
Scheme: Compatibility Libraries and Executables
Version 9.0.0.11

January 4, 2026

Racket was once called “PLT Scheme,” and a number of libraries with names starting
scheme provide compatibility with the old name. A few old executables are also provided.

Do not use #lang scheme to start new projects; #lang racket is the preferred language.

1



Contents

1 scheme 6

2 scheme/base 7

3 scheme/async-channel 8

4 scheme/bool 9

5 scheme/class 10

6 scheme/cmdline 11

7 scheme/contract 12

8 scheme/control 13

9 scheme/date 14

10 scheme/dict 15

11 scheme/file 16

12 scheme/fixnum 17

13 scheme/flonum 18

14 scheme/foreign 19

15 scheme/function 20

16 scheme/future 21

2



17 scheme/generator 22

18 scheme/gui 23

19 scheme/gui/base 24

20 scheme/gui/dynamic 25

21 scheme/help 26

22 scheme/include 27

23 scheme/init 28

24 scheme/language-info 29

25 scheme/list 30

26 scheme/load 31

27 scheme/local 32

28 scheme/match 33

29 scheme/math 34

30 scheme/mpair 35

31 scheme/nest 36

32 scheme/package 37

33 scheme/path 38

3



34 scheme/port 39

35 scheme/pretty 40

36 scheme/promise 41

37 scheme/provide 42

38 scheme/provide-syntax 43

39 scheme/provide-transform 44

40 scheme/require 45

41 scheme/require-syntax 46

42 scheme/require-transform 47

43 scheme/runtime-config 48

44 scheme/runtime-path 49

45 scheme/sandbox 50

46 scheme/serialize 51

47 scheme/set 52

48 scheme/signature 53

49 scheme/shared 54

50 scheme/splicing 55

4



51 scheme/string 56

52 scheme/struct-info 57

53 scheme/stxparam 58

54 scheme/stxparam-exptime 59

55 scheme/surrogate 60

56 scheme/system 61

57 scheme/tcp 62

58 scheme/trait 63

59 scheme/udp 64

60 scheme/unit 65

61 scheme/unit-exptime 66

62 scheme/unsafe/ops 67

63 scheme/vector 68

64 mred 69

65 Compatibility Executables 70

5



1 scheme

(require scheme) package: scheme-lib

The scheme library re-exports racket, except based on scheme/base instead of
racket/base, the struct and struct/ctc from scheme/unit is exported, scheme/set
is not re-exported, scheme/system is not re-exported, pretty-print is re-directed in as
scheme/pretty, and scheme/nest is re-exported.

6

https://pkgs.racket-lang.org/package/scheme-lib


2 scheme/base

(require scheme/base) package: scheme-lib

The scheme/base library re-exports racket/base, except that racket’s struct, hash,
hasheq, hasheqv, in-directory, and local-require are not exported, and make-
base-namespace, make-base-empty-namespace #%module-begin are different.

(make-base-empty-namespace) Ñ namespace?

Like make-base-empty-namespace from racket/base, but with scheme/base attached.

(make-base-namespace) Ñ namespace?

Like make-base-namespace from racket/base, but with scheme/base attached.

(#%module-begin form ...)

Like #%module-begin from racket/base, but declares a configure-runtime submod-
ule that uses scheme/runtime-config instead of racket/runtime-config, and it does
not check for an immediate declaration of configure-runtime among the forms.

7

https://pkgs.racket-lang.org/package/scheme-lib


3 scheme/async-channel

(require scheme/async-channel) package: scheme-lib

The scheme/async-channel library re-exports racket/async-channel.

8

https://pkgs.racket-lang.org/package/scheme-lib


4 scheme/bool

(require scheme/bool) package: scheme-lib

The scheme/bool library re-exports racket/bool.

9

https://pkgs.racket-lang.org/package/scheme-lib


5 scheme/class

(require scheme/class) package: scheme-lib

The scheme/class library re-exports racket/class, except that writable<%> is ex-
ported under the name printable<%> (and printable<%> from racket/class is not
exported).

printable<%> : interface?

An alias for writable<%>.

10

https://pkgs.racket-lang.org/package/scheme-lib


6 scheme/cmdline

(require scheme/cmdline) package: scheme-lib

The scheme/cmdline library re-exports racket/cmdline.

11

https://pkgs.racket-lang.org/package/scheme-lib


7 scheme/contract

(require scheme/contract) package: scheme-lib

The scheme/contract library re-exports racket/contract.

12

https://pkgs.racket-lang.org/package/scheme-lib


8 scheme/control

(require scheme/control) package: scheme-lib

The scheme/control library re-exports racket/control.

13

https://pkgs.racket-lang.org/package/scheme-lib


9 scheme/date

(require scheme/date) package: scheme-lib

The scheme/date library re-exports racket/date.

14

https://pkgs.racket-lang.org/package/scheme-lib


10 scheme/dict

(require scheme/dict) package: scheme-lib

The scheme/dict library re-exports racket/dict.

15

https://pkgs.racket-lang.org/package/scheme-lib


11 scheme/file

(require scheme/file) package: scheme-lib

The scheme/file library re-exports racket/file.

16

https://pkgs.racket-lang.org/package/scheme-lib


12 scheme/fixnum

(require scheme/fixnum) package: scheme-lib

The scheme/fixnum library re-exports racket/fixnum.

17

https://pkgs.racket-lang.org/package/scheme-lib


13 scheme/flonum

(require scheme/flonum) package: scheme-lib

The scheme/flonum library re-exports racket/flonum.

18

https://pkgs.racket-lang.org/package/scheme-lib


14 scheme/foreign

(require scheme/foreign) package: scheme-lib

The scheme/foreign library re-exports ffi/unsafe, ffi/unsafe/cvector, and
ffi/vector, except that unsafe! must be used to import the unsafe bindings of
ffi/unsafe and ffi/unsafe/cvector.

(unsafe!)

Makes unsafe bindings available.

(provide* provide-star-spec ...)

provide-star-spec = (unsafe id)
| (unsafe (rename-out [id external-id]))
| provide-spec

Like provide, but ids under unsafe are not actually provided. Instead, they are collected
for introduction into an importing module via a macro created by define-unsafer.

(define-unsafer id)

Cooperates with provide* to define id as a unsafe!-like form that introduces definitions
for each binding provided as unsafe. The define-unsafer form must occur after all the
provide* forms to which it refers.

19

https://pkgs.racket-lang.org/package/scheme-lib


15 scheme/function

(require scheme/function) package: scheme-lib

The scheme/function library re-exports racket/function.

20

https://pkgs.racket-lang.org/package/scheme-lib


16 scheme/future

(require scheme/future) package: scheme-lib

The scheme/future library re-exports racket/future.

21

https://pkgs.racket-lang.org/package/scheme-lib


17 scheme/generator

(require scheme/generator) package: scheme-lib

The scheme/generator library re-exports racket/generator.

22

https://pkgs.racket-lang.org/package/scheme-lib


18 scheme/gui

(require scheme/gui) package: gui-lib

The scheme/gui library re-exports racket/gui, except that it builds on
scheme/gui/base instead of racket/gui/base.

23

https://pkgs.racket-lang.org/package/gui-lib


19 scheme/gui/base

(require scheme/gui/base) package: gui-lib

The scheme/gui/base library re-exports racket/gui/base, except that it builds on
scheme instead of racket.

(make-gui-empty-namespace) Ñ namespace?

Like make-base-empty-namespace, but with scheme/class and scheme/gui/base
also attached to the result namespace.

(make-gui-namespace) Ñ namespace?

Like make-base-namespace, but with scheme/class and scheme/gui/base also re-
quired into the top-level environment of the result namespace.

24

https://pkgs.racket-lang.org/package/gui-lib


20 scheme/gui/dynamic

(require scheme/gui/dynamic) package: scheme-lib

The scheme/gui/dynamic library re-exports racket/gui/dynamic, except that gui-
dynamic-require extracts bindings from mred instead of scheme/gui/base.

(gui-dynamic-require sym) Ñ any
sym : symbol?

Like gui-dynamic-require from racket/gui/base, but to access exports of
scheme/gui/base.

25

https://pkgs.racket-lang.org/package/scheme-lib


21 scheme/help

(require scheme/help) package: scheme-lib

The scheme/help library re-exports racket/help.

26

https://pkgs.racket-lang.org/package/scheme-lib


22 scheme/include

(require scheme/include) package: scheme-lib

The scheme/include library re-exports racket/include.

27

https://pkgs.racket-lang.org/package/scheme-lib


23 scheme/init

(require scheme/init) package: scheme-lib

The scheme/init library re-exports racket/init, except that it builds on scheme instead
pf racket.

28

https://pkgs.racket-lang.org/package/scheme-lib


24 scheme/language-info

(require scheme/language-info) package: scheme-lib

The scheme/language-info library is like racket/language-info, except that it pro-
duces '(#(scheme/runtime-config configure #f)) for the 'configure-runtime
information key.

See also scheme/runtime-config.

29

https://pkgs.racket-lang.org/package/scheme-lib


25 scheme/list

(require scheme/list) package: scheme-lib

The scheme/list library re-exports racket/list.

30

https://pkgs.racket-lang.org/package/scheme-lib


26 scheme/load

(require scheme/load) package: scheme-lib

The scheme/load library re-exports racket/load.

31

https://pkgs.racket-lang.org/package/scheme-lib


27 scheme/local

(require scheme/local) package: scheme-lib

The scheme/local library re-exports racket/local.

32

https://pkgs.racket-lang.org/package/scheme-lib


28 scheme/match

(require scheme/match) package: scheme-lib

The scheme/match library re-exports racket/match.

33

https://pkgs.racket-lang.org/package/scheme-lib


29 scheme/math

(require scheme/math) package: scheme-lib

The scheme/math library re-exports racket/math.

34

https://pkgs.racket-lang.org/package/scheme-lib


30 scheme/mpair

(require scheme/mpair) package: compatibility-lib

The scheme/mpair library re-exports compatibility/mlist.

35

https://pkgs.racket-lang.org/package/compatibility-lib


31 scheme/nest

(require scheme/nest) package: scheme-lib

(nest ([datum ...+] ...) body ...+)

Combines nested expressions that syntactically drift to the right into a more linear textual
format, much in the same way that let* linearizes a sequence of nested let expressions.

For example,

(nest ([let ([x 10]
[y 6])]

[with-handlers ([exn:fail? (lambda (x) 15)])]
[parameterize ([current-output-port (current-error-port)])]
[let-values ([(d r) (quotient/remainder x y)])])

(display (+ d r)))

is equivalent to

(let ([x 10]
[y 6])

(with-handlers ([exn:fail? (lambda (x) 15)])
(parameterize ([current-output-port (current-error-port)])

(let-values ([(d r) (quotient/remainder x y)])
(display (+ d r))))))

The nest form is unusual in that it has no semantics apart from its expansion, and its imple-
mentation is easier to understand than a precise prose description:

(define-syntax nest
(syntax-rules ()

[(nest () body0 body ...)
(let () body0 body ...)]

[(nest ([form forms ...]) body0 body ...)
(form forms ... (let () body0 body ...))]

[(nest ([form forms ...] . more) body0 body ...)
(form forms ... (nest more body0 body ...))]))

36

https://pkgs.racket-lang.org/package/scheme-lib


32 scheme/package

(require scheme/package) package: compatibility-lib

The scheme/package library re-exports compatibility/package.

37

https://pkgs.racket-lang.org/package/compatibility-lib


33 scheme/path

(require scheme/path) package: scheme-lib

The scheme/path library re-exports racket/path.

38

https://pkgs.racket-lang.org/package/scheme-lib


34 scheme/port

(require scheme/port) package: scheme-lib

The scheme/port library re-exports racket/port.

39

https://pkgs.racket-lang.org/package/scheme-lib


35 scheme/pretty

(require scheme/pretty) package: scheme-lib

The scheme/pretty library re-exports racket/pretty, except that pretty-write is ex-
ported under the name pretty-print (and pretty-print from racket/pretty is not
exported).

(pretty-print v [port ]) Ñ void?
v : any/c
port : output-port? = (current-output-port)

An alias for pretty-write.

40

https://pkgs.racket-lang.org/package/scheme-lib


36 scheme/promise

(require scheme/promise) package: scheme-lib

The scheme/promise library re-exports racket/promise.

41

https://pkgs.racket-lang.org/package/scheme-lib


37 scheme/provide

(require scheme/provide) package: scheme-lib

The scheme/provide library re-exports racket/provide.

42

https://pkgs.racket-lang.org/package/scheme-lib


38 scheme/provide-syntax

(require scheme/provide-syntax) package: scheme-lib

The scheme/provide-syntax library re-exports racket/provide-syntax.

43

https://pkgs.racket-lang.org/package/scheme-lib


39 scheme/provide-transform

(require scheme/provide-transform) package: scheme-lib

The scheme/provide-transform library re-exports racket/provide-transform.

44

https://pkgs.racket-lang.org/package/scheme-lib


40 scheme/require

(require scheme/require) package: scheme-lib

The scheme/require library re-exports racket/require.

45

https://pkgs.racket-lang.org/package/scheme-lib


41 scheme/require-syntax

(require scheme/require-syntax) package: scheme-lib

The scheme/require-syntax library re-exports racket/require-syntax.

46

https://pkgs.racket-lang.org/package/scheme-lib


42 scheme/require-transform

(require scheme/require-transform) package: scheme-lib

The scheme/require-transform library re-exports racket/require-transform.

47

https://pkgs.racket-lang.org/package/scheme-lib


43 scheme/runtime-config

(require scheme/runtime-config) package: scheme-lib

The scheme/runtime-config library is like racket/runtime-config, except that its
configure sets print-as-expression to #f.

48

https://pkgs.racket-lang.org/package/scheme-lib


44 scheme/runtime-path

(require scheme/runtime-path) package: scheme-lib

The scheme/runtime-path library re-exports racket/runtime-path.

49

https://pkgs.racket-lang.org/package/scheme-lib


45 scheme/sandbox

(require scheme/sandbox) package: sandbox-lib

The scheme/sandbox library re-exports racket/sandbox, except that sandbox-
namespace-specs, make-evaluator, and make-module-evaluator are replaced.

(sandbox-namespace-specs) Ñ (cons/c (-> namespace?)
(listof module-path?))

(sandbox-namespace-specs spec) Ñ void?
spec : (cons/c (-> namespace?)

(listof module-path?))

Like sandbox-namespace-specs from racket/sandbox, but the default is (list make-
base-namespace) if gui? is #f, (list make-gui-namespace) if gui? is #t.

(make-evaluator language
input-program ...
#:requires requires
#:allow-read allow) Ñ (any/c . -> . any)

language : (or/c module-path?
(list/c 'special symbol?)
(cons/c 'begin list?))

input-program : any/c
requires : (listof (or/c module-path? path?))
allow : (listof (or/c module-path? path?))

(make-module-evaluator module-decl
#:language lang
#:allow-read allow) Ñ (any/c . -> . any)

module-decl : (or/c syntax? pair?)
lang : (or/c #f module-path?)
allow : (listof (or/c module-path? path?))

Like make-evaluator and make-module-evaluator from racket/sandbox, but the
value of the sandbox-namespace-specs parameter is installed as the value of sandbox-
namespace-specs from racket/sandbox before chaining to make-evaluator and
make-module-evaluator from racket/sandbox.

50

https://pkgs.racket-lang.org/package/sandbox-lib


46 scheme/serialize

(require scheme/serialize) package: scheme-lib

The scheme/serialize library re-exports racket/serialize.

51

https://pkgs.racket-lang.org/package/scheme-lib


47 scheme/set

(require scheme/set) package: scheme-lib

The scheme/set library re-exports racket/set.

52

https://pkgs.racket-lang.org/package/scheme-lib


48 scheme/signature

(require scheme/signature) package: scheme-lib

The scheme/signature library re-exports racket/signature.

53

https://pkgs.racket-lang.org/package/scheme-lib


49 scheme/shared

(require scheme/shared) package: scheme-lib

The scheme/shared library re-exports racket/shared.

54

https://pkgs.racket-lang.org/package/scheme-lib


50 scheme/splicing

(require scheme/splicing) package: scheme-lib

The scheme/splicing library re-exports racket/splicing.

55

https://pkgs.racket-lang.org/package/scheme-lib


51 scheme/string

(require scheme/string) package: scheme-lib

The scheme/string library re-exports racket/string.

56

https://pkgs.racket-lang.org/package/scheme-lib


52 scheme/struct-info

(require scheme/struct-info) package: scheme-lib

The scheme/struct-info library re-exports racket/struct-info.

57

https://pkgs.racket-lang.org/package/scheme-lib


53 scheme/stxparam

(require scheme/stxparam) package: scheme-lib

The scheme/stxparam library re-exports racket/stxparam.

58

https://pkgs.racket-lang.org/package/scheme-lib


54 scheme/stxparam-exptime

(require scheme/stxparam-exptime) package: scheme-lib

The scheme/stxparam-exptime library re-exports racket/stxparam-exptime.

59

https://pkgs.racket-lang.org/package/scheme-lib


55 scheme/surrogate

(require scheme/surrogate) package: scheme-lib

The scheme/surrogate library re-exports racket/surrogate.

60

https://pkgs.racket-lang.org/package/scheme-lib


56 scheme/system

(require scheme/system) package: scheme-lib

The scheme/system library re-exports racket/system.

61

https://pkgs.racket-lang.org/package/scheme-lib


57 scheme/tcp

(require scheme/tcp) package: scheme-lib

The scheme/tcp library re-exports racket/tcp.

62

https://pkgs.racket-lang.org/package/scheme-lib


58 scheme/trait

(require scheme/trait) package: scheme-lib

The scheme/trait library re-exports racket/trait.

63

https://pkgs.racket-lang.org/package/scheme-lib


59 scheme/udp

(require scheme/udp) package: scheme-lib

The scheme/udp library re-exports racket/udp.

64

https://pkgs.racket-lang.org/package/scheme-lib


60 scheme/unit

(require scheme/unit) package: scheme-lib

The scheme/unit library re-exports racket/unit, except that struct and struct/ctc
are from mzlib/unit instead of struct from racket/base and struct/ctc from
racket/unit.

65

https://pkgs.racket-lang.org/package/scheme-lib


61 scheme/unit-exptime

(require scheme/unit-exptime) package: scheme-lib

The scheme/unit-exptime library re-exports racket/unit-exptime.

66

https://pkgs.racket-lang.org/package/scheme-lib


62 scheme/unsafe/ops

(require scheme/unsafe/ops) package: scheme-lib

The scheme/unsafe/ops library re-exports racket/unsafe/ops.

67

https://pkgs.racket-lang.org/package/scheme-lib


63 scheme/vector

(require scheme/vector) package: scheme-lib

The scheme/vector library re-exports racket/vector.

68

https://pkgs.racket-lang.org/package/scheme-lib


64 mred

(require mred) package: gui-lib

The mred library is like scheme/gui/base, except that it provides variants of
make-gui-namespace and make-gui-empty-namespace that attach mred instead of
scheme/gui/base.

Both scheme/gui/base and racket/gui/base depend on mred, so it is attached by all
variants of make-gui-empty-namespace.

(require mred/mred) package: gui-lib

The mred library actually just re-exports mred/mred, which is an even older name for the
library.

69

https://pkgs.racket-lang.org/package/gui-lib
https://pkgs.racket-lang.org/package/gui-lib


65 Compatibility Executables

The following executables are included in the Racket distribution for compatibility with
older versions of Racket:

• mzscheme — the same as racket -I scheme/init

• mred — the same as gracket -I scheme/gui/init

• drscheme — the same as drracket

• mzc — an old interface to some of the tools provided by raco, including raco make
and raco ctool; use mzc --help for more information

• plt-help — the same as raco docs

70


	1 scheme
	2 scheme/base
	3 scheme/async-channel
	4 scheme/bool
	5 scheme/class
	6 scheme/cmdline
	7 scheme/contract
	8 scheme/control
	9 scheme/date
	10 scheme/dict
	11 scheme/file
	12 scheme/fixnum
	13 scheme/flonum
	14 scheme/foreign
	15 scheme/function
	16 scheme/future
	17 scheme/generator
	18 scheme/gui
	19 scheme/gui/base
	20 scheme/gui/dynamic
	21 scheme/help
	22 scheme/include
	23 scheme/init
	24 scheme/language-info
	25 scheme/list
	26 scheme/load
	27 scheme/local
	28 scheme/match
	29 scheme/math
	30 scheme/mpair
	31 scheme/nest
	32 scheme/package
	33 scheme/path
	34 scheme/port
	35 scheme/pretty
	36 scheme/promise
	37 scheme/provide
	38 scheme/provide-syntax
	39 scheme/provide-transform
	40 scheme/require
	41 scheme/require-syntax
	42 scheme/require-transform
	43 scheme/runtime-config
	44 scheme/runtime-path
	45 scheme/sandbox
	46 scheme/serialize
	47 scheme/set
	48 scheme/signature
	49 scheme/shared
	50 scheme/splicing
	51 scheme/string
	52 scheme/struct-info
	53 scheme/stxparam
	54 scheme/stxparam-exptime
	55 scheme/surrogate
	56 scheme/system
	57 scheme/tcp
	58 scheme/trait
	59 scheme/udp
	60 scheme/unit
	61 scheme/unit-exptime
	62 scheme/unsafe/ops
	63 scheme/vector
	64 mred
	65 Compatibility Executables

