 0) = (line-width)

: plot-pen-style/c = (line-style)

(real-in 0 1) = (line-alpha)
(or/c string? pict? #f) = #f

Returns a renderer that draws connected lines. The parametric3d function is defined in
terms of this one.

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(parametric3d f

t-min

:X-min x-min
(X-max Xx-max
:y-min y-min
iy-max y-max
:z-min z-min

:samples samples
:color color
:width width
:style style
:alpha alpha

[#
#
#
#
#
#:z-max z-max
#
#
#
#
#
#:1abel labell]) — renderer3d?

f : (real? . -> . (sequence/c real?))
t-min : rational?

t-max : rational?

x-min : (or/c rational? #f) = #f

x-max : (or/c rational? #f) = #f

y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

z-min : (or/c rational? #f) = #f

z-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (line-samples)
color : plot-color/c = (line-color)
width : (>=/c 0) = (line-width)

style : plot-pen-style/c = (line-style)

103

~
©
<
Q1
1
d ~
o &
g
=
— P
~ 0
o
e
~
— 80
S
(@
~
g P
- w0
|
— O
d N
(O]
4 O
NN

alpha
label

Returns a renderer that plots a vector-valued function of time. For example,

> (require (only-in plot/utils 3d-polar->3d-cartesian))

> (plot3d (parametric3d (1 (t) (3d-polar->3d-

cartesian (* t 80) t 1))

alpha 0.5)

(- pi) pi #:samples 3000 #

#:altitude 25)

AN
\\\VM.NA\\\V/MQ
X

Aty b
k&s&x %@

aﬁﬁw\m@,/
sy
AR
‘“\:%%5 AQAYQAVQ‘
!
\M.
1

il

il
!

) |
A

Changed in version 7.9 of package plot-gui-1ib: Added support for pictures for #:label

104

(arrows3d vs
:X-min x-min
IX-max x-max
:y-min y-min
ly-max y-max
:z-min z-min
1zZ-max z-max
:color color
:width width
:style style
:alpha alpha
:arrow-head-size-or-scale size
:arrow-head-angle angle
:label labell) — renderer3d?
vs : (or/c (listof (sequence/c #:min-count 3 real?))
(vectorof (vector/c (sequence/c #:min-count 3 real?)
(sequence/c #:min-count 3 real?))))
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
color : plot-color/c = (arrows-color)
width : (>=/c 0) = (arrows-line-width)
style : plot-pen-style/c = (arrows-line-style)
alpha : (real-in 0 1) = (arrows-alpha)
size : (or/c (list/c '= (>=/c 0)) (>=/c 0))
= (arrow-head-size-or-scale)
angle : (>=/c 0) = (arrow-head-angle)
label : (or/c string? pict? #f) = #f

TR T T T TR T T TN T T T

Returns a renderer that draws arrows. The arguments and arrow-head parameters are inter-
preted identically as in arrows.

> (plot3d (arrows3d “((0 0 0) (1 1 1) (2 22) (32 1))
#:altitude 25)

105

1.5+

Added in version 7.9 of package plot-gui-1lib.

4.4 3D Surface Renderers

106

(surface3d f
[x-min
X-max
y-min
y-max
#:z-min z-min
1zZ-max z-max
:samples samples
:color color
:style style
:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha
:label labell) — renderer3d?
f : (real? real? . -> . real?)
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)
color : plot-color/c = (surface-color)
style : plot-brush-style/c = (surface-style)
line-color : plot-color/c = (surface-line-color)
line-width : (>=/c 0) = (surface-line-width)
line-style : plot-pen-style/c = (surface-line-style)
alpha : (real-in 0 1) = (surface-alpha)
label : (or/c string? pict? #f) = #f

HoH HF HHFHHHH

Returns a renderer that plots a two-input, one-output function. For example,

> (plot3d (list (surface3d (41 (x y) (+ (sqr x) (sqr y))) -1 1 -1 1
#:1label "z = x? + yz”)
(surface3dd (1 (x y) (- (+ (sqr x) (sqr y)))) -1 1 -1 1
#:color 4 #:line-color 4
#:1abel "z = -x*> - y2")))

107

OCTE LAY
DL L LT
OO
O\ T T OO
S ““‘““‘“

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(polar3d f

:X-min x-min

!X-max X-max

:y-min y-min

Iy-max y-max

:z-min z-min

1z-max z-max

:samples samples
:color color

:style style
:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha

:label label]) — renderer3d?
f : (real? real? . -> . real?)

ST T T T T T T TR T T T Ty

108

TN

e RS
S XS ST
SSSSSSSESS “:“‘:‘:“:‘“\‘\\\\m““““‘
D
S

x-min : (or/c rational? #f) = #f

x-max : (or/c rational? #f) = #f

y-min : (or/c rational? #f) = #f

y-max : (or/c rational? #f) = #f

z-min : (or/c rational? #f) = #f

z-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)
color : plot-color/c = (surface-color)

style : plot-brush-style/c = (surface-style)
line-color : plot-color/c = (surface-line-color)
line-width : (>=/c 0) = (surface-line-width)
line-style : plot-pen-style/c = (surface-line-style)
alpha : (real-in 0 1) = (surface-alpha)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots a function from longitude and latitude to radius. (f 6 ¢) —r

Currently, longitudes(6) range from O to (* 2 pi), and latitudes(¢) from (x -1/2 pi) to
(* 1/2 pi). These intervals may become optional arguments to polar3d in the future.

A sphere is the graph of a polar function of constant radius:

> (plot3d (polar3d (A (6 ¢) 1)) #:altitude 25)

109

1 -1
S5+ I
1 —+.5
0+
1 -0
-S54 I
. fi-i
1
1 = .5 0 o 5
14 S T
5)
Nz
o, 5
-5 0)
-5 % ax®

Combining polar function renderers allows faking latitudes or longitudes in larger ranges, to
get, for example, a seashell plot:

> (parameterize ([plot-decorations? #f]
[plot3d-samples 751)
(define (f1 0 ¢) (+ 1 (/ 6 2 pi) (x 1/8 (sin (x 8 ¢)))))
(define (f2 6 ¢) (+ 0 (/ 6 2 pi) (* 1/8 (sin (* 8 ¢)))))

(plot3d (list (polar3d f1 #:color "navajowhite"
#:line-style 'transparent #:alpha 2/3)
(polar3d f2 #:color "navajowhite"
#:1line-style 'transparent #:alpha 2/3))))

110

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

111

(parametric-surface3d f
s-min
s-max
t-min
t-max
:Xx-min x-min
!X-max X-max
:y-min y-min
1y-max y-max
:z-min z-min
1Z-max z-max
:samples samples
:s-samples s-samples
:t-samples t-samples
:color color
:style style
:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha
:label label]) — renderer3d?
f : (real? real? . -> . (sequence/c real?))
s-min : rational?
s-max : rational?
t-min : rational?
t-max : rational?
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)
s-samples : (and/c exact-integer? (>=/c 2)) = samples
t-samples : (and/c exact-integer? (>=/c 2)) = samples
color : plot-color/c = (surface-color)
style : plot-brush-style/c = (surface-style)
line-color : plot-color/c = (surface-line-color)
line-width : (>=/c 0) = (surface-line-width)
line-style : plot-pen-style/c = (surface-line-style)
alpha : (real-in 0 1) = (surface-alpha)
label : (or/c string? pict? #f) = #f

T E E E E E E R R

Returns a renderer that plots a two-input, one-output function. (f s t) — '(x y z)

For example,

112

> (plot3d (list
(parametric-surface3d
1 0 ¢)
(1ist (x (+ 5 (sin ¢)) (sin 6))
(x (+ 5 (sin ¢)) (cos 8))
(+ 0 (cos ¢))))
0 (x 2 pi) #:s-samples 50
0 (x 2 pi)
#:1abel "torusl")
(parametric-surface3d
@ @ ¢
(1ist (+ 4 (x (+ 3 (sin ¢)) (sin 6)))
(+ 0 (cos ¢))
(* (+ 3 (sin ¢)) (cos 0))))
0 (* 2 pi) #:s-samples 30
0 (x 2 pi)
#:color 4
#:label "torus2"))
#:z-min -6 #:z-max 6
#:altitude 22)

113

torusl []
torus2 []

4

-2

x axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(polygons3d vs
[#:x-min
!X-max
:y-min
jy-max
:z-min
1z-max
:color
:style

H O H O H O HHHHH

:alpha

#:1label label])

x-min
x-max
y-min
y-max
Z-min
Z-max
color
style

alpha

:line-color line-color
:line-width line-width
:line-style line-style

— renderer3d?

vs : (sequence/c (sequence/c (sequence/c real?)))
x-min : (or/c rational? #f) = #f

114

-4

L6

x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f

z-max : (or/c rational? #f) = #f

color : plot-color/c = (surface-color)

style : plot-brush-style/c = (surface-style)
line-color : plot-color/c = (surface-line-color)
line-width : (>=/c 0) = (surface-line-width)
line-style : plot-pen-style/c = (surface-line-style)
alpha : (real-in 0 1) = (surface-alpha)

label : (or/c string? pict? #f) = #f

Returns a renderer that draws polygons. The parametric-surface3d function is defined
in terms of this one.

> (plot3d
(polygons3d (list (list (list 1 0 0)(list 0 O 1)(list 0 1 0)(list 1 1 1))
(list (1ist 0 0 0)(1ist 0 0 1)(list 0 1 0))
(1ist (list 1 0 0)(list 0 1 0)(1list 0 0 0))))
#:angle 355
#:altitude 30)

115

X axis

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

4.5 3D Contour (Isoline) Renderers

116

(isoline3d f
z
[x-min
X-max
y-min
y-max
#:z-min z-min
1Z-max z-max
:samples samples
:color color
:width width
:style style
:alpha alpha
:label labell]) — renderer3d?
f : (real? real? . -> . real?)
z : real?
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)
color : plot-color/c = (line-color)
width : (>=/c 0) = (line-width)
style : plot-pen-style/c = (line-style)
alpha : (real-in O 1) = (line-alpha)
label : (or/c string? pict? #f) = #f

H oH HF HH R

Returns a renderer that plots a single contour line on the surface of a function.

The appearance keyword arguments are interpreted identically to the appearance keyword
arguments to isoline.

This function is not terribly useful by itself, but can be when combined with others:
> (define (saddle x y) (- (sqr x) (sqr y)))
> (plot3d (list (surface3d saddle -1 1 -1 1)

(isoline3d saddle 1/4 #:width 2 #:style 'long-
dash)))

117

\“\Q:\:\:\:ﬁ{““\\\““‘t‘“
RN AR W\
\\‘\\‘\‘\‘\\\\\\\““‘““

Y
Ninpppneetst
Ay e
A s

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

(contours3d f
[x-min
X-max

#:z-min z-min
#:z-max z-max
#:samples samples

#:levels levels

#:colors colors

#:widths widths

#:styles styles

#:alphas alphas

:label labell]) — renderer3d?
f : (real? real? . -> . real?)

x-min : (or/c rational? #f) = #f

H

118

x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f

z-max : (or/c rational? #f) = #f

samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)

levels : (or/c 'auto exact-positive-integer? (listof real?))
= (contour-levels)

colors : (plot-colors/c (listof real?)) = (contour-colors)

widths : (pen-widths/c (listof real?)) = (contour-widths)

styles : (plot-pen-styles/c (listof real?)) = (contour-styles)

alphas : (alphas/c (listof real?)) = (contour-alphas)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots contour lines on the surface of a function.

The appearance keyword arguments are interpreted identically to the appearance keyword
arguments to contours. In particular, when Ievels is 'auto, contour values correspond
precisely to z axis ticks.

For example,

> (plot3d (contours3d (4 (x y) (+ (sqr x) (sqr y))) -1.1 1.1 -1.1 1.1
#:label "z = x? + yz”))

119

z=x>+y2=2
z=x>+y2=15
z=x2+y?=1
z=x2+y?=.5

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

120

(contour-

intervals3d f
[x-min
x-max
y-min
y-max
#:z-min z-min

#:z-max z-max
#:samples samples
#:levels levels
#:colors colors
#:styles styles
#:1line-colors line-colors
#:1line-widths line-widths
#:1line-styles line-styles
#:contour-colors contour-colors
#:contour-widths contour-widths
#:contour-styles contour-styles
#:alphas alphas
#:1abel labell])
— renderer3d?
f : (real? real? . -> . real?)
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)
levels : (or/c 'auto exact-positive-integer? (listof real?))
= (contour-levels)
colors : (plot-colors/c (listof ivl1?))
= (contour-interval-colors)
styles : (plot-brush-styles/c (listof ivl?))
= (contour-interval-styles)
line-colors : (plot-colors/c (listof ivl?))

= (contour-interval-line-colors)

line-widths : (pen-widths/c (listof ivl?))

= (contour-interval-line-widths)

line-styles : (plot-pen-styles/c (listof ivl?))

= (contour-interval-line-styles)

contour-colors : (plot-colors/c (listof real?))

= (contour-colors)

contour-widths : (pen-widths/c (listof real?))

= (contour-widths)

contour-styles : (plot-pen-styles/c (listof real?))

= (contour-styles)

121

alphas : (alphas/c (listof ivl?)) (contour-interval-alphas)

label : (or/c string? pict? #f) = #f

Returns a renderer that plots contour intervals and contour lines on the surface of a function.
The appearance keyword arguments are interpreted identically to the appearance keyword
arguments to contour-intervals.

For example,

> (plot3d (contour-intervals3d (1 (x y) (+ (sqr x) (sqr y)))
-1.1 1.1 -1.1 1.1
#:1abel "z = x> + y2"))

z=x2+y2€[2,242] [
z=x>+y?2€[15,.2] —
z=x2+y2e[l,15] [C__J
z=x2+y2e[5,1] .
z=x2+y2€[0,5] |
A
1.5+
1+
54 il
i 1 2
0- —+15
1 -5 07
—+1
5 N
=0
J:? 0 1
% 5
-5 0

5 T

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

4.6 3D Isosurface Renderers

122

(isosurface3d f

d

[x-min

x-max

y-min

y-max

z-min

z-max

#:samples samples

#:color color

#:style style

#:1line-color line-color

#:1line-width line-width

#:line-style line-style

#:alpha alpha

#:label labell) — renderer3d?
f : (real? real? real? . -> . real?)

d : rational?

x-min :
x-max
y-min :
y-max :
z-min
zZ-max

samples :

(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f
(or/c rational? #f) = #f
(and/c exact-integer? (>=/c 2)) = (plot3d-samples)

color : plot-color/c = (surface-color)

style : plot-brush-style/c = (surface-style)
line-color : plot-color/c = (surface-line-color)
line-width : (>=/c 0) = (surface-line-width)
line-style : plot-pen-style/c = (surface-line-style)

alpha :
label :

Returns a renderer that plots the surface of constant output value of the function f. The

(real-in 0 1) = (surface-alpha)
(or/c string? pict? #f) = #f

argument d is the constant value.

For example, a sphere is all the points in which the Euclidean distance function returns the

sphere’s radius:

> (plot3d (isosurface3d

(A1 (xy z) (sqrt (+ (sqr x) (sqr y) (sqr z)))) 1
-11-11-11
#:altitude 25)

123

S+
0+
5
! =il
T -5
1T 0
-1
-5
5
N3
o, 5
-5 0

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

124

(isosurfaces3d f

[x-min

x-max

y-min

y-max

Z-min

z-max

#:d-min d-min
:d-max d-max
:samples samples
:levels levels
:colors colors
:styles styles
:line-colors line-colors
:line-widths line-widths
:line-styles line-styles
:alphas alphas

#:1abel label]) — renderer3d?

f : (real? real? real? . -> . real?)
x-min : (or/c rational? #f) = #f
x-max : (or/c rational? #f) = #f
y-min : (or/c rational? #f) = #f
y-max : (or/c rational? #f) = #f
z-min : (or/c rational? #f) = #f
z-max : (or/c rational? #f) = #f
d-min : (or/c rational? #f) = #f
d-max : (or/c rational? #f) = #f
samples : (and/c exact-integer? (>=/c 2)) = (plot3d-samples)

HOoH H H HHE H HEH

levels : (or/c 'auto exact-positive-integer? (listof real?))
= (isosurface-levels)
colors : (plot-colors/c (listof real?)) = (isosurface-colors)

styles : (plot-brush-styles/c (listof real?))
= (isosurface-styles)

line-colors : (plot-colors/c (listof real?))

= (isosurface-line-colors)
line-widths : (pen-widths/c (listof real?))

= (isosurface-line-widths)
line-styles : (plot-pen-styles/c (listof real?))

= (isosurface-line-styles)
alphas : (alphas/c (listof real?)) = (isosurface-alphas)
label : (or/c string? pict? #f) = #f

Returns a renderer that plots multiple isosurfaces. The appearance keyword arguments are
interpreted similarly to those of contours.

Use this to visualize functions from three inputs to one output; for example:

125

> (define (saddle x y z) (- (sqr x) (* 1/2 (+ (sqr y) (sqr z)))))
> (plot3d (isosurfaces3d saddle #:d-min -1 #:d-max 1 #:label "")
#:x-min -2 #:x-max 2
#:y-min -2 #:y-max 2
#:z-min -2 #:z-max 2)

X

¥
R

QR
O \Q\\‘Q\‘ “’v

DX

O
S

%
W
X

If it helps, think of the output of f as a density or charge.

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

4.7 3D Rectangle Renderers

126

(rectangles3d rects

rects :
xX-min
X-max
y-min :
y-max :
z-min
Z-max
color
style :

line-color : plot-color/c

—

H OH H H H HHHHEHHEFHH

(or/c
(or/c
(or/c
(or/c
(or/c
(or/c

> plot-

rational?
rational?
rational?
rational?
rational?
rational?
color/c =

:X-min x-min
1X-max x-max
:y-min y-min
(y-max y-max
:z-min z-min
1z-max z-max
:color color
:style style
:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha

:label labell])
(sequence/c (sequenc

#£)
#1)
#£)
#£)
#£)
#1)

plot-brush-style/c

line-width :

alpha :
label :

e/

(

— renderer3d?
¢ #:min-count 3 ivl1?))
#f
#£
#£
#f
#f
#f

(rectangle-color)

rectangle-style)

(rectangle-line-color)
(>=/c 0) = (rectangle3d-line-width)
line-style : plot-pen-style/c

= (rectangle-line-style)

(real-in 0 1) = (rectangle-alpha)
(or/c string? pict? #f) = #f

Returns a renderer that draws rectangles.

This can be used to draw histograms; for example,

V V V V V V V

(require (only-in plot/utils bounds->intervals linear-seq))

(define
(define
(define
(define
(define
(plot3d

(norm2
x-ivls
y-ivls
x-mids
y-mids

x y) (exp (*x -1/2 (+ (sqr (- x 5)) (sqr y)))))
(bounds->intervals (linear-seq 2 8 16)))
(bounds->intervals (linear-seq -5 5 16)))
(linear-seq 2 8 15 #:start? #f #:end? #f))
(linear-seq -5 5 15 #:start? #f #:end? #f))

(rectangles3d (appendx
(for/list ([y-ivl (din-list y-ivls)]

[y (in-list y-mids)])

(for/list ([x-ivl (in-list x-ivls)]

[x (in-1list x-mids)])

(define z (norm2 x y))
(vector x-ivl y-ivl (ivl 0 z)))))

127

#:alpha 3/4
#:label "Appx. 2D Normal"))

Appx.2D Normal []

<
S
N ¢
o
COosB

5
e g Lef
S e’ o0

S g e

SRS S
Seetgsigeige

v o

\

\

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

128

(discrete-histogram3d cat-vals

:X-min x-min

!X-max X-max

:y-min y-min

!y-max y-max

:z-min z-min

:z-max z-max

-gap gap

:color color

:style style

:line-color line-color
:line-width line-width
:line-style line-style
:alpha alpha

:label label

radd-x-ticks? add-x-ticks?
radd-y-ticks? add-y-ticks?
:x-far-ticks? x-far-ticks?
:y-far-ticks? y-far-ticks?])

N e T E E E E E R

— renderer3d?

cat-vals : (s

x-min : (or/c
x-max : (or/c
y-min : (or/c
y-max : (or/c
z-min : (or/c
: (or/c
gap : (real-i
color : plot-
style : plot-
line-color :
line-width :
line-style :
alpha : (real
label : (or/c

Z-max

add-x-ticks?

add-y-ticks?
x-far-ticks?
y-far-ticks?

equence/c (or/c (vector/c any/c any/c (or/c real? ivl? #f))
(list/c any/c any/c (or/c real? ivl? #f))))
rational? #f) = 0
rational? #f) = #f
rational? #f) 0
rational? #f) = #f
rational? #f) = 0
rational? #f) = #f
n 0 1) = (discrete-histogram-gap)
color/c = (rectangle-color)
brush-style/c = (rectangle-style)
plot-color/c = (rectangle-line-color)
(>=/c 0) = (rectangle3d-line-width)
plot-pen-style/c = (rectangle-line-style)
-in 0 1) = (rectangle-alpha)
string? pict? #f) = #f
boolean? = #t

: boolean? = #t
: boolean? = #f
: boolean? = #f

Returns a renderer that draws discrete histograms on a two-valued domain.

Missing pairs are not drawn; for example,

> (plot3d (dis

crete-histogram3d '(#(a a 1) #(a b 2) #(b b 3))

129

#:label "Missing (b,a)"
#:color 4 #:line-color 4))

Missing (b,a) [|

Changed in version 7.9 of package plot-gui-1lib: Added support for pictures for #:label

130

(stacked-histogram3d cat-vals

B T e e E E S

— (listof renderer3d?)
: (sequence/c (or/c (vector/c any/c any/c (sequence/c real?))

rational?
rational?
rational?
rational?
rational?
rational?

TX-
1X-
ty-
1y-
1zZ-
1zZ-
-gap gap

:colors colors

:styles styles
:line-colors line-colors

min
max
min
max
min
max

#f)
#1)
#1)
#£)
#1)
#1)

X-min
X-max
y-min
y-max
z-min
z-max

:line-widths line-widths
:line-styles line-styles
:alphas alphas

:labels labels
radd-x-ticks? add-x-ticks?
radd-y-ticks? add-y-ticks?
:x-far-ticks? x-far-ticks?
:y-far-ticks? y-far-ticks?])

(1ist/c any/c any/c (sequence/c real?))))
0
= #f
0
= #f
=0
= #f

eal-in 0 1) = (discrete-histogram-gap)

(plot-colors/c nat/c) = (stacked-histogram-colors)

cat-vals
x-min : (or/c
x-max : (or/c
y-min : (or/c
y-max : (or/c
z-min : (or/c
z-max : (or/c
gap : (r
colors :
styles :

(plot-brush-styles/c nat/c)
= (stacked-histogram-styles)

line-colors :

line-widths :

line-styles :

alphas :
labels :

add-x-ticks?

add-y-ticks?
x-far-ticks?
y-far-ticks?

(plot-colors/c nat/c)
(stacked-histogram-line-colors)
(pen-widths/c nat/c)
(stacked-histogram-line-widths)
(plot-pen-styles/c nat/c)
(stacked-histogram-line-styles)
(alphas/c nat/c) =
(labels/c nat/c) =

boolean?
boolean?
boolean?
boolean?

= #t
= #t
= #f
= #f

(stacked-histogram-alphas)
' (#f)

131

Returns a renderer that draws a stacked histogram. Think of it as a version of discrete-
histogram that allows multiple values to be specified for each pair of categories.

Examples:

> (define data '(#(a a (1 1 1)) #(a b (1.5 3)) #(b O) #(b a (1/2))))
> (plot3d (stacked-histogram3d data #:labels '("Red" #f "Blue")
#:alphas '(2/3 1 2/3)))

Red [
Blue]

132

(point-label3d v

[1label

#:color color
:size size
:face face
:family family
:anchor anchor
:angle angle
:point-color point-color
:point-fill-color point-fill-color
:point-size point-size
:point-line-width point-line-width
:point-sym point-sym
:alpha alphal)

H oH HF HHFHHHHHEH

— renderer3d?

v : (sequence/c real?)

label : (or/c string? #f) = #f

color : plot-color/c = (plot-foreground)

size : (>=/c 0) = (plot-font-size)

face : (or/c string? #f) = (plot-font-face)
family : font-family/c = (plot-font-family)
anchor : anchor/c = (label-anchor)

angle : real? = (label-angle)

point-color : plot-color/c = (point-color)
point-fill-color : (or/c plot-color/c 'auto) = 'auto
point-size : (>=/c 0) = (label-point-size)
point-line-width : (>=/c 0) = (point-line-width)
point-sym : point-sym/c = 'fullcircle

alpha : (real-in 0 1) = (label-alpha)

Returns a renderer that draws a labeled point. If 1abel is #f, the point is labeled with its
position. Analogous to point-label.

133

5 Nonrenderers

(require plot) package: plot-gui-1ib
The following functions create nonrenderers, or plot elements that draw nothing in the plot.

(x-ticks ts [#:far? far?]) — nonrenderer?
ts : (listof tick?)
far? : boolean? = #f

(y-ticks ts [#:far? far?]) — nonrenderer?
ts : (listof tick?)
far? . boolean? = #f

(z-ticks ts [#:far? far?]) — nonrenderer?
ts : (listof tick?)
far? . boolean? = #f

The x-ticks, y-ticks and z-ticks return a nonrenderer that adds custom ticks to a 2D
or 3D plot.

Although ticks-add allows placing arbitrary major and minor ticks on an axis, it does not
allow them to be formatted differently from the other ticks on the same axis. Use one of
these functions to get maximum control.

Example:

> (parameterize ([plot-x-ticks mno-ticks])
(plot (1ist (function sin (- pi) pi)

(x-ticks (1list (tick (- pi) #t "-z"
(tick (% -3/4 pi) #f "")
(tick (x -1/2 pi) #t "-m/2")
(tick (% -1/4 pi) #f "")
(tick 0 #t "0")
(tick (* 1/4 pi) #f "")
(tick (x 1/2 pi) #t "m/2")
(tick (* 3/4 pi) #f ")
(tick pi #t "z")))

(axes))))

134

https://pkgs.racket-lang.org/package/plot-gui-lib

y axis
=

When considering using one of these functions, remember that minor tick labels are never
drawn, and that including a z-ticks nonrenderer will not add extra contour lines to contour
plots.

(invisible-rect x-min x-max y-min y-max) — nonrenderer?
x-min : (or/c rational? #f)
x-max : (or/c rational? #f)
y-min : (or/c rational? #f)
y-max : (or/c rational? #f)

Returns a nonrenderer that simply takes up space in the plot. Use this to cause the plot area
to include a minimal rectangle.
Example:

> (plot (list (function sin (- pi) pi)

(invisible-rect #f #f -2 2)))

135

y axis

(invisible-rect3d x-min

X-min

X-max :
y-min :
y-max :

z-min

Z-max .

(or/c
(or/c
(or/c
(or/c
(or/c

(or/c

x-max
y-min
y-max
z-min

o4
S}

X axis

o

z—max) — nonrenderer?

rational?
rational?
rational?
rational?
rational?
rational?

#1)
#£)
#1)
#1)
#£)
#1)

Returns a nonrenderer that simply takes up space in the plot. Use this to cause the plot area
to include a minimal rectangle. See invisible-rect for a 2D example.

136

6 Axis Transforms and Ticks

(require plot) package: plot-gui-1ib

6.1 Axis Transforms

The x, y and z axes for any plot can be independently transformed by parameterizing the
plot on different plot-x-transform, plot-y-transform and plot-z-transform val-
ues. For example, to plot the x axis with a log transform:

> (parameterize ([plot-x-transform log-transform])
(plot (function sin 1 100)))

y axis
=)
i
i

20 40 60 80 100

X axis

Most log-transformed plots use different ticks than the default, uniformly spaced ticks,
however. To put log ticks on the x axis, set the plot-x-ticks parameter:

> (parameterize ([plot-x-transform log-transform]

137

https://pkgs.racket-lang.org/package/plot-gui-lib

[plot-x-ticks (log-ticks)1)
(plot (function sin 1 100)))

PR |
i

y axis
=)
!

1 10! 102
X axis
See[§6.2 “Axis Ticks'|for more details on parameterizing a plot’s axis ticks. To sample
nonlinearly, the
Renderers cooperate with the current transforms by sampling nonlinearly. For example, inverse of a

transform is applied

. to linearly sampled
> (parameterize ([plot-x-transform log-transform]) pOi:ltS. SZe P

(plot3d (surface3d + 0.01 1 0.01 1))) make-axis-transform

and
nonlinear-seq.

138

Notice that the surface is sampled uniformly in appearance even though the x-axis ticks are
not spaced uniformly.

Transforms are applied to the primitive shapes that comprise a plot:

> (parameterize ([plot-x-transform log-transform])
(plot3d (surface3d + 0.01 1 0.01 1 #:samples 3)))

139

RN T |
—_ \S)
(9]

L L L B |
—

PRI TR,

Here, the renderer returned by surface3d does not have to bend the polygons it draws;
plot3d does this automatically (by recursive subdivision).

(plot-x-transform) — axis-transform/c

(plot-x-transform transform) — void?
transform : axis-transform/c

= id-transform

(plot-y-transform) — axis-transform/c

(plot-y-transform transform) — void?
transform : axis-transform/c

= id-transform

(plot-z-transform) — axis-transform/c

(plot-z-transform transform) — void?
transform : axis-transform/c

= id-transform

Independent, per-axis, monotone, nonlinear transforms. Plot comes with some typical (and
some atypical) axis transforms, documented immediately below.

140

id-transform : axis-transform/c

The identity axis transform, the default transform for all axes.

log-transform : axis-transform/c

A log transform. Use this to generate plots with log-scale axes. Any such axis must have
positive bounds.

The beginning of the [§6 “Axis Transforms and Ticks”| section has a working example. An
example of exceeding the bounds is

> (parameterize ([plot-x-transform log-transform])

(plot (function (4 (x) x) -1 1)))
log-transform: expects type <positive real> as Ist argument, given: -1; other argu-
ments were: 1

See axis-transform-bound and axis-transform-append for ways to get around an
axis transform’s bounds limitations.

(stretch-transform a b scale) — axis-transform/c
a : real?
b : real?
scale : (>/c 0)

Returns an axis transform that stretches a finite interval.

The following example uses a stretch-transform to draw attention to the interval [-1,1]
in an illustration of the limit of sin(x)/x as x approaches zero (a critical part of proving the
derivative of sin(x)):

> (parameterize ([plot-x-transform (stretch-transform -1 1 20)]
[plot-x-ticks (ticks-add (plot-x-
ticks) '(-1 1))1)
(plot (1list (y-axis -1 #:ticks? #f) (y-axis 1 #:ticks? #f)
(function (1 (x) (/ (sin x) x)) -14 14
#:width 2 #:color 4 #:label "y =

sin(x)/x")

(point-label (vector 0 1) "y — 1 as x — 0"

#:anchor 'bottom-right))
#:y-max 1.2))

141

y = sin(x)/x

y—->lasx—-0

75+ —+

y axis

—_
=)
'
W
1
—
o+
—
wn
—_
=)

X axis

o

(collapse-transform a b) — axis-transform/c
a : real?
b : real?

Returns an axis transform that collapses a finite interval to its midpoint. For example, to
remove part of the long, boring asymptotic approach of atan(x) toward n/2:

> (parameterize ([plot-x-transform (collapse-transform 50 150)])
(plot (function atan 10 200 #:label "y = atan(x)")
#:legend-anchor 'center))

142

1.525—+ £

= T y = atan(x) T

> 1 4
1.5+ -
1475+ -

} } } } } } } }
501150 200
X axis

In this case, there were already ticks at the collapsed interval’s endpoints. If there had not
been, it would have been necessary to use ticks-add to let viewers know precisely the
interval that was collapsed. (See stretch-transform for an example.)

cbrt-transform : axis-transform/c

A “cube-root” transform, mostly used for testing. Unlike the log transform, it is defined
on the entire real line, making it better for testing the appearance of plots with nonlinearly
transformed axes.

(hand-drawn-transform freq) — axis-transform/c
freq : (>/c 0)

An extremely important test case, which makes sure that Plot can use any monotone, in-
vertible function as an axis transform. The freq parameter controls the “shakiness” of the
transform. At high values, it makes plots look like Peanuts cartoons.

Examples:

143

> (parameterize ([plot-x-transform (hand-drawn-transform 200)]
[plot-y-transform (hand-drawn-transform 200)])
(plot (function sqr -1 1)))

1 —ttf

y axis
:
:

T
-1 -5 0 S 1

X axis

> (parameterize ([plot-x-transform (hand-drawn-transform 50)]
[plot-y-transform (hand-drawn-transform 50)]
[plot-z-transform (hand-drawn-transform 50)])

(plot3d (contour-intervals3d (4 (x y) (- (sqr x) (sqr y)))
-1 1 -1 1 #:samples 9)))

144

axis-transform/c : contract?
= (-> real? real? invertible-function? invertible-function?)

The contract for axis transforms.

The easiest ways to construct novel axis transforms are to use the axis transform combinators
axis-transform-append, axis-transform-bound and axis-transform-compose, or
to apply make-axis-transformto an invertible-function.

(axis-transform-append t1 t2 mid) — axis-transform/c
t1 : axis-transform/c
t2 : axis-transform/c
mid : real?

Returns an axis transform that transforms values less than mid like t1, and transforms values
greater than mid like t2. (Whether it transforms mid like t1 or t2 is immaterial, as a
transformed mid is equal to mid either way.)

145

Example:

> (parameterize ([plot-x-transform (axis-transform-append
(stretch-transform -2 -1 10)
(stretch-transform 1 2 10)
01
(plot (function (1 (x) x) -3 3)))
] |

y axis
o
I
l
I

N ——

(axis-transform-bound t a b) — axis-transform/c
t . axis-transform/c
a : real?
b : real?

Returns an axis transform that transforms values like t does in the interval [a,b], but like
the identity transform outside of it. For example, to bound log-transform to an interval in
which it is well-defined,

> (parameterize ([plot-x-transform (axis-transform-bound

146

8

(plot (function (A (x)
| | |

log-transform 0.01 +inf.0)])

x) -4 8 #:label "y = x")))
. [

t

|
t

[
' L

y=x

y axis
[\S]
I
|
]

X axis

(axis-transform-compose t1

t2) — axis-transform/c

tl
t2

. axis-transform/c
. axis-transform/c

Composes two axis transforms. For example, to collapse part of a log-transformed axis,
try something like

> (parameterize ([plot-x-transform

(plot (function (1 (x) x) 1 5)))

147

(axis-transform-compose
log-transform
(collapse-transform 2 4))])

y axis
W
i
|
I

1 214 5

X axis

Argument order matters, but predicting the effects of exchanging arguments can be difficult.
Fortunately, the effects are usually slight.

(make-axis-transform fun) — axis-transform/c
fun : invertible-function?

Given a monotone invertible-function, returns an axis transform. Monotonicity is nec-
essary, but cannot be enforced. The inverse is used to take samples uniformly along trans-
formed axes (see nonlinear-seq).

Example:

> (parameterize ([plot-y-transform (make-axis-transform
(invertible-
function sqrt sqr))])
(plot (function (1 (x) x) 0 5)))

148

y axis

X axis

An axis transform created by make-axis-transform (or by any of the above combinators)
does not transform the endpoints of an axis’s bounds, to within floating-point error. For
example,

> (match-let ([(invertible-function f g)
(apply-axis-transform log-transform 1 3)])
(define xs '(1 2 3))
(define new-xs (map f xs))
(define old-xs (map g new-xs))
(values new-xs old-xs))
'(1.0 2.2618595071429146 3.0)
"(1.0 1.9999999999999998 3.0000000000000004)

Technically, fun does not need to be truly invertible. Given fun = (invertible-
function f g), it is enough for f to be a left inverse of g; that is, always (f (g %))
= x but not necessarily (g (f x)) = x. If £ and g had to be strict inverses of each other,
there could be no collapse-transform.

149

http://en.wikipedia.org/wiki/Inverse_function#Left_and_right_inverses

(apply-axis-transform t x-min x-max) — invertible-function?
t : axis-transform/c
x-min : real?
x-max @ real?

Returns an invertible function that transforms axis points within the given axis bounds. This
convenience function is used internally to transform points before rendering, but is provided
for completeness.

6.2 Acxis Ticks

Each plot axis has two independent sets of ticks: the near ticks and the far ticks.

(plot-x-ticks) — ticks?

(plot-x-ticks ticks) — void?
ticks : ticks?

= (linear-ticks)

(plot-x-far-ticks) — ticks?

(plot-x-far-ticks ticks) — void?
ticks : ticks?

= (ticks-mimic plot-x-ticks)

(plot-y-ticks) — ticks?

(plot-y-ticks ticks) — void?
ticks : ticks?

= (linear-ticks)

(plot-y-far-ticks) — ticks?

(plot-y-far-ticks ticks) — void?
ticks : ticks?

= (ticks-mimic plot-y-ticks)

(plot-z-ticks) — ticks?

(plot-z-ticks ticks) — void?
ticks : ticks?

= (linear-ticks)

(plot-z-far-ticks) — ticks?

(plot-z-far-ticks ticks) — void?
ticks : ticks?

= (ticks-mimic plot-z-ticks)

Example:
> (parameterize ([plot-x-label "Near x axis"]
[plot-y-label "Near y axis"]
[plot-z-label "Near z axis"]

150

[plot-x-ticks (date-ticks)]
[plot-y-ticks (time-ticks)]
[plot-z-ticks (fraction-ticks)]
[plot-x-far-label "Far x axis"]
[plot-y-far-label "Far y axis"]
[plot-z-far-label "Far z axis"]
[plot-x-far-ticks (linear-ticks)]
[plot-y-far-ticks (currency-ticks)]
[plot-z-far-ticks (log-ticks #:base 2)])

(plot3d (lines3d '(#(1 1 1) #(40000000 4 4)) #:style 'transparent)

#:angle 45 #:altitude 50

#:title "Axis Names and Tick Locations"))
Axis Names and Tick Locations

Near z axis Far z axis
4 — —_

1971-01

1970-09

"
1970-05 @i*ﬁ
01.5s =

Ols

Atany #:angle, the far x and y ticks are behind the plot, and the far z ticks are on the right.
Far ticks are drawn, but not labeled, if they are identical to their corresponding near ticks.

They are always identical by default.

Major ticks are longer than minor ticks. Major tick labels are always drawn unless collapsed

151

with a nearby tick. Minor tick labels are never drawn.

Renderers produced by contours and contour-intervals use the value of plot-z-
ticks to place and label contour lines. For example, compare plots of the same function
rendered using both contour-intervals and contour-intervals3d:

> (parameterize ([plot-z-ticks (currency-ticks)])
(define (saddle x y) (- (sqr x) (sqr y)))
(values
(plot (contour-intervals saddle -1 1 -1 1 #:1label "z")
#:legend-anchor 'center)
(plot3d (contour-intervals3d saddle -1 1 -1 1 #:1label "z")
#:legend-anchor 'center)))

1 S S O S S RS S S
N /
1\ /o
N . -/
| /
N ’
i \ /
\ /
| N /s
\ /
_ N / |
3 \. /
i \\ v /
| \ /
N /s
| \ /
| z €[$0.50,$1.00] E—
é o z € [$0,$0.50] —--- i
> z € [($0.50),%0] |
z € [($1.00),(30.50)]~.
1 7
i / \
/ b
i 7/ AN
/ \
_54 s \ B
7 AN
_ / N
/ \
i / N
s N\
i / N\
’ \
1 s N\
/ \
-1 I I I S
-1 -5 0 5 1
X axis

152

$1.00

$0.50
$0 0 -
($0.50) - 2 € [$0,$0.50] |
-1 7€ [(30.50).30] 1 $0.50
($1.00) 2 € [($1.00).(30.50)] T ILXXXS o
s ($0.50)
-
($1.00)
1
)
% 5
-5 0
5 o

(contour-ticks z-ticks
z-min
z-max
levels
intervals?) — (listof tick?)
z-ticks : ticks?
z-min : real?
z-max . real?
levels : (or/c 'auto exact-positive-integer? (listof real?))
intervals? . boolean?

Returns the ticks used for contour values. This is used internally by renderers returned
from contours, contour-intervals, contours3d, contour-intervals3d, and iso-
surfaces3d, but is provided for completeness.

When levels is 'auto, the returned values do not correspond exactly with the values of
ticks returned by z-ticks: they might be missing the endpoint values. For example,

153

> (map pre-tick-value

(filter pre-tick-major? (ticks-generate (plot-z-
ticks) 0 1)))
'(0 1/5 2/5 3/5 4/5 1)
> (map pre-tick-value

(contour-ticks (plot-z-ticks) 0 1 'auto #f))
'(1/5 2/5 3/5 4/5)

(plot-d-ticks) — ticks?

(plot-d-ticks ticks) — void?
ticks : ticks?

= (linear-ticks)

The ticks used for default isosurface values in isosurfaces3d.

(plot-r-ticks) — ticks?

(plot-r-ticks ticks) — void?
ticks : ticks?

= (linear-ticks)

The ticks used for radius lines in polar-axes.

(struct ticks (layout format)
#:extra-constructor-name make-ticks)
layout : ticks-layout/c
format : ticks-format/c

A ticks for a near or far axis consists of a Iayout function, which determines the number
of ticks and where they will be placed, and a format function, which determines the ticks’
labels.

(ticks-generate ticks min max) — (listof tick?)
ticks : ticks?
min : real?
max : real?

Generates the tick values for the range [min, max], with layout and format specified by
ticks.
Example:

> (ticks-generate (plot-x-ticks) 1/3 2/3)
(1list

(tick 7/20 #f ".35")

(tick 2/5 #t ".4")

154

(tick 9/20 #f ".45")
(tick 1/2 #t ".5")
(tick 11/20 #f ".55")
(tick 3/5 #t ".6")
(tick 13/20 #f ".65"))

(ticks-default-number) — exact-positive-integer?
(ticks-default-number number) — void?

number : exact-positive-integer?

=4

Most tick layout functions (and thus their corresponding ticks-constructing functions) have
a #:number keyword argument with default (ticks-default-number). What the number
means depends on the tick layout function. Most use it for an average number of major ticks.

It is unlikely to mean the exact number of major ticks. Without adjusting the number of ticks,
layout functions usually cannot find uniformly spaced ticks that will have simple labels after
formatting. For example, the following plot shows the actual number of major ticks for the
interval [0,x] when the requested number of ticks is 8, as generated by linear-ticks-
layout:

> (plot (function (1 (x)
(count pre-tick-major?
((linear-ticks-
layout #:number 8) 0 x)))
0.1 10)
#:x-label "Interval [0,x]" #:y-label "Number of ticks")

155

11+

]

Number of ticks

Interval [0x]

6.2.1 Linear Ticks

(linear-ticks-layout [#:number number
#:base base
#:divisors divisors]
#:scientific? scientific?)
— ticks-layout/c
number : exact-positive-integer? = (ticks-default-number)
base : (and/c exact-integer? (>=/c 2)) = 10
divisors : (listof exact-positive-integer?) = '(1 2 4 5)
scientific? : #t
(linear-ticks-format #:scientific? scientific?)
— ticks-format/c
scientific? : #t

156

10

(linear-ticks [#:number number
#:base base
#:divisors divisors]) — ticks?
number : exact-positive-integer? = (ticks-default-number)
base : (and/c exact-integer? (>=/c 2)) = 10
divisors : (listof exact-positive-integer?) = '(1 2 4 5)

The layout function, format function, and combined ticks for uniformly spaced ticks.

To lay out ticks, linear-ticks-layout finds the power of base closest to the axis interval
size, chooses a simple first tick, and then chooses a skip length using divisors that maxi-
mizes the number of ticks without exceeding number. The default arguments correspond to
the standard 1-2-5-in-base-10 rule used almost everywhere in plot tick layout.

To format ticks, 1linear-ticks-format uses real->plot-label passing the value of
scientific?, and uses digits-for-range to determine the maximum number of frac-
tional digits in the decimal expansion.

Changed in version 1.1 of package plot-gui-lib: Added the #:scientific? argument to

linear-ticks-format and linear-ticks.

6.2.2 Log Ticks

(log-ticks-layout [#:number number
#:base base]) — ticks-layout/c
number : exact-positive-integer? = (ticks-default-number)
base : (and/c exact-integer? (>=/c 2)) = 10
(log-ticks-format [#:base base]
#:scientific? scientific?) — ticks-format/c
base : (and/c exact-integer? (>=/c 2)) = 10
scientific? : #t
(log-ticks [#:number number
#:base base]
#:scientific? scientific?) — ticks?
number : exact-positive-integer? = (ticks-default-number)
base : (and/c exact-integer? (>=/c 2)) = 10
scientific? : #t

The layout function, format function, and combined ticks for exponentially spaced
major ticks. (The minor ticks between are uniformly spaced.) Use these ticks for
log-transformed axes, because when exponentially spaced tick positions are log-
transformed, they become uniformly spaced.

The #:base keyword argument is the logarithm base. The #:scientific keyword argu-
ment disables scientific formatting, similarly to 1inear-ticks. See plot-z-far-ticks

157

For strategic use of
non-default
arguments, see
bit/byte-ticks,
currency-ticks,
and
fraction-ticks.

for an example of use.

6.2.3 Date Ticks

(date-ticks-layout [#:number number]) — ticks-layout/c

number : exact-positive-integer? = (ticks-default-number)
(date-ticks-format [#:formats formats]) — ticks-format/c
formats : (listof string?) = (date-ticks-formats)

(date-ticks [#:number number
#:formats formats]) — ticks?
number : exact-positive-integer? = (ticks-default-number)
formats : (listof string?) = (date-ticks-formats)

The layout function, format function, and combined ticks for uniformly spaced ticks with
date labels.

These axis ticks regard values as being in seconds since a system-dependent Universal Coor-
dinated Time (UTC) epoch. (For example, the Unix and Mac OS X epoch is January 1, 1970
UTC, and the Windows epoch is January 1, 1601 UTC.) Use date->seconds to convert
local dates to seconds, or datetime->real to convert dates to UTC seconds in a way that
accounts for time zone offsets.

Actually, date-ticks-layout does not always space ticks guite uniformly. For example,
it rounds ticks that are spaced about one month apart or more to the nearest month. Gener-
ally, date-ticks-layout tries to place ticks at minute, hour, day, week, month and year
boundaries, as well as common multiples such as 90 days or 6 months.

To try to avoid displaying overlapping labels, date-ticks-format chooses date formats
from formats for which labels will contain no redundant information.

All the format specifiers given in srfi/19 (which are derived from Unix’s date command),
except those that represent time zones, are allowed in date format strings.

(date-ticks-formats) — (listof string?)

(date-ticks-formats formats) — void?
formats : (listof string?)

= 24h-descending-date-ticks-formats

The default date formats.

158

24h-descending-date-ticks-formats : (listof string?)
='(""Y-"m-"d "H:"M:7f"
""Y-"m-"d “H:"M"

"~Y-"m-"d ~Hh"
""Y-"m-"qd"
"y~

n "‘YII

""m-~d “H:"M:~f"
""m-~d "H:"M"
""m-~d “Hh"
n~me~gn
"TH:"M: £

"TH: M

n ~Hh||

"CM:Tfs"

n "‘Mmll

nfh)

12h-descending-date-ticks-formats : (listof string?)
= '(""Y-"m-"d "I:"M:7f “p"

""Y-"m-"d "I:"M “p"

"~Y-~m-~d ~I ~p"

"~y ~“m-~gn
"y _~mt
neyn

""m-"d "I:"M:7f "p"
""m-"d “I:"M “p"

""m-"d "I “p"
n ~m_~dll
"“I:"M:7f “p"
"“I:"M “p"
ll"'I "’pll

"M Tfs"
II"MmlI

nggh)

6.2.4 Time Ticks

(time-ticks-layout [#:number number]) — ticks-layout/c
number : exact-positive-integer? = (ticks-default-number)
(time-ticks-format [#:formats formats]) — ticks-format/c
formats : (listof string?) = (time-ticks-formats)
(time-ticks [#:number number
#:formats formats]) — ticks?
number : exact-positive-integer? = (ticks-default-number)
formats : (listof string?) = (time-ticks-formats)

159

The layout function, format function, and combined ticks for uniformly spaced ticks with
time labels.

These axis ticks regard values as being in seconds. Use datetime->real to convert sql-
time or plot-time values to seconds.

Generally, time-ticks-layout tries to place ticks at minute, hour and day boundaries, as
well as common multiples such as 12 hours or 30 days.

To try to avoid displaying overlapping labels, time-ticks-format chooses a date format
from formats for which labels will contain no redundant information.

All the time-related format specifiers given in srfi/19 (which are derived from Unix’s
date command) are allowed in time format strings.

(time-ticks-formats) — (listof string?)

(time-ticks-formats formats) — void?
formats : (listof string?)

= 24h-descending-time-ticks-formats

The default time formats.

24h-descending-time-ticks-formats : (listof string?)
= '("7"dd "H:"M:7f"

"“dd “H:™M"

"“dd “Hh"

n~qd"

"TH:"M:7f"

"TH:TM"

n "'thl

""M:"fs"

n ~Mm||

"~fs")
12h-descending-time-ticks-formats : (listof string?)
= '(""dd "I:"M:"f "p"

"“dd “I:"M “p"

"“dd I “p"

n~qd"

""I:"M:7f “p"

"“I:"M “p"

n "'I NPH

"M:Tfs"

"M "

"fs")

160

6.2.5 Currency Ticks

(currency-ticks-format [#:kind kind
#:scales scales
#:formats formats]) — ticks-format/c
kind : (or/c string? symbol?) = 'USD
scales : (listof string?) = (currency-ticks-scales)
formats : (list/c string? string? string?)
= (currency-ticks-formats)
(currency-ticks [#:number number
#:kind kind
#:scales scales
#:formats formats]) — ticks?

number : exact-positive-integer? = (ticks-default-number)
kind : (or/c string? symbol?) = 'USD
scales : (listof string?) = (currency-ticks-scales)

formats : (list/c string? string? string?)
= (currency-ticks-formats)

The format function and combined ticks for uniformly spaced ticks with currency labels;

currency-ticks uses linear-ticks-layout for layout.

The #:kind keyword argument is either a string containing the currency symbol, or a cur-
rency code such as 'USD, 'GBP or 'EUR. The currency-ticks-format function can map

most ISO 4217 currency codes to their corresponding currency symbol.

The #:scales keyword argument is a list of suffixes for each 10° scale, such as "K" (US
thousand, or kilo), "bn" (UK short-scale billion) or "Md" (EU long-scale milliard). Off-scale

amounts are given power-of-ten suffixes such as “x 102! .”

The #:formats keyword argument is a list of three format strings, representing the formats

of positive, negative, and zero amounts, respectively. The format specifiers are:

e "7$": replaced by the currency symbol
e "7y": replaced by the whole part of the amount

e "~f": replaced by the fractional part, with 2 or more decimal digits

s": replaced by the scale suffix

n~~n

: replaced by “~”

(currency-ticks-scales) — (listof string?)

(currency-ticks-scales scales) — void?
scales : (listof string?)

= us-currency-scales

161

(currency-ticks-formats) — (list/c string? string? string?)
(currency-ticks-formats formats) — void?

formats : (list/c string? string? string?)

= us-currency-formats

The default currency scales and formats.
For example, a Plot user in France would probably begin programs with

(require plot)
(currency-ticks-scales eu-currency-scales)
(currency-ticks-formats eu-currency-formats)

and use (currency-ticks #:kind 'EUR) for local currency or (currency-ticks
#:kind 'JPY) for Japanese Yen.

Cultural sensitivity notwithstanding, when writing for a local audience, it is generally con-
sidered proper to use local currency scales and formats for foreign currencies, but use the
foreign currency symbol.

us-currency-scales : (listof string?) = '("" "K" "M" "B" "T")

Short-scale suffix abbreviations as commonly used in the United States, Canada, and some
other English-speaking countries. These stand for “kilo,” “million,” “billion,” and “trillion.”

uk-currency-scales : (listof string?) = '("" "k" "m" "bn" "tr")

Short-scale suffix abbreviations as commonly used in the United Kingdom since switching
to the short scale in 1974, and as currently recommended by the Daily Telegraph and Times
style guides.

eu-currency-scales : (listof string?) = '("" "K" "M" "Md" "B")

9 LTI

European Union long-scale suffix abbreviations, which stand for “kilo,” “million,” “mil-

liard,” and “billion.”

The abbreviations actually used vary with geography, even within countries, but these seem
to be common. Further long-scale suffix abbreviations such as for “billiard” are omitted due
to lack of even weak consensus.

us-currency-formats : (list/c string? string? string?)
— '("~$~w.~f~s" ||(~$~W_~f~s)|l n~$on)

Common currency formats used in the United States.

162

uk-currency-formats : (list/c string? string? string?)
= '(”~$NW.~f~S” ”—~$~W.~f~S” l|~$o||)

Common currency formats used in the United Kingdom. Note that it sensibly uses a negative
sign to denote negative amounts.

eu-currency-formats : (list/c string? string? string?)
= '("NW ~f ~S~$u "_~w.~f ~S~$u "o ~$u)

A guess at common currency formats for the European Union. Like scale suffixes, actual
formats vary with geography, but currency formats can even vary with audience or tone.

6.2.6 Other Ticks

no-ticks-layout : ticks-layout/c
no-ticks-format : ticks-format/c
no-ticks : ticks? = (ticks no-ticks-layout no-ticks-format)

The layout function, format function, and combined ticks for no ticks whatsoever.
Examples:

> (parameterize ([plot-x-ticks no-ticks]
[plot-y-ticks no-ticks]
[plot-x-label #f]
[plot-y-label #f£])
(1ist (plot (function /)
#:x-min 0.01 #:x-max 1/4)))

163

'()
> (parameterize ([plot-x-ticks mno-ticks]
[plot-y-ticks mno-ticks]
[plot-x-label #f]
[plot-y-label #£f])
(plot (polar (4 (6) 1/3))))

164

> (parameterize ([plot-x-ticks no-ticks]
[plot-y-ticks no-ticks]
[plot-x-label #f]
[plot-y-label #f])
(plot (function (4 (x) (abs (* 2 x))))
#:x-min -10 #:x-max 10))

165

> (parameterize ([plot-x-ticks no-ticks]
[plot-y-ticks no-ticks]
[plot-x-label #f]
[plot-y-label #f])
(plot (inverse (4 (y) (x -3 (abs (sin y)))))
#:y-min O #:y-max (* 2 pi)))

166

(bit/byte-ticks-format [#:size size
#:kind kind]) — ticks-format/c
size : (or/c 'byte 'bit) = 'byte
kind : (or/c 'CS 'SI) = 'CS
(bit/byte-ticks [#:number number
#:size size
#:kind kind]) — ticks?
number : exact-positive-integer? = (ticks-default-number)
size : (or/c 'byte 'bit) = 'byte
kind : (or/c 'CS 'SI) = 'CS

The format function and combined ticks for bit or byte values.

The #:kind keyword argument indicates either International System of Units (' ST) suffixes,
as used to communicate hard drive capacities, or Computer Science (' CS) suffixes, as used
to communicate memory capacities.

For layout, bit/byte-ticks uses linear-ticks-layout with

167

e If kind is 'SI, base 10 and divisors ' (1 2 4 5).

e If kind is 'CS, base 2 and divisors ' (1 2).

(fraction-ticks-format [#:base base
#:divisors divisors]) — ticks-format/c

base : (and/c exact-integer? (>=/c 2)) = 10

divisors : (listof exact-positive-integer?) = '(1 2 3 4 5)
(fraction-ticks [#:base base

#:divisors divisors]) — ticks?
base : (and/c exact-integer? (>=/c 2)) = 10
divisors : (listof exact-positive-integer?) = '(1 2 3 4 5)

The format function and combined ticks for fraction-formatted values. For layout,
fraction-ticks uses linear-ticks-layout, passing it the given divisors.

6.2.7 Tick Combinators

(ticks-mimic thunk) — ticks?
thunk : (-> ticks?)

Returns a ticks that mimics the given ticks returned by thunk. Used in default values for
plot-x-far-ticks, plot-y-far-ticks and plot-z-far-ticks to ensure that, unless
one of these parameters is changed, the far tick labels are not drawn.

(ticks-add t xs [major?]) — ticks?
t : ticks?
xs . (listof real?)
major? : boolean? = #t

Returns a new ticks that acts like t, except that it puts additional ticks at positions xs. If
major? is true, the ticks at positions xs are all major ticks; otherwise, they are minor ticks.

(ticks-scale t fun) — ticks?
t : ticks?
fun : invertible-function?

Returns a new ticks that acts like t, but for an axis transformed by fun. Unlike with
typical [§6.1 “Axis Transforms”} fun is allowed to transform axis endpoints. (See make-
axis-transform for an explanation about transforming endpoints.)

Use ticks-scale to plot values at multiple scales simultaneously, with one scale on the
near axis and one scale on the far axis. The following example plots degrees Celsius on the
left and degrees Fahrenheit on the right:

168

> (parameterize

Temperature (°C)

([plot-x-ticks (time-ticks)]
[plot-y-far-ticks (ticks-scale (plot-y-ticks)
(linear-scale 9/5 32))]
[plot-y-label "Temperature (°C)"]
[plot-y-far-label '"Temperature (°F)"])
(define data
(list #(0 0) #(15 0.6) #(30 9.5) #(45 10.0) #(60 16.6)
#(75 41.6) #(90 42.7) #(105 65.5) #(120 78.9)
#(135 78.9) #(150 131.1) #(165 151.1) #(180 176.2)))
(plot (list
(function (1 (x) (/ (sqr x) 180)) 0 180
#:style 'long-dash #:color 3 #:label "Trend")
(lines data #:color 2 #:width 2)
(points data #:color 1 #:line-width 2 #:label "Measured"))
#:y-min -25 #:x-label "Time"))
]]]

T 1 I I }
Trend -
Measured (o]
150 300
100 PR
—-+200 g:
[
2
4 <
5}
o
T 5
H
50—
-+ 100
0~
—-+0
: : : :
00:00s 40s 01:20s 02:00s 40s
Time

169

6.2.8 Tick Data Types and Contracts

(struct pre-tick (value major?)
#:extra-constructor-name make-pre-tick)
value : real?
major? : boolean?

Represents a tick that has not yet been labeled.

(struct tick pre-tick (label)
#:extra-constructor-name make-tick)
label : string?

Represents a tick with a label.

ticks-layout/c : contract? = (-> real? real? (listof pre-tick?))

The contract for tick layout functions in ticks structures. The function receives axis bounds
and returns a list of pre-ticks to be shown on the axis.

Note that the layout function returns pre-ticks, or unlabeled ticks, and a separate format
function is used to produce the labels for the ticks.

ticks-format/c : contract?
= (-> real? real? (listof pre-tick?) (listof string?))

The contract for tick format functions in ticks structures. The format function receives axis
bounds and a list of pre-ticks. It must return a label for each pre-tick in this list.

The returned labels should be usually distinct, as the plot library will consider ticks with
labels that are string="7 to be duplicates and collapse them, however, this feature can be
used by a custom format function to force removal of some ticks from the plot.

Axis bounds can be used to determine how many decimal digits to display, usually by ap-
plying digits-for-range to the bounds.

6.3 Invertible Functions

(struct invertible-function (f g)
#:extra-constructor-name make-invertible-function)
f : (-> real? real?)
g : (-> real? real?)

170

Represents an invertible function. Used for[§6.1 “Axis Transforms”|and by ticks-scale.

The function itself is f, and its inverse is g. Because real?s can be inexact, this invariant
must be approximate and therefore cannot be enforced. (For example, (exp (log 10)) =
10.000000000000002.) The obligation to maintain it rests on whomever constructs one.

id-function : invertible-function?
= (invertible-function (1 (x) x) (1 (x) x))

The identity function as an invertible-function.

(invertible-compose f1 f2) — invertible-function?
f1 : invertible-function?
f2 . invertible-function?

Returns the composition of two invertible functions.

(invertible-inverse h) — invertible-function?
h : invertible-function?

Returns the inverse of an invertible function.

(linear-scale m [b]) — invertible-function?
m : rational?
b : rational? = 0

Returns a one-dimensional linear scaling function, as an invertible-function. This
function constructs the most common arguments to ticks-scale.

171

7 Plot Utilities

(require plot/utils) package: [plot-1ib

7.1 Formatting

(digits-for-range x-min
X-max
[base
extra-digits]) — exact-integer?
x-min : real?
x-max . real?
base : (and/c exact-integer? (>=/c 2)) = 10
extra-digits . exact-integer? = 3

Given a range, returns the number of decimal places necessary to distinguish numbers in the
range. This may return negative numbers for large ranges.

Examples:

> (digits-for-range 0.01 0.02)
5

> (digits-for-range 0 100000)
-2

(real->plot-label x digits [scientific?]) — string?
x @ real?
digits : exact-integer?
scientific? : boolean? = #t

Converts a real number to a plot label. Used to format axis tick labels, point-labels, and
numbers in legend entries.

Examples:

> (let ([d (digits-for-range 0.01 0.03)])
(real->plot-label 0.02555555 d))

".02556"

> (real->plot-label 2352343 -2)
"2352300"

> (real->plot-label 1000000000.0 4)
||1><109||

> (real->plot-label 1000000000.1234 4)
"(1x10%)+.1234"

172

https://pkgs.racket-lang.org/package/plot-lib

(ivl->plot-label i [extra-digits]) — string?
i ivl?
extra-digits : exact-integer? = 3

Converts an interval to a plot label.

If i = (ivl x-min x-max), the number of digits used is (digits-for-range x-
min x-max 10 extra-digits) when both endpoints are rational?. Otherwise, it is
unspecified—but will probably remain 15.

Examples:

> (ivl->plot-label (ivl -10.52312 10.99232))
"[-10.52,10.99]"

> (ivl->plot-label (ivl -inf.0 pi))
"[-inf.0,3.141592653589793]"

(->plot-label a [digits]) — string?
a : any/c
digits : exact-integer? = 7

Converts a Racket value to a label. Used by discrete-histogram and discrete-
histogram3d.

(real->string/trunc x e) — string?
x @ real?
e : exact-integer?

Like real->decimal-string, but removes any trailing zeros and any trailing decimal
point.
(real->decimal-string* x
min-digits
[max-digits]) — string?
X @ real?
min-digits : exact-nonnegative-integer?
max-digits : exact-nonnegative-integer? = min-digits

Like real->decimal-string, but accepts both a maximum and minimum number of dig-
its.

Examples:

> (real->decimal-string* 1 5 10)

173

"1.00000"

> (real->decimal-string* 1.123456 5 10)
"1.123456"

> (real->decimal-string* 1.123456789123456 5 10)
"1.1234567891"

Applying (real->decimal-string* x min-digits) yields the same value as (real-
>decimal-string x min-digits).

(integer->superscript x) — string?
X ! exact-integer?

Converts an integer into a string of superscript Unicode characters.
Example:

> (integer->superscript -1234567890)
n—1234567890n

Systems running some out-of-date versions of Windows XP have difficulty with Unicode
superscripts for 4 and up. Because integer->superscript is used by every number for-
matting function to format exponents, if you have such a system, Plot will apparently not
format all numbers with exponents correctly (until you update it).

7.2 Sampling

(linear-seq start
end
num
[#:start? start?
#:end? end?]) — (listof real?)
start : real?
end : real?
num : exact-nonnegative-integer?
start? : boolean? = #t
end? : boolean? = #t

Returns a list of uniformly spaced real numbers between start and end. If start?is #t,
the list includes start. If end? is #t, the list includes end.

This function is used internally to generate sample points.

Examples:

174

> (linear-seq 0 1 5)

'(0 1/4 1/2 3/4 1)

> (linear-seq O 1 5 #:start? #f)

"(1/9 1/3 5/9 7/9 1)

> (linear-seq O 1 5 #:end? #f)

'(0 2/9 4/9 2/3 8/9)

> (linear-seq O 1 5 #:start? #f #:end? #f)
*(1/10 3/10 1/2 7/10 9/10)

> (define xs (linear-seq -1 1 11))

> (plot (lines (map vector xs (map sqr xs))))

1 —tttf

y axis

(linear-seq* points
num
[#:start? start?
#:end? end?]) — (listof real?)
points : (listof real?)
num : exact-nonnegative-integer?
start? : boolean? = #t
end? : boolean? = #t

175

Like linear-seq, but accepts a list of reals instead of a start and end. The #:start? and
#:end? keyword arguments work as in 1inear-seq. This function does not guarantee that
each inner value will be in the returned list.

Examples:

> (linear-seq* '(0 1 2) 5)
'(0 1/2 1 3/2 2)

> (linear-seqgx* '(0 1 2) 6)
'(0 2/5 4/5 6/5 8/5 2)

> (linear-seqx* '(0 1 0) 5)
'(0 1/2 1 1/2 0)

(nonlinear-seq start
end
num
transform
[#:start? start?
#:end? end?]) — (listof real?)
start : real?
end : real?
num : exact-nonnegative-integer?
transform : axis-transform/c
start? : boolean? = #t
end? : boolean? = #t

Generates a list of reals that, if transformed using transform, would be uniformly spaced.
This is used to generate samples for transformed axes.

Examples:

> (linear-seq 1 10 4)

'(147 10)

> (nonlinear-seq 1 10 4 log-transform)

'(1.0 2.154434690031884 4.641588833612779 10.000000000000002)
> (parameterize ([plot-x-transform log-transform])

(plot (area-histogram sqr (nonlinear-seq 1 10 4 log-
transform))))

176

504 L

40—+ L

304 L

y axis

10+ L

X axis

(kde xs h [ws]) — (-> real? real?)
(or/c rational? #f)
(or/c rational? #f)
xs : (listof real?)
h : (>/c 0)
ws : (or/c (listof (>=/c 0)) #f) = #f

Given optionally weighted samples and a kernel bandwidth, returns a function representing
a kernel density estimate, and bounds, outside of which the density estimate is zero. Used
by density.

(silverman-bandwidth xs) — real?
xs : (listof real?)

Returns the Silverman Bandwidth estimator for the given samples. This is used as the default
bandwidth by the violin renderer. See the kernel density estimation Wikipedia article for
more details.

177

https://en.wikipedia.org/wiki/Kernel_density_estimation

Added in version 8.5 of package plot-1lib.

7.3 Plot Colors and Styles

(color-seq ci
c2
num
[#:start? start?
#:end? end?])
— (listof (list/c real? real? real?))
cl : color/c
c2 : color/c
num : exact-nonnegative-integer?
start? : boolean? = #t
end? : boolean? = #t

Interpolates between colors—red, green and blue components separately—using linear-
seq. The #:start? and #:end? keyword arguments work as in 1inear-seq
Example:

> (plot (contour-intervals (1 (x y) (+ x y)) -2 2 -2 2
#:levels 4 #:contour-
styles '(transparent)
#:colors (color-seq "red" "blue" 5)))

178

y axis

X axis

(color-seq* colors
num
[#:start? start?
#:end? end?])
— (listof (list/c real? real? real?))
colors : (listof color/c)
num : exact-nonnegative-integer?
start? : boolean? = #t
end? : boolean? = #t

Interpolates between colors—red, green and blue components separately—using linear-
seqx*. The #:start? and #:end? keyword arguments work as in 1inear-seq

Example:

> (plot (contour-intervals (1 (x y) (+ x y)) -2 2 -2 2
#:1levels 4 #:contour-
styles '(transparent)

179

#:colors (color-

seq* '(red white blue) 5)))
b X |

y axis

X axis

(->color ¢) — (list/c real? real? real?)
¢ : color/c

Converts a non-integer plot color to an RGB triplet.

Symbols are converted to strings, and strings are looked up in a color-database<y%>. Lists
are unchanged, and colorY objects are converted straightforwardly.

Examples:

> (->color 'navy)

' (36 36 140)

> (->color "navy")

' (36 36 140)

> (->color '(36 36 140))
'(36 36 140)

180

> (->color (make-object color?} 36 36 140))
'(36 36 140)

This function does not convert integers to RGB triplets, because there is no way for it to know
whether the color will be used for a pen or for a brush. Use ->pen-color and ->brush-
color to convert integers.

(->pen-color c¢) — (list/c real? real? real?)
¢ : plot-color/c

Convert a line color to an RGB triplet. Integer colors are looked up in the current plot-
pen-color-map, and non-integer colors are converted using ->color. When the integer
color is larger than the number of colors in the color map, it will wrap around.

Examples:

> (equal? (->pen-color 0) (->pen-color 8))

#E

> (plot (contour-intervals
@ &xy) (+xy)) -22-22
#:1levels 7 #:contour-styles '(transparent)
#:colors (map ->pen-color (build-list 8 values))))

181

y axis

The example above is using the internal color map, with plot-pen-color-map set to #£.

(->brush-color ¢) — (list/c real? real? real?)
¢ : plot-color/c

Convert a fill color to an RGB triplet. Integer colors are looked up in the current plot-
brush-color-map and non-integer colors are converted using ->color. When the integer
color is larger than the number of colors in the color map, it will wrap around.

Examples:

> (equal? (->brush-color 0) (->brush-color 8))
#f
> (plot (contour-intervals
Q@ Exy) +xy)) -22-22
#:levels 7 #:contour-styles '(transparent)
#:colors (map ->brush-color (build-list 8 values))))

182

y axis
=)
I
I

X axis

The example above is using the internal color map, with plot-brush-color-map is set to
#£. In this example, mapping ->brush-color over the list is actually unnecessary, because
contour-intervals uses ->brush-color internally to convert fill colors.

The function-interval function generally plots areas using a fill color and lines using a
line color. Both kinds of color have the default value 3. The following example reverses the
default behavior; i.e it draws areas using /ine color 3 and lines using fill color 3:

> (plot (function-interval sin (1 (x) 0) -4 4
#:color (->pen-color 3)
#:linel-color (->brush-color 3)
#:1ine2-color (->brush-color 3)
#:1linel-width 4 #:1line2-width 4))

183

y axis

Xis

X

)

(->pen-style s) — symbol?
s : plot-pen-style/c

Converts a symbolic pen style or a number to a symbolic pen style. Symbols are unchanged.
Integer pen styles repeat starting at 5.

Examples:

> (eq? (->pen-style 0) (->pen-style 5))
#t

> (map ->pen-style '(0 1 2 3 4))

'(solid dot long-dash short-dash dot-dash)

(->brush-style s) — symbol?
s : plot-brush-style/c

Converts a symbolic brush style or a number to a symbolic brush style. Symbols are un-
changed. Integer brush styles repeat starting at 7.

184

Examples:

> (eq? (->brush-style 0) (->brush-style 7))

#t

> (map ->brush-style '(0 1 2 3))

'(solid bdiagonal-hatch fdiagonal-hatch crossdiag-hatch)
> (map ->brush-style '(4 5 6))

' (horizontal-hatch vertical-hatch cross-hatch)

(color-map-names) — (listof symbol?)
Return the list of available color map names to be used by plot-pen-color-map and plot-
brush-color-map.

Added in version 7.3 of package plot-1ib.

(color-map-size name) — integer?
name : symbol?

Return the number of colors in the color map name. If name is not a valid color map name,
the function will signal an error.

Added in version 7.3 of package plot-1lib.

(register-color-map name color-map) — void
name : symbol?
color-map : (vectorof (list byte? byte? byte?))

Register a new color map name with the colors being a vector of RGB triplets. If a color
map by that name already exists, it is replaced.

Added in version 7.3 of package plot-1lib.

7.4 Plot-Specific Math

7.4.1 Real Functions

(polar->cartesian 6 r) — (vector/c real? real?)
0 : real?
r : real?

Converts 2D polar coordinates to 2D cartesian coordinates.

185

(3d-polar->3d-cartesian 0 p r) — (vector/c real? real? real?)

6 : real?
p : real?
r : real?

Converts 3D polar coordinates to 3D cartesian coordinates. See parametric3d for an ex-
ample of use.

(ceiling-log/base b x) — exact-integer?
b : (and/c exact-integer? (>=/c 2))
x : (>/c 0)

Like (ceiling (/ (log x) (log b))), but ceiling-log/base is not susceptible to
floating-point error.

Examples:

> (ceiling (/ (log 100) (log 10)))
2.0

> (ceiling-log/base 10 100)

2

>

(ceiling (/ (log 1/1000) (log 10)))
-2.0
> (ceiling-log/base 10 1/1000)
-3

Various number-formatting functions use this.

(floor-log/base b x) — exact-integer?
b : (and/c exact-integer? (>=/c 2))
x : (>/c 0)

Like (floor (/ (log x) (log b))), but floor-log/base is not susceptible to
floating-point error.

Examples:
> (floor (/ (log 100) (log 10)))
2.0
> (floor-log/base 10 100)
2
> (floor (/ (log 1000) (log 10)))
2.0
> (floor-log/base 10 1000)
3

186

This is a generalization of order-of -magnitude.

(maybe-inexact->exact x) — (or/c rational? #f)
x : (or/c rational? #f)

Returns #f if x is #f; otherwise (inexact->exact x). Use this to convert interval end-
points, which may be #f, to exact numbers.

(min* r ...) — real?
r : real?

(max* r ...) — real?
r : real?

Compute the min or max of a sequence of numbers.

Examples:

> (min* 3 54 2 1)
1
> (max* 3 54 2 1)
5
>

(minx*)
+inf .0
> (max*)
-inf.0

7.4.2 Vector Functions

(v+ vl v2) — (vectorof real?)
vl : (vectorof real?)
v2 : (vectorof real?)
(v- v1 v2) — (vectorof real?)
vl : (vectorof real?)
v2 : (vectorof real?)
(vneg v) — (vectorof real?)
v : (vectorof real?)
(vx v ¢) — (vectorof real?)
v : (vectorof real?)
c : real?
(v/ v ¢) — (vectorof real?)
v . (vectorof real?)
c : real?

Vector arithmetic. Equivalent to vector-mapp-ing arithmetic operators over vectors, but
specialized so that 2- and 3-vector operations are much faster.

187

Examples:

> (v+ #(1 2) #(3 4))
'#(4 6)

> (v- #(1 2) #(3 4))
"#(-2 -2)

> (vneg #(1 2))
"#(-1 -2)

> (vx #(1 2 3) 2)
'#(2 4 6)

> (v/ #(1 2 3) 2)
"#(1/2 1 3/2)

(v= vl v2) — boolean?

vl : (vectorof real?)

v2 : (vectorof real?)
Like equal? specialized to numeric vectors, but compares elements using =.

Examples:

> (equal? #(1 2) #(1 2))

#t

> (equal? #(1 2) #(1.0 2.0))
#f

> (v= #(1 2) #(1.0 2.0))

#t

(vecross vl v2) — (vector/c real? real? real?)
vl : (vector/c real? real? real?)
v2 : (vector/c real? real? real?)

Returns the right-hand vector cross product of v1 and v2.
Examples:

> (vcross #(1 0 0) #(0 1 0))
"#(0 0 1)
> (vcross #(0 1 0) #(1 0 0))
"#(0 0 -1)
> (vcross #(0 0 1) #(0 0 1))
"#(0 0 0)

(vcross2 vl v2) — real?
vl : (vector/c real? real?)
v2 : (vector/c real? real?)

188

Returns the signed area of the 2D parallelogram with sides vi and v2.

Equiv-

alent to (vector-ref (vcross (vector-append v1 #(0)) (vector-append v2

#(0))) 2) but faster.
Examples:

> (vcross2 #(1 0) #(0 1))
1

> (vcross2 #(0 1) #(1 0))
-1

(vdot v1 v2) — real?
vl : (vectorof real?)
v2 : (vectorof real?)

Returns the dot product of v1 and v2.

(vmag~2 v) — real?
v : (vectorof real?)

Returns the squared magnitude of v. Equivalent to (vdot v v).

(vmag v) — real?
v : (vectorof real?)

Returns the magnitude of v. Equivalent to (sqrt (vmag~2 v)).

(vnormalize v) — (vectorof real?)
v : (vectorof real?)

Returns a normal vector in the same direction as v. If v is a zero vector, returns v.

Examples:

> (vnormalize #(1 1 0))

"#(0.7071067811865475 0.7071067811865475 0)

> (vnormalize #(1 1 1))

"#(0.5773502691896258 0.5773502691896258 0.5773502691896258)
> (vnormalize #(0 0 0.0))

"#(0 0 0.0)

(vcenter vs) — (vectorof real?)
vs : (listof (vectorof real?))

189

Returns the center of the smallest bounding box that contains vs.

Example:

> (vcenter '(#(1 1) #(2 2)))
"#(3/2 3/2)

(vrational? v) — boolean?
v . (vectorof real?)

Returns #t if every element of v is rational?.

Examples:

> (vrational? #(1 2))
#t
> (vrational? #(+inf.0 2))
#f
> (vrational? #(#f 1))
vrational?: contract violation
expected: real?
given: #f
in: an element of
the 1st argument of
(-> (vectorof real?) any)
contract from:
<pkgs>/plot-lib/plot/private/common/math.rkt
blaming: top-level
(assuming the contract is correct)
at: <pkgs>/plot-lib/plot/private/common/math.rkt:304:9

7.4.3 Intervals and Interval Functions

(struct ivl (min max)
#:extra-constructor-name make-ivl)
min : real?
max : real?

Represents a closed interval.

An interval with two real-valued endpoints always contains the endpoints in order:

> (ivl 0 1)
(ivl 0 1)
> (ivl 1 0)
(ivli 0 1)

190

An interval can have infinite endpoints:

> (ivl -inf.0 0)
(ivl -inf.0 0)

> (ivl 0 +inf.0)

(ivl 0 +inf.0)

> (ivl -inf.0 +inf.0)
(ivl -inf.0 +inf.0)

Functions that return rectangle renderers, such as rectangles and discrete-

histogram3d, accept vectors of iv1ls as arguments. The iv1 struct type is also provided by
plot so users of such renderers do not have to require plot/utils.

(rational-ivl? i) — boolean?
i : any/c

Returns #t if i is an interval and each of its endpoints is rational?.

Example:

> (map rational-ivl? (list (ivl -1 1) (ivl -inf.0 2) 'bob))
"(#t #f #f)

(bounds->intervals xs) — (listof ivl1?)
xs : (listof real?)
Given a list of points, returns intervals between each pair.
Use this to construct inputs for rectangles and rectangles3d.

Example:

> (bounds->intervals (linear-seq O 1 5))
(list (ivl O 1/4) (ivl 1/4 1/2) (ivl 1/2 3/4) (ivl 3/4 1))

(clamp-real x i) — real?
X @ real?
i ivl?

7.5 Dates and Times

(datetime->real x) — real?

x : (or/c plot-time? date? datex? sql-date? sql-time? sql-timestamp?)

191

Converts various date/time representations into UTC seconds, respecting time zone offsets.

For dates, the value returned is the number of seconds since a system-dependent UTC epoch.
See date-ticks for more information.

To plot a time series using dates pulled from an SQL database, simply set the relevant axis
ticks (probably plot-x-ticks) to date-ticks, and convert the dates to seconds using
datetime->real before passing them to 1ines. To keep time zone offsets from influencing
the plot, set them to O first.

(struct plot-time (second minute hour day)
#:extra-constructor-name make-plot-time)
second : (and/c (>=/c 0) (</c 60))
minute : (integer-in 0 59)
hour : (integer-in 0 23)
day : exact-integer?

A time representation that accounts for days, negative times (using negative days), and frac-
tional seconds.

Plot (specifically time-ticks) uses plot-time internally to format times, but because
renderer-producing functions require only real values, user code should not need it. It is
provided just in case.

(plot-time->seconds t) — real?
t : plot-time?

(seconds->plot-time s) — plot-time?
s : real?

Convert plot-times to real seconds, and vice-versa.

Examples:

> (define (plot-time+ tl t2)
(seconds->plot-time (+ (plot-time->seconds t1)
(plot-time->seconds t2))))
> (plot-time+ (plot-time 32 0 12 1)
(plot-time 32 0 14 1))
(plot-time 4 1 2 3)

7.6 Plot Metrics

plot-metrics<%> : interface?

The plot-metrics<y> interface allows obtaining plot area positions on the plots returned
by plot, plot-snip, plot-bitmap, plot/dc, as well as their 3D variants, plot3d,

192

plot3d-snip, plot3d-bitmap and plot3d/dc. All plot objects returned by these func-
tions implement this interface.

For plots created by plot-pict and plot3d-pict, there is a separate set of functions that
provide the same functionality, for example, see plot-pict-bounds.

(send a-plot-metrics get-plot-bounds)
— (vectorof (vector/c real? real?))

Return the bounds of the plot as a vector of minimum and maximum values,
one for each axis in the plot. For 2D plots, this method returns a vector of two
elements, for the X and Y axes, while 3D plots return a vector of three elements
for the X, Y and Z axes.

The values returned are in plot coordinates, to obtain the coordinates on the
drawing surface (i.e. image coordinates), use plot->dc on these bounds.

Plot bounds for interactive plots, like those produced by plot and plot-snip,
can change as the user zoom in and out the plot, get-plot-bounds always
returns the current bounds of the plot, but they might be invalidated by a user
operation.

(send a-plot-metrics plot->dc coordinates) — (vectorof real?)
coordinates : (vectorof real?)

Convert coordinates from plot coordinate system to the drawing coordinate
system (that is, image coordinates). For 2D plots, coordinates is a vector of
two values, the X and Y coordinates on the plot, while for 3D plots it is a vector
of three values, the X, Y and Z coordinates.

This method can be used, for example, to determine the actual location on the
image where the coordinates 0, O are. It can also be used to determine the loca-
tion of the plot area inside the image, by calling it on the plot bounds returned
by get-plot-bounds.

For interactive plots, the coordinates might change as the user zooms in and out
the plot.

(send a-plot-metrics dc->plot coordinates) — (vectorof real?)
coordinates : (vectorof real?)

For 2D plots, this method returns the 2D plot coordinates that correspond to the
input coordinates, which are in the draw context coordinate system.

For 3D plots, this method returns a 3D position on the plane perpendicular to the
user view for the plot. Together with the normal vector for this plane, returned
by plane-vector, the projection line can be reconstructed.

This is the reverse operation from plot->dc and same remark about the user
zooming in and out the plot applies.

193

(send a-plot-metrics plane-vector) — (vectorof real?)

Return the unit vector representing the normal of the screen through the plot
origin. For 2D plots this always returns # (0 0 1), for 3D plots this unit vector
can be used to reconstruct plot coordinates from draw context coordinates.

For interactive 3D plots, the returned value will change if the user rotates the
plot.

Added in version 8.1 of package plot-1ib.

(plot-pict? any) — boolean?
any : any/c

Return #t if any is a plot returned by plot-pict. This can be used to determine if the
functions plot-pict-bounds, plot-pict-plot->dc, plot-pict-dc->plot and plot-
pict-plane-vector can be called on it.

Added in version 8.1 of package plot-1ib.

(plot-pict-bounds plot) — (vectorof (vector/c real? real?))
plot : plot-pict?

Return the bounds of the plot returned by plot-pict. See get-plot-bounds for more
details.

Added in version 8.1 of package plot-1lib.

(plot-pict-plot->dc plot coordinates) — (vectorof real?)
plot : plot-pict?
coordinates : (vectorof real?)

Convert the plot coordinates to draw context coordinates for the plot. See plot->dc
for more details.

Added in version 8.1 of package plot-1ib.

(plot-pict-dc->plot plot coordinates) — (vectorof real?)
plot : plot-pict?
coordinates : (vectorof real?)

Convert the draw contect coordinates to plot coordinates for the plot. See dc->plot
for more details.

Added in version 8.1 of package plot-1ib.

194

(plot-pict-plane-vector plot) — (vectorof real?)
plot : plot-pict?

Return the unit vector representing the normal of the screen through the plot origin. For
2D plots this always returns #(0 0 1), for 3D plots this can be used to reconstruct plot
coordinates from draw context coordinates. See plane-vector for more details.

Added in version 8.1 of package plot-1lib.

195

8 Plot and Renderer Parameters

(require plot) package: plot-gui-1ib

8.1 Compatibility

(plot-deprecation-warnings?) — boolean?

(plot-deprecation-warnings? warnings) — void?
warnings : boolean?

= #£f

When #t, prints a deprecation warning to current-error-port on the first use of mix,
line, contour, shade, surface, or a keyword argument of plot or plot3d that exists
solely for backward compatibility.

8.2 Output

(plot-new-window?) — boolean?

(plot-new-window? new-window?) — void?
new-window? : boolean?

= #£f

When #t, plot and plot3d open a new window for each plot instead of returning an image-
snip.

Users of command-line Racket, which cannot display image snips, should enter

(plot-new-window? #t)

before using plot or plot3d.

(plot-width) — exact-positive-integer?
(plot-width width) — void?

width : exact-positive-integer?
= 400
(plot-height) — exact-positive-integer?
(plot-height height) — void?

height : exact-positive-integer?
= 400

The width and height of a plot, in logical drawing units (e.g. pixels for bitmap plots). Used
for default arguments of plotting procedures such as plot and plot3d.

196

https://pkgs.racket-lang.org/package/plot-gui-lib

(plot-jpeg-quality) — (integer-in 0 100)

(plot-jpeg-quality quality) — void?
quality : (integer-in 0 100)

= 100

The quality of JPEG images written by plot-file and plot3d-file. See save-file.

(plot-ps/pdf-interactive?) — boolean?

(plot-ps/pdf-interactive? interactive?) — void?
interactive? . boolean?

= #£f

If #t, plot-file and plot3d-file open a dialog when writing PostScript or PDF files.
See post-script-dcy and pdf-dc.

8.3 General Appearance

(plot-aspect-ratio) — (or/c (and/c rational? positive?) #f)
(plot-aspect-ratio ratio) — void?

ratio : (or/c (and/c rational? positive?) #f)

= #£f

Controls the aspect ratio of the plot area, independently from the width and height of the
entire plot.

When the aspect ratio is #£, the plot area fill fill the entire area of the plot, leaving room only
for the axis labels and title.

When an aspect ratio is a positive number, the plot area will maintain this aspect ratio,
possibly leaving empty areas around the plot.

This feature is useful when the aspect ratio needs to be maintained for the plot output to look
correct, for example when plotting a circle:

> (parameterize ([plot-aspect-ratio 1]
[plot-background "lightyellow"])
(plot (polar (lambda (t) 1)) #:width 400 #:height 200))

197

y axis
S
innollnnnollnonnollonnng

LI B B L B B B

Added in version 8.1 of package plot-gui-1lib.

(plot-title) — (or/c string? #f)

(plot-title title) — void?
title : (or/c string? #f)

= #f

(plot-x-label) — (or/c string? #f)

(plot-x-label label) — void?
label : (or/c string? #f)

= "x axis"

(plot-y-label) — (or/c string? #f)

(plot-y-label label) — void?
label : (or/c string? #f)

= "y axis"

(plot-z-label) — (or/c string? #f)

(plot-z-label label) — void?
label : (or/c string? #f)

= #f

Title and near axis labels. A #f value means the label is not drawn and takes no space. A ""
value effectively means the label is not drawn, but it takes space. Used as default keyword
arguments of plotting procedures such as plot and plot3d.

(plot-x-far-label) — (or/c string? #f)

(plot-x-far-label label) — void?
label : (or/c string? #f)

= #£f

(plot-y-far-label) — (or/c string? #f)

(plot-y-far-label label) — void?
label : (or/c string? #f)

= #£f

198

(plot-z-far-label) — (or/c string? #f)

(plot-z-far-label label) — void?
label : (or/c string? #f)

= #f

Far axis labels. A #f value means the label is not drawn and takes no space. A "" value
effectively means the label is not drawn, but it takes space. See plot-x-ticks for a discus-
sion of near and far axes.

(plot3d-samples) — (and/c exact-integer? (>=/c 2))
(plot3d-samples n) — void?

n : (and/c exact-integer? (>=/c 2))

= 41

Number of samples taken of functions plotted by 3D renderers, per-axis. Used as the de-
fault #: samples argument of surface3d, polar3d, isoline3d, contours3d, contour-
intervals3d, isosurface3d and isosurfaces3d

(plot3d-angle) — real?
(plot3d-angle angle) — void?
angle : real?
= 30
(plot3d-altitude) — real?
(plot3d-altitude altitude) — void?
altitude : real?
= 60

The angle and altitude of the camera in rendering 3D plots, in degrees. Used as default
keyword arguments of plotting procedures such as plot3d.

(plot3d-ambient-light) — (real-in 0 1)

(plot3d-ambient-light amt) — void?
amt : (real-in O 1)

= 2/3

(plot3d-diffuse-1light?) — boolean?

(plot3d-diffuse-1light? diffuse?) — void?
diffuse? : boolean?

= #t

(plot3d-specular-light?) — boolean?

(plot3d-specular-light? specular?) — void?
specular? : boolean?

= #t

Amount of ambient light, and whether 3D plots are rendered with diffuse and specular re-
flectance.

199

(plot-line-width) — (>=/c 0)

(plot-line-width width) — void?
width : (>=/c 0)

=1

The width of the lines used to draw plot axes and other non-renderer elements.

The line width for plot renderers, such as function and lines, is controlled by the 1ine-
width parameter.

(plot-line-cap) — plot-pen-cap/c
(plot-line-cap cap) — void?

cap : plot-pen-cap/c
= 'round

The cap of the lines used to draw plot axes and other non-renderer elements. See also line-
cap.

Added in version 8.10 of package plot-gui-1ib.

(plot-inset)

— (or/c (>=/c 0) (list (>=/c 0) (>=/c 0) (>=/c 0) (>=/c 0)))
(plot-inset inset) — void?

inset : (or/c (>=/c 0) (list (>=/c 0) (>=/c 0) (>=/c 0) (>=/c 0)))
=0

The amount of space around the plot to leave unused, when calculating plot layouts for ticks
and axis labels. The parameter can be specified as a single value, which applies to all sides of
the plot image, or as a list of four separate values for the left, right, top, and bottom margins
of the plot image.

One example use for this parameter is to avoid clipping tick marks when lines for plot ele-
ments are very thick, see plot-line-width and 1ine-width. In such a case, the end of
axis ticks can be drawn beyond the end point of the line, and might be clipped at the edge of
the drawing region. A non-zero plot-inset value can be used to avoid this clipping.

See also plot-legend-padding for an equivalent setting for the plot legend.

Added in version 8.11 of package plot-gui-1lib.

(plot-foreground) — plot-color/c

(plot-foreground color) — void?
color : plot-color/c

=0

200

(plot-background) — plot-color/c

(plot-background color) — void?
color : plot-color/c

=0

The plot foreground and background color. That both are 0 by default is not a mistake: for
foreground colors, 0 is interpreted as black; for background colors, 0 is interpreted as white.
See ->pen-color and ->brush-color for details on how Plot interprets integer colors.

(plot-foreground-alpha) — (real-in 0 1)

(plot-foreground-alpha alpha) — void?
alpha : (real-in 0 1)

=1

(plot-background-alpha) — (real-in 0 1)

(plot-background-alpha alpha) — void?
alpha : (real-in 0 1)

=1

The opacity of the background and foreground colors.

(plot-font-size) — (>=/c 0)

(plot-font-size size) — void?
size : (>=/c 0)

= 11

(plot-font-face) — (or/c string? #f)

(plot-font-face face) — void?
face : (or/c string? #f)

= #f

(plot-font-family) — font-family/c

(plot-font-family family) — void?
family : font-family/c

= 'roman

The font size (in drawing units), face, and family of the title, axis labels, tick labels, and
other labels.

(plot-legend-font-size) — (or/c (>=/c 0) #f)
(plot-legend-font-size size) — void?

size : (or/c (>=/c 0) #f)

= #£f
(plot-legend-font-face) — (or/c string? #f)
(plot-legend-font-face face) — void?

face : (or/c string? #f)
= #f

201

(plot-legend-font-family) — (or/c font-family/c #f)
(plot-legend-font-family family) — void?

family : (or/c font-family/c #f)

= #£f

The font size (in drawing units), face, and family to prefer for the legend text. If set to #f,
then the corresponding plot-font-X parameter is used.

(plot-legend-anchor) — legend-anchor/c

(plot-legend-anchor legend-anchor) — void?
legend-anchor : legend-anchor/c

= 'top-left

(plot-legend-box-alpha) — (real-in 0 1)

(plot-legend-box-alpha alpha) — void?
alpha : (real-in 0 1)

= 2/3

The placement of the legend and the opacity of its background.

(plot-legend-layout)

— (list/c (or/c 'columns 'rows) positive-integer? (or/c 'equal-size 'compact))
(plot-legend-layout layout) — void?

layout : (list/c (or/c 'columns 'rows) positive-integer? (or/c 'equal-size 'compact))
= '(columns 1 equal-size)

Defines the way in which individual entries are placed in the legend. This is a list of three
elements:

* the placement direction (' columns or 'rows)
¢ the number of columns or rows

* whether all the entries will have the same size (' equal-size), or the entries will only
occupy the minimum size (' compact)

For example, the value ' (columns 1 equal-size) will place the legend entries vertically
from top to bottom and all entries will have the same height. A value of ' (rows 2 'com-
pact) will place legend entries horizontally on two rows — this type of layout is useful when
the legend is placed at the top or bottom of the plot.

Added in version 7.9 of package plot-gui-1ib.

(plot-legend-padding)

202

— (or/c (>=/c 0) (list (>=/c 0) (>=/c 0) (>=/c 0) (>=/c 0)))
(plot-legend-padding padding) — void?

padding : (or/c (>=/c 0) (list (>=/c 0) (>=/c 0) (>=/c 0) (>=/c 0)))
=0

The amount of space to add between the legend entries and the border drawn around the
legend. The parameter can be specified as a single value, which applies to all sides, or as a
list of four separate values for the left, right, top, and bottom sides of the legend.

One example use for this parameter is to avoid clipping thick lines used in legend entries,
see plot-line-width and 1ine-width. In such a case, the end of the lines can be drawn
outside the border of the legend, a non-zero plot-legend-padding value can be used to
avoid this situation.

See also plot-inset for a similar setting for the entire plot image.

Added in version 8.11 of package plot-gui-1ib.

(plot-tick-size) — (>=/c 0)

(plot-tick-size size) — void?
size : (>=/c 0)

= 10

The length of tick lines, in drawing units.

(plot-x-tick-label-anchor) — anchor/c

(plot-x-tick-label-anchor anchor) — void?
anchor : anchor/c

= 'top

(plot-y-tick-label-anchor) — anchor/c

(plot-y-tick-label-anchor anchor) — void?
anchor : anchor/c

= 'right

(plot-x-far-tick-label-anchor) — anchor/c

(plot-x-far-tick-label-anchor anchor) — void?
anchor : anchor/c

= 'bottom

(plot-y-far-tick-label-anchor) — anchor/c

(plot-y-far-tick-label-anchor anchor) — void?
anchor : anchor/c

= 'left

(plot-x-tick-label-angle) — real?

(plot-x-tick-label-angle angle) — void?
angle : real?

=0

203

(plot-y-tick-label-angle) — real?

(plot-y-tick-label-angle angle) — void?
angle : real?

=0

(plot-x-far-tick-label-angle) — real?

(plot-x-far-tick-label-angle angle) — void?
angle : real?

=0

(plot-y-far-tick-label-angle) — real?

(plot-y-far-tick-label-angle angle) — void?
angle : real?

=0

Anchor and angles for axis tick labels (2D only). Angles are in degrees. The anchor refers
to the part of the label attached to the end of the tick line.

Set these when labels would otherwise overlap; for example, in histograms with long cate-
gory names.

> (parameterize ([plot-x-tick-label-anchor 'top-right]
[plot-x-tick-label-angle 30])
(plot (discrete-histogram '(#(really-long-category-name-1 2)
#(long-category-name-2 1.75)
#(long-category-name-3 2.5)))))

204

25

2
1.5—
=
<
-
1—F
S—+
0 T T T
A 0 D
Qﬁﬁg S S
B D P
o 3 o
,Cfb“@ © 0,0\6% C{&@%
% \0(\% \0‘\%’ \0(\%
Ny
O
X axis

(plot-x-axis?) — boolean?

(plot-x-axis? draw?) — void?
draw? : boolean?

= #t

(plot-y-axis?) — boolean?

(plot-y-axis? draw?) — void?
draw? : boolean?

= #t

(plot-z-axis?) — boolean?

(plot-z-axis? draw?) — void?
draw? : boolean?

= #t

(plot-x-far-axis?) — boolean?

(plot-x-far-axis? draw?) — void?
draw? : boolean?

= #t

205

(plot-y-far-axis?) — boolean?

(plot-y-far-axis? draw?) — void?
draw? : boolean?

= #t

(plot-z-far-axis?) — boolean?

(plot-z-far-axis? draw?) — void?
draw? : boolean?

= #t

When any of these is #£f, the corresponding axis is not drawn.

Use these along with x-axis and y-axis renderers if you want axes that intersect the origin
or some other point.

(plot-x-tick-labels?) — boolean?

(plot-x-tick-labels? draw?) — void?
draw? : boolean?

= #t

(plot-y-tick-labels?) — boolean?

(plot-y-tick-labels? draw?) — void?
draw? : boolean?

= #t

(plot-z-tick-labels?) — boolean?

(plot-z-tick-labels? draw?) — void?
draw? : boolean?

= #t

(plot-x-far-tick-labels?) — boolean?

(plot-x-far-tick-labels? draw?) — void?
draw? : boolean?

(plot-y-far-tick-labels?) — boolean?

(plot-y-far-tick-labels? draw?) — void?
draw? : boolean?

(plot-z-far-tick-labels?) — boolean?

(plot-z-far-tick-labels? draw?) — void?
draw? : boolean?

When any of these is #£, the corresponding labels for the ticks on the axis are not drawn.
These parameters work together with the parameters like plot-x-axis? that control the
drawing of the axes; i.e. tick labels won’t be drawn unless the axis itself is drawn.

(plot-animating?) — boolean?

(plot-animating? animating?) — void?
animating? : boolean?

= #f

When #t, certain renderers draw simplified plots to speed up drawing. Plot sets it to #t, for

206

example, when a user is clicking and dragging a 3D plot to rotate it.

(animated-samples samples) — (and/c exact-integer? (>=/c 2))
samples : (and/c exact-integer? (>=/c 2))

Given a number of samples, returns the number of samples to use. This returns samples
when plot-animating? is #f.

(plot-decorations?) — boolean?

(plot-decorations? draw?) — void?
draw? : boolean?

= #t

When #f£, axes, axis labels, ticks, tick labels, and the title are not drawn.

(plot-pen-color-map) — (or/c symbol? #f)
(plot-pen-color-map name) — void?

name : (or/c symbol? #f)

= #f
(plot-brush-color-map) — (or/c symbol? #f)
(plot-brush-color-map name) — void?

name : (or/c symbol? #f)

= #f

Specify the color maps to be used by ->pen-color and ->brush-color respectively,
for converting integer values into RGB triplets, or when integer values are used with the
#:color keyword of various plot renderers. You can determine the list of available color
map names using color-map-names.

If name is not a valid color map name, the internal color map will be used, this is the same
as specifying #f.

When the color map value is set to #f, internal color maps will be used, one for pen and one
for brush colors. The internal color map used for pen colors has darker and more saturated
colors than the one used for brush colors. These colors are chosen for good pairwise contrast,
especially between neighbors and they repeat starting with 128.

The color maps available by default are shown below and additional ones can be added using
register-color-map:

207

dark?2

paired .

pastell

pastel2
setl
set2
set3
tabl0
tab10n
w20 [l 00 B
tab20b
tab20c

Added in version 7.3 of package plot-gui-1ib.

8.4 Lines

(line-samples) — (and/c exact-integer? (>=/c 2))
(line-samples n) — void?

n : (and/c exact-integer? (>=/c 2))

= 500

The number of points to sample when approximating a line. Used as a default keyword
argument in function, inverse, parametric, polar, density, function-interval,
inverse-interval, parametric-interval, polar-interval, area-histogram and
parametric3d.

(line-color) — plot-color/c

(line-color color) — void?

color : plot-color/c
=1

208

(line-width) — (>=/c 0)

(line-width width) — void?
width : (>=/c 0)

=1

(line-style) — plot-pen-style/c

(line-style style) — void?
style : plot-pen-style/c

= 'solid

(line-cap) — plot-pen-cap/c

(line-cap cap) — void?
cap : plot-pen-cap/c

= 'round

(line-alpha) — (real-in 0 1)

(line-alpha alpha) — void?
alpha : (real-in 0 1)

=1

The pen color, pen width, pen style, pen cap and opacity of lines in plots.

Except for 1ine-cap, all other parameters are used as default keyword arguments of func-
tion, inverse, lines, parametric, polar, density, isoline, 1ines3d, paramet-
ric3d and isoline3d

The line-cap parameter applies to lines drawn by renderers in a plot. See also plot-
line-cap.

Added in version 8.10 of package plot-gui-1ib.

8.5 Intervals

(interval-color) — plot-color/c
(interval-color color) — void?
color : plot-color/c
=3
(interval-style) — plot-brush-style/c
(interval-style style) — void?
style : plot-brush-style/c
= 'solid
(interval-linel-color) — plot-color/c
(interval-linel-color color) — void?
color : plot-color/c
=3

209

(interval-linel-width) — (>=/c 0)

(interval-linel-width width) — void?
width : (>=/c 0)

=1

(interval-linel-style) — plot-pen-style/c

(interval-linel-style style) — void?
style : plot-pen-style/c

= 'solid

(interval-line2-color) — plot-color/c

(interval-line2-color color) — void?
color : plot-color/c

=3

(interval-line2-width) — (>=/c 0)

(interval-line2-width width) — void?
width : (>=/c 0)

=1

(interval-line2-style) — plot-pen-style/c

(interval-line2-style style) — void?
style : plot-pen-style/c

= 'solid

(interval-alpha) — (real-in 0 1)

(interval-alpha alpha) — void?
alpha : (real-in 0 1)

= 3/4

The brush color/style, lower line pen color/width/style, upper line pen color/width/style,
and opacity of interval plots. Used as default keyword arguments of function-interval,
inverse-interval, lines-interval, parametric-interval and polar-interval

8.6 Points and Point Labels

(point-sym) — point-sym/c

(point-sym sym) — void?
sym : point-sym/c

= 'circle

(point-size) — (>=/c 0)

(point-size size) — void?
size : (>=/c 0)

=6

(point-alpha) — (real-in 0 1)

(point-alpha alpha) — void?
alpha : (real-in 0 1)

=1

210

The symbol, and its size and opacity, used in point plots. Used as default keyword arguments
of points and points3d.

(point-x-jitter) — (>=/c 0)

(point-x-jitter x-jitter) — void?
x-jitter : (>=/c 0)

=0

(point-y-jitter) — (>=/c 0)

(point-y-jitter y-jitter) — void?
y-jitter : (>=/c 0)

=0

(point-z-jitter) — (>=/c 0)

(point-z-jitter z-jitter) — void?
z-jitter : (>=/c 0)

=0

When any of x-jitter, y-jitter, or z-jitter are non-zero, points and points3d
will produce points randomly translated from their original position along the x, y, or z axis,
respectively. For instance, if each parameter is set to 0.5, then points ' (0 0) will produce
a random point in a square of area 1 centered at ' (0 0). Likewise points3d will make a
random point within a unit cube centered at ' (0 0 0).

(point-color) — plot-color/c

(point-color color) — void?
color : plot-color/c

=0

(point-line-width) — (>=/c 0)

(point-line-width width) — void?
width : (>=/c 0)

=1

The color and line width of symbols used in point plots and labeled points. Used as default
keyword arguments of points and points3d, as well as in point-label, function-
label, inverse-label, parametric-label, polar-label and point-label3d

(label-anchor) — anchor/c

(label-anchor anchor) — void?
anchor : anchor/c

= 'left

(label-angle) — real?

(label-angle angle) — void?
angle : real?

=0

(label-alpha) — (real-in 0 1)

(label-alpha alpha) — void?
alpha : (real-in 0 1)

=1

211

(label-point-size) — (>=/c 0)

(label-point-size size) — void?
size : (>=/c 0)

=4

Point label anchor, angle, and opacity, and the size of points next to labels. Used as default
keyword arguments of point-label, function-label, inverse-label, parametric-
label, polar-label and point-label3d

8.7 Vector Fields & Arrows

(vector-field-samples) — exact-positive-integer?
(vector-field-samples n) — void?

n : exact-positive-integer?

= 20
(vector-field3d-samples) — exact-positive-integer?
(vector-field3d-samples n) — void?

n : exact-positive-integer?

=9

The default number of samples vector-field and vector-field3d take, respectively.

(vector-field-color) — plot-color/c
(vector-field-color color) — void?
color : plot-color/c
=1
(vector-field-line-width) — (>=/c 0)
(vector-field-line-width width) — void?
width : (>=/c 0)
= 2/3
(vector-field-line-style) — plot-pen-style/c
(vector-field-line-style style) — void?
style : plot-pen-style/c
= 'solid
(vector-field-scale)
— (or/c real? (one-of/c 'auto 'mormalized))
(vector-field-scale scale) — void?
scale : (or/c real? (one-of/c 'auto 'normalized))
= 'auto
(vector-field-alpha) — (real-in O 1)
(vector-field-alpha alpha) — void?
alpha : (real-in 0 1)
=1

212

The default pen color, pen width, pen style, scaling factor, and opacity used by vector-
field and vector-field3d.

(arrows-color) — plot-color/c

(arrows-color color) — void?
color : plot-color/c

=1

(arrows-line-width) — (>=/c 0)

(arrows-line-width width) — void?
width : (>=/c 0)

= 2/3

(arrows-line-style) — plot-pen-style/c

(arrows-line-style style) — void?
style : plot-pen-style/c

= 'solid

(arrows-alpha) — (real-in O 1)

(arrows-alpha alpha) — void?
alpha : (real-in 0 1)

=1

The default pen color, pen width, pen style, and opacity used by arrows and arrows3d.
Added in version 7.9 of package plot-gui-1ib.

(arrow-head-size-or-scale)
— (or/c (>=/c 0) (list/c '= (>=/c 0)))
(arrow-head-size-or-scale size) — void?
size : (or/c (>=/c 0) (list/c '= (>=/c 0)))
= 2/5
(arrow-head-angle) — (>=/c 0)
(arrow-head-angle alpha) — void?
alpha : (>=/c 0)
= (/ pi 6)

The default size and angle of the arrow head in vector-field, vector-field3d, arrows
and arrows3d. When the arrow-head-size-or-scale is a number, it is interpreted as a
proportion of the arrow length , and will be bigger for longer arrows. When it is in the form
(list '= size),itis interpreted as the size of the arrow head in drawing units (pixels).

Added in version 7.9 of package plot-gui-1lib.

8.8 Error Bars

213

(error-bar-width) — (>=/c 0)
(error-bar-width width) — void?
width : (>=/c 0)
=6
(error-bar-color) — plot-color/c
(error-bar-color color) — void?
color : plot-color/c
=0
(error-bar-line-width) — (>=/c 0)
(error-bar-line-width pen-width) — void?
pen-width : (>=/c 0)
=1
(error-bar-line-style) — plot-pen-style/c
(error-bar-line-style pen-style) — void?
pen-style : plot-pen-style/c
= 'solid
(error-bar-alpha) — (real-in 0 1)
(error-bar-alpha alpha) — void?
alpha : (real-in 0 1)
= 2/3

The default width, pen color/width/style, and opacity used by error-bars.

8.9 Candlesticks

(candlestick-width) — (>=/c 0)
(candlestick-width width) — void?
width : (>=/c 0)
=1
(candlestick-up-color) — plot-color/c
(candlestick-up-color color) — void?
color : plot-color/c
=2
(candlestick-down-color) — plot-color/c
(candlestick-down-color color) — void?
color : plot-color/c
=1
(candlestick-line-width) — (>=/c 0)
(candlestick-line-width pen-width) — void?
pen-width : (>=/c 0)
=1
(candlestick-line-style) — plot-pen-style/c
(candlestick-line-style pen-style) — void?
pen-style : plot-pen-style/c
= 'solid

214

(candlestick-alpha) — (real-in 0 1)

(candlestick-alpha alpha) — void?
alpha : (real-in 0 1)

= 2/3

The default width, pen color/width/style, and opacity used by candlesticks. Both the up
(a candle whose open value is lower than its close value) color and the down (a candle whose
open value is higher than its close value) color can be specified independently. The width
parameter will be important to specify if your x-axis is in units like days, weeks, or months.
Because dates are actually represented as seconds from an epoch, your width should take
that into consideration. For example, a width of 86400 may be useful for x-axis values in
days as there are 86400 seconds in a day. This candle will be exactly one day in width.

8.10 Color fields

(color-field-samples) — exact-positive-integer?
(color-field-samples n) — void?

n . exact-positive-integer?

= 20
(color-field-alpha) — (real-in 0 1)
(color-field-alpha alpha) — void?

alpha : (real-in 0 1)
=1

The default sample rate and opacity used by color-field.

Added in version 7.9 of package plot-gui-1lib.

8.11 Contours and Contour Intervals

(default-contour-colors zs) — (listof plot-color/c)
zs : (listof real?)
= (color-seq* (list (->pen-color 5) (->pen-color 0) (->pen-color 1))
(length zs))
(default-contour-fill-colors z-ivls) — (listof plot-color/c)
z-ivls : (listof ivl1?)
= (color-seg* (list (->brush-color 5) (->brush-color 0) (->brush-color 1))
(length z-ivls))

The default values of the parameters contour-colors and contour-interval-colors,
respectively.

215

(contour-samples) — (and/c exact-integer? (>=/c 2))
(contour-samples n) — void?

n : (and/c exact-integer? (>=/c 2))

= 51

The number of samples taken in 2D contour plots. Used as a defaut keyword argument in
isoline, contours and contour-intervals.

(contour-levels)
— (or/c 'auto exact-positive-integer? (listof real?))
(contour-levels levels) — void?

levels : (or/c 'auto exact-positive-integer? (listof real?))
= 'auto
(contour-colors) — (plot-colors/c (listof real?))
(contour-colors colors) — void?

colors : (plot-colors/c (listof real?))
= default-contour-colors
(contour-widths) — (pen-widths/c (listof real?))
(contour-widths widths) — void?

widths : (pen-widths/c (listof real?))
= "'(1)
(contour-styles) — (plot-pen-styles/c (listof real?))
(contour-styles styles) — void?

styles : (plot-pen-styles/c (listof real?))
= '(solid long-dash)

The number, pen colors, pen widths, and pen styles of lines in contour plots. Used as de-
fault keyword arguments of contours, contour-intervals, contours3d, and contour-
intervals3d.
(contour-alphas) — (alphas/c (listof real?))
(contour-alphas alphas) — void?
alphas : (alphas/c (listof real?))
= '"(1)

The opacities of lines in contour plots. Used as a default keyword argument in contours
and contours3d
(contour-interval-colors) — (plot-colors/c (listof ivl?))
(contour-interval-colors colors) — void?
colors : (plot-colors/c (listof ivl?))
= default-contour-fill-colors
(contour-interval-styles)
— (plot-brush-styles/c (listof ivl?))
(contour-interval-styles styles) — void?
styles : (plot-brush-styles/c (listof iv1?))
= '(solid)

216

(contour-interval-alphas) — (alphas/c (listof iv1?7))
(contour-interval-alphas alphas) — void?

alphas : (alphas/c (listof ivl?))
= "(D

The brush colors, brush styles, and opacities of intervals in contour plots. Used as default
keyword arguments of contour-intervals and contour-intervals3d

8.12 Contour Surfaces

(contour-interval-line-colors) — (plot-colors/c (listof ivl?))
(contour-interval-line-colors colors) — void?
colors : (plot-colors/c (listof ivl?))
= '(0)
(contour-interval-line-widths) — (pen-widths/c (listof iv1?))
(contour-interval-line-widths widths) — void?
widths : (pen-widths/c (listof ivl?))
= '(1/3)
(contour-interval-line-styles)
— (plot-pen-styles/c (listof ivl?))
(contour-interval-line-styles styles) — void?
styles : (plot-pen-styles/c (listof ivl?))
= '(solid)

The pen colors, widths, and styles of the sampling grid, where it intersects contour intervals.
Used as default keyword arguments of contour-intervals3d

8.13 Rectangles

(rectangle-color) — plot-color/c
(rectangle-color color) — void?
color : plot-color/c
=3
(rectangle-style) — plot-brush-style/c
(rectangle-style style) — void?
style : plot-brush-style/c
= 'solid
(rectangle-line-color) — plot-color/c
(rectangle-line-color pen-color) — void?
pen-color : plot-color/c
=3

217

(rectangle-line-width) — (>=/c 0)

(rectangle-line-width pen-width) — void?
pen-width : (>=/c 0)

=1

(rectangle3d-line-width) — (>=/c 0)

(rectangle3d-line-width pen-width) — void?
pen-width : (>=/c 0)

=1/3

(rectangle-line-style) — plot-pen-style/c

(rectangle-line-style pen-style) — void?
pen-style : plot-pen-style/c

= 'solid

(rectangle-alpha) — (real-in 0 1)

(rectangle-alpha alpha) — void?
alpha : (real-in 0 1)

=1

The brush color/style of faces, pen color/width/style of edges, and opacity of recangles. Used
as default keyword arguments of rectangles, area-histogram, discrete-histogram,
rectangles3d and discrete-histogram3d.

The default pen width of 3D rectangle edges is narrower for aesthetic reasons.

(discrete-histogram-gap) — (real-in O 1)

(discrete-histogram-gap gap) — void?
gap : (real-in 0 1)

=1/8

The gap between histogram bars, as a percentage of bar width. Used as a default keyword
argument of discrete-histogram, stacked-histogram, discrete-histogram3d and
stacked-histogram3d.

(discrete-histogram-skip) — (>=/c 0)
(discrete-histogram-skip skip) — void?
skip : (>=/c 0)
=1
(discrete-histogram-invert?) — boolean?
(discrete-histogram-invert? invert?) — void?
invert? : boolean?
= #£f

Distance on the x axis between histogram bars, and whether to draw histograms horizontally.
Used as default keyword arguments of discrete-histogram and stacked-histogram.

218

(stacked-histogram-colors) — (plot-colors/c nat/c)
(stacked-histogram-colors colors) — void?
colors : (plot-colors/c nat/c)
= (1 (n) (build-list n addl))
(stacked-histogram-styles) — (plot-brush-styles/c nat/c)
(stacked-histogram-styles styles) — void?
styles : (plot-brush-styles/c nat/c)
= '(solid)
(stacked-histogram-line-colors) — (plot-colors/c nat/c)
(stacked-histogram-line-colors pen-colors) — void?
pen-colors : (plot-colors/c nat/c)
= (stacked-histogram-colors)
(stacked-histogram-line-widths) — (pen-widths/c nat/c)
(stacked-histogram-line-widths pen-widths) — void?
pen-widths : (pen-widths/c nat/c)
= '(1)
(stacked-histogram-line-styles) — (plot-pen-styles/c nat/c)
(stacked-histogram-line-styles pen-styles) — void?
pen-styles : (plot-pen-styles/c nat/c)
= '(solid)
(stacked-histogram-alphas) — (alphas/c nat/c)
(stacked-histogram-alphas alphas) — void?
alphas : (alphas/c nat/c)
= '(1

Stacked histogram brush colors/styles, pen colors/widths/styles, and opacities. Used as de-
fault keyword arguments of stacked-histogram and stacked-histogram3d

8.14 Non-Border Axes

(x-axis-ticks?) — boolean?

(x-axis-ticks? ticks?) — void?
ticks? . boolean?

= #t

(y-axis-ticks?) — boolean?

(y-axis-ticks? ticks?) — void?
ticks? . boolean?

= #t

(x-axis-labels?) — boolean?

(x-axis-labels? labels?) — void?
labels? : boolean?

= #f

219

(y-axis-labels?) — boolean?

(y-axis-labels? labels?) — void?
labels? : boolean?

= #£f

(x-axis-far?) — boolean?

(x-axis-far? far?) — void?
far? : boolean?

= #£f

(y-axis-far?) — boolean?

(y-axis-far? far?) — void?
far? : boolean?

= #£f

(x-axis-alpha) — (real-in 0 1)

(x-axis-alpha alpha) — void?
alpha : (real-in 0 1)

=1

(y-axis-alpha) — (real-in O 1)

(y-axis-alpha alpha) — void?
alpha : (real-in 0 1)

=1

Default values for keyword arguments of x-axis, y-axis and axes.

(polar-axes-number) — exact-nonnegative-integer?

(polar-axes-number n) — void?
n : exact-nonnegative-integer?

=12

(polar-axes-ticks?) — boolean?

(polar-axes-ticks? ticks?) — void?
ticks? : boolean?

= #t

(polar-axes-labels?) — boolean?

(polar-axes-labels? labels?) — void?
labels? : boolean?

= #t

(polar-axes-alpha) — (real-in 0 1)

(polar-axes-alpha alpha) — void?
alpha : (real-in 0 1)

= 1/2

Number of polar axes, whether radius ticks (i.e. lines) are drawn, whether labels are drawn,
and opacity. Used as default keyword arguments of polar-axes.

8.15 Surfaces

220

(surface-color) — plot-color/c
(surface-color color) — void?
color : plot-color/c
=0
(surface-style) — plot-brush-style/c
(surface-style style) — void?
style : plot-brush-style/c
= 'solid
(surface-line-color) — plot-color/c
(surface-line-color pen-color) — void?
pen-color : plot-color/c
=0
(surface-line-width) — (>=/c 0)
(surface-line-width pen-width) — void?
pen-width : (>=/c 0)
=1/3
(surface-line-style) — plot-pen-style/c
(surface-line-style pen-style) — void?
pen-style : plot-pen-style/c
= 'solid
(surface-alpha) — (real-in 0 1)
(surface-alpha alpha) — void?
alpha : (real-in 0 1)
=1

Surface brush color/style, pen color/width/style of the sampling grid where it intersects the
surface, and opacity. Used as default keyword arguments of surface3d, polar3d and
isosurface3d

(default-isosurface-colors zs) — (listof plot-color/c)
zs : (listof real?)
= (color-seg* (list (->brush-color 5) (->brush-color 0) (->brush-color 1))
(length zs))
(default-isosurface-line-colors zs) — (listof plot-color/c)
zs : (listof real?)
= (color-seq* (list (->pen-color 5) (->pen-color 0) (->pen-color 1))
(length zs))

The default values of the parameters isosurface-colors and isosurface-line-
colors, respectively.

(isosurface-levels)
— (or/c 'auto exact-positive-integer? (listof real?))
(isosurface-levels levels) — void?

levels : (or/c 'auto exact-positive-integer? (listof real?))
= 'auto

221

(isosurface-colors) — (plot-colors/c (listof real?))
(isosurface-colors colors) — void?

colors : (plot-colors/c (listof real?))

= default-isosurface-colors
(isosurface-styles) — (plot-brush-styles/c (listof real?))
(isosurface-styles styles) — void?

styles : (plot-brush-styles/c (listof real?))

= '(solid)
(isosurface-line-colors) — (plot-colors/c (listof real?))
(isosurface-line-colors pen-colors) — void?

pen-colors : (plot-colors/c (listof real?))

= default-isosurface-line-colors
(isosurface-line-widths) — (pen-widths/c (listof real?))
(isosurface-line-widths pen-widths) — void?

pen-widths : (pen-widths/c (listof real?))

= '(1/3)
(isosurface-line-styles) — (plot-pen-styles/c (listof real?))
(isosurface-line-styles pen-styles) — void?

pen-styles : (plot-pen-styles/c (listof real?))

= '(solid)
(isosurface-alphas) — (alphas/c (listof real?))
(isosurface-alphas alphas) — void?

alphas : (alphas/c (listof real?))

= '(1/2)

The number, brush colors/styles, pen colors/widths/styles, grid color/widths/styles, and
opacities of nested isosurfaces. Used as default keyword arguments of isosurfaces3d.

222

9 Plot Contracts

(require plot/utils) package: [plot-1ib

9.1 Plot Element Contracts

(renderer2d? value) — boolean?
value : any/c

Returns #t if value is a 2D renderer; that is, if plot can plot value. See[§3 “2D Render]

lers™ for functions that construct them.

(renderer3d? value) — boolean?
value : any/c

Returns #t if value is a 3D renderer; that is, if plot3d can plot value. See [§4 “3D|
[Renderers™ for functions that construct them.

(nonrenderer? value) — boolean?
value : any/c

Returns #t if value is a nonrenderer. See[85 “Nonrenderers”] for functions that construct
them.

(treeof elem-contract) — contract?
elem-contract : contract?

Identifies values that meet the contract elem-contract, lists of such values, lists of lists,
and so on.

9.2 Appearance Argument Contracts

anchor/c : contract?

= (one-of/c 'top-left "top 'top-right
'left 'center 'right
'bottom-left 'bottom 'bottom-right
'auto)

The contract for anchor arguments and parameters.

The 'auto anchor will place labels so they are visible on the plot area. This anchor type is
useful for point-label and similar renderers where the labeled point might be at the edge
of the plot area and the user does not wish to calculate the exact anchor for the label.

223

https://pkgs.racket-lang.org/package/plot-lib

The 'auto anchor will choose one of the 'bottom-left, 'bottom-right, 'top-left or
"top-right placements, in that order, and will use the first one that would result in the
label being completely visible.

The 'auto anchor is only valid for placement of text labels, for all other use cases, the
"auto anchor is always the same as 'bottom-left.

legend-anchor/c : contract?
= (or/c anchor/c

(one-of/c 'outside-top-left 'outside-top 'outside-top-right
'outside-left-top 'outside-left 'outside-left-bottom
'outside-right-top 'outside-right 'outside-right-bottom
'outside-bottom-left 'outside-bottom 'outside-bottom-right

'outside-global-top
'no-legend))

The contract for the plot-legend-anchor parameter and the #: legend-anchor parame-
ters for the various plot procedures.

When legend-anchor is one of the symbols from anchor/c, the legend will be placed
inside the plot area.

legend-anchor/c values which start with "outside" will place the legend outside the plot
area, for 2D plots the legend will be aligned with the plot area, while for 3D plots the legend
will be relative to the overall plot-width and plot-height.

The 'outside-global-top value will place the legend above the plot-area, centered on
the complete plot-width. For 3D plots there is no difference between this value and
'outside-top.

The value 'no-legend, will omit the legend from the plot, the legend will also be omitted if
none of the renderers have a #: 1abel specified, regardless of the value used for #: legend-
anchor.

The value 'auto, will place the legend in the top-left corner of the plot area, this is not
usefull for plot legends, this anchor value is used for renderers such as point-label.
Added in version 7.9 of package plot-1ib.

color/c : contract?

= (or/c (list/c real? real? real?)
string? symbol?
(is-a?/c color%))

A contract for very flexible color arguments. Functions that accept a color/c almost always
convert it to an RGB triplet using ->color.

plot-color/c : contract? = (or/c exact-integer? color/c)

224

The contract for #: color arguments, and parameters such as line-color and surface-
color. For the meaning of integer colors, see ->pen-color and ->brush-color.

plot-pen-style/c : contract?
= (or/c exact-integer?
(one-of/c 'transparent 'solid 'dot 'long-dash
'short-dash 'dot-dash))

The contract for #: style arguments when they refer to lines, and paramters such as 1ine-
style. For the meaning of integer pen styles, see ->pen-style.

plot-pen-cap/c : contract? = (one-of/c 'round 'projecting 'butt)

The contract for caps, or line endings, for lines drawn on the plot. Used by the plot-line-
cap and line-cap parameters.

Added in version 8.10 of package plot-1ib.

plot-brush-style/c : contract?
= (or/c exact-integer?
(one-of/c 'transparent 'solid
'bdiagonal-hatch 'fdiagonal-hatch 'crossdiag-hatch
'horizontal-hatch 'vertical-hatch 'cross-hatch))

The contract for #:style arguments when they refer to fills, and parameters such as
interval-style. For the meaning of integer brush styles, see ->brush-style.

font-family/c : flat-contract?

Identifies legal font family values. The same as font-family/c from racket/draw.

point-sym/c : contract?
= (or/c char? string? integer? (apply one-of/c known-point-symbols))

The contract for the #: sym arguments in points and points3d, and the parameter point-
sym.

Characters and strings will render that character or string for each point on the plot, one
of the symbols in known-point-symbols will render the corresponding symbol, while an
integer value represents an index into the known-point-symbols list, this can be used
to automatically generate distinct symbols for different point renderers by incrementing a
number.

known-point-symbols : (listof symbol?)

225

= (list

'dot

'plus
'basterisk
'otimes
'circle
'triangle
'fulldiamond
'triangledown

'fulltriangleup
'fulltriangleright

'uparrow
'bstar
'8star
'full6star
'circlel
'circled
'circle7
'fullcirclel
'fullcircled
'fullcircle7

'point

'times

'odot
'oasterisk
'square
'fullcircle
'fulltriangle
'triangleleft

'fulltriangledown

'rightarrow
'downarrow
'6star
'fulldstar
'full7star
'circle2
'circleb
'circle8
'fullcircle2
'fullcircleb
'fullcircle8

226

'pixel
'asterisk
'oplus
'obasterisk
'diamond
'fullsquare
'triangleup

'triangleright
'fulltriangleleft

'leftarrow
'4dstar
'Tstar
'fullbstar
'full8star
'circle3
'circleb
'bullet
'fullcircle3
'fullcircle6
'none)

A list containing the symbols that are valid points symbols, the rendering of each symbol
is shown below.

1 4star “% Sasterisk ¢ Sstar

$% 6star 3 Tstar Pk 8star

Xk asterisk @ bullet QO circle

o circlel O circle2 O circle3
QO circle4 O circle5 Ocircle6
Qcircle7 QircleS <& diamond

+ dot | downarrow X fulldstar
W full5star ¥ full6star ¥ full7star
3k full8star @ fullcircle e fullcirclel
@ fullcircle2 @ fullcircle3 @ fullcircle4
. fullcircle5 .fullcircle6 ‘fullcircle7
‘ullcircleS ¢ fulldiamond W fullsquare
A fulltriangle v fulltriangledown o fulltriangle
p fulltriangleright A fulltriangleup < leftarrow
@ o5asterisk @R oasterisk © odot

@ oplus Q) otimes . pixel

+ plus - point — rightarrow
O square X times A triangle
v triangledown < triangleleft [> trianglerigl
A triangleup 1 uparrow

plot-file-format/c : contract?
= (or/c 'auto 'png 'jpeg 'xmb 'xpm 'bmp 'ps 'pdf 'svg)

A contract for an argument that describes an image file format.

227

9.3 Appearance Argument List Contracts

(maybe-function/c in-contract out-contract) — contract?
in-contract : contract?
out-contract : contract?

= (or/c out-contract (in-contract . -> . out-contract))

Returns a contract that accepts either a function from in-contract to out-contract, or
a plain out-contract value.

> (require racket/contract)
> (define/contract (maybe-function-of-real-consumer x)
((maybe-function/c real? real?) . -> . real?)

(maybe-apply x 10))

> (maybe-function-of-real-consumer 4)

4

> (maybe-function-of-real-consumer (1 (x) x))

10

Many plot functions, such as contours and isosurfaces3d, optionally take lists of ap-
pearance values (such as (1listof plot-color/c)) as arguments. A very flexible argu-
ment contract would accept functions that produce lists of appearance values. For exam-
ple, contours would accept any £ with contract (-> (listof real?) (listof plot-
color/c)) forits #:colors argument. When rendering a contour plot, contours would
apply £ to a list of the contour z values to get the contour colors.

However, most uses do not need this flexibility. Therefore, plot’s functions accept either a
list of appearance values or a function from a list of appropriate values to a list of appearance
values. The maybe-function/c function constructs contracts for such arguments.

In plot functions, if in-contract is a listof contract, the output list’s length need not
be the same as the input list’s length. If it is shorter, the appearance values will cycle; if
longer, the tail will not be used.

(maybe-apply f arg) — any/c
f : (maybe-function/c any/c any/c)
arg : any/c

If £ is a function, applies f to args; otherwise returns f.

This is used inside many renderer-producing plot functions to convert maybe-function/c
values to lists of appearance values.

(plot-colors/c in-contract) — contract?
in-contract : contract?
= (maybe-function/c in-contract (listof plot-color/c))

228

Returns a contract for #:colors arguments, as in contours and contour-intervals.
See maybe-function/c for a discussion of the returned contract.

The following example sends a list-valued (plot-colors/c ivl?) to contour-
intervals, which then cycles through the colors:

> (plot (contour-intervals (1 (xy) (+ xy)) 0101
#:colors '(1 2)))
I I ‘

1 . 1 . . 1 . 1
N
AN
\.
AN
AN
AN
\.
g \ B
N
AN
\.
AN
N\
N\
\.
_ N\ _
6 AN
N
w \.
5 \.
AN
e N
\.
\.
4 9
AN
AN
AN
N\
N
AN
\
2 N
N
AN
N
AN
N\
N
AN
0+] |]] r
0 2 4 6 8 1
X axis

This is equivalent to sending (1 _ '(1 2)).

The next example is more sophisticated: it sends a function-valued (plot-colors/c
iv1l?) to contour-intervals. The function constructs colors from the values of the con-
tour intervals.

> (define (brown-interval-colors ivls)
(define z-size (- (ivl-max (last ivls))
(ivl-min (first ivls))))
(for/list ([i (in-list ivls)])

229

(match-define (ivl z-min z-max) i)
(define z-mid (/ (x 1/2 (+ z-min z-max)) z-size))
(list (* 255 z-mid) (* 128 z-mid) (* 64 z-mid))))
> (plot (contour-intervals (1 (xy) (+ xy)) 0101
#:colors brown-interval-colors))

1

y axis

X axis

(pen-widths/c in-contract) — contract?
in-contract : contract?
= (maybe-function/c in-contract (listof (>=/c 0)))

Like plot-colors/c, but for line widths.
(plot-pen-styles/c in-contract) — contract?

in-contract : contract?
= (maybe-function/c in-contract (listof plot-pen-style/c))

Like plot-colors/c, but for line styles.

230

(plot-brush-styles/c in-contract) — contract?
in-contract : contract?
= (maybe-function/c in-contract (listof plot-brush-style/c))

Like plot-colors/c, but for fill styles.

(alphas/c in-contract) — contract?
in-contract : contract?
= (maybe-function/c in-contract (listof (real-in O 1)))

Like plot-colors/c, but for opacities.

(labels/c in-contract) — contract?
in-contract : contract?
= (maybe-function/c in-contract (listof (or/c string? pict? #f£)))

Like plot-colors/c, but for strings. This is used, for example, to label stacked-
histograms.

231

10 Porting From Plot <=5.1.3

If it seems porting will take too long, you can get your old code running more quickly using
the[§12 “Compatibility Module™]

The update from Plot version 5.1.3 to 5.2 introduces a few incompatibilities:

* Plot now allows plot elements to request plot area bounds, and finds bounds large
enough to fit all plot elements. The old default plot area bounds of [-5,5] x [-5,5]
cannot be made consistent with the improved behavior; the default bounds are now
"no bounds". This causes code such as (plot (line sin)), which does not state
bounds, to fail.

e The #:width and #: style keyword arguments to vector-field have been replaced
by #:1ine-width and #:scale to be consistent with other functions.

¢ The plot function no longer takes a (-> (is-a?/c 2d-view%) void?) as an ar-
gument, but a (treeof renderer2d?). The argument change in plot3d is similar.
This should not affect most code because Plot encourages regarding these data types
as black boxes.

* The plot-extend module no longer exists.

e The fit function and fit-result struct type have been removed.

This section of the Plot manual will help you port code written for Plot 5.1.3 and earlier to
the most recent Plot. There are four main tasks:

* Replace deprecated functions.
 Ensure that plots have bounds.
* Change vector-field, plot and plot3d keyword arguments.

* Fix broken calls to points.

You should also set (plot-deprecation-warnings? #t) to be alerted to uses of depre-
cated features.

10.1 Replacing Deprecated Functions

Replace mix with 1ist, and replace surface with surface3d. These functions are drop-
in replacements, but surface3d has many more features (and a name more consistent with
similar functions).

232

Replace 1ine with function, parametric or polar, depending on the keyword arguments
to 1ine. These are not at all drop-in replacements, but finding the right arguments should be
straightforward.

Replace contour with contours, and replace shade with contour-intervals. These
are mostly drop-in replacements: they should always work, but may not place contours at
the same values (unless the levels are given as a list of values). For example, the default
#:1levels argument is now 'auto, which chooses contour values in the same way that z
axis tick locations are usually chosen in 3D plots. The number of contour levels is therefore
some number between 4 and 10, depending on the plot.

10.2 Ensuring That Plots Have Bounds

The safest way to ensure that plot can determine bounds for the plot area is to add #:x-
min -5 #:x-max 5 #:y-min -5 #:y-max 5 to every call to plot. Similarly, add #:x-
min -5 #:x-max 5 #:y-min -5 #:y-max 5 #:z-min -5 #:z-max 5 to every call to
plot3d.

Because Plot is now smarter about choosing bounds, there are better ways. For example,
suppose you have

> (plot (line sin))
plot: could not determine sensible plot bounds; got x € [#f,#f], y € [#.#f]

You could either change it to

> (plot (function sin) #:x-min -5 #:x-max 5 #:y-min -5 #:y-max 5)

233

y axis

4 4

IN
S
o+
[\
~

Xis

bl
o

or change it to

> (plot (function sin -5 5))

234

y axis

When function is given x bounds, it determines tight y bounds.

10.3 Changing Keyword Arguments

Replace every #:width in a call to vector-field with #:1line-width.

Replace every #:style 'scaled with#:scale 'auto (or because it is the default in both
the old and new, take it out).

Replace every #:style 'real with#:scale 1.0.
Replace every #:style 'normalized with #:scale 'normalized.

The plot and plot3d functions still accept #:bgcolor, #:fgcolor and #:1ncolor, but
these are deprecated. Parameterize on plot-background and plot-foreground instead.

For example, if you have (plot (function sin -5 5) #:fgcolor '(0 0 128)

235

#:bgcolor '(224 224 224)), change it to

> (parameterize ([plot-foreground '(0 0 128)]
[plot-background '(224 224 224)])
(plot (function sin -5 5)))
] |] |] |] |]
f y f y f y f y f

5+]
2 ol 1
-

-5 4

The #:1ncolor keyword argument now does nothing; change the renderer instead. For
example, if you have (plot (function sin -5 5) #:1lncolor '(0 0 128)), change
itto

> (plot (function sin -5 5 #:color '(0 0 128)))

236

y axis

Change #:az in calls to plot3d to #:angle, and #:alt to #:altitude. Alternatively, pa-
rameterize multiple plots by setting the plot3d-angle and plot3d-altitude parameters.

10.4 Fixing Broken Calls to points

The points function used to be documented as accepting a (1istof (vector/c real?
real?)), but actually accepted a (listof (vectorof real?)) and silently ignored any
extra vector elements.

If you have code that takes advantage of this, strip down the vectors first. For example, if vs
is the list of vectors, send (map (1 (v) (vector-take v 2)) vs) to points.

237

10.5 Replacing Uses of plot-extend

Chances are, if you used plot-extend, you no longer need it. The canonical plot-extend
example used to be a version of line that drew dashed lines. Every line-drawing function
in Plot now has a #:style or #:1line-style keyword argument.

The rewritten Plot will eventually have a similar extension mechanism.

10.6 Deprecated Functions

(require plot) package: plot-gui-1ib

The following functions exist for backward compatibility, but may be removed in the future.
Set (plot-deprecation-warnings? #t) to be alerted the first time each is used

(mix plot-data ...) — (any/c . -> . void?)
plot-data : (any/c . -> . void?)

See|§12 “Compatibility Module”|for the original documentation. Replace this with 1ist.

(line f

#:samples samples
:width width
:color color

—

:mode mode
:mapping mapping
:t-min t-min
#:t-max t-max]) — renderer2d?
f : (real? . -> . (or/c real? (vector/c real? real?)))
samples : (and/c exact-integer? (>=/c 2)) = 150
width : (>=/c 0) = 1

H OB HF H R

color : plot-color/c = 'red

mode : (one-of/c 'standard 'parametric) = 'standard
mapping : (one-of/c 'cartesian 'polar) = 'cartesian
t-min : real? = -5

t-max : real? =5

See [§12 “Compatibility Module”| for the original documentation. Replace this with func-
tion, parametric or polar, depending on keyword arguments.

(contour f
[#:samples samples
#:width width
#:color color
#:1levels levels]) — renderer2d?

238

https://pkgs.racket-lang.org/package/plot-gui-lib

f : (real? real? . -> . real?)

samples : (and/c exact-integer? (>=/c 2)) = 50

width : (>=/c 0) =1

color : plot-color/c = 'black

levels : (or/c (and/c exact-integer? (>=/c 2)) (listof real?))
= 10

See [§12 “Compatibility Module”] for the original documentation. Replace this with con-
tours.

(shade f [#:samples samples #:levels levels]) — renderer2d?
f : (real? real? . -> . real?)
samples : (and/c exact-integer? (>=/c 2)) = 50
levels : (or/c (and/c exact-integer? (>=/c 2)) (listof real?))
= 10

See [§12 “Compatibility Module™| for the original documentation. Replace this with
contour-intervals.

(surface f
[#:samples samples
#:width width
#:color colorl]) — renderer3d?
f : (real? real? . -> . real?)
samples : (and/c exact-integer? (>=/c 2)) = 50
width : (>=/c 0) =1
color : plot-color/c = 'black

See [§12 “Compatibility Module”| for the original documentation. Replace this with sur-
face3d.

239

11 Legacy Typed Interface

(require plot/typed) package: plot-gui-1ib

(require plot/typed/utils) package: plot-1ib
(require plot/typed/no-gui)

(require plot/typed/bitmap)

(require plot/typed/pict)

Do not use these modules in new programs. They are likely to disappear in a (distant)
future release. Use plot, plot/utils, plot/no-gui, plot/bitmap and plot/pict in-
stead.

Plot versions 6.1.1 and earlier were written in untyped Racket, and exposed a typed interface
through these modules. Now that Plot is written in Typed Racket, a separate typed inter-
face is no longer necessary. However, the above modules are still available for backwards
compatibility.

240

https://pkgs.racket-lang.org/package/plot-gui-lib
https://pkgs.racket-lang.org/package/plot-lib

12 Compatibility Module

(require plot/compat) package: [plot-compat
This module provides an interface compatible with Plot 5.1.3 and earlier.
Do not use this module in new programs. It is likely to disappear in a near future release.

Do not try to use both plot and plot/compat in the same program. The new features
in Plot 5.2 and later require the objects plotted in plot have to be a different data type than
the objects plotted in plot/compat. They do not coexist easily, and trying to make them do
so will result in errors.

12.1 Plotting

(plot data

#:width width
:height height
:X-min x-min

—

!X-max x-max
:y-min y-min

(y-max y-max

:x-label x-label

:y-label y-label

:title title

:fgcolor fgcolor

:bgcolor bgcolor

:1lncolor Incolor

cout-file out-file]) — (is-a?/c image-snipi)
data : (-> (is-a?/c 2d-plot-area%) void?)

width : real? = 400

height : real? = 400

H o HF HH O HHFHH R H

x-min : real? = -5
x-max : real? =5
y-min : real? = -5
y-max : real? =5
x-label : string? = "X axis"
y-label : string? = "Y axis"

title : string? = ""

fgcolor : (list/c byte? byte? byte?) = '(0 0 0)
bgcolor : (list/c byte? byte? byte?) = '(255 255 255)
Incolor : (list/c byte? byte? byte?) = '(255 0 0)

out-file : (or/c path-string? output-port? #f) = #f

241

https://pkgs.racket-lang.org/package/plot-compat

Plots data in 2D, where data is generated by functions like points or line.

A data value is represented as a procedure that takes a 2d-plot-areay instance and adds
plot information to it.

The result is an image-snip? for the plot. If an #:out-file path or port is provided, the
plot is also written as a PNG image to the given path or port.

The #:1ncolor keyword argument is accepted for backward compatibility, but does noth-
ing.

(plot3d data

:width width
:height height
:x-min x-min
(X-max x-max
:y-min y-min
!y-max y-max
:z-min z-min
!z-max z-max
ralt alt

:az az

:x-label x-label
:y-label y-label
:z-label z-label
:title title
:fgcolor fgcolor
:bgcolor bgcolor
:1ncolor Incolor
rout-file out-file]) — (is-a?/c image-snip¥)
data : (-> (is-a?/c 3d-plot-areal) void?)
width : real? = 400
height : real? = 400

N e E E E E E R R

x-min : real? = -5
x-max . real? =5
y-min : real? = -5
y-max : real? =5
z-min : real? = -5

z-max . real? =5
alt : real? = 30
az : real? = 45

x-label : string? = "X axis"
y-label : string? = "Y axis"
z-label : string? = "Z axis"

title : string? = ""
fgcolor : (list/c byte? byte? byte?) (00 0)
bgcolor : (list/c byte? byte? byte?) = '(255 255 255)

242

Incolor : (list/c byte? byte? byte?) = '(255 0 0)
out-file : (or/c path-string? output-port? #f) = #f

Plots data in 3D, where data is generated by a function like surface. The arguments alt
and az set the viewing altitude (in degrees) and the azimuth (also in degrees), respectively.

A 3D data value is represented as a procedure that takes a 3d-plot-area, instance and
adds plot information to it.

The #:1ncolor keyword argument is accepted for backward compatibility, but does noth-
ing.

(points vecs [#:sym sym #:color color])

— (-> (is-a?/c 2d-plot-area’) void?)
vecs : (listof (vectorof real?))
sym : (or/c char? string? exact-integer? symbol?) = 'square
color : plot-color? = 'black

Creates 2D plot data (to be provided to plot) given a list of points specifying locations.
The sym argument determines the appearance of the points. It can be a symbol, an ASCII
character, or a small integer (between -1 and 127). The following symbols are known:
'pixel, 'dot, 'plus, 'asterisk, 'circle, 'times, 'square, 'triangle, 'oplus,
'odot, 'diamond, 'bstar, '6star, 'fullsquare, 'bullet, 'fullbstar, 'circlel,
'circle2, 'circled, 'circled, 'circleb, 'circleb, 'circle7, 'circle8, 'left-
arrow, 'rightarrow, 'uparrow, 'downarrow.

(line f
#:samples samples
:width width
:color color
:mode mode
:mapping mapping
:t-min t-min
#:t-max t-max]) — (-> (is-a?/c 2d-plot-areal,) void?)
f : (-> real? (or/c real? (vector/c real? real?)))
samples : (and/c exact-integer? (>=/c 2)) = 150
width : (>=/c 0) =1

—

H O H O H

color : plot-color/c = 'red

mode : (one-of/c 'standard 'parametric) = 'standard
mapping : (one-of/c 'cartesian 'polar) = 'cartesian
t-min : real? = -5

t-max : real? =5

Creates 2D plot data to draw a line.

243

The line is specified in either functional, i.e. y = f(x), or parametric, i.e. x,y = f(f), mode.
If the function is parametric, the mode argument must be set to 'parametric. The t-min
and t-max arguments set the parameter when in parametric mode.

(error-bars vecs [#:color color])

— (-> (is-a?/c 2d-plot-area%) void?)
vecs : (listof (vector/c real? real? real?))
color : plot-color? = 'black

Creates 2D plot data for error bars given a list of vectors. Each vector specifies the center of
the error bar (x,y) as the first two elements and its magnitude as the third.

(vector-field f
[#:samples samples
#:width width
#:color color
#:style style])
— (-> (is-a?/c 2d-plot-areal,) void?)
f : (-> (vector/c real? real?) (vector/c real? real?))
samples : (and/c exact-integer? (>=/c 2)) = 20
width : exact-positive-integer? = 1
color : plot-color? = 'red
style : (one-of/c 'scaled 'normalized 'real) = 'scaled

Creates 2D plot data to draw a vector-field from a vector-valued function.

(contour f
[#:samples samples
#:width width
#:color color
#:levels levels])
— (-> (is-a?/c 2d-plot-area’,) void?)
f : (-> real? real? real?)
samples : exact-nonnegative-integer? = 50
width : (>=/c 0) =1
color : plot-color/c = 'black
levels : (or/c (and/c exact-integer? (>=/c 2)) (listof real?))
= 10

Creates 2D plot data to draw contour lines, rendering a 3D function a 2D graph cotours
(respectively) to represent the value of the function at that position.

(shade f [#:samples samples #:levels levels])
— (-> (is-a?/c 2d-plot-area’) void?)
f : (-> real? real? real?)

244

samples : (and/c exact-integer? (>=/c 2)) = 50
levels : (or/c (and/c exact-integer? (>=/c 2)) (listof real?))
= 10

Creates 2D plot data to draw like contour, except using shading instead of contour lines.

(surface f
[#:samples samples
#:width width
#:color color])
— (-> (is-a?/c 3d-plot-area%) void?)
f : (-> real? real? real?)
samples : (and/c exact-integer? (>=/c 2)) = 50
width : (>=/c 0) =1
color : plot-color/c = 'black

Creates 3D plot data to draw a 3D surface in a 2D box, showing only the fop of the surface.

(mix data ...) — (-> any/c void?)
data : (-> any/c void?)

Creates a procedure that calls each data on its argument in order. Thus, this function can
composes multiple plot datas into a single data.

(plot-color? v) — boolean?
v : any/c

Returns #t if v is one of the following symbols, #f otherwise:

'white 'black 'yellow 'green 'aqua 'pink
'wheat 'grey 'blown 'blue 'violet 'cyan
'turquoise 'magenta 'salmon 'red

12.2 Miscellaneous Functions

(derivative f [h]) — (-> real? real?)
f : (-> real? real?)
h : real? = le-6

Creates a function that evaluates the numeric derivative of f. The given h is the divisor used
in the calculation.
(gradient f [h])
— (-> (vector/c real? real?) (vector/c real? real?))
f : (-> real? real? real?)
h : real? = le-6

245

Creates a vector-valued function that computes the numeric gradient of f.

(make-vec fx fy)

— (-> (vector/c real? real?) (vector/c real? real?))
fx : (-> real? real? real?)
fy : (-> real? real? real?)

Creates a vector-valued function from two parts.

246

	1 Introduction
	1.1 Plotting 2D Graphs
	1.2 Terminology
	1.3 Plotting 3D Graphs
	1.4 Plotting Multiple 2D Renderers
	1.5 Renderer and Plot Bounds
	1.6 Plotting Multiple 3D Renderers
	1.7 Plotting to Files
	1.8 Colors and Styles

	2 2D and 3D Plotting Procedures
	2.1 GUI Plotting Procedures
	2.2 Non-GUI Plotting Procedures
	2.3 Pict-Plotting Work-a-Likes
	2.4 Bitmap-Plotting Work-a-Likes

	3 2D Renderers
	3.1 2D Renderer Function Arguments
	3.2 2D Point Renderers
	3.3 2D Line Renderers
	3.4 2D Interval Renderers
	3.5 2D Contour (Isoline) Renderers
	3.6 2D Rectangle Renderers
	3.7 Violin and Box Plot Renderers
	3.8 2D Plot Decoration Renderers
	3.9 Interactive Overlays for 2D plots

	4 3D Renderers
	4.1 3D Renderer Function Arguments
	4.2 3D Point Renderers
	4.3 3D Line Renderers
	4.4 3D Surface Renderers
	4.5 3D Contour (Isoline) Renderers
	4.6 3D Isosurface Renderers
	4.7 3D Rectangle Renderers

	5 Nonrenderers
	6 Axis Transforms and Ticks
	6.1 Axis Transforms
	6.2 Axis Ticks
	6.2.1 Linear Ticks
	6.2.2 Log Ticks
	6.2.3 Date Ticks
	6.2.4 Time Ticks
	6.2.5 Currency Ticks
	6.2.6 Other Ticks
	6.2.7 Tick Combinators
	6.2.8 Tick Data Types and Contracts

	6.3 Invertible Functions

	7 Plot Utilities
	7.1 Formatting
	7.2 Sampling
	7.3 Plot Colors and Styles
	7.4 Plot-Specific Math
	7.4.1 Real Functions
	7.4.2 Vector Functions
	7.4.3 Intervals and Interval Functions

	7.5 Dates and Times
	7.6 Plot Metrics

	8 Plot and Renderer Parameters
	8.1 Compatibility
	8.2 Output
	8.3 General Appearance
	8.4 Lines
	8.5 Intervals
	8.6 Points and Point Labels
	8.7 Vector Fields & Arrows
	8.8 Error Bars
	8.9 Candlesticks
	8.10 Color fields
	8.11 Contours and Contour Intervals
	8.12 Contour Surfaces
	8.13 Rectangles
	8.14 Non-Border Axes
	8.15 Surfaces

	9 Plot Contracts
	9.1 Plot Element Contracts
	9.2 Appearance Argument Contracts
	9.3 Appearance Argument List Contracts

	10 Porting From Plot <= 5.1.3
	10.1 Replacing Deprecated Functions
	10.2 Ensuring That Plots Have Bounds
	10.3 Changing Keyword Arguments
	10.4 Fixing Broken Calls to points
	10.5 Replacing Uses of plot-extend
	10.6 Deprecated Functions

	11 Legacy Typed Interface
	12 Compatibility Module
	12.1 Plotting
	12.2 Miscellaneous Functions

