
Quickscript, a scripting plugin for DrRacket
Version 9.0.0.11

January 4, 2026

Laurent Orseau ălaurent.orseau@gmail.comą

(require quickscript) package: quickscript

1

mailto:laurent.orseau@gmail.com
https://pkgs.racket-lang.org/package/quickscript

1 Introduction

Quickscript’s makes it easy to extend DrRacket with small Racket scripts to automate some
actions in the editor, while avoiding the need to restart DrRacket.

Creating a new script is as easy as a click on Scripts | New script. . . . Each script is automati-
cally added as an item to the Scripts menu, without needing to restart DrRacket. A keyboard
shortcut can be assigned to a script (via the menu item). By default, a script takes as input the
currently selected text, and outputs the replacement text. There is also direct access to some
elements of DrRacket GUI for advanced scripting, like DrRacket’s frame and the definition
or interaction editor.

2

2 Installation

Quickscript is installed automatically with DrRacket, so you don’t need to do anything.

2.1 Installing scripts: Quickscript Extra

You can use Quickscript on its own, but the Quickscript Extra package has a wide range of
useful scripts as well as some example scripts intended for customisation by the user.

To install it, either look for quickscript-extra in the DrRacket menu File|Package Man-
ager, or run the raco command:

raco pkg install quickscript-extra

Then click on Scripts|Manage|Compile scripts. (There is no need to restart DrRacket.)

2.2 Installing scripts: More scripts

More scripts can be found on the Racket wiki—you can add your own scripts there too if
you think they may be useful to others.

3

https://pkgs.racket-lang.org/package/quickscript-extra
https://github.com/racket/racket/wiki/Quickscript-Scripts-for-DrRacket

3 Make your own script: First simple example

Click on the Scripts|Manage|New script. . . menu item, and enter Reverse for the script
name. This creates and opens the file reverse.rkt in the user’s scripts directory. Also, a new
item automatically appears in the Scripts menu.

In the .rkt file that just opened in DrRacket, modify the define-script definition to the
following: Don’t name your

script function
reverse, it would
shadow Racket’s
own and make the
script hang.

If you later change
the #:label
property, you will
need to reload the
menu by clicking
on
Scripts |Manage |Reload
menu after saving
the file).

(define-script reverse-selection
#:label "Reverse"
(𝜆 (selection)

(list->string (reverse (string->list selection)))))

and save the file.

Then go to a new tab, type some text, select it, and click on Scripts|Reverse, and voilà!

4

4 Into more details

Quickscript adds a Scripts menu to the main DrRacket window. This menu has several items,
followed by the list of scripts.

The New script item asks for a script name and creates a corresponding .rkt file in the user’s
script directory, and opens it in DrRacket.

Each scripts is defined with define-script, which among other things adds an entry in
DrRacket’s Scripts menu. A single script file can contain several calls to define-script.

By default, the new script is reduced to its simplest form. However, scripts can be extended
with several optional properties and arguments. When all of them are used, a script can look
like this:

(define-script a-complete-script
; Properties:
#:label "Full script"
#:help-string "A complete script showing all properties and ar-

guments"
#:menu-path ("Submenu" "Subsubmenu")
#:shortcut #\a
#:shortcut-prefix (ctl shift)
#:output-to selection
#:persistent
#:os-types (unix macosx windows)
; Procedure with its arguments:
(𝜆 (selection #:frame fr

#:editor ed
#:definitions defs
#:interactions ints
#:file f)

"Hello world!"))

Note that the arguments of the properties are literals, not expressions, so they must not be
quoted. Below we detail first the procedure and its arguments and then the script’s properties.

(define-script name
property ...
proc)

5

property = #:label label-string
| #:help-string string
| #:menu-path (label-string ...)
| #:shortcut char | symbol | #f
| #:shortcut-prefix (shortcut-prefix ...)
| #:persistent? #t | #f
| #:output-to output-to
| #:os-types (os-type ...)

shortcut-prefix = alt | cmd | meta | ctl | shift | option

output-to = selection | new-tab | message-box | clipboard | #f

os-type = macosx | unix | windows

proc = (𝜆 (selection-id
[#:editor editor-id]
[#:definitions definitions-id]
[#:interactions interactions-id]
[#:frame frame-id]
[#:file file-id])

body-expr ...
return-expr)

See the following subsections for a complete description.

Observe again that the arguments of the properties are literals and not expressions. This
is because the script file is read twice for different purposes. The first time, Quickscript
reads the script file to extract the minimum information necessary to build the menu items
in DrRacket. No Racket operation is performed at this stage so as to be as light and quick
as possible. Then, when the corresponding menu item is clicked, Quickscript reads the
script file a second time, this time to actually read and visit the Racket module and call the
corresponding procedure. That is, the script modules are instantiated only on demand to
reduce the loading time and memory footprint.

4.1 The script’s procedure

When clicking on a script label in the Scripts menu in DrRacket, its corresponding procedure
is called. The procedure takes at least the selection argument, which is the string that is
currently selected in the current editor. The procedure must returns either #f or a string?.
If it returns #f, no change is applied to the current editor, but if it returns a string, then the
current selection is replace with the return value.

If some of the above keywords are specified in the procedure, Quickscript detects them and

6

passes the corresponding values, so the procedure can take various forms:

(𝜆 (selection))
(𝜆 (selection #:frame fr))
(𝜆 (selection #:file f))
(𝜆 (selection #:editor ed #:file f))
....

Here is the meaning of the keyword arguments:

• #:file : (or/c path? #f)

The path to the current file of the definition window, or #f if there is no such file (i.e.,
unsaved editor).

Example:

(define-script current-file-example
#:label "Current file example"
#:output-to message-box
(𝜆 (selection #:file f)

(string-append "File: " (if f (path->string f) "no-file")
"\nSelection: " selection)))

See also: file-name-from-path, filename-extension, path->string, split-
path.

• #:definitions : text%

The text% editor of the current definition window. See text% for more details.

• #:interactions : text%

The text% editor of the current interaction window. Similar to #:definitions.

• #:editor : text%

The text% current editor, either the definition or the interaction editor. Similar to
#:definitions.

• #:frame : drracket:unit:frame<%>

DrRacket’s frame. For advanced scripting.

Example:

(require racket/class)
(define-script number-tabs

#:label "Number of tabs"
#:output-to message-box
(𝜆 (selection #:frame fr)

(format "Number of tabs in DrRacket: ~a"
(send fr get-tab-count))))

7

Note: A script procedure can have additional optional arguments (keyword or not) and rest
arguments, but not additional mandatory arguments. For example:

(define-script append-plop
#:label "Append plop"
(𝜆 (selection [more ""] #:even-more [even-more ""])

(string-append selection "_plop" more even-more)))

(define-script append-plop-plip
#:label "Append plop plip ploop"
(𝜆 (selection)

; Call the first script's procedure:
(append-plop selection "_plip" #:even-more "_ploop")))

4.2 The script’s properties

The properties are mere data and cannot contain expressions.

Most properties (#:label, #:shortcut, #:shortcut-prefix, #:help-string) are the
same as for the menu-item% constructor. In particular, a keyboard shortcut can be assigned
to an item.

If a property does not appear in the dictionary, it takes its default value.

There are some additional properties:

• #:menu-path : (listof string?) = () This is the list of submenus in which
the script’s label will be placed, under the Script menu.

Note that different scripts in different files can share the same submenus.

• #:output-to : (or/c selection new-tab message-box clipboard #f) =
selection

If selection, the output of the procedure replaces the selection in the current editor
(definitions or interactions), or insert the output at the cursor if there is no selection. If
new-tab, the return value is written in a new tab. If message-box, the return value (if
a string) is displayed in a message-box. If clipboard, the return value (if a string)
is copied to the clipboard. If #f, the return value is not used.

If this value is changed, make sure to reload the menu with Scripts|Manage|Reload
menu.

• #:persistent

If they keyword #:persistent is not provided, each invocation of the script is done
in a fresh namespace.

8

But if #:persistent is provided, a fresh namespace is created only the first time it is
invoked, and the same namespace is re-used for the subsequent invocations. Note that
a single namespace is kept per file, so if different scripts in the same file are marked
as persistent, they will all share the same namespace (and, thus, variables). Also note
that a script marked as non-persistent will not share the same namespace as the other
scripts of the same file marked as persistent.

Consider the following script:

(define count 0)

(define-script persistent-counter
#:label "Persistent counter"
#:persistent
#:output-to message-box
(𝜆 (selection)

(set! count (+ count 1))
(number->string count)))

If the script is persistent, the counter increases at each invocation of the script via the
menu, whereas it always displays 1 if the script is not persistent.

Note: Persistent scripts can be stopped and reset by clicking on the
Scripts|Manage|Stop persistent scripts menu item. In the previous example, this
will reset the counter. Make sure to stop a persistent script after editing it.
Scripts|Manage|Reload menu and Scripts|Manage|Compile scripts also stop persis-
tent scripts.

Technical point: The script’s procedure is called outside of the namespace that was
used to dynamic-require it, and inside DrRacket frame’s namespace so as to have
access to objects in this frame.

• #:os-types (listof (one-of/c unix macosx windows))

This keyword must be followed by a list of supported os-types. Defaults to all types,
i.e. (unix macosx windows).

If changes are made to these properties, the Scripts menu will probably need to be reloaded
by clicking on Scripts|Manage|Reload menu.

9

5 Hooks

A script function defined with define-script always adds a menu item, and is called only
when the menu item is clicked or called.

By contrast, script functions defined with define-hook do not add a menu item, but are run
automatically on specific events — see the list below.

(define-hook name
property ...
proc)

property = #:help-string string
| #:persistent? #t | #f
| #:os-types (os-type ...)

os-type = macosx | unix | windows

proc = (𝜆 ([#:editor editor-id]
[#:definitions definitions-id]
[#:interactions interactions-id]
[#:frame frame-id]
[#:file file-id]
other-kwargs ...)

body-expr ...
return-expr)

Defines a hook. The hook identifier name must be one of the supported hooks (see list
below).

See define-script for information regarding the keyword arguments of the script func-
tion, and the properties of the script. Note that a hook function does not have a selection-
id argument. Each hook may receive additional optional arguments in other-kwargs ,
but as for scripts, these arguments are optional and do not need to be specified in the hook
function’s signature: Quickscript recognizes which keywords are asked for by the hook.

The additional keywords accepted by the hook function are the arguments of the original
method or function.

For example, the following hook displays a message box when a file is loaded in DrRacket:

(define-hook after-load-file
(𝜆 (#:file f #:in-new-tab? new-tab?)

(message-box "on-load-file" (format "f: ~a\n new-tab?:
~a" f new-tab?))))

10

DrRacket’s frame is always available via the #:frame keyword.

Note: While scripts default keyword arguments always correspond to current tab (the one
in focus), hooks may be called on other tabs.

List of supported hooks, with the additional keywords within parentheses:

• after-load-file (#:in-new-tab?) : called after a file is loaded in an existing tab
or in a new tab.

• on-save-file (#:save-filename #:format) : called before the file is saved.

• after-save-file () : called after a file is saved.

• after-create-new-tab () : called when a new tab is created.

• on-tab-change (#:tab-from #:tab-to) : called when the keyboard focus
changes from #:tab-from to #:tab-to.

• on-tab-close (#:tab) : called before the tab is closed.

• on-startup () : called when DrRacket starts, but before the frame is shown.

• after-create-new-drracket-frame (#:show): called after a new DrRacket
frame is created.

• on-close () : called when a DrRacket frame is closed.

11

6 Script library

When the user creates a new script, the latter is placed into a sub-directory of
(find-system-path 'pref-dir). A direct access to this folder is provided via the
Scripts|Manage|Open script. . . menu entry.

Additional directories to look for scripts can be added via the Scripts|Manage|Library menu
entry. When a directory is added to the library, all its .rkt files (non-recursively) are consid-
ered as scripts. Specific files can be excluded from the library.

12

7 Shadow scripts

When a script is installed from a third party package (like quickscript-extra), it comes with
its set of own values for its properties. These values may not suit the user who may want to
redefine some of them, like the menu path or the keyboard shortcuts. An obvious choice for
the user is to copy/paste the entire script, but this would prevent from benefiting from further
bug fixes and enhancements made by the writer of the original script.

To solve this problem, the user can instead make a shadow script, which creates a new script
in the user’s directory, with its own set of properties that can be changed by the user, but the
procedure of this script is bound to that of the original script.

To make a shadow script, open the script library in Scripts|Manage|Library, navigate to the
third-party script and click on Shadow.

13

8 Updating the quickscript package

To update Quickscript once already installed, either do so through the File|Package Manager
menu in DrRacket, or run raco pkg update quickscript.

The user’s scripts will not be modified in the process.

14

9 Distributing your own scripts

The simplest way to distribute a small script s to publish it as a gist or on PasteRack, and
share the link. A user can then copy/paste the contents into a new script. Don’t forget to
include a permissive license such as MIT/Apache 2.

15

https://gist.github.com/
http://pasterack.org/

10 License

Apache-2.0 or MIT License, at your option.

Copyright (c) 2012-2023 by Laurent Orseau <laurent.orseau@gmail.com>.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONIN-
FRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

16

mailto:laurent.orseau@gmail.com

	1 Introduction
	2 Installation
	2.1 Installing scripts: Quickscript Extra
	2.2 Installing scripts: More scripts

	3 Make your own script: First simple example
	4 Into more details
	4.1 The script's procedure
	4.2 The script's properties

	5 Hooks
	6 Script library
	7 Shadow scripts
	8 Updating the quickscript package
	9 Distributing your own scripts
	10 License

