Simple Tree Text Markup: Simple Markup for
Display as Text or in GUI

Version 9.0.0.11

Mike Sperber

January 4, 2026

This is a tree-based combinator library for simple markup, mainly for displaying messages
in a REPL. It features horizontal and vertical composition as well as framed markup. Its
main distinguishing feature is its ability to embed source locations, which can be rendered
as links.

This package comes with separate modules for inspecting and constructing markup
- simple-tree-text-markup/data and simple-tree-text-markup/construct, re-
spectively. Markup can also be constructed through a custom output port, supplied by
simple-tree-text-markup/port.

There’s also a module simple-tree-text-markup/text that renders markup to text.
Rendering markup to GUI is quite context-specific. Hence, the code for rendering to GUIs
is implemented with specific applications, such as DrRacket or the test engine.



1 Markup Representation

(require simple-tree-text-markup/data)
package: simple-tree-text-markup-1ib

This module defines the representation for markup as a set of struct definitions. It should
be required when inspecting markup, For constructing markup, see simple-tree-text-
markup/construct.

A markup object can be one of the following:

* astring

¢ an empty-markup

¢ ahorizontal-markup
¢ avertical-markup

¢ a srcloc-markup

¢ a framed-markup

* an image-markup

¢ anumber-markup

(markup? object) — boolean?
object : any/c

Returns #t if object is a markup object, #f otherwise.

(struct empty-markup ())

This is an empty markup object, which consumes no space.

(struct horizontal-markup (markups))
markups : (listof markup?)

This markup object contains several sub-markups, which will be arranged horizontally when
rendered.

(struct vertical-markup (markups))
markups : (listof markup?)

This markup object contains several sub-markups, which will be arranged vertically when
rendered.


https://pkgs.racket-lang.org/package/simple-tree-text-markup-lib

(struct srcloc-markup (srcloc markup))
srcloc : srcloc?
markup : markup?

This markup object represents a link to a source location, represented by srcloc, where the
link visualization is represented by markup.

(struct framed-markup (markup))
markup : markup?

This markup object puts a frame around markup.

(struct image-markup (data alt-markup))
data : any/c
alt-markup : markup?

This markup object represents an image. The data contains the image data. The format is
not exactly specified, but a graphical renderer should accept bitmap’, snip%, and record-
dc-datum objects.

If rendering of data is not possible, alt-markup can be substituted.

(struct record-dc-datum (datum width height))
datum : any/c
width : natural-number/c
height : natural-number/c

This represents an image, containing the result the get-recorded-datum from record-
dc%, as well as the width and height of that image.

(struct number-markup (number
exact-prefix
inexact-prefix
fraction-view))
number : number?
exact-prefix : (or/c 'always 'never 'when-necessary)
inexact-prefix : (or/c 'always 'never 'when-necessary)
fraction-view : (or/c 'mixed 'improper 'decimal #f)

This represents a number to be rendered in a format that can be read back.
The exact-prefix argument specifies whether the representation should carry a #e pre-

fix: Always, never, or when necessary to identify a representation that would otherwise be
considered inexact.



Similarly for inexact-prefix. Note however that ' when-necessary is usually equivalent
to 'never, as inexact numbers are always printed with a decimal dot, which is sufficient to
identify a number representation as inexact.

The fraction-view field specifies how exact non-integer reals - fractions - should be ren-
dered: As a mixed fraction, an improper fraction, or a decimal, possibly identifying periodic
digits. For 'decimal, if it’s not possible to render the number as a decimal exactly, a fraction
representation might be generated. For 'mixed an improper fraction representation might
be generated if a mixed representation could not be read back.

If fraction-view is #£, this option comes from some unspecified user preference.

(markup-folder combine identity extractors)
— (markup? . -> . any/c)

combine : procedure?

identity : any/c

extractors : (listof pair?)

This creates a procedure that folds over a markup tree using a monoid: That procedure
maps every node of the markup tree to an element of the monoid, and returns the result of
combining those values.

The monoid itself is defined by combine (its binary operation) and identity (its identity /
neutral element).

The extractors list consists of pairs: Each pair consists of a predicate on markup nodes
(usually string?, empty-markup? etc.) and a procedure to map a node, for which the
predicate returns a true value, to an element of the monoid.

The following example extracts a list of source locations from a markup tree:

(define markup-srclocs
(markup-folder append '()
" ((,srcloc-markup? . ,(lambda (markup)
(1ist (srcloc-markup-
srcloc markup)))))))

(transform-markup mappers markup) — markup?
mappers : (listof pair?)
markup : markup?

This procedure transforms markup by replacing nodes. The mappers argument is a list of
pairs. Each pair consists of a predicate on markup nodes (usually string?, empty-markup?
etc.) and a procedure that accepts as argument the struct components of the corresponding
node, where the markup components have been recursively passed through transform-
markup. The node is replaced by the return value of the procedure.



The following example transforms each piece of image data in a markup tree:

(define (markup-transform-image-data transform-image-data markup)
(transform-markup
" ((,image-markup? . ,(lambda (data alt-markup)
(image-markup (transform-image-
data data) alt-markup))))
markup) )



2 Markup Construction

(require simple-tree-text-markup/construct)
package: simple-tree-text-markup-1ib

While the struct definitions in simple-tree-text-markup/data can also be used for con-
structing markup, the procedures exported here are somewhat more convenient to use, and
do a fair amount of normalization upon constructions.

(srcloc-markup srcloc markup) — markup?
srcloc : srcloc?
markup : markup?

This constructs a markup object that will represent a link to a source location, represented
by srcloc, where the link visualization is represented by markup.

(framed-markup markup) — markup?
markup : markup?

This markup constructor puts a frame around markup.

empty-markup : markup?

This is the empty markup object.

empty-line : markup?

This is a markup object representing an empty line, i.e. empty vertical space.

(number number
[#:exact-prefix exact-prefix
#:inexact-prefix inexact-prefix
#:fraction-view fraction-view]) — markup?
number : number?

exact-prefix : (or/c 'always 'never 'when-necessary) = 'never
inexact-prefix : (or/c 'always 'mever 'when-necessary)
= 'never

fraction-view : (or/c #f 'mixed 'improper 'decimal) = #f

This constructs markup for a number to be rendered in a format that can be read back.

The exact-prefix argument specifies whether the representation should carry a #e pre-
fix: Always, never, or when necessary to identify a representation that would otherwise be
considered inexact.


https://pkgs.racket-lang.org/package/simple-tree-text-markup-lib

Similarly for inexact-prefix. Note however that 'when-necessary is usually equiva-
lent to 'never, as inexact numbers are always printed with a decimal dot, which is sufficient
to identify a number representation as inexact.

The fraction-view field specifies how exact non-integer reals - fractions - should be ren-
dered: As a mixed fraction, an improper fraction, or a decimal, possibly identifying periodic
digits. For 'decimal, if it’s not possible to render the number as a decimal exactly, a fraction
representation might be generated. For 'mixed an improper fraction representation might
be generated if a mixed representation could not be read back.

If fraction-view is #£, this option comes from some unspecified user preference.

(horizontal markup ...) — markup?
markup : markup?

This procedure arranges the markup arguments horizontally.

(vertical markup ...) — markup?
markup : markup?

This procedure arranges the markup arguments vertically.

(transform-markup mappers markup) — markup?
mappers : (listof pair?)
markup : markup?

This is the same as transform-markup.

(markup-transform-image-data transform-image-data
markup) — markup?
transform-image-data : (any/c . -> . any/c)
markup : markup?

This walks over a markup tree, leaving everything unchanged except image-markup values.
For those, it applies transform-image-data to its datafield, replacing it by the return
value.



3 Rendering Markup to Text

(require simple-tree-text-markup/text)
package: simple-tree-text-markup-1ib

This module renders markup to text by printing to a port.

(display-markup markup [output-port]) — any
markup : markup?
output-port : output-port? = (current-output-port)

Renders a textual version of markup to output-port. It uses Unicode lines and corners to
display framed markup.

(number-markup->string number
[#:exact-prefix exact-prefix
#:inexact-prefix inexact-prefix
#:fraction-view fraction-view])
— string?
number : number?

exact-prefix : (or/c 'always 'never 'when-necessary) = 'never
inexact-prefix : (or/c 'always 'never 'when-necessary)
= 'never

fraction-view : (or/c #f 'mixed 'improper 'decimal) = #f

This is a convenience function that generates a textual number representation according to
the specification of number-markup.


https://pkgs.racket-lang.org/package/simple-tree-text-markup-lib

4 Generating Markup From a Port

(require simple-tree-text-markup/port)
package: simple-tree-text-markup-1ib

This modules define procedures for creating output ports whose output is captured as a
markup object.

(make-markup-output-port special->markup)
— output-port? (-> markup?)
special->markup : (any/c . -> . markup?)

This procedure returns an output port and a thunk.
The thunk will return whatever has been output to the port as a markup object.

The port also supports write-special: Any object output through it will be converted into
markup by the special->markup procedure.

(make-markup-output-port/unsafe special->markup)
— output-port? (-> markup?)
special->markup : (any/c . -> . markup?)

Thread-unsafe version of make-markup-output-port.

srclocs-special<y> : interface?

This interface is for implementation by objects written via write-special to a port created
by the procedures above: It marks objects (typically snips) that represent a sequence of
source locations, for which the markup output should render a link.

Note that, in order to make use of this, you will need to call make-markup-output-port
with a special->markup argument that looks for specials implementing this interface and
converts them to markup appropriately.

(send a-srclocs-special get-srclocs)
— (or/c #f (listof srcloc?))

Returns the source locations represented by the special object, most relevant
first in the list.


https://pkgs.racket-lang.org/package/simple-tree-text-markup-lib

	1 Markup Representation
	2 Markup Construction
	3 Rendering Markup to Text
	4 Generating Markup From a Port

