
Scribble as Preprocessor
Version 9.0.0.11

Matthew Flatt
and Eli Barzilay

January 4, 2026

The scribble/text and scribble/html languages act as “preprocessor” languages for
generating text or HTML. These preprocessor languages use the same @ syntax as the main
Scribble tool (see Scribble: The Racket Documentation Tool), but instead of working in
terms of a document abstraction that can be rendered to text and HTML (and other formats),
the preprocessor languages work in a way that is more specific to the target formats.

1

Contents

1 Text Generation 3

1.1 Writing Text Files . 3

1.2 Defining Functions and More . 7

1.3 Using Printouts . 9

1.4 Indentation in Preprocessed output . 11

1.5 Using External Files . 16

1.6 Text Generation Functions . 19

2 HTML Generation 23

2.1 Generating HTML Strings . 23

2.1.1 Other HTML elements . 30

2.2 Generating XML Strings . 32

2.3 HTML Resources . 36

Index 39

Index 39

2

1 Text Generation

#lang scribble/text package: scribble-text-lib

The scribble/text language provides everything from racket/base, racket/promise,
racket/list, and racket/string, but with additions and a changed treatment of the
module top level to make it suitable as for text generation or a preprocessor language:

• The language uses read-syntax-inside to read the body of the module, similar to
§6.7 “Document Reader”. This means that by default, all text is read in as Racket
strings; and @-forms can be used to use Racket functions and expression escapes.

• Values of expressions are printed with a custom output function. This function dis-
plays most values in a similar way to display, except that it is more convenient for a
textual output.

When scribble/text is used via require instead of #lang, then it does not change the
printing of values, it does not include the bindings of racket/base, include is provided
as include/text, and begin is provided as begin/text.

1.1 Writing Text Files

The combination of the two features makes text in files in the scribble/text language
be read as strings, which get printed out when the module is required, for example, when
a file is given as an argument to racket. (In these example the left part shows the source
input, and the right part the printed result.)

#lang scribble/text
Programming languages should
be designed not by piling
feature on top of feature, but
blah blah blah.

Ñ

Programming languages should
be designed not by piling
feature on top of feature, but
blah blah blah.

Using @-forms, we can define and use Racket functions.

3

https://pkgs.racket-lang.org/package/scribble-text-lib

#lang scribble/text
@(require racket/list)
@(define Foo "Preprocessing")
@(define (3x . x)

;; racket syntax here
(add-between (list x x x) " "))

@Foo languages should
be designed not by piling
feature on top of feature, but
@3x{blah}.

Ñ

Preprocessing languages should
be designed not by piling
feature on top of feature, but
blah blah blah.

As demonstrated in this case, the output function simply scans nested list structures recur-
sively, which makes them convenient for function results. In addition, output prints most
values similarly to display — notable exceptions are void and false values which cause no
output to appear. This can be used for convenient conditional output.

#lang scribble/text
@(define (errors n)

(list n
" error"
(and (not (= n 1)) "s")))

You have @errors[3] in your code,
I fixed @errors[1].

Ñ
You have 3 errors in your code,
I fixed 1 error.

Using the scribble @-forms syntax, you can write functions more conveniently too.

#lang scribble/text
@(define (errors n)

;; note the use of `unless'
@list{@n error@unless[(= n 1)]{s}})

You have @errors[3] in your code,
I fixed @errors[1].

Ñ
You have 3 errors in your code,
I fixed 1 error.

Following the details of the scribble reader, you may notice that in these examples there are
newline strings after each definition, yet they do not show in the output. To make it easier to
write definitions, newlines after definitions and indentation spaces before them are ignored.

4

#lang scribble/text

@(define (plural n)
(unless (= n 1) "s"))

@(define (errors n)
@list{@n error@plural[n]})

You have @errors[3] in your code,
@(define fixed 1)

I fixed @errors[fixed].

Ñ
You have 3 errors in your code,
I fixed 1 error.

These end-of-line newline strings are not ignored when they follow other kinds of expres-
sions, which may lead to redundant empty lines in the output.

#lang scribble/text
@(define (count n str)

(for/list ([i (in-range 1 (add1 n))])
@list{@i @str,@"\n"}))

Start...
@count[3]{Mississippi}
... and I'm done.

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,

... and I'm done.

There are several ways to avoid having such empty lines in your output. The simplest way
is to arrange for the function call’s form to end right before the next line begins, but this is
often not too convenient. An alternative is to use a @; comment, which makes the scribble
reader ignore everything that follows it up to and including the newline. (These methods can
be applied to the line that precedes the function call too, but the results are likely to have
what looks like erroneous indentation. More about this below.)

#lang scribble/text
@(define (count n str)

(for/list ([i (in-range 1 (+ n 1))])
@list{@i @str,@"\n"}))

Start...
@count[3]{Mississippi
}... done once.

Start again...
@count[3]{Massachusetts}@;
... and I'm done again.

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,
... done once.

Start again...
1 Massachusetts,
2 Massachusetts,
3 Massachusetts,
... and I'm done again.

5

A better approach is to generate newlines only when needed.

#lang scribble/text
@(require racket/list)
@(define (counts n str)

(add-between
(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str,})
"\n"))

Start...
@counts[3]{Mississippi}
... and I'm done.

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,
... and I'm done.

In fact, this is common enough that the scribble/text language provides a convenient
facility: add-newlines is a function that is similar to add-between using a newline string
as the default separator, except that false and void values are filtered out before doing so.

#lang scribble/text
@(define (count n str)

(add-newlines
(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str,})))
Start...
@count[3]{Mississippi}
... and I'm done.

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,
... and I'm done.

#lang scribble/text
@(define (count n str)

(add-newlines
(for/list ([i (in-range 1 (+ n 1))])

@(and (even? i) @list{@i @str,}))))
Start...
@count[6]{Mississippi}
... and I'm done.

Ñ

Start...
2 Mississippi,
4 Mississippi,
6 Mississippi,
... and I'm done.

The separator can be set to any value.

6

#lang scribble/text
@(define (count n str)

(add-newlines #:sep ",\n"
(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str})))
Start...
@count[3]{Mississippi}.
... and I'm done.

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi.
... and I'm done.

1.2 Defining Functions and More

(Note: most of the tips in this section are applicable to any code that uses the Scribble @-
forms syntax.)

Because the Scribble reader is uniform, you can use it in place of any expression where it
is more convenient. (By convention, we use a plain S-expression syntax when we want a
Racket expression escape, and an @-forms for expressions that render as text, which, in the
scribble/text language, is any value-producing expression.) For example, you can use
an @-forms for a function that you define.

#lang scribble/text
@(define @bold[text] @list{*@|text|*})
An @bold{important} note.

Ñ An *important* note.

This is not commonly done, since most functions that operate with text will need to accept
a variable number of arguments. In fact, this leads to a common problem: what if we want
to write a function that consumes a number of “text arguments” rathen than a single “rest-
like” body? The common solution for this is to provide the separate text arguments in the
S-expression part of an @-forms.

#lang scribble/text
@(define (choose 1st 2nd)

@list{Either @1st, or @|2nd|@"."})
@(define who "us")
@choose[@list{you're with @who}

@list{against @who}]

Ñ Either you're with us, or against us.

You can even use @-formss with a Racket quote or quasiquote as the “head” part to make it
shorter, or use a macro to get grouping of sub-parts without dealing with quotes.

7

#lang scribble/text
@(define (choose 1st 2nd)

@list{Either @1st, or @|2nd|@"."})
@(define who "us")
@choose[@list{you're with @who}

@list{against @who}]
@(define-syntax-rule (compare (x ...) ...)

(add-newlines
(list (list "* " x ...) ...)))

Shopping list:
@compare[@{apples}

@{oranges}
@{@(* 2 3) bananas}]

Ñ

Either you're with us, or against us.
Shopping list:
* apples
* oranges
* 6 bananas

Yet another solution is to look at the text values and split the input arguments based on a
specific token. Using match can make it convenient — you can even specify the patterns
with @-formss.

#lang scribble/text
@(require racket/match)
@(define (features . text)

(match text
[@list{@|1st|@...

@|2nd|@...}

@list{>> Pros <<
@1st;
>> Cons <<
@|2nd|.}]))

@features{fast,
reliable

expensive,
ugly}

Ñ

>> Pros <<
fast,
reliable;
>> Cons <<
expensive,
ugly.

In particular, it is often convenient to split the input by lines, identified by delimiting "\n"
strings. Since this can be useful, a split-lines function is provided.

8

#lang scribble/text
@(require racket/list)
@(define (features . text)

(add-between (split-lines text)
", "))

@features{red
fast
reliable}.

Ñ red, fast, reliable.

Finally, the Scribble reader accepts any expression as the head part of an @-form — even an
@ form. This makes it possible to get a number of text bodies by defining a curried function,
where each step accepts any number of arguments. This, however, means that the number of
body expressions must be fixed.

#lang scribble/text
@(define ((choose . 1st) . 2nd)

@list{Either you're @1st, or @|2nd|.})
@(define who "me")
@@choose{with @who}{against @who}

Ñ Either you're with me, or against me.

1.3 Using Printouts

Because the text language simply displays each toplevel value as the file is run, it is possible
to print text directly as part of the output.

#lang scribble/text
First
@display{Second}
Third

Ñ

First
Second
Third

Taking this further, it is possible to write functions that output some text instead of returning
values that represent the text.

9

#lang scribble/text
@(define (count n)

(for ([i (in-range 1 (+ n 1))])
(printf "~a Mississippi,\n" i)))

Start...
@count[3]@; avoid an empty line
... and I'm done.

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,
... and I'm done.

This can be used to produce a lot of output text, even infinite.

#lang scribble/text
@(define (count n)

(printf "~a Mississippi,\n" n)
(count (add1 n)))

Start...
@count[1]
this line is never printed!

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,
4 Mississippi,
5 Mississippi,
...

However, you should be careful not to mix returning values with printouts, as the results are
rarely desirable.

#lang scribble/text
@list{1 @display{two} 3}

Ñ two1 3

Note that you don’t need side-effects if you want infinite output. The output function
iterates thunks and (composable) promises, so you can create a loop that is delayed in either
form.

#lang scribble/text
@(define (count n)

(cons @list{@n Mississippi,@"\n"}
(lambda ()

(count (add1 n)))))
Start...
@count[1]
this line is never printed!

Ñ

Start...
1 Mississippi,
2 Mississippi,
3 Mississippi,
4 Mississippi,
5 Mississippi,
...

10

1.4 Indentation in Preprocessed output

An issue that can be very important in many text generation applications is the indentation of
the output. This can be crucial in some cases, if you’re generating code for an indentation-
sensitive language (e.g., Haskell, Python, or C preprocessor directives). To get a better
understanding of how the pieces interact, you may want to review how the Scribble reader
section, but also remember that you can use quoted forms to see how some form is read.

#lang scribble/text
@(format "~s" '@list{

a
b

c})

Ñ (list "a" "\n" " " "b" "\n" "c")

The Scribble reader ignores indentation spaces in its body. This is an intentional feature,
since you usually do not want an expression to depend on its position in the source. But the
question is whether we can render some output text with proper indentation. The output
function achieves that by introducing blocks. Just like a list, a block contains a list of
elements, and when one is rendered, it is done in its own indentation level. When a newline
is part of a block’s contents, it causes the following text to appear with indentation that
corresponds to the column position at the beginning of the block.

In addition, lists are also rendered as blocks by default, so they can be used for the same
purpose. In most cases, this makes the output appear “as intended” where lists are used for
nested pieces of text — either from a literal list expression, or an expression that evaluates
to a list, or when a list is passed on as a value; either as a toplevel expression, or as a nested
value; either appearing after spaces, or after other output.

#lang scribble/text
foo @block{1

2
3}

foo @list{4
5
6}

Ñ

foo 1
2
3

foo 4
5
6

11

#lang scribble/text
@(define (code . text)

@list{begin
@text

end})
@code{first

second
@code{

third
fourth}

last}

Ñ

begin
first
second
begin

third
fourth

end
last

end

#lang scribble/text
@(define (enumerate . items)

(add-newlines #:sep ";\n"
(for/list ([i (in-naturals 1)]

[item (in-list items)])
@list{@|i|. @item})))

Todo: @enumerate[@list{Install Racket}
@list{Hack, hack, hack}
@list{Profit}].

Ñ

Todo: 1. Install Racket;
2. Hack, hack, hack;
3. Profit.

There are, however, cases when you need more refined control over the output. The scrib-
ble/text language provides a few functions for such cases in addition to block. The
splice function groups together a number of values but avoids introducing a new inden-
tation context. Furthermore, lists are not always rendered as blocks — instead, they are
rendered as splices when they are used inside one, so you essentially use splice to avoid
the “indentation group” behavior, and block to restore it.

#lang scribble/text
@(define (blah . text)

@splice{{
blah(@block{@text});

}})
start

@splice{foo();
loop:}

@list{if (something) @blah{one,
two}}

end

Ñ

start
foo();

loop:
if (something) {

blah(one,
two);

}
end

The disable-prefix function disables all indentation printouts in its contents, including

12

the indentation before the body of the disable-prefix value itself. It is useful, for exam-
ple, to print out CPP directives.

#lang scribble/text
@(define (((IFFOO . var) . expr1) . expr2)

(define (array e1 e2)
@list{[@e1,

@e2]})
@list{var @var;

@disable-prefix{#ifdef FOO}
@var = @array[expr1 expr2];
@disable-prefix{#else}
@var = @array[expr2 expr1];
@disable-prefix{#endif}})

function blah(something, something_else) {
@disable-prefix{#include "stuff.inc"}
@@@IFFOO{i}{something}{something_else}

}

Ñ

function blah(something, something_else) {
#include "stuff.inc"

var i;
#ifdef FOO

i = [something,
something_else];

#else
i = [something_else,

something];
#endif
}

If there are values after a disable-prefix value on the same line, they will get indented to
the goal column (unless the output is already beyond it).

13

#lang scribble/text
@(define (thunk name . body)

@list{function @name() {
@body

}})
@(define (ifdef cond then else)

@list{@disable-prefix{#}ifdef @cond
@then

@disable-prefix{#}else
@else

@disable-prefix{#}endif})

@thunk['do_stuff]{
init();
@ifdef["HAS_BLAH"

@list{var x = blah();}
@thunk['blah]{

@ifdef["BLEHOS"
@list{@disable-prefix{#}@;

include <bleh.h>
bleh();}

@list{error("no bleh");}]
}]

more_stuff();
}

Ñ

function do_stuff() {
init();

ifdef HAS_BLAH
var x = blah();

else
function blah() {

ifdef BLEHOS
include <bleh.h>

bleh();
else

error("no bleh");
endif

}
endif

more_stuff();
}

There are cases where each line should be prefixed with some string other than a plain
indentation. The add-prefix function causes its contents to be printed using some given
string prefix for every line. The prefix gets accumulated to an existing indentation, and
indentation in the contents gets added to the prefix.

14

#lang scribble/text
@(define (comment . body)

@add-prefix["// "]{@body})
@comment{add : int int -> string}
char *foo(int x, int y) {

@comment{
skeleton:

allocate a string
print the expression into it
@comment{...more work...}

}
char *buf = malloc(@comment{FIXME!

This is bad}
100);

}

Ñ

// add : int int -> string
char *foo(int x, int y) {

// skeleton:
// allocate a string
// print the expression into it
// // ...more work...
char *buf = malloc(// FIXME!

// This is bad
100);

}

When combining add-prefix and disable-prefix there is an additional value that can
be useful: flush. This is a value that causes output to print the current indentation and
prefix. This makes it possible to get the “ignored as a prefix” property of disable-prefix
but only for a nested prefix.

#lang scribble/text
@(define (comment . text)

(list flush
@add-prefix[" *"]{

@disable-prefix{/*} @text */}))
function foo(x) {

@comment{blah
more blah
yet more blah}

if (x < 0) {
@comment{even more

blah here
@comment{even

nested}}
do_stuff();

}
}

Ñ

function foo(x) {
/* blah
* more blah
* yet more blah */

if (x < 0) {
/* even more
* blah here
* /* even
* * nested */ */

do_stuff();
}

}

15

1.5 Using External Files

Using additional files that contain code for your preprocessing is trivial: the source text is
still source code in a module, so you can require additional files with utility functions.

#lang scribble/text
@(require "itemize.rkt")
Todo:
@itemize[@list{Hack some}

@list{Sleep some}
@list{Hack some

more}]

"itemize.rkt"
#lang racket
(provide itemize)
(define (itemize . items)

(add-between (map (lambda (item)
(list "* " item))

items)
"\n"))

Ñ

Todo:
* Hack some
* Sleep some
* Hack some

more

Note that the at-exp language can often be useful here, since such files need to deal with
texts. Using it, it is easy to include a lot of textual content.

16

#lang scribble/text
@(require "stuff.rkt")
Todo:
@itemize[@list{Hack some}

@list{Sleep some}
@list{Hack some

more}]
@summary

"stuff.rkt"
#lang at-exp racket/base
(require racket/list)
(provide (all-defined-out))
(define (itemize . items)

(add-between (map (lambda (item)
@list{* @item})

items)
"\n"))

(define summary
@list{If that's not enough,

I don't know what is.})

Ñ

Todo:
* Hack some
* Sleep some
* Hack some

more
If that's not enough,
I don't know what is.

Of course, the extreme side of this will be to put all of your content in a plain Racket module,
using @-formss for convenience. However, there is no need to use the text language in this
case; instead, you can (require scribble/text), which will get all of the bindings that
are available in the scribble/text language. Using output, switching from a prepro-
cessed files to a Racket file is very easy —- choosing one or the other depends on whether it
is more convenient to write a text file with occasional Racket expressions or the other way.

17

#lang at-exp racket/base
(require scribble/text racket/list)
(define (itemize . items)

(add-between (map (lambda (item)
@list{* @item})

items)
"\n"))

(define summary
@list{If that's not enough,

I don't know what is.})
(output
@list{

Todo:
@itemize[@list{Hack some}

@list{Sleep some}
@list{Hack some

more}]
@summary

})

Ñ

Todo:
* Hack some
* Sleep some
* Hack some

more
If that's not enough,
I don't know what is.

However, you might run into a case where it is desirable to include a mostly-text file from
a scribble/text source file. It might be because you prefer to split the source text to
several files, or because you need to use a template file that cannot have a #lang header (for
example, an HTML template file that is the result of an external editor). In these cases, the
scribble/text language provides an include form that includes a file in the preprocessor
syntax (where the default parsing mode is text).

18

#lang scribble/text
@(require racket/list)
@(define (itemize . items)

(list
""
(add-between
(map (lambda (item)

@list{@|item|})
items)

"\n")
""))

@(define title "Todo")
@(define summary

@list{If that's not enough,
I don't know what is.})

@include["template.html"]

"template.html"
<html>
<head><title>@|title|</title></head>
<body>

<h1>@|title|</h1>
@itemize[@list{Hack some}

@list{Sleep some}
@list{Hack some

more}]
<p><i>@|summary|</i></p>

</body>
</html>

Ñ

<html>
<head><title>Todo</title></head>
<body>

<h1>Todo</h1>
Hack some

Sleep some
Hack some

more
<p><i>If that's not enough,

I don't know what is.</i></p>
</body>
</html>

(Using require with a text file in the scribble/text language will not work as intended:
the language will display the text is when the module is invoked, so the required file’s con-
tents will be printed before any of the requiring module’s text does. If you find yourself in
such a situation, it is better to switch to a Racket-with-@-expressions file as shown above.)

1.6 Text Generation Functions

outputable/c : contract?

A contract that (in principle) corresponds to value that can be output by output. Currently,
however, this contract accepts all values (to avoid the cost of checking at every boundary).

19

Added in version 1.1 of package scribble-text-lib.

(output v [port]) Ñ void?
v : outputable/c
port : output-port? = (current-output-port)

Outputs values to port as follows for each kind of v :

• strings, byte strings, symbols, paths, keywords, numbers, and characters: converts the
value to a string along the same lines as display, and then passes the string to the
current writer, which is initially write-string

• #<void>, #f, or null: no output

• list: output depends on the current mode, which is initially splice mode:

– block mode: each item in order, using the starting column as the current inden-
tation (which starts out empty)

– splice mode: outputs each item in order

• (block v2 ...): outputs each v2 in block mode.

• (splice v2 ...): outputs each v2 in splice mode.

• (set-prefix pfx v2 ...): sets the current prefix, which is initially empty, to pfx
while outputting each v2 .

• (add-prefix pfx v2 ...): sets the current prefix to by adding pfx while out-
putting each v2 .

• (disable-prefix v2 ...): sets the current prefix to empty while outputting each
v2 .

• (restore-prefix v2 ...): rewinds the current prefix by one enclosing adjust-
ments while outputting each v2 .

• flush: outputs the current indentation and current prefix.

• (with-writer writer v2 ...): sets the current writer to writer with outputting
each v2 .

• promise: outputs the result of (force v)

• box: outputs the result of (unbox v)

• procedure of 0 arguments: outputs the result of (v)

Any other kind of v triggers an exception.

20

(block v ...) Ñ outputable/c
v : outputable/c

Produces a value that outputs each v in block mode.

(splice v ...) Ñ outputable/c
v : outputable/c

Produces a value that outputs each v in splice mode.

(disable-prefix v ...) Ñ outputable/c
v : outputable/c

(restore-prefix v ...) Ñ outputable/c
v : outputable/c

(add-prefix pfx v ...) Ñ outputable/c
pfx : (or/c string? exact-nonnegative-integer?)
v : outputable/c

(set-prefix pfx v ...) Ñ outputable/c
pfx : (or/c string? exact-nonnegative-integer?)
v : outputable/c

Produces a value that outputs with an adjusted current prefix. An integer as a prefix is
equivalent to a string with as many space characters.

flush : void?

A value that outputs as the current indentation plus current prefix.

(with-writer writer v ...) Ñ outputable/c
writer : (or/c (->* (string? output-port?)

(exact-nonnegative-integer?)
any/c)

#f)
v : outputable/c

Produces a value that outputs with an adjusted current writer, where #f indicates write-
string.

(add-newlines items [#:sep sep]) Ñ list?
items : list?
sep : an/y = "\n"

Like add-between, but first removes #f and #<void> elements of items .

21

(split-lines items) Ñ (listof list?)
items : list?

Converts items to a list of lists, where consecutive non-"\n" values are kept together in a
nested list, and "\n" values are dropped.

(include/text maybe-char path-spec)

maybe-char =
| #:command-char command-char

Like include from racket/include, but reads the file at path-spec in the same way
as for scribble/text. If command-char is supplied, then it replaces @ as the escape
character.

The scribble/text language via #lang provides include/text as include.

(begin/text form ...)

Like begin, but the results of expression forms are collected into a list that is returned as
the result of the begin/list form.

The scribble/text language via #lang provides begin/text as begin.

22

2 HTML Generation

#lang scribble/html package: scribble-html-lib

The scribble/html language provides a way to generate HTML that is different from
scribble/base. The scribble/base approach involves describing a document that can
be rendered to HTML, Latex, or other formats. The scribble/html approach, in contrast,
treats the document content as HTML format plus escapes.

Specifically, scribble/html is like scribble/text, but with the following changes:

• The scribble/html/html, scribble/html/xml, and scrib-
ble/html/resource are re-exported, in addition to scribble/text.

• Free identifiers that end with : are implicitly quoted as symbols.

When scribble/html is used via require instead of #lang, then it does not change the
printing of values, and it does not include the bindings of racket/base.

The scribble/html/resource, scribble/html/xml, and scribble/html/html li-
braries provide forms for generating HTML as strings to be output in the same way as
scribble/text.

2.1 Generating HTML Strings

(require scribble/html/html) package: scribble-html-lib

The scribble/html/html provides functions for HTML representations that render to
string form via output-xml.

(doctype s) Ñ procedure?
s : (or/c string 'html 'xhtml)

Produces a value that XML-renders as a DOCTYPE declaration.

Examples:

> (output-xml (doctype "?"))
<!DOCTYPE ?>
> (output-xml (doctype 'html))
<!DOCTYPE html>
> (regexp-split #rx"\n|((?<=\") (?=\"))"

(xml->string (doctype 'xhtml)))

23

https://pkgs.racket-lang.org/package/scribble-html-lib
https://pkgs.racket-lang.org/package/scribble-html-lib

'("<?xml version=\"1.0\" encoding=\"utf-8\"?>"
"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\""
"\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">"
"")

(xhtml content ...) Ñ procedure?
content : outputable/c

Produces a value that XML-renders as the given content wrapped as XHTML.

Example:

> (regexp-split #rx"\n|((?<=\") (?=\"))"
(xml->string (xhtml "Hello")))

'("<?xml version=\"1.0\" encoding=\"utf-8\"?>"
"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\""
"\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">"
"<html xmlns=\"http://www.w3.org/1999/xhtml\">Hello</html>"
"")

(html v ...) Ñ procedure?
v : outputable/c

(head v ...) Ñ procedure?
v : outputable/c

(title v ...) Ñ procedure?
v : outputable/c

(style v ...) Ñ procedure?
v : outputable/c

(script v ...) Ñ procedure?
v : outputable/c

(noscript v ...) Ñ procedure?
v : outputable/c

(slot v ...) Ñ procedure?
v : outputable/c

(frameset v ...) Ñ procedure?
v : outputable/c

(frame v ...) Ñ procedure?
v : outputable/c

(iframe v ...) Ñ procedure?
v : outputable/c

(noframes v ...) Ñ procedure?
v : outputable/c

(body v ...) Ñ procedure?
v : outputable/c

(div v ...) Ñ procedure?
v : outputable/c

24

(p v ...) Ñ procedure?
v : outputable/c

(h1 v ...) Ñ procedure?
v : outputable/c

(h2 v ...) Ñ procedure?
v : outputable/c

(h3 v ...) Ñ procedure?
v : outputable/c

(h4 v ...) Ñ procedure?
v : outputable/c

(h5 v ...) Ñ procedure?
v : outputable/c

(h6 v ...) Ñ procedure?
v : outputable/c

(hgroup v ...) Ñ procedure?
v : outputable/c

(ul v ...) Ñ procedure?
v : outputable/c

(ol v ...) Ñ procedure?
v : outputable/c

(menu v ...) Ñ procedure?
v : outputable/c

(dir v ...) Ñ procedure?
v : outputable/c

(li v ...) Ñ procedure?
v : outputable/c

(dl v ...) Ñ procedure?
v : outputable/c

(dt v ...) Ñ procedure?
v : outputable/c

(dd v ...) Ñ procedure?
v : outputable/c

(address v ...) Ñ procedure?
v : outputable/c

(pre v ...) Ñ procedure?
v : outputable/c

(blockquote v ...) Ñ procedure?
v : outputable/c

(center v ...) Ñ procedure?
v : outputable/c

(ins v ...) Ñ procedure?
v : outputable/c

(del v ...) Ñ procedure?
v : outputable/c

(a v ...) Ñ procedure?
v : outputable/c

25

(span v ...) Ñ procedure?
v : outputable/c

(bdo v ...) Ñ procedure?
v : outputable/c

(em v ...) Ñ procedure?
v : outputable/c

(strong v ...) Ñ procedure?
v : outputable/c

(dfn v ...) Ñ procedure?
v : outputable/c

(code v ...) Ñ procedure?
v : outputable/c

(samp v ...) Ñ procedure?
v : outputable/c

(kbd v ...) Ñ procedure?
v : outputable/c

(var v ...) Ñ procedure?
v : outputable/c

(cite v ...) Ñ procedure?
v : outputable/c

(abbr v ...) Ñ procedure?
v : outputable/c

(acronym v ...) Ñ procedure?
v : outputable/c

(q v ...) Ñ procedure?
v : outputable/c

(sub v ...) Ñ procedure?
v : outputable/c

(sup v ...) Ñ procedure?
v : outputable/c

(tt v ...) Ñ procedure?
v : outputable/c

(i v ...) Ñ procedure?
v : outputable/c

(b v ...) Ñ procedure?
v : outputable/c

(big v ...) Ñ procedure?
v : outputable/c

(small v ...) Ñ procedure?
v : outputable/c

(u v ...) Ñ procedure?
v : outputable/c

(s v ...) Ñ procedure?
v : outputable/c

(strike v ...) Ñ procedure?
v : outputable/c

26

(font v ...) Ñ procedure?
v : outputable/c

(object v ...) Ñ procedure?
v : outputable/c

(applet v ...) Ñ procedure?
v : outputable/c

(form v ...) Ñ procedure?
v : outputable/c

(label v ...) Ñ procedure?
v : outputable/c

(select v ...) Ñ procedure?
v : outputable/c

(optgroup v ...) Ñ procedure?
v : outputable/c

(option v ...) Ñ procedure?
v : outputable/c

(textarea v ...) Ñ procedure?
v : outputable/c

(fieldset v ...) Ñ procedure?
v : outputable/c

(legend v ...) Ñ procedure?
v : outputable/c

(button v ...) Ñ procedure?
v : outputable/c

(table v ...) Ñ procedure?
v : outputable/c

(caption v ...) Ñ procedure?
v : outputable/c

(thead v ...) Ñ procedure?
v : outputable/c

(tfoot v ...) Ñ procedure?
v : outputable/c

(tbody v ...) Ñ procedure?
v : outputable/c

(colgroup v ...) Ñ procedure?
v : outputable/c

(tr v ...) Ñ procedure?
v : outputable/c

(th v ...) Ñ procedure?
v : outputable/c

(td v ...) Ñ procedure?
v : outputable/c

(details v ...) Ñ procedure?
v : outputable/c

(dialog v ...) Ñ procedure?
v : outputable/c

27

(menuitem v ...) Ñ procedure?
v : outputable/c

Like element/not-empty, but with the symbolic form of the function name added as the
first argument.

Example:

> (output-xml (title "The Book"))
<title>The Book</title>

(base v ...) Ñ procedure?
v : outputable/c

(meta v ...) Ñ procedure?
v : outputable/c

(link v ...) Ñ procedure?
v : outputable/c

(hr v ...) Ñ procedure?
v : outputable/c

(br v ...) Ñ procedure?
v : outputable/c

(basefont v ...) Ñ procedure?
v : outputable/c

(param v ...) Ñ procedure?
v : outputable/c

(img v ...) Ñ procedure?
v : outputable/c

(area v ...) Ñ procedure?
v : outputable/c

(input v ...) Ñ procedure?
v : outputable/c

(isindex v ...) Ñ procedure?
v : outputable/c

(col v ...) Ñ procedure?
v : outputable/c

(embed v ...) Ñ procedure?
v : outputable/c

(keygen v ...) Ñ procedure?
v : outputable/c

(wbr v ...) Ñ procedure?
v : outputable/c

Like element, but with the symbolic form of the function name added as the first argument.

Example:

28

> (output-xml (hr))
<hr />

nbsp : procedure?
ndash : procedure?
mdash : procedure?
bull : procedure?
middot : procedure?
sdot : procedure?
lsquo : procedure?
rsquo : procedure?
sbquo : procedure?
ldquo : procedure?
rdquo : procedure?
bdquo : procedure?
lang : procedure?
rang : procedure?
dagger : procedure?
Dagger : procedure?
plusmn : procedure?
deg : procedure?

The result of (entity 'id) for each id .

Example:

> (output-xml nbsp)

(script/inline v ...) Ñ procedure?
v : outputable/c

Produces a value that renders as an inline script.

Example:

> (output-xml (script/inline type: "text/javascript" "var x =
5;"))
<script type="text/javascript">
//<![CDATA[
var x = 5;
//]]>
</script>

29

(style/inline v ...) Ñ procedure?
v : outputable/c

Produces a value that renders as an inline style sheet.

Example:

> (output-xml (style/inline type: "text/css"
".racket { font-size: xx-large; }"))

<style type="text/css">
.racket { font-size: xx-large; }
</style>

2.1.1 Other HTML elements

(require scribble/html/extra) package: scribble-html-lib

Provides renderers for HTML elements that are not provided by scribble/html/html.

(article v ...) Ñ procedure?
v : outputable/c

(aside v ...) Ñ procedure?
v : outputable/c

(audio v ...) Ñ procedure?
v : outputable/c

(bdi v ...) Ñ procedure?
v : outputable/c

(canvas v ...) Ñ procedure?
v : outputable/c

(data v ...) Ñ procedure?
v : outputable/c

(datalist v ...) Ñ procedure?
v : outputable/c

(figcaption v ...) Ñ procedure?
v : outputable/c

(figure v ...) Ñ procedure?
v : outputable/c

(footer v ...) Ñ procedure?
v : outputable/c

(header v ...) Ñ procedure?
v : outputable/c

(main v ...) Ñ procedure?
v : outputable/c

(map v ...) Ñ procedure?
v : outputable/c

30

https://pkgs.racket-lang.org/package/scribble-html-lib
https://html.spec.whatwg.org/multipage/#toc-semantics

(mark v ...) Ñ procedure?
v : outputable/c

(math v ...) Ñ procedure?
v : outputable/c

(meter v ...) Ñ procedure?
v : outputable/c

(nav v ...) Ñ procedure?
v : outputable/c

(output v ...) Ñ procedure?
v : outputable/c

(picture v ...) Ñ procedure?
v : outputable/c

(progress v ...) Ñ procedure?
v : outputable/c

(rb v ...) Ñ procedure?
v : outputable/c

(rp v ...) Ñ procedure?
v : outputable/c

(rt v ...) Ñ procedure?
v : outputable/c

(rtc v ...) Ñ procedure?
v : outputable/c

(ruby v ...) Ñ procedure?
v : outputable/c

(section v ...) Ñ procedure?
v : outputable/c

(summary v ...) Ñ procedure?
v : outputable/c

(svg v ...) Ñ procedure?
v : outputable/c

(template v ...) Ñ procedure?
v : outputable/c

(time v ...) Ñ procedure?
v : outputable/c

(video v ...) Ñ procedure?
v : outputable/c

Like element/not-empty, but with the symbolic form of the function name added as the
first argument.

Example:

> (output-xml (title "The Book"))
<title>The Book</title>

31

(source v ...) Ñ procedure?
v : outputable/c

(track v ...) Ñ procedure?
v : outputable/c

Like element, but with the symbolic form of the function name added as the first argument.

Example:

> (output-xml (hr))
<hr />

2.2 Generating XML Strings

(require scribble/html/xml) package: scribble-html-lib

The scribble/html/xml provides functions for XML representations that XML-render to
string form via output-xml or xml->string.

(output-xml content [port]) Ñ void?
content : outputable/c
port : output-port? = (current-output-port)

Renders content in the same way as output, but using the value of xml-writer as the
current writer so that special characters are escaped as needed.

(xml->string content) Ñ string?
content : outputable/c

Renders content to a string via output-xml.

(xml-writer) Ñ ((string? output-port? . -> . void))
(xml-writer writer) Ñ void?

writer : ((string? output-port? . -> . void))

A parameter for a function that is used with with-writer by output-xml. The default
value is a function that escapes &, <, >, and " to entity form.

(make-element tag attrs content)
Ñ (and/c procedure outputable/c?)
tag : symbol?
attrs : (listof (cons/c symbol? outputable/c))
content : outputable/c

32

https://pkgs.racket-lang.org/package/scribble-html-lib

Produces a value that XML-renders as XML for the given tag, attributes, and content.

When an attribute in attrs is mapped to #f, then it is skipped. When an attribute is mapped
to #t, then it is rendered as present, but without a value.

Examples:

> (output-xml (make-element 'b '() '("Try" #\space "Racket")))
Try Racket
> (output-xml (make-element 'a '((href . "http://racket-
lang.org")) "Racket"))
Racket
> (output-xml (make-element 'div '((class . "big") (overlay .
#t)) "example"))
<div class="big" overlay>example</div>

(element tag attrs-and-content ...)
Ñ (and procedure outputable/c?)
tag : symbol?
attrs-and-content : any/c

Like make-element, but the list of attrs-and-content is parsed via attributes+body
to separate the attributes and content.

Examples:

> (output-xml (element 'b "Try" #\space "Racket"))
Try Racket
> (output-xml (element 'a 'href: "http://racket-
lang.org" "Racket"))
Racket
> (output-xml (element 'div 'class: "big" 'overlay: #t "example"))
<div class="big" overlay>example</div>
> (require scribble/html)
> (output-xml (element 'div class: "big" overlay: #t "example"))
<div class="big" overlay>example</div>

(element/not-empty tag
attrs-and-content ...)

Ñ (and/c procedure? outputable/c)
tag : symbol?
attrs-and-content : any/c

Like element, but the result always renders with an separate closing tag.

Examples:

33

> (output-xml (element 'span))

> (output-xml (element/not-empty 'span))

(attribute? v) Ñ (or/c #f symbol?)
v : any/c

Returns a symbol without if v is a symbol that ends with :, #f otherwise. When a symbol
is returned, it is the same as v , but without the trailing :.

Examples:

> (attribute? 'a:)
'a
> (attribute? 'a)
#f
> (require scribble/html)
> (attribute? a:)
'a

(attributes+body lst) Ñ (listof (cons/c symbol? any/c)) list?
lst : list?

Parses lst into an association list mapping attributes to list elements plus a list of remaining
elements. The first even-positioned (counting from 0) non-attribute? element of lst is
the start of the “remaining elements” list, while each preceding even-positioned attribute is
mapped in the association list to the immediately following element of lst . In the associa-
tion list, the trailing : is stripped for each attribute.

(split-attributes+body lst) Ñ list? list?
lst : list?

Like attributes+body, but produces a flat list (of alternating attributes and value) instead
of an association list as the first result.

(literal content ...) Ñ procedure?
content : any/c

Produces a value that XML-renders without escapes for special characters.

Examples:

> (output-xml (literal "a->b"))
a->b
> (output-xml "a->b")
a->b

34

(entity v) Ñ procedure?
v : (or/c exact-integer? symbol?)

Produces a value that XML-renders as a numeric or symbolic entity.

Example:

> (output-xml (entity 'gt))
>

(comment content ... [#:newlines? newlines?]) Ñ procedure?
content : outputable/c
newlines? : any/c = #f

Produces a value that XML-renders as a comment with literal content. If newlines? is true,
then newlines are inserted before and after the content.

Example:

> (output-xml (comment "testing" 1 2 3))
<!--testing123-->

(cdata content
...

[#:newlines? newlines?
#:line-pfx line-pfx]) Ñ procedure?

content : outputable/c
newlines? : any/c = #t
line-pfx : any/c = #f

Produces a value that XML-renders as CDATA with literal content. If newlines? is true,
then newlines are inserted before and after the content. The line-pfx value is rendered
before the CDATA opening and closing markers.

Example:

> (output-xml (cdata "testing" 1 2 3))
<![CDATA[
testing123
]]>

(define/provide-elements/empty tag-id ...)

35

Defines and exports tag-id as a function that is like element, but with 'tag-id added as
the first argument.

(define/provide-elements/not-empty tag-id ...)

Defines and exports tag-id as a function that is like element/not-empty, but with 'tag-
id added as the first argument.

(define/provide-entities entity-id ...)

Defines and exports entity-id as the result of (entity 'entity-id).

2.3 HTML Resources

(require scribble/html/resource)
package: scribble-html-lib

(resource path renderer [#:exists exists])
Ñ (and/c resource?

(->* () (outputable/c) -> string?))
path : string?
renderer : (or/c (path-string? . -> . any) #f)
exists : (or/c 'delete-file #f) = 'delete-file

Creates and returns a new resource value. Creating a resource registers renderer (if non-
#f) to be called when rendering is initiated by render-all, while calling the result resource
as a function generates a URL for the resource.

For example, a typical use of resource is to register the generation of a CSS file, where the
value produced by resource itself renders as the URL for the generated CSS file. Another
possible use of resource is to generate an HTML file, where the resource result renders
as the URL of the generated HTML page.

The path argument specifies the path of the output file, relative to the working directory,
indicating where the resource file should be placed. Though url-roots, path also deter-
mines the ultimate URL. The path string must be a /-separated relative path with no .., .,
or //. The path string can end in /, in which case "index.html" is effectively added to
the string. Using resource with #f as renderer is useful for converting a path to a URL
according to url-roots.

The renderer argument (when non-#f) renders the resource, receiving the path for the file
to be created. The path provided to renderer will be different from path , because the
function is invoked in the target directory.

36

https://pkgs.racket-lang.org/package/scribble-html-lib

The resulting resource value is a function that returns the URL for the resource. The function
accepts an optional boolean; if a true value is provided, the result is an absolute URL, instead
of relative. Note that the function can be used as a value for output, which uses the resource
value as a thunk (that renders as the relative URL for the resource). The default relative
resulting URL is, of course, a value that depends on the currently rendered resource that
uses this value.

When renderer is called by render-all, more resources can be created while rendering;
the newly created resources will also be rendered, in turn, until no more new resources are
created.

If exists is 'delete-file and the target file exists when renderer is to be called, then
the file is deleted before renderer is called.

(url-roots)
Ñ (or/c #f

(listof (cons/c path-string?
(cons/c string?

(listof (or/c 'abs 'index))))))
(url-roots roots) Ñ void?

roots : (or/c #f
(listof (cons/c path-string?

(cons/c string?
(listof (or/c 'abs 'index))))))

A parameter that determines how resource paths are converted to URLs for reference. A #f
value is equivalent to an empty list.

The parameter value is a mapping from path prefixes to URLs (actually, any string). When
two paths have the same prefix, links from one to the other are relative (unless absolute links
are requested); if they have different prefixes, the full URL is used. The paths enclosed
by two root paths must be disjoint (e.g., the list must not include both "/colors" and
"/colors/red", but it can include both "/colors/red" and "/colors/blue").

If an item in the parameter’s list includes 'abs, then a site-local, absolute URL (i.e., a URL
that starts with /) is produced for references among files within the corresponding prefix.

If an item in the parameter’s list includes 'index, then a reference to a directory path is
converted to a reference to "index.html", otherwise a reference to "index.html" is con-
verted to a directory path.

(resource? v) Ñ boolean?
v : any/c

Returns #t if v is a procedure (that takes 0 or 1 arguments) produced by resource.

(render-all) Ñ void?

37

Generates all resources registered via resource.

(file-writer content-writer content) Ñ (path-string? . -> . any)
content-writer : (outputable/c output-port? . -> . any)
content : outputable/c

Produces a function that is useful as a writer argument to resource. Given a path, the
produced function writes content to the path by passing content and an output port for
the file to content-writer .

38

Index
a, 25
abbr, 26
acronym, 26
add-newlines, 21
add-prefix, 21
address, 25
applet, 27
area, 28
article, 30
aside, 30
attribute?, 34
attributes+body, 34
audio, 30
b, 26
base, 28
basefont, 28
bdi, 30
bdo, 26
bdquo, 29
begin/text, 22
big, 26
block, 21
block mode, 20
blockquote, 25
body, 24
br, 28
bull, 29
button, 27
canvas, 30
caption, 27
cdata, 35
center, 25
cite, 26
code, 26
col, 28
colgroup, 27
comment, 35
current indentation, 20
current prefix, 20
current writer, 20

dagger, 29
Dagger, 29
data, 30
datalist, 30
dd, 25
define/provide-elements/empty, 35
define/provide-elements/not-empty,

36
define/provide-entities, 36
Defining Functions and More, 7
deg, 29
del, 25
details, 27
dfn, 26
dialog, 27
dir, 25
disable-prefix, 21
div, 24
dl, 25
doctype, 23
dt, 25
element, 33
element/not-empty, 33
em, 26
embed, 28
entity, 35
fieldset, 27
figcaption, 30
figure, 30
file-writer, 38
flush, 21
font, 27
footer, 30
form, 27
frame, 24
frameset, 24
Generating HTML Strings, 23
Generating XML Strings, 32
h1, 25
h2, 25
h3, 25
h4, 25

39

h5, 25
h6, 25
head, 24
header, 30
hgroup, 25
hr, 28
html, 24
HTML Generation, 23
HTML Resources, 36
i, 26
iframe, 24
img, 28
include/text, 22
Indentation in Preprocessed output, 11
input, 28
ins, 25
isindex, 28
kbd, 26
keygen, 28
label, 27
lang, 29
ldquo, 29
legend, 27
li, 25
link, 28
literal, 34
lsquo, 29
main, 30
make-element, 32
map, 30
mark, 31
math, 31
mdash, 29
menu, 25
menuitem, 28
meta, 28
meter, 31
middot, 29
nav, 31
nbsp, 29
ndash, 29
noframes, 24

noscript, 24
object, 27
ol, 25
optgroup, 27
option, 27
Other HTML elements, 30
output, 31
output, 20
output-xml, 32
outputable/c, 19
p, 25
param, 28
picture, 31
plusmn, 29
pre, 25
Preprocessor, 1
progress, 31
q, 26
rang, 29
rb, 31
rdquo, 29
render-all, 37
resource, 36
resource, 36
resource?, 37
restore-prefix, 21
rp, 31
rsquo, 29
rt, 31
rtc, 31
ruby, 31
s, 26
samp, 26
sbquo, 29
Scribble as Preprocessor, 1
scribble/html, 23
scribble/html/extra, 30
scribble/html/html, 23
scribble/html/resource, 36
scribble/html/xml, 32
scribble/text, 3
script, 24

40

script/inline, 29
sdot, 29
section, 31
select, 27
set-prefix, 21
slot, 24
small, 26
source, 32
span, 26
splice, 21
splice mode, 20
split-attributes+body, 34
split-lines, 22
strike, 26
strong, 26
style, 24
style/inline, 30
sub, 26
summary, 31
sup, 26
svg, 31
table, 27
tbody, 27
td, 27
template, 31
Text Generation, 3
Text Generation Functions, 19
textarea, 27
tfoot, 27
th, 27
thead, 27
time, 31
title, 24
tr, 27
track, 32
tt, 26
u, 26
ul, 25
url-roots, 37
Using External Files, 16
Using Printouts, 9
var, 26

video, 31
wbr, 28
with-writer, 21
Writing Text Files, 3
xhtml, 24
xml->string, 32
XML-render, 32
xml-writer, 32

41

	1 Text Generation
	1.1 Writing Text Files
	1.2 Defining Functions and More
	1.3 Using Printouts
	1.4 Indentation in Preprocessed output
	1.5 Using External Files
	1.6 Text Generation Functions

	2 HTML Generation
	2.1 Generating HTML Strings
	2.1.1 Other HTML elements

	2.2 Generating XML Strings
	2.3 HTML Resources

	Index
	Index

