SASL: Simple Authentication and Security Layer

Version 9.0.0.11
Ryan Culpepper <ryanc@racket-lang . org>

January 4, 2026

This library provides implementations of some SASL (RFC 4422) mechanisms. Currently
only client support is implemented; future versions of this library may add server support.

mailto:ryanc@racket-lang.org
https://tools.ietf.org/html/rfc4422

1 SASL Introduction

This library implements non-trivial (multi-message) authentication mechanisms using SASL
protocol contexts. Since in general SASL is embedded as a sub-protocol of some applica-
tion protocol, this library does not handle I/O directly. Instead, the user is responsible for
transferring messages between the SASL context and the application protocol.

Note that some SASL authentication mechanisms leave the communication of authentication
success or failure to the application layer. Even when a mechanism normally communicates
the result of authentication, some applications choose to convey failure at the application
layer.

The following is a sketch of a typical embedding of SASL in an application protocol:

1. server — client: ... Hello. I understand the following SASL mechanisms: SCRAM-
SHA-1 and CRAM-MD5

2. client — server: I choose SCRAM-SHA-1. My initial SASL message is “<initial
SCRAM-SHA-1 message>".

3. server — client: My SASL response is “<SCRAM-SHA-1 response>".
4. client — server: My final SASL message is “final <SCRAM-SHA-1 message>".
5. server — client: My final SASL response is “<final SCRAM-SHA-1 response>".
6. client — server: Great! Let’s get to work....
In particular, the application layer advertises and selects SASL mechanisms, embeds SASL

messages using some application-specific framing, and resumes after authentication is com-
plete.

2 SASL Protocol Contexts

(require sasl) package: sasl-1ib

(sasl-ctx? v) — boolean?
v : any/c

Returns #t if v is a SASL protocol context, #f otherwise.

(make-sasl-ctx aux out next) — sasl-ctx?
aux : any/c
out : (or/c #f bytes? string?)
next : sasl-next/c

Returns a custom SASL protocol context. Use this procedure when you need to implement
a SASL mechanism that is not directly supported by this library.

The aux argument is an implementation-dependent value that is passed in calls to the con-
text’s transition procedures.

The out argument provides the initial outgoing message to be sent. If its value is #f, then
the state of the context is one in which it does not send an initial message. Otherwise, the
state of the context is 'send/receive or 'send/done, depending on the value of next.

The next argument transitions the context into the next state when a message is received.
If its value is 'done, the context is transitioned into a state where it may not receive new
messages. If its value is a procedure, then the next time a message is received, that proce-
dure will be called with aux and the received message as arguments. Its two return values
will be used as the value of the next outgoing message, and the next transition procedure,
respectively.

When next raises an exception, the context is automatically transitioned into the 'error
state and an exn:fail:sasl:fatal? exception is raised.

Added in version 1.3 of package sasl-1ib.

(sasl-next-message ctx) — (or/c string? bytes?)
ctx : sasl-ctx?

Returns the next outgoing message to be sent. Subsequent calls to sasl-next-message re-
turn the same message until the outgoing message is updated after a call to sasl-receive-
message.

This function may be called only when (sasl-state ctx) is 'send/receive or
'send/done; otherwise, an exception is raised.

https://pkgs.racket-lang.org/package/sasl-lib

(sasl-receive-message ctx message) — void?
ctx : sasl-ctx?
message : (or/c string? bytes?)

Update the SASL context with a newly received message.

If message represents progress or success, then ctx is updated and subseqgent calls to sas1-
next-message return a new message (or fail, if the protocol is done).

If message indicates authentication failure or if message is ill-formed or invalid, an excep-
tion is raised and ctx enters a permanent error state (see sasl-state). The user must take
appropriate action after either kind of failure. For example, upon authentication failure the
client might close the connection and try again with different credentials.

This function may be called only when (sasl-state ctx) is 'receive or
'send/receive; otherwise, an exception is raised.

(sasl-state ctx)
— (or/c 'receive 'send/receive 'send/done 'done 'error)
ctx : sasl-ctx?

Returns a symbol indicating the state that ctx is in with respect to its protocol. The number
of states is due to the following factors: the initial SASL message may be sent from the
client or the server (depending on the mechanism); the final SASL message mey be sent
from the client or the server (depending on the mechanism); and the SASL context doesn’t
know whether an outgoing message has been forwarded to the application layer and sent.

The possible states consist of the following:

* 'receive: the protocol starts with ctx receiving a message

e 'send/receive: send the current outgoing message (sasl-next-message) if it
hasn’t already been sent, then receive

¢ 'send/done: send the current outgoing message (sasl-next-message) if it hasn’t
already been sent, then the SASL protocol is done

* 'done: the SASL protocol ended with the last received message

e 'error: a fatal error occurred

sasl-next/c : contract?
= (or/c 'done
(-> any/c
(or/c bytes? string?)
(values (or/c #f bytes? string?) sasl-next/c)))

The contract for custom SASL mechanism state transition procedures.

(struct exn:fail:sasl:fatal exn:fail (msg)
#:extra-constructor-name make-exn:fail:sasl:fatal)
msg . string?

The exception that is raised by SASL contexts when a fatal error occurs.

3 SASLprep

(require sasl/saslprep) package: [sas1-1ib

(saslprep s
[#:allow-unassigned? allow-unassigned?]) — string?
s : string?
allow-unassigned? : boolean? = #f

Implements the SASLprep (RFC 4013)| algorithm for preparing user names and passwords
for comparison, hashing, etc.

In general, the mechanism implementations in this library call saslprep on their arguments
when appropriate.

https://pkgs.racket-lang.org/package/sasl-lib
https://tools.ietf.org/html/rfc4013

4 SCRAM Authentication

(require sasl/scram) package: sas1-11ib

This module implements the SCRAM family of authentication mechanisms, namely |SCRAM-
SHA-1 and SCRAM-SHA-1-PLUS, |SCRAM-SHA-256 and SCRAM-SHA-256-PLUS and SCRAM-
SHA-512 and SCRAM-SHA-512-PLUS.

The SCRAM protocol family has the following structure:

1. client — server: initial message with nonce prefix
2. server — client: reply with complete nonce and PBKDF2 salt and iteration count
3. client — server: client signature

4. server — client: authentication result and server signature

In particular: the client sends the first message; authentication success or failure is conveyed
at in SASL protocol layer; and the server authenticates itself to the client. Messages are
represented as strings.

(make-scram-client-ctx digest
authentication-id
password
[#:authorization-id authorization-id
#:channel-binding channel-binding])
— sasl-ctx?
digest : (or/c 'shal 'sha256 'shab512)
authentication-id : string?
password : string?
authorization-id : (or/c string? #f) = #f
channel-binding : (or/c #f #t (list/c symbol? bytes?)) = #f

Creates a SCRAM protocol context. The digest argument selects between SCRAM-SHA-
1, SCRAM-SHA-256 and SCRAM-SHA-512, respectively. The authentication-id, pass-
word, and (if provided) authorization-id arguments are automatically processed using
saslprep.

The channel-binding argument must have the form (1ist cb-type cb-data) if the
server offered and the client selected a mechanism with channel binding, indicated with
a -PLUS suffix, such as SCRAM-SHA-1-PLUS. The cb-type must be a symbol naming a
channel binding type, such as 'tls-unique, and cb-data must be a byte string containing
the corresponding data. The available channel binding types depend on the application and
the channel. For example, one common type of channel is TLS; use ss1-channel-binding

https://pkgs.racket-lang.org/package/sasl-lib
https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc7677
https://datatracker.ietf.org/doc/html/draft-melnikov-scram-sha-512-02
https://datatracker.ietf.org/doc/html/draft-melnikov-scram-sha-512-02

to get channel binding data for a TLS connection. The channel-binding argument should
be #t if the client supports channel binding but the server did not offer a PLUS option. The
channel-binding argument should be #f if the client does not support channel binding
(for example, if the channel is not a TLS connection).

Changed in version 1.1 of package sasl-1ib: Added the #:channel-binding argument and support for PLUS
mechanism variants.
Changed in version 1.2: Added support for the 'sha512 digest.

5 CRAM-MD5 Authentication

(require sasl/cram-md5) package: sasl-1ib
This module implements the (CRAM-MD5 authentication mechanism.

The CRAM-MD5 protocol has the following structure:

* server — client: challenge

* client — server: response

In particular, the server sends the first message, and the server communicates authentication
success or failure at the application protocol layer. Messages are represented as strings.

(make-cram-md5-client-ctx authentication-id
password) — sasl-ctx?
authentication-id : string?
password : string?

Creates a CRAM-MD5 protocol context. The authentication-id and password arguments
are automatically processed using saslprep.

https://pkgs.racket-lang.org/package/sasl-lib
https://tools.ietf.org/html/draft-ietf-sasl-crammd5-10

6 PLAIN Authentication

(require sasl/plain) package: [sas1-1ib
This module implements the PLAIN/ mechanism.

Since the PLAIN mechanism consists of a single message from the client to the server, it is
implemented as a simple procedure rather than a SASL protocol context. The authentication
outcome is conveyed at the application protocol layer.

(plain-client-message authentication-id
password
[#:authorization-id authorization-id])
— string?
authentication-id : string?
password : string?
authorization-id : (or/c string? #f) = #f

Constructs a PLAIN client message containig the authentication-id, password, and (if
present) authorization-id. The arguments are automatically processed with saslprep.

10

https://pkgs.racket-lang.org/package/sasl-lib
https://tools.ietf.org/html/rfc4616

	1 SASL Introduction
	2 SASL Protocol Contexts
	3 SASLprep
	4 SCRAM Authentication
	5 CRAM-MD5 Authentication
	6 PLAIN Authentication

