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The Scheme Requests for Implementation (a.k.a. SRFI) process allows individual members
of the Scheme community to propose libraries and extensions to be supported by multiple
Scheme implementations.

Racket is distributed with implementations of many SRFIs, most of which can be imple-
mented as libraries. To import the bindings of SRFI n, use

(require srfi/n)

This document lists the SRFIs that are supported by Racket and provides links to the original
SRFI specifications (which are also distributed as part of Racket’s documentation).
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SRFI 1: List Library

(require srfi/1) package: srfi-lite-lib

Original specification: SRFI 1

This SRFI works with pairs and lists as in racket, which are immutable, so it does not
export set-car! and set-cdr!. The other provided bindings that end in ! are equivalent
to the corresponding bindings without !. Functions that are documented in the SRFI in
bold (but not bold italic) correspond to racket functions, while the others are distinct from
same-named racket functions.
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SRFI 2: AND-LET*: an AND with local bindings...

(require srfi/2) package: srfi-lib

Original specification: SRFI 2
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-2.html


SRFI 4: Homogeneous numeric vector datatypes

(require srfi/4) package: srfi-lib

Original specification: SRFI 4

This SRFI’s reader and printer syntax is not supported. The bindings are also available from
scheme/foreign.
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https://pkgs.racket-lang.org/package/srfi-lib
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SRFI 5: A compatible let form with signatures and rest ar-
guments

(require srfi/5) package: srfi-lib

Original specification: SRFI 5

For historical reasons, the SRFI 5 specification document has a restrictive license and is not
included in the main Racket distribution.

The implementation in srfi/5 and this documentation are distributed under the same li-
cense as Racket: only the original specification document is restrictively licensed.

(let ([id init-expr] ...)
body ...+)

(let ([id init-expr] ...+ rest-binding)
body ...+)

(let loop-id ([id init-expr] ... maybe-rest-binding)
body ...+)

(let (loop-id [id init-expr] ... maybe-rest-binding)
body ...+)

maybe-rest-binding =
| rest-binding

rest-binding = rest-id rest-init-expr ...

Like let from racket/base, but extended to support additional variants of named let.

As with let from racket/base, SRFI 5’s let form conceptually expands to the immediate
application of a function to the values of the init-exprs: the ids are bound in the bodys
(but not in any init-exprs or rest-init-exprs), and loop-id , if present, is bound in
the bodys to the function itself, allowing it to be used recursively. An id or a rest-id can
shadow loop-id , but the rest-id (if given) and all iss much be distinct.

SRFI 5’s let adds support for a syntax like define’s function shorthand, which allows
the bindings to be written in a syntax resembling an application of the function bound to
loop-id .

Additionally, SRFI 5’s let adds support for rest arguments. If a rest-id is present, the
function bound to loop-id (or the conceptual anonymous function, if loop-id is not used)
will accept an unlimited number of additional arguments after its required by-position argu-
ments, and the rest-id will be bound in the bodys (but not in any init-exprs or rest-
init-exprs) to a list of those additional arguments. The values of the rest-init-exprs
are supplied as arguments to the initial, implicit application when the let form is evaluated,
so the initial value bound to rest-id is (list rest-init-expr ...). Unlike the

kw-formals of
lambda and
define or the
formals of
case-lambda, the
bindings of SRFI
5’s let, with or
without a
rest-binding ,
are always a proper
(syntactic) list.
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A rest-binding can be used with both the define-like and the named-let–like variants
of let. It is also possible to use rest-id without any loop-id ; however, as specified in
the grammar, at least one id–init-expr pair is required in that case. (Otherwise, there
would be an ambiguity with the define-like variant).

Examples:

; define-like bindings
> (define (factorial n)

(let (fact [n n] [acc 1])
(if (zero? n)

acc
(fact (sub1 n) (* n acc)))))

> (factorial 5)
120
> (factorial 11)
39916800
; rest arguments with named-let--like bindings
> (let reverse-onto ([lst '(a b c)]

tail)
(if (null? lst)

tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a)
> (let reverse-onto ([lst '(a b c)]

tail 'x 'y 'z)
(if (null? lst)

tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a x y z)
> (let no-evens (lst 1 2 3 4 5)

(cond
[(null? lst)
'()]

[(even? (car lst))
(apply no-evens (cdr lst))]

[else
(cons (car lst) (apply no-evens (cdr lst)))]))

'(1 3 5)
; rest arguments with define-like bindings
> (let (reverse-onto [lst '(a b c)] tail)

(if (null? lst)
tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a)
> (let (reverse-onto [lst '(a b c)] tail 'x 'y 'z)
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(if (null? lst)
tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a x y z)
> (let (loop [continue? 0] args 'a 'a1 'a2)

(case continue?
[(0) (cons args (loop 1 'b))]
[(1) (cons args (loop 2 'c 'd))]
[else (list args)]))

'((a a1 a2) (b) (c d))
; rest arguments without any loop-id
> (let ([x 1]

[y 2]
z 3 4 5 6 7)

(list* x y z))
'(1 2 3 4 5 6 7)
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SRFI 6: Basic String Ports

(require srfi/6) package: srfi-lib

Original specification: SRFI 6

This SRFI’s bindings are also available in racket/base.
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-6.html


SRFI 7: Feature-based program configuration language

(require srfi/7) package: srfi-lib

Original specification: SRFI 7
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-7.html


SRFI 8: RECEIVE: Binding to multiple values

(require srfi/8) package: srfi-lite-lib

Original specification: SRFI 8
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https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-8.html


SRFI 9: Defining Record Types

(require srfi/9) package: srfi-lib

Original specification: SRFI 9
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-9.html


SRFI 11: Syntax for receiving multiple values

(require srfi/11) package: srfi-lib

Original specification: SRFI 11

This SRFI’s bindings are also available in racket/base, but without support for dotted
“rest” bindings.
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https://pkgs.racket-lang.org/package/srfi-lib
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SRFI 13: String Libraries

(require srfi/13) package: srfi-lite-lib

Original specification: SRFI 13
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https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-13.html


SRFI 14: Character-set Library

(require srfi/14) package: srfi-lite-lib

Original specification: SRFI 14
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https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-14.html


SRFI 16: Syntax for procedures of variable arity

(require srfi/16) package: srfi-lib

Original specification: SRFI 16

This SRFI’s bindings are also available in racket/base.
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-16.html


SRFI 17: Generalized set!

(require srfi/17) package: srfi-lib

Original specification: SRFI 17

20

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-17.html


SRFI 19: Time Data Types and Procedures

(require srfi/19) package: srfi-lite-lib

Original specification: SRFI 19

The date structure produced by this SRFI library is identical to the one provided by
racket/base in most cases (see date).

For backwards compatibility, when an invalid date field value is provided to the SRFI con-
structor, the constructor will produce a lax date structure. A lax date structure is not compat-
ible with functions from racket/base or racket/date. SRFI functions such as string-
>date may return a lax date structure depending on the format string. The predicate lax-
date? recognizes lax dat structures.

As an extension, Racket’s implementation of string->date supports ~? as a conversion
specifier: it parses one- and two-digit years like ~y and three- and four-digit years like ~Y.

Examples:

> (string->date "4-1-99" "~d-~m-~?")
(date* 0 0 0 4 1 1999 1 3 #f -21600 0 "")
> (string->date "4-1-1999" "~d-~m-~?")
(date* 0 0 0 4 1 1999 1 3 #f -21600 0 "")

(lax-date? v) Ñ boolean?
v : any/c

Returns #t if v is a lax date structure. Otherwise, returns #f.

Examples:

> (lax-date? (make-date 0 19 10 10 14 "bogus" "bogus" 0))
#t
> (lax-date? (make-date 0 19 10 10 14 1 2013 0))
#f
> (lax-date? (string->date "10:21:00" "~H:~M:~S"))
#t
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SRFI 23: Error reporting mechanism

(require srfi/23) package: srfi-lib

Original specification: SRFI 23

This SRFI’s bindings are also available in racket/base.
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-23.html


SRFI 25: Multi-dimensional Array Primitives

(require srfi/25) package: srfi-lib

Original specification: SRFI 25
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-25.html


SRFI 26: Notation for Specializing Parameters without Cur-
rying

(require srfi/26) package: srfi-lib

Original specification: SRFI 26
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-26.html


SRFI 27: Sources of Random Bits

(require srfi/27) package: srfi-lib

Original specification: SRFI 27
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SRFI 28: Basic Format Strings

(require srfi/28) package: srfi-lib

Original specification: SRFI 28

This SRFI’s bindings are also available in racket/base.
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-28.html


SRFI 29: Localization

(require srfi/29) package: srfi-lite-lib

Original specification: SRFI 29
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SRFI 30: Nested Multi-line Comments

(require srfi/30) package: srfi-lib

Original specification: SRFI 30

This SRFI’s syntax is part of Racket’s default reader.
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SRFI 31: A special form rec for recursive evaluation

(require srfi/31) package: srfi-lib

Original specification: SRFI 31

29

https://pkgs.racket-lang.org/package/srfi-lib
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SRFI 34: Exception Handling for Programs

(require srfi/34) package: srfi-lib

Original specification: SRFI 34

An else is recognized as either the one from racket/base or as an identifier with the
symbolic form 'else and no binding.
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https://pkgs.racket-lang.org/package/srfi-lib
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SRFI 35: Conditions

(require srfi/35) package: srfi-lib

Original specification: SRFI 35
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-35.html


SRFI 38: External Representation for Data With Shared
Structure

(require srfi/38) package: srfi-lib

Original specification: SRFI 38

This SRFI’s syntax is part of Racket’s default reader and printer.
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-38.html


SRFI 39: Parameter objects

(require srfi/39) package: srfi-lib

Original specification: SRFI 39

This SRFI’s bindings are also available in racket/base.
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SRFI 40: A Library of Streams

(require srfi/40) package: srfi-lib

Original specification: SRFI 40

Superceded by srfi/41.
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SRFI 41: Streams

(require srfi/41) package: srfi-lib

Original specification: SRFI 41

The stream-cons operation from srfi/41 is the same as from racket/stream.
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SRFI 42: Eager Comprehensions

(require srfi/42) package: srfi-lib

Original specification: SRFI 42

Forms that syntactically detect if recognize both if from racket/base and if from
mzscheme.
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SRFI 43: Vector Library

(require srfi/43) package: srfi-lib

Original specification: SRFI 43
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SRFI 45: Primitives for Expressing Iterative Lazy Algo-
rithms

(require srfi/45) package: srfi-lib

Original specification: SRFI 45

Additional binding:

(promise? v) Ñ boolean?
v : any/c

Returns #t if v is a promise, #f otherwise.
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https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-45.html


SRFI 48: Intermediate Format Strings

(require srfi/48) package: srfi-lib

Original specification: SRFI 48
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https://docs.racket-lang.org/srfi-std/srfi-48.html


SRFI 54: Formatting

(require srfi/54) package: srfi-lib

Original specification: SRFI 54
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SRFI 57: Records

(require srfi/57) package: srfi-lib

Original specification: SRFI 57
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SRFI 59: Vicinity

(require srfi/59) package: srfi-lib

Original specification: SRFI 59
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SRFI 60: Integers as Bits

(require srfi/60) package: srfi-lib

Original specification: SRFI 60
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SRFI 61: A more general cond clause

(require srfi/61) package: srfi-lib

Original specification: SRFI 61
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https://docs.racket-lang.org/srfi-std/srfi-61.html


SRFI 62: S-expression comments

Original specification: SRFI 62

This SRFI’s syntax is part of Racket’s default reader (no require is needed).
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SRFI 63: Homogeneous and Heterogeneous Arrays

(require srfi/63) package: srfi-lib

Original specification: SRFI 63
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SRFI 64: A Scheme API for test suites

(require srfi/64) package: srfi-lib

Original specification: SRFI 64
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SRFI 66: Octet Vectors

(require srfi/66) package: srfi-lib

Original specification: SRFI 66
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SRFI 67: Compare Procedures

(require srfi/67) package: srfi-lib

Original specification: SRFI 67
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SRFI 69: Basic hash tables

(require srfi/69) package: srfi-lib

Original specification: SRFI 69
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https://docs.racket-lang.org/srfi-std/srfi-69.html


SRFI 71: Extended LET-syntax for multiple values

(require srfi/71) package: srfi-lib

Original specification: SRFI 71
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SRFI 74: Octet-Addressed Binary Blocks

(require srfi/74) package: srfi-lib

Original specification: SRFI 74
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SRFI 78: Lightweight testing

(require srfi/78) package: srfi-lib

Original specification: SRFI 78
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SRFI 86: MU & NU simulating VALUES & CALL-WITH-
VALUES...

(require srfi/86) package: srfi-lib

Original specification: SRFI 86
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SRFI 87: =ą in case clauses

(require srfi/87) package: srfi-lib

Original specification: SRFI 87
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SRFI 98: An interface to access environment variables

(require srfi/98) package: srfi-lib

Original specification: SRFI 98
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