
SRFIs: Libraries
Version 9.0.0.11

January 4, 2026

The Scheme Requests for Implementation (a.k.a. SRFI) process allows individual members
of the Scheme community to propose libraries and extensions to be supported by multiple
Scheme implementations.

Racket is distributed with implementations of many SRFIs, most of which can be imple-
mented as libraries. To import the bindings of SRFI n, use

(require srfi/n)

This document lists the SRFIs that are supported by Racket and provides links to the original
SRFI specifications (which are also distributed as part of Racket’s documentation).

1

https://srfi.schemers.org/


Contents

SRFI 1: List Library 6

SRFI 2: AND-LET*: an AND with local bindings... 7

SRFI 4: Homogeneous numeric vector datatypes 8

SRFI 5: A compatible let form with signatures and rest arguments 9

SRFI 6: Basic String Ports 12

SRFI 7: Feature-based program configuration language 13

SRFI 8: RECEIVE: Binding to multiple values 14

SRFI 9: Defining Record Types 15

SRFI 11: Syntax for receiving multiple values 16

SRFI 13: String Libraries 17

SRFI 14: Character-set Library 18

SRFI 16: Syntax for procedures of variable arity 19

SRFI 17: Generalized set! 20

SRFI 19: Time Data Types and Procedures 21

SRFI 23: Error reporting mechanism 22

SRFI 25: Multi-dimensional Array Primitives 23

2



SRFI 26: Notation for Specializing Parameters without Currying 24

SRFI 27: Sources of Random Bits 25

SRFI 28: Basic Format Strings 26

SRFI 29: Localization 27

SRFI 30: Nested Multi-line Comments 28

SRFI 31: A special form rec for recursive evaluation 29

SRFI 34: Exception Handling for Programs 30

SRFI 35: Conditions 31

SRFI 38: External Representation for Data With Shared Structure 32

SRFI 39: Parameter objects 33

SRFI 40: A Library of Streams 34

SRFI 41: Streams 35

SRFI 42: Eager Comprehensions 36

SRFI 43: Vector Library 37

SRFI 45: Primitives for Expressing Iterative Lazy Algorithms 38

SRFI 48: Intermediate Format Strings 39

SRFI 54: Formatting 40

3



SRFI 57: Records 41

SRFI 59: Vicinity 42

SRFI 60: Integers as Bits 43

SRFI 61: A more general cond clause 44

SRFI 62: S-expression comments 45

SRFI 63: Homogeneous and Heterogeneous Arrays 46

SRFI 64: A Scheme API for test suites 47

SRFI 66: Octet Vectors 48

SRFI 67: Compare Procedures 49

SRFI 69: Basic hash tables 50

SRFI 71: Extended LET-syntax for multiple values 51

SRFI 74: Octet-Addressed Binary Blocks 52

SRFI 78: Lightweight testing 53

SRFI 86: MU & NU simulating VALUES & CALL-WITH-VALUES... 54

SRFI 87: =ą in case clauses 55

SRFI 98: An interface to access environment variables 56

Index 57

4



Index 57

5



SRFI 1: List Library

(require srfi/1) package: srfi-lite-lib

Original specification: SRFI 1

This SRFI works with pairs and lists as in racket, which are immutable, so it does not
export set-car! and set-cdr!. The other provided bindings that end in ! are equivalent
to the corresponding bindings without !. Functions that are documented in the SRFI in
bold (but not bold italic) correspond to racket functions, while the others are distinct from
same-named racket functions.

6

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-1.html


SRFI 2: AND-LET*: an AND with local bindings...

(require srfi/2) package: srfi-lib

Original specification: SRFI 2

7

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-2.html


SRFI 4: Homogeneous numeric vector datatypes

(require srfi/4) package: srfi-lib

Original specification: SRFI 4

This SRFI’s reader and printer syntax is not supported. The bindings are also available from
scheme/foreign.

8

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-4.html


SRFI 5: A compatible let form with signatures and rest ar-
guments

(require srfi/5) package: srfi-lib

Original specification: SRFI 5

For historical reasons, the SRFI 5 specification document has a restrictive license and is not
included in the main Racket distribution.

The implementation in srfi/5 and this documentation are distributed under the same li-
cense as Racket: only the original specification document is restrictively licensed.

(let ([id init-expr] ...)
body ...+)

(let ([id init-expr] ...+ rest-binding)
body ...+)

(let loop-id ([id init-expr] ... maybe-rest-binding)
body ...+)

(let (loop-id [id init-expr] ... maybe-rest-binding)
body ...+)

maybe-rest-binding =
| rest-binding

rest-binding = rest-id rest-init-expr ...

Like let from racket/base, but extended to support additional variants of named let.

As with let from racket/base, SRFI 5’s let form conceptually expands to the immediate
application of a function to the values of the init-exprs: the ids are bound in the bodys
(but not in any init-exprs or rest-init-exprs), and loop-id , if present, is bound in
the bodys to the function itself, allowing it to be used recursively. An id or a rest-id can
shadow loop-id , but the rest-id (if given) and all iss much be distinct.

SRFI 5’s let adds support for a syntax like define’s function shorthand, which allows
the bindings to be written in a syntax resembling an application of the function bound to
loop-id .

Additionally, SRFI 5’s let adds support for rest arguments. If a rest-id is present, the
function bound to loop-id (or the conceptual anonymous function, if loop-id is not used)
will accept an unlimited number of additional arguments after its required by-position argu-
ments, and the rest-id will be bound in the bodys (but not in any init-exprs or rest-
init-exprs) to a list of those additional arguments. The values of the rest-init-exprs
are supplied as arguments to the initial, implicit application when the let form is evaluated,
so the initial value bound to rest-id is (list rest-init-expr ...). Unlike the

kw-formals of
lambda and
define or the
formals of
case-lambda, the
bindings of SRFI
5’s let, with or
without a
rest-binding ,
are always a proper
(syntactic) list.

9

https://pkgs.racket-lang.org/package/srfi-lib
https://srfi-email.schemers.org/srfi-announce/msg/2652023/
https://docs.racket-lang.org/license/index.html
https://docs.racket-lang.org/license/index.html


A rest-binding can be used with both the define-like and the named-let–like variants
of let. It is also possible to use rest-id without any loop-id ; however, as specified in
the grammar, at least one id–init-expr pair is required in that case. (Otherwise, there
would be an ambiguity with the define-like variant).

Examples:

; define-like bindings
> (define (factorial n)

(let (fact [n n] [acc 1])
(if (zero? n)

acc
(fact (sub1 n) (* n acc)))))

> (factorial 5)
120
> (factorial 11)
39916800
; rest arguments with named-let--like bindings
> (let reverse-onto ([lst '(a b c)]

tail)
(if (null? lst)

tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a)
> (let reverse-onto ([lst '(a b c)]

tail 'x 'y 'z)
(if (null? lst)

tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a x y z)
> (let no-evens (lst 1 2 3 4 5)

(cond
[(null? lst)
'()]

[(even? (car lst))
(apply no-evens (cdr lst))]

[else
(cons (car lst) (apply no-evens (cdr lst)))]))

'(1 3 5)
; rest arguments with define-like bindings
> (let (reverse-onto [lst '(a b c)] tail)

(if (null? lst)
tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a)
> (let (reverse-onto [lst '(a b c)] tail 'x 'y 'z)

10



(if (null? lst)
tail
(apply reverse-onto (cdr lst) (car lst) tail)))

'(c b a x y z)
> (let (loop [continue? 0] args 'a 'a1 'a2)

(case continue?
[(0) (cons args (loop 1 'b))]
[(1) (cons args (loop 2 'c 'd))]
[else (list args)]))

'((a a1 a2) (b) (c d))
; rest arguments without any loop-id
> (let ([x 1]

[y 2]
z 3 4 5 6 7)

(list* x y z))
'(1 2 3 4 5 6 7)

11



SRFI 6: Basic String Ports

(require srfi/6) package: srfi-lib

Original specification: SRFI 6

This SRFI’s bindings are also available in racket/base.

12

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-6.html


SRFI 7: Feature-based program configuration language

(require srfi/7) package: srfi-lib

Original specification: SRFI 7

13

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-7.html


SRFI 8: RECEIVE: Binding to multiple values

(require srfi/8) package: srfi-lite-lib

Original specification: SRFI 8

14

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-8.html


SRFI 9: Defining Record Types

(require srfi/9) package: srfi-lib

Original specification: SRFI 9

15

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-9.html


SRFI 11: Syntax for receiving multiple values

(require srfi/11) package: srfi-lib

Original specification: SRFI 11

This SRFI’s bindings are also available in racket/base, but without support for dotted
“rest” bindings.

16

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-11.html


SRFI 13: String Libraries

(require srfi/13) package: srfi-lite-lib

Original specification: SRFI 13

17

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-13.html


SRFI 14: Character-set Library

(require srfi/14) package: srfi-lite-lib

Original specification: SRFI 14

18

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-14.html


SRFI 16: Syntax for procedures of variable arity

(require srfi/16) package: srfi-lib

Original specification: SRFI 16

This SRFI’s bindings are also available in racket/base.

19

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-16.html


SRFI 17: Generalized set!

(require srfi/17) package: srfi-lib

Original specification: SRFI 17

20

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-17.html


SRFI 19: Time Data Types and Procedures

(require srfi/19) package: srfi-lite-lib

Original specification: SRFI 19

The date structure produced by this SRFI library is identical to the one provided by
racket/base in most cases (see date).

For backwards compatibility, when an invalid date field value is provided to the SRFI con-
structor, the constructor will produce a lax date structure. A lax date structure is not compat-
ible with functions from racket/base or racket/date. SRFI functions such as string-
>date may return a lax date structure depending on the format string. The predicate lax-
date? recognizes lax dat structures.

As an extension, Racket’s implementation of string->date supports ~? as a conversion
specifier: it parses one- and two-digit years like ~y and three- and four-digit years like ~Y.

Examples:

> (string->date "4-1-99" "~d-~m-~?")
(date* 0 0 0 4 1 1999 1 3 #f -21600 0 "")
> (string->date "4-1-1999" "~d-~m-~?")
(date* 0 0 0 4 1 1999 1 3 #f -21600 0 "")

(lax-date? v) Ñ boolean?
v : any/c

Returns #t if v is a lax date structure. Otherwise, returns #f.

Examples:

> (lax-date? (make-date 0 19 10 10 14 "bogus" "bogus" 0))
#t
> (lax-date? (make-date 0 19 10 10 14 1 2013 0))
#f
> (lax-date? (string->date "10:21:00" "~H:~M:~S"))
#t

21

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-19.html


SRFI 23: Error reporting mechanism

(require srfi/23) package: srfi-lib

Original specification: SRFI 23

This SRFI’s bindings are also available in racket/base.

22

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-23.html


SRFI 25: Multi-dimensional Array Primitives

(require srfi/25) package: srfi-lib

Original specification: SRFI 25

23

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-25.html


SRFI 26: Notation for Specializing Parameters without Cur-
rying

(require srfi/26) package: srfi-lib

Original specification: SRFI 26

24

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-26.html


SRFI 27: Sources of Random Bits

(require srfi/27) package: srfi-lib

Original specification: SRFI 27

25

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-27.html


SRFI 28: Basic Format Strings

(require srfi/28) package: srfi-lib

Original specification: SRFI 28

This SRFI’s bindings are also available in racket/base.

26

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-28.html


SRFI 29: Localization

(require srfi/29) package: srfi-lite-lib

Original specification: SRFI 29

27

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-29.html


SRFI 30: Nested Multi-line Comments

(require srfi/30) package: srfi-lib

Original specification: SRFI 30

This SRFI’s syntax is part of Racket’s default reader.

28

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-30.html


SRFI 31: A special form rec for recursive evaluation

(require srfi/31) package: srfi-lib

Original specification: SRFI 31

29

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-31.html


SRFI 34: Exception Handling for Programs

(require srfi/34) package: srfi-lib

Original specification: SRFI 34

An else is recognized as either the one from racket/base or as an identifier with the
symbolic form 'else and no binding.

30

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-34.html


SRFI 35: Conditions

(require srfi/35) package: srfi-lib

Original specification: SRFI 35

31

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-35.html


SRFI 38: External Representation for Data With Shared
Structure

(require srfi/38) package: srfi-lib

Original specification: SRFI 38

This SRFI’s syntax is part of Racket’s default reader and printer.

32

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-38.html


SRFI 39: Parameter objects

(require srfi/39) package: srfi-lib

Original specification: SRFI 39

This SRFI’s bindings are also available in racket/base.

33

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-39.html


SRFI 40: A Library of Streams

(require srfi/40) package: srfi-lib

Original specification: SRFI 40

Superceded by srfi/41.

34

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-40.html


SRFI 41: Streams

(require srfi/41) package: srfi-lib

Original specification: SRFI 41

The stream-cons operation from srfi/41 is the same as from racket/stream.

35

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-41/srfi-41.html


SRFI 42: Eager Comprehensions

(require srfi/42) package: srfi-lib

Original specification: SRFI 42

Forms that syntactically detect if recognize both if from racket/base and if from
mzscheme.

36

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-42.html


SRFI 43: Vector Library

(require srfi/43) package: srfi-lib

Original specification: SRFI 43

37

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-43.html


SRFI 45: Primitives for Expressing Iterative Lazy Algo-
rithms

(require srfi/45) package: srfi-lib

Original specification: SRFI 45

Additional binding:

(promise? v) Ñ boolean?
v : any/c

Returns #t if v is a promise, #f otherwise.

38

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-45.html


SRFI 48: Intermediate Format Strings

(require srfi/48) package: srfi-lib

Original specification: SRFI 48

39

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-48.html


SRFI 54: Formatting

(require srfi/54) package: srfi-lib

Original specification: SRFI 54

40

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-54.html


SRFI 57: Records

(require srfi/57) package: srfi-lib

Original specification: SRFI 57

41

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-57.html


SRFI 59: Vicinity

(require srfi/59) package: srfi-lib

Original specification: SRFI 59

42

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-59.html


SRFI 60: Integers as Bits

(require srfi/60) package: srfi-lib

Original specification: SRFI 60

43

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-60.html


SRFI 61: A more general cond clause

(require srfi/61) package: srfi-lib

Original specification: SRFI 61

44

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-61.html


SRFI 62: S-expression comments

Original specification: SRFI 62

This SRFI’s syntax is part of Racket’s default reader (no require is needed).

45

srfi-std/srfi-62.html


SRFI 63: Homogeneous and Heterogeneous Arrays

(require srfi/63) package: srfi-lib

Original specification: SRFI 63

46

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-63.html


SRFI 64: A Scheme API for test suites

(require srfi/64) package: srfi-lib

Original specification: SRFI 64

47

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-64.html


SRFI 66: Octet Vectors

(require srfi/66) package: srfi-lib

Original specification: SRFI 66

48

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-66.html


SRFI 67: Compare Procedures

(require srfi/67) package: srfi-lib

Original specification: SRFI 67

49

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-67/srfi-67.html


SRFI 69: Basic hash tables

(require srfi/69) package: srfi-lib

Original specification: SRFI 69

50

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-69.html


SRFI 71: Extended LET-syntax for multiple values

(require srfi/71) package: srfi-lib

Original specification: SRFI 71

51

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-71.html


SRFI 74: Octet-Addressed Binary Blocks

(require srfi/74) package: srfi-lib

Original specification: SRFI 74

52

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-74.html


SRFI 78: Lightweight testing

(require srfi/78) package: srfi-lib

Original specification: SRFI 78

53

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-78.html


SRFI 86: MU & NU simulating VALUES & CALL-WITH-
VALUES...

(require srfi/86) package: srfi-lib

Original specification: SRFI 86

54

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-86.html


SRFI 87: =ą in case clauses

(require srfi/87) package: srfi-lib

Original specification: SRFI 87

55

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-87.html


SRFI 98: An interface to access environment variables

(require srfi/98) package: srfi-lib

Original specification: SRFI 98

56

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-98.html


Index
->char-set, 18
:, 36
:char-range, 36
:dispatched, 36
:do, 36
:generator-proc, 36
:integers, 36
:let, 36
:list, 36
:parallel, 36
:port, 36
:range, 36
:real-range, 36
:string, 36
:until, 36
:vector, 36
:while, 36
add-duration, 21
add-duration!, 21
alist-cons, 6
alist-copy, 6
alist-delete, 6
alist-delete!, 6
and, 36
and-let*, 7
any, 6
any?-ec, 36
append, 6
append!, 6
append-ec, 36
append-map, 6
append-map!, 6
append-reverse, 6
append-reverse!, 6
array, 23
array-end, 23
array-rank, 23
array-ref, 23
array-set!, 23
array-start, 23

array?, 23
assoc, 6
assq, 6
assv, 6
begin, 36
break, 6
break!, 6
car, 6
car+cdr, 6
case-lambda, 19
cddadr, 6
cddddr, 6
cdr, 6
char-set, 18
char-set->list, 18
char-set->string, 18
char-set-adjoin, 18
char-set-adjoin!, 18
char-set-any, 18
char-set-complement, 18
char-set-complement!, 18
char-set-contains?, 18
char-set-copy, 18
char-set-count, 18
char-set-cursor, 18
char-set-cursor-next, 18
char-set-delete, 18
char-set-delete!, 18
char-set-diff+intersection, 18
char-set-diff+intersection!, 18
char-set-difference, 18
char-set-difference!, 18
char-set-every, 18
char-set-filter, 18
char-set-filter!, 18
char-set-fold, 18
char-set-for-each, 18
char-set-hash, 18
char-set-intersection, 18
char-set-intersection!, 18
char-set-map, 18
char-set-ref, 18

57



char-set-size, 18
char-set-unfold, 18
char-set-unfold!, 18
char-set-union, 18
char-set-union!, 18
char-set-xor, 18
char-set-xor!, 18
char-set:ascii, 18
char-set:blank, 18
char-set:digit, 18
char-set:empty, 18
char-set:full, 18
char-set:graphic, 18
char-set:hex-digit, 18
char-set:iso-control, 18
char-set:letter, 18
char-set:letter+digit, 18
char-set:lower-case, 18
char-set:printing, 18
char-set:punctuation, 18
char-set:symbol, 18
char-set:title-case, 18
char-set:upper-case, 18
char-set:whitespace, 18
char-set<=, 18
char-set=, 18
char-set?, 18
check-substring-spec, 17
circular-list, 6
circular-list?, 6
concatenate, 6
concatenate!, 6
cons, 6
cons*, 6
copy-time, 21
count, 6
current-country, 27
current-date, 21
current-julian-day, 21
current-language, 27
current-locale-details, 27
current-modified-julian-day, 21

current-time, 21
cut, 24
cute, 24
date->julian-day, 21
date->modified-julian-day, 21
date->string, 21
date->time-monotonic, 21
date->time-tai, 21
date->time-utc, 21
date-day, 21
date-hour, 21
date-minute, 21
date-month, 21
date-nanosecond, 21
date-second, 21
date-week-day, 21
date-week-number, 21
date-year, 21
date-year-day, 21
date-zone-offset, 21
date?, 21
declare-bundle!, 27
default-random-source, 25
define-record-type, 15
define-stream, 35
delay, 38
delete, 6
delete!, 6
delete-duplicates, 6
delete-duplicates!, 6
do-ec, 36
dotted-list?, 6
drop, 6
drop-right, 6
drop-right!, 6
drop-while, 6
eager, 38
eighth, 6
end-of-char-set?, 18
error, 22
every, 6
every?-ec, 36

58



f32vector, 8
f64vector, 8
fifth, 6
filter, 6
filter!, 6
filter-map, 6
find, 6
find-tail, 6
first, 6
first-ec, 36
fold, 6
fold-ec, 36
fold-right, 6
fold3-ec, 36
for-each, 6
force, 38
format, 26
format, 39
fourth, 6
generator, 36
get-environment-variable, 56
get-environment-variables, 56
get-output-string, 12
getter-with-setter, 20
guard, 30
home-vicinity, 42
if, 36
implementation-vicinity, 42
in-vicinity, 42
iota, 6
julian-day->date, 21
julian-day->time-monotonic, 21
julian-day->time-tai, 21
julian-day->time-utc, 21
kmp-step, 17
last, 6
last-ec, 36
last-pair, 6
lax date structure, 21
lax-date?, 21
lazy, 38
length, 6

length+, 6
let, 9
let*-values, 16
let-string-start+end, 17
let-values, 16
library-vicinity, 42
list, 6
list->char-set, 18
list->char-set!, 18
list->stream, 35
list->string, 17
list->vector, 37
list-copy, 6
list-ec, 36
list-index, 6
list-ref, 6
list-tabulate, 6
load-bundle!, 27
localized-template, 27
lset-adjoin, 6
lset-diff+intersection, 6
lset-diff+intersection!, 6
lset-difference, 6
lset-difference!, 6
lset-intersection, 6
lset-intersection!, 6
lset-union, 6
lset-union!, 6
lset-xor, 6
lset-xor!, 6
lset=, 6
make-array, 23
make-date, 21
make-kmp-restart-vector, 17
make-list, 6
make-parameter, 33
make-random-source, 25
make-string, 17
make-time, 21
make-vector, 37
make-vicinity, 42
map, 6

59



map!, 6
map-in-order, 6
max-ec, 36
member, 6
memq, 6
memv, 6
min-ec, 36
modified-julian-day->date, 21
modified-julian-day->time-
monotonic, 21

modified-julian-day->time-tai, 21
modified-julian-day->time-utc, 21
nested, 36
ninth, 6
not, 36
not-pair?, 6
null-list?, 6
null?, 6
open-input-string, 12
open-output-string, 12
or, 36
pair-fold, 6
pair-fold-right, 6
pair-for-each, 6
pair?, 6
parameterize, 33
partition, 6
partition!, 6
pathname->vicinity, 42
port->stream, 35
product-ec, 36
program, 13
program-vicinity, 42
promise?, 38
proper-list?, 6
raise, 30
random-integer, 25
random-real, 25
random-source-make-integers, 25
random-source-make-reals, 25
random-source-pseudo-randomize!, 25
random-source-randomize!, 25

random-source-state-ref, 25
random-source-state-ref!, 25
random-source?, 25
read-with-shared-structure, 32
rec, 29
receive, 14
reduce, 6
reduce-right, 6
remove, 6
remove!, 6
reverse, 6
reverse!, 6
reverse-list->string, 17
reverse-list->vector, 37
reverse-vector->list, 37
s16vector, 8
s32vector, 8
s64vector, 8
s8vector, 8
second, 6
set!, 20
set-time-nanosecond!, 21
set-time-second!, 21
set-time-type!, 21
seventh, 6
shape, 23
share-array, 23
sixth, 6
span, 6
span!, 6
split-at, 6
split-at!, 6
SRFI, 1
SRFI 11: Syntax for receiving multiple val-

ues, 16
SRFI 13: String Libraries, 17
SRFI 14: Character-set Library, 18
SRFI 16: Syntax for procedures of variable

arity, 19
SRFI 17: Generalized set!, 20
SRFI 19: Time Data Types and Procedures,

21

60



SRFI 1: List Library, 6
SRFI 23: Error reporting mechanism, 22
SRFI 25: Multi-dimensional Array Primi-

tives, 23
SRFI 26: Notation for Specializing Parame-

ters without Currying, 24
SRFI 27: Sources of Random Bits, 25
SRFI 28: Basic Format Strings, 26
SRFI 29: Localization, 27
SRFI 2: AND-LET*: an AND with local

bindings..., 7
SRFI 30: Nested Multi-line Comments, 28
SRFI 31: A special form rec for recursive

evaluation, 29
SRFI 34: Exception Handling for Programs,

30
SRFI 35: Conditions, 31
SRFI 38: External Representation for Data

With Shared Structure, 32
SRFI 39: Parameter objects, 33
SRFI 40: A Library of Streams, 34
SRFI 41: Streams, 35
SRFI 42: Eager Comprehensions, 36
SRFI 43: Vector Library, 37
SRFI 45: Primitives for Expressing Iterative

Lazy Algorithms, 38
SRFI 48: Intermediate Format Strings, 39
SRFI 4: Homogeneous numeric vector

datatypes, 8
SRFI 54: Formatting, 40
SRFI 57: Records, 41
SRFI 59: Vicinity, 42
SRFI 5: A compatible let form with signa-

tures and rest arguments, 9
SRFI 60: Integers as Bits, 43
SRFI 61: A more general cond clause, 44
SRFI 62: S-expression comments, 45
SRFI 63: Homogeneous and Heterogeneous

Arrays, 46
SRFI 64: A Scheme API for test suites, 47
SRFI 66: Octet Vectors, 48
SRFI 67: Compare Procedures, 49
SRFI 69: Basic hash tables, 50

SRFI 6: Basic String Ports, 12
SRFI 71: Extended LET-syntax for multiple

values, 51
SRFI 74: Octet-Addressed Binary Blocks,

52
SRFI 78: Lightweight testing, 53
SRFI 7: Feature-based program configura-

tion language, 13
SRFI 86: MU & NU simulating VALUES &

CALL-WITH-VALUES..., 54
SRFI 87: =ą in case clauses, 55
SRFI 8: RECEIVE: Binding to multiple val-

ues, 14
SRFI 98: An interface to access environment

variables, 56
SRFI 9: Defining Record Types, 15
srfi/1, 6
srfi/11, 16
srfi/13, 17
srfi/14, 18
srfi/16, 19
srfi/17, 20
srfi/19, 21
srfi/2, 7
srfi/23, 22
srfi/25, 23
srfi/26, 24
srfi/27, 25
srfi/28, 26
srfi/29, 27
srfi/30, 28
srfi/31, 29
srfi/34, 30
srfi/35, 31
srfi/38, 32
srfi/39, 33
srfi/4, 8
srfi/40, 34
srfi/41, 35
srfi/42, 36
srfi/43, 37
srfi/45, 38
srfi/48, 39

61



srfi/5, 9
srfi/54, 40
srfi/57, 41
srfi/59, 42
srfi/6, 12
srfi/60, 43
srfi/61, 44
srfi/63, 46
srfi/64, 47
srfi/66, 48
srfi/67, 49
srfi/69, 50
srfi/7, 13
srfi/71, 51
srfi/74, 52
srfi/78, 53
srfi/8, 14
srfi/86, 54
srfi/87, 55
srfi/9, 15
srfi/98, 56
SRFIs: Libraries, 1
store-bundle, 27
stream, 34
stream, 35
stream->list, 35
stream-append, 35
stream-car, 34
stream-car, 35
stream-cdr, 34
stream-cdr, 35
stream-concat, 35
stream-cons, 34
stream-cons, 35
stream-constant, 35
stream-delay, 34
stream-drop, 35
stream-drop-while, 35
stream-filter, 34
stream-filter, 35
stream-fold, 35
stream-for-each, 34

stream-for-each, 35
stream-from, 35
stream-iterate, 35
stream-lambda, 35
stream-length, 35
stream-let, 35
stream-map, 34
stream-map, 35
stream-match, 35
stream-null, 34
stream-null, 35
stream-null?, 34
stream-null?, 35
stream-of, 35
stream-pair?, 35
stream-range, 35
stream-ref, 35
stream-reverse, 35
stream-scan, 35
stream-take, 35
stream-take-while, 35
stream-unfold, 35
stream-unfoldn, 34
stream-zip, 35
stream?, 34
stream?, 35
string, 17
string->char-set, 18
string->char-set!, 18
string->date, 21
string->list, 17
string-any, 17
string-append, 17
string-append-ec, 36
string-append/shared, 17
string-ci<, 17
string-ci<=, 17
string-ci<>, 17
string-ci=, 17
string-ci>, 17
string-ci>=, 17
string-compare, 17

62



string-compare-ci, 17
string-concatenate, 17
string-concatenate-reverse, 17
string-concatenate-reverse/shared,

17
string-concatenate/shared, 17
string-contains, 17
string-contains-ci, 17
string-copy, 17
string-copy!, 17
string-count, 17
string-delete, 17
string-downcase, 17
string-downcase!, 17
string-drop, 17
string-drop-right, 17
string-ec, 36
string-every, 17
string-fill!, 17
string-filter, 17
string-fold, 17
string-fold-right, 17
string-for-each, 17
string-for-each-index, 17
string-hash, 17
string-hash-ci, 17
string-index, 17
string-index-right, 17
string-join, 17
string-kmp-partial-search, 17
string-length, 17
string-map, 17
string-map!, 17
string-null?, 17
string-pad, 17
string-pad-right, 17
string-parse-final-start+end, 17
string-parse-start+end, 17
string-prefix-ci?, 17
string-prefix-length, 17
string-prefix-length-ci, 17
string-prefix?, 17

string-ref, 17
string-replace, 17
string-reverse, 17
string-reverse!, 17
string-set!, 17
string-skip, 17
string-skip-right, 17
string-suffix-ci?, 17
string-suffix-length, 17
string-suffix-length-ci, 17
string-suffix?, 17
string-tabulate, 17
string-take, 17
string-take-right, 17
string-titlecase, 17
string-titlecase!, 17
string-tokenize, 17
string-trim, 17
string-trim-both, 17
string-trim-right, 17
string-unfold, 17
string-unfold-right, 17
string-upcase, 17
string-upcase!, 17
string-xcopy!, 17
string<, 17
string<=, 17
string<>, 17
string=, 17
string>, 17
string>=, 17
string?, 17
sub-vicinity, 42
substring-spec-ok?, 17
substring/shared, 17
subtract-duration, 21
subtract-duration!, 21
sum-ec, 36
take, 6
take!, 6
take-right, 6
take-while, 6

63



take-while!, 6
tenth, 6
third, 6
time-difference, 21
time-difference!, 21
time-duration, 21
time-monotonic, 21
time-monotonic->date, 21
time-monotonic->julian-day, 21
time-monotonic->modified-julian-
day, 21

time-monotonic->time-tai, 21
time-monotonic->time-tai!, 21
time-monotonic->time-utc, 21
time-monotonic->time-utc!, 21
time-nanosecond, 21
time-process, 21
time-resolution, 21
time-second, 21
time-tai, 21
time-tai->date, 21
time-tai->julian-day, 21
time-tai->modified-julian-day, 21
time-tai->time-monotonic, 21
time-tai->time-monotonic!, 21
time-tai->time-utc, 21
time-tai->time-utc!, 21
time-thread, 21
time-type, 21
time-utc, 21
time-utc->date, 21
time-utc->julian-day, 21
time-utc->modified-julian-day, 21
time-utc->time-monotonic, 21
time-utc->time-monotonic!, 21
time-utc->time-tai, 21
time-utc->time-tai!, 21
time<=?, 21
time<?, 21
time=?, 21
time>=?, 21
time>?, 21

time?, 21
u16vector, 8
u32vector, 8
u64vector, 8
u8vector, 8
ucs-range->char-set, 18
ucs-range->char-set!, 18
unfold, 6
unfold-right, 6
unzip1, 6
unzip2, 6
unzip3, 6
unzip4, 6
unzip5, 6
user-vicinity, 42
vector, 37
vector->list, 37
vector-any, 37
vector-append, 37
vector-binary-search, 37
vector-concatenate, 37
vector-copy, 37
vector-copy!, 37
vector-count, 37
vector-ec, 36
vector-empty?, 37
vector-every, 37
vector-fill!, 37
vector-fold, 37
vector-fold-right, 37
vector-for-each, 37
vector-index, 37
vector-index-right, 37
vector-length, 37
vector-map, 37
vector-map!, 37
vector-of-length-ec, 36
vector-ref, 37
vector-reverse!, 37
vector-reverse-copy, 37
vector-reverse-copy!, 37
vector-set!, 37

64



vector-skip, 37
vector-skip-right, 37
vector-swap!, 37
vector-unfold, 37
vector-unfold-right, 37
vector=, 37
vector?, 37
vicinity:suffix?, 42
with-exception-handler, 30
write-with-shared-structure, 32
xcons, 6
xsubstring, 17
zip, 6

65


	SRFI 1: List Library
	SRFI 2: AND-LET*: an AND with local bindings...
	SRFI 4: Homogeneous numeric vector datatypes
	SRFI 5: A compatible let form with signatures and rest arguments
	SRFI 6: Basic String Ports
	SRFI 7: Feature-based program configuration language
	SRFI 8: RECEIVE: Binding to multiple values
	SRFI 9: Defining Record Types
	SRFI 11: Syntax for receiving multiple values
	SRFI 13: String Libraries
	SRFI 14: Character-set Library
	SRFI 16: Syntax for procedures of variable arity
	SRFI 17: Generalized set!
	SRFI 19: Time Data Types and Procedures
	SRFI 23: Error reporting mechanism
	SRFI 25: Multi-dimensional Array Primitives
	SRFI 26: Notation for Specializing Parameters without Currying
	SRFI 27: Sources of Random Bits
	SRFI 28: Basic Format Strings
	SRFI 29: Localization
	SRFI 30: Nested Multi-line Comments
	SRFI 31: A special form rec for recursive evaluation
	SRFI 34: Exception Handling for Programs
	SRFI 35: Conditions
	SRFI 38: External Representation for Data With Shared Structure
	SRFI 39: Parameter objects
	SRFI 40: A Library of Streams
	SRFI 41: Streams
	SRFI 42: Eager Comprehensions
	SRFI 43: Vector Library
	SRFI 45: Primitives for Expressing Iterative Lazy Algorithms
	SRFI 48: Intermediate Format Strings
	SRFI 54: Formatting
	SRFI 57: Records
	SRFI 59: Vicinity
	SRFI 60: Integers as Bits
	SRFI 61: A more general cond clause
	SRFI 62: S-expression comments
	SRFI 63: Homogeneous and Heterogeneous Arrays
	SRFI 64: A Scheme API for test suites
	SRFI 66: Octet Vectors
	SRFI 67: Compare Procedures
	SRFI 69: Basic hash tables
	SRFI 71: Extended LET-syntax for multiple values
	SRFI 74: Octet-Addressed Binary Blocks
	SRFI 78: Lightweight testing
	SRFI 86: MU & NU simulating VALUES & CALL-WITH-VALUES...
	SRFI 87: => in case clauses
	SRFI 98: An interface to access environment variables
	Index
	Index

