SRFIs: Libraries

Version 9.0.0.11

January 4, 2026

The Scheme Requests for Implementation (a.k.a. SRFI) process allows individual members
of the Scheme community to propose libraries and extensions to be supported by multiple
Scheme implementations.

Racket is distributed with implementations of many SRFIs, most of which can be imple-
mented as libraries. To import the bindings of SRFI n, use

(require srfi/n)

This document lists the SRFIs that are supported by Racket and provides links to the original
SRFI specifications (which are also distributed as part of Racket’s documentation).

https://srfi.schemers.org/

Contents

¢ List Library

RFI 2: AND-LET*: an AND with local bindings...|

[SRFT 4: Homogeneous numeric vector datatypes|

[SRFT 5: A compatible let form with signatures and rest arguments|

[SRFT 6: Basic String Ports|

ISRFI7: Feature-based program configuration language|

[SRFT 8: RECEIVE: Binding to multiple values|

ISRFI 9: Defining Record Types|

[SRFT 11: Syntax for receiving multiple values|

|SRF| 13: Strlng |:15rar1e§|

ISRFT 14: Character-set Library|

ISRFT 16: Syntax for procedures of variable arity|

SRET 17: Generalized set!

ISRFI 19: Time Data Types and Procedures|

[SRFT 23: Error reporting mechanism|

[SRFT 25: Multi-dimensional Array Primitives|

12

13

14

15

16

17

18

19

20

21

22

23

[SRFT 26: Notation for Specializing Parameters without Currying

SRFT 27: Sources of Random Bits

[SRFT 28: Basic Format Strings|

SRET 29: 1ocalization|

SRET 30: Nested Multi-line Comments|

ISRFT 31: A special form rec for recursive evaluation|

[SRFT 34: Exception Handling for Programs

SRFT 35: Conditions

ISRFT 38: External Representation for Data With Shared Structure]

[SRFT 39: Parameter objects|

[SRFT 40: A Library of Streams|

SRIT 41: Streams

ISRFT 42: Eager Comprehensions|

: Vector Library

ISRFT 45: Primitives for Expressing Iterative Lazy Algorithms|

ISRFT 48: Intermediate Format Strings|

|S RFT54: F ormattln§|

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

SRET S7: Records!

|SRF [59: Vlcmltﬂ

[SRFT 60: Integers as Bits|

ISRFT 61: A more general cond clause|

ISRFT 62: S-expression comments|

ISRFT 63: Homogeneous and Heterogeneous Arrays|

ISRFI 64: A Scheme API for test suites|

SRFT 66: Octet Vectors

ISRFI 67: Compare Procedures|

SRFET 69: Basic hash tables

SRFT71: Extended LET-syntax for multiple values|

: Octet- ressed Binary Bloc

[SRFT 78: Lightweight testing|

[SRFT 86: MU & NU simulating VALUES & CALL-WITH-VALUES..]

SRFI98: An ot . bles

41

42

43

44

45

46

47

48

49

50

51

52

53

55

56

57

57

SRFI 1: List Library

(require srfi/1) package: srfi-1ite-1ib
Original specification: SRFI 1

This SRFI works with pairs and lists as in racket, which are immutable, so it does not
export set-car! and set-cdr!. The other provided bindings that end in ! are equivalent
to the corresponding bindings without !. Functions that are documented in the SRFI in
bold (but not bold italic) correspond to racket functions, while the others are distinct from
same-named racket functions.

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-1.html

SRFI 2: AND-LET#*: an AND with local bindings...

(require srfi/2) package: sTfi-11ib

Original specification: SRFI 2

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-2.html

SRFI 4: Homogeneous numeric vector datatypes

(require srfi/4) package: sTfi-11ib
Original specification: SRFI 4

This SRFI’s reader and printer syntax is not supported. The bindings are also available from
scheme/foreign.

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-4.html

SRFI 5: A compatible let form with signatures and rest ar-
guments

(require srfi/5) package: srfi-1ib
Original specification: SRFI 5

For historical reasons, the SRFI 5 specification document has a restrictive license and is not
included in the main Racket distribution.

The implementation in srfi/5 and this documentation are distributed under the same li-
cense as Racket: only the original specification document is restrictively licensed.

(let ([id init-expr] ...)
body ...+)

(let ([id init-expr] ...+ rest-binding)
body ...+)

(let loop-id ([id init-expr] ... maybe-rest-binding)
body ...+)

(let (loop-id [id init-expr] ... maybe-rest-binding)
body ...+)

maybe-rest-binding
| rest-binding

rest-binding = rest-id rest-init-expr

Like 1et from racket/base, but extended to support additional variants of named let.

As with let from racket/base, SRFI 5’s 1et form conceptually expands to the immediate
application of a function to the values of the init-exprs: the ids are bound in the bodys
(but not in any init-exprs or rest-init-exprs), and loop-id, if present, is bound in
the bodys to the function itself, allowing it to be used recursively. An id or a rest-id can
shadow loop-id, but the rest-id (if given) and all iss much be distinct.

SRFI 5°s let adds support for a syntax like define’s function shorthand, which allows
the bindings to be written in a syntax resembling an application of the function bound to
Jloop-id.

Additionally, SRFI 5’s 1let adds support for rest arguments. If a rest-id is present, the
function bound to Ioop-1id (or the conceptual anonymous function, if 1oop-id is not used)
will accept an unlimited number of additional arguments after its required by-position argu-
ments, and the rest-id will be bound in the bodys (but not in any init-exprs or rest-
init-exprs) to a list of those additional arguments. The values of the rest-init-exprs
are supplied as arguments to the initial, implicit application when the 1et form is evaluated,
so the initial value bound to rest-id is (1ist rest-init-expr ...).

Unlike the
kw-formals of
lambda and
define or the
formals of
case-lambda, the
bindings of SRFI
5’s let, with or
without a
rest-binding,
are always a proper
(syntactic) list.

https://pkgs.racket-lang.org/package/srfi-lib
https://srfi-email.schemers.org/srfi-announce/msg/2652023/
https://docs.racket-lang.org/license/index.html
https://docs.racket-lang.org/license/index.html

A rest-binding can be used with both the define-like and the named-1et—like variants
of 1let. It is also possible to use rest-id without any Ioop-id; however, as specified in
the grammar, at least one id—init-expr pair is required in that case. (Otherwise, there
would be an ambiguity with the define-like variant).

Examples:

; define-like bindings
> (define (factorial n)
(let (fact [n n] [acc 1]1)
(if (zero? n)
acc
(fact (subl n) (¥ n acc)))))
> (factorial 5)
120
> (factorial 11)
39916800
; rest arguments with named-let--like bindings
> (let reverse-onto ([lst '(a b c)]
tail)
(if (null? 1st)
tail
(apply reverse-onto (cdr 1lst) (car 1lst) tail)))
"(c b a)
> (let reverse-onto ([lst '(a b c)]
tail 'x 'y 'z)
(if (null? 1st)
tail
(apply reverse-onto (cdr 1lst) (car 1lst) tail)))
'(cbaxy 2z
> (let no-evens (1st 1 2 3 4 5)
(cond
[(null? 1st)
HON!
[(even? (car 1lst))
(apply no-evens (cdr 1lst))]
[else
(cons (car 1lst) (apply no-evens (cdr 1lst)))]))
'(1 35)
; rest arguments with define-like bindings
> (let (reverse-onto [lst '(a b c)] tail)
(if (null? 1st)
tail
(apply reverse-onto (cdr 1lst) (car 1lst) tail)))
"(c b a)
> (let (reverse-onto [lst '(a b c)] tail 'x 'y 'z)

10

(if (null? 1st)
tail
(apply reverse-onto (cdr 1lst) (car 1lst) tail)))
'cbaxyz)
> (let (loop [continue? 0] args 'a 'al 'a2)
(case continue?
[(0) (cons args (loop 1 'b))]
[(1) (cons args (loop 2 'c 'd))]
[else (list args)]))
"((a a1l a2) (b) (c d))
; rest arguments without any loop-id
> (let ([x 1]
[y 2]
z3456T7)
(list* x y z))
'(123456T7)

11

SRFI 6: Basic String Ports

(require srfi/6) package: sTfi-11ib
Original specification: SRFI 6

This SRFI’s bindings are also available in racket/base.

12

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-6.html

SRFI 7: Feature-based program configuration language

(require srfi/7) package: sTfi-11ib

Original specification: SRFI 7

13

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-7.html

SRFI 8: RECEIVE: Binding to multiple values

(require srfi/8) package: srfi-1ite-1ib

Original specification: SRFI 8

14

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-8.html

SRFI 9: Defining Record Types

(require srfi/9) package: sTfi-11ib

Original specification: SRFI 9

15

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-9.html

SRFI 11: Syntax for receiving multiple values

(require srfi/11) package: sTfi-11ib
Original specification: SRFI 11

This SRFI’s bindings are also available in racket/base, but without support for dotted
“rest” bindings.

16

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-11.html

SRFI 13: String Libraries

(require srfi/13) package: srfi-1ite-1ib

Original specification: SRFI 13

17

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-13.html

SRFI 14: Character-set Library

(require srfi/14) package: srfi-1ite-1ib

Original specification: SRFI 14

18

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-14.html

SRFI 16: Syntax for procedures of variable arity

(require srfi/16) package: sTfi-11ib
Original specification: SRFI 16

This SRFI’s bindings are also available in racket/base.

19

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-16.html

SRFI 17: Generalized set!

(require srfi/17) package: sTfi-11ib

Original specification: SRFI 17

20

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-17.html

SRFI 19: Time Data Types and Procedures

(require srfi/19) package: srfi-1ite-1ib
Original specification: SRFI 19

The date structure produced by this SRFI library is identical to the one provided by
racket/base in most cases (see date).

For backwards compatibility, when an invalid date field value is provided to the SRFI con-
structor, the constructor will produce a lax date structure. A lax date structure is not compat-
ible with functions from racket/base or racket/date. SRFI functions such as string-
>date may return a lax date structure depending on the format string. The predicate 1ax-
date? recognizes lax dat structures.

As an extension, Racket’s implementation of string->date supports ~7 as a conversion
specifier: it parses one- and two-digit years like ~y and three- and four-digit years like ~Y.

Examples:

> (string->date "4-1-99" "~d-"m-"7")
(datex 0 0 0 4 1 1999 1 3 #f -21600 0 "")
> (string->date "4-1-1999" "~d-"m-"7")
(datex 0 0 0 4 1 1999 1 3 #f -21600 0 "")

(lax-date? v) — boolean?
v : any/c

Returns #t if v is a lax date structure. Otherwise, returns #£.
Examples:

> (lax-date? (make-date 0 19 10 10 14 "bogus" "bogus" 0))
#t

> (lax-date? (make-date O 19 10 10 14 1 2013 0))

#t

> (lax-date? (string->date "10:21:00" ""H:"M:7S"))

#t

21

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-19.html

SRFI 23: Error reporting mechanism

(require srfi/23) package: sTfi-11ib
Original specification: SRFI 23

This SRFI’s bindings are also available in racket/base.

22

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-23.html

SRFI 25: Multi-dimensional Array Primitives

(require srfi/25) package: sTfi-11ib

Original specification: SRFI 25

23

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-25.html

SRFI 26: Notation for Specializing Parameters without Cur-
rying

(require srfi/26) package: sTfi-1ib

Original specification: SRFI 26

24

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-26.html

SRFI 27: Sources of Random Bits

(require srfi/27) package: sTfi-11ib

Original specification: SRFI 27

25

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-27.html

SRFI 28: Basic Format Strings

(require srfi/28) package: sTfi-11ib
Original specification: SRFI 28

This SRFI’s bindings are also available in racket/base.

26

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-28.html

SRFI 29: Localization

(require srfi/29) package: srfi-l1ite-1ib

Original specification: SRFI 29

27

https://pkgs.racket-lang.org/package/srfi-lite-lib
https://docs.racket-lang.org/srfi-std/srfi-29.html

SRFI 30: Nested Multi-line Comments

(require srfi/30) package: sTfi-11ib
Original specification: SRFI 30

This SRFI’s syntax is part of Racket’s default reader.

28

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-30.html

SRFI 31: A special form rec for recursive evaluation

(require srfi/31) package: sTfi-11ib

Original specification: SRFI 31

29

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-31.html

SRFI 34: Exception Handling for Programs

(require srfi/34) package: sTfi-11ib
Original specification: SRFI 34

An else is recognized as either the one from racket/base or as an identifier with the
symbolic form 'else and no binding.

30

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-34.html

SRFI 35: Conditions

(require srfi/35) package: sTfi-11ib

Original specification: SRFI 35

31

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-35.html

SRFI 38: External Representation for Data With Shared
Structure

(require srfi/38) package: srfi-1ib
Original specification: SRFI 38

This SRFI’s syntax is part of Racket’s default reader and printer.

32

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-38.html

SRFI 39: Parameter objects

(require srfi/39) package: sTfi-11ib
Original specification: SRFI 39

This SRFI’s bindings are also available in racket/base.

33

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-39.html

SRFI 40: A Library of Streams

(require srfi/40) package: sTfi-11ib
Original specification: SRFI 40

Superceded by srfi/41.

34

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-40.html

SRFI 41: Streams

(require srfi/41) package: sTfi-11ib
Original specification: SRFI 41

The stream-cons operation from srfi/41 is the same as from racket/stream.

35

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-41/srfi-41.html

SRFI 42: Eager Comprehensions

(require srfi/42) package: sTfi-11ib
Original specification: SRFI 42

Forms that syntactically detect if recognize both if from racket/base and if from
mzscheme.

36

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-42.html

SRFI 43: Vector Library

(require srfi/43) package: sTfi-11ib

Original specification: SRFI 43

37

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-43.html

SRFI 45: Primitives for Expressing Iterative Lazy Algo-
rithms

(require srfi/45) package: srfi-1ib
Original specification: SRFI 45
Additional binding:

(promise? v) — boolean?

v : any/c

Returns #t if v is a promise, #£f otherwise.

38

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-45.html

SRFI 48: Intermediate Format Strings

(require srfi/48) package: sTfi-11ib

Original specification: SRFI 48

39

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-48.html

SRFI 54: Formatting

(require srfi/54) package: sTfi-11ib

Original specification: SRFI 54

40

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-54.html

SRFI 57: Records

(require srfi/57) package: sTfi-11ib

Original specification: SRFI 57

41

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-57.html

SRFI 59: Vicinity

(require srfi/59) package: sTfi-11ib

Original specification: SRFI 59

42

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-59.html

SRFI 60: Integers as Bits

(require srfi/60) package: sTfi-11ib

Original specification: SRFI 60

43

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-60.html

SRFI 61: A more general cond clause

(require srfi/61) package: sTfi-11ib

Original specification: SRFI 61

44

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-61.html

SRFI 62: S-expression comments

Original specification: SRFI 62

This SRFI’s syntax is part of Racket’s default reader (no require is needed).

45

srfi-std/srfi-62.html

SRFI 63: Homogeneous and Heterogeneous Arrays

(require srfi/63) package: sTfi-11ib

Original specification: SRFI 63

46

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-63.html

SRFI 64: A Scheme API for test suites

(require srfi/64) package: sTfi-11ib

Original specification: SRFI 64

47

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-64.html

SRFI 66: Octet Vectors

(require srfi/66) package: sTfi-11ib

Original specification: SRFI 66

48

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-66.html

SRFI 67: Compare Procedures

(require srfi/67) package: sTfi-11ib

Original specification: SRFI 67

49

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-67/srfi-67.html

SRFI 69: Basic hash tables

(require srfi/69) package: sTfi-11ib

Original specification: SRFI 69

50

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-69.html

SRFI 71: Extended LET-syntax for multiple values

(require srfi/71) package: sTfi-11ib

Original specification: SRFI 71

51

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-71.html

SRFI 74: Octet-Addressed Binary Blocks

(require srfi/74) package: sTfi-11ib

Original specification: SRFI 74

52

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-74.html

SRFI 78: Lightweight testing

(require srfi/78) package: sTfi-11ib

Original specification: SRFI 78

53

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-78.html

SRFI 86: MU & NU simulating VALUES & CALL-WITH-
VALUES...

(require srfi/86) package: srfi-1ib

Original specification: SRFI 86

54

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-86.html

SRFI 87: => in case clauses

(require srfi/87) package: sTfi-11ib

Original specification: SRFI 87

55

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-87.html

SRFI 98: An interface to access environment variables

(require srfi/98) package: sTfi-11ib

Original specification: SRFI 98

56

https://pkgs.racket-lang.org/package/srfi-lib
https://docs.racket-lang.org/srfi-std/srfi-98.html

Index

->char-set,[I§]
.36

:char-range, [36]
:dispatched, [36]
:do,[36]
:generator-proc, 36|
:integers, 36|
:let,

:1ist,[36
:parallel,@
:port, @

:range, [36]
:real—range,@

: string,@
:until,B_zI
:vector,[36]
:while,[36]
add-duration,2]]
add-duration!,[2]]
alist-cons,
alist-copy,
alist-delete,[q]
alist-delete!,[q]
and, [36]
and-let*,[7]

any, [0]

any?-ec,[36]
append, [6]
append!,[6]
append-ec,[3§
append-map,
append-map!, [6]
append-reverse,[q
append-reverse!,[q
array,[23]
array-end,[23|
array-rank, @
array—ref,@l

array-set! ,|T_3|
array—start,@

array?,[23]

assoc,[f]

assq,

assv, [0

begin,[3

break, [f]

break!,[f]

car,[f]

car+cdr,[]
case-lambda,[19]
cddadr,[f]

cddddr,[6]

cdr, [f]

char-set,[I§]
char-set->1ist,[I§|
char—set—>string,|-1;g|
char—set—adjoin,@
char-set-adjoin! ,@
char—set—any,lEI
char-set-complement, @
char-set-complement!,[T§]
char-set-contains?,[T§|
char-set-copy, [I§]
char-set-count,[I§|
char-set-cursor,[§]
char-set-cursor-next,[I§|
char-set-delete,[I§]
char-set-delete!,[T§]

char-set-diff+intersection,[Ig
char-set-diff+intersection!,[T8|

char-set-difference,[I§|
char-set-difference!,[T§|
char-set-every,[I§]
char-set-filter,[I§|
char-set-filter!,[T§|
char-set-fold,[I§]
char-set-for-each,[I§]
char-set-hash,[I§]
char-set-intersection,[I§]
char-set-intersection!,[I§]
char-set-map, [[§]
char-set-ref,[I§

char-set-size,[I§]
char-set-unfold,[T§|
char-set-unfold!,[T§]
char-set-union,[T§|
char-set-union!,[I§|
char-set-xor,[T§]
char-set-xor!,[T§|
char-set:ascii,[I§]
char-set:blank,[T§|
char-set:digit,[I§]
char-set:empty, [[§]
char-set:full,[I§]
char-set:graphic,|[I§]
char-set:hex-digit,[I§]
char-set:iso-control,[T§|
char-set:letter,[I§|
char-set:letter+digit, @
char-set: lower—case,@
char-set:print ing,@
char-set :punctuation,@
char-set:symbol,[I§|
char-set:title-case,[I§|
char-set:upper-case, [I§]
char-set:whitespace, [I§]
char-set<=,[I§
char-set=,[I§]
char-set?,[I§]
check-substring-spec,[I7]
circular-list,[f]
circular-list?,
concatenate,[6]
concatenate!,[f]

cons, [6]

consx,

copy-time,[Z]]

count,

current-country, [27]
current-date, 21]
current-julian-day,21]
current-language,[27]
current-locale-details,

current-modified-julian-day, 2]

current-time, 21]

cut, 24
cute, 24

date->julian-day, [2]]

date->modified-julian-day, 2]

date->string,[2]]
date->time-monotonic,[21]
date->time-tai, 2]
date->time-utc, 21|
date-day, 21]
date-hour,[2]]
date-minute, [21]
date-month, 21]
date-nanosecond, 2]]
date-second,2]]
date-week-day, @
date-week-number, 21]
date-year, @
date-year-day, @
date-zone-offset,[2]]
date?,21]
declare-bundle!,[27]
default-random-source, 23
define-record-type,[I3|
define-stream,[3)
delay,[38|

delete,[6]

delete!,[d]
delete-duplicates,[o]
delete-duplicates!,
do-ec,[36]
dotted-1ist?,[f]

drop,

drop-right,[f]
drop-right!,[f]
drop-while,[f]

eager, 3§

eighth, [
end-of-char-set?,[I§]
error,[22]

every,[6]

every?-ec,[36]

f32vector,[§
f64vector,[§
fifth,
filter,[f]
filter!,[d
filter-map,

find,[6]

find-tail,[f]

first,

first-ec,[36|

fold,[6]

fold-ec,[36

fold-right,

fold3-ec,[36]

for-each,[f]

force, @

format,[26]

format,[39

fourth,[f]

generator,
get-environment-variable,[56
get-environment-variables,[56]
get-output-string,[12]
getter-with-setter, 20|

guard,

home-vicinity,

if,[36]
implementation-vicinity,
in-vicinity, 2]

iota,[6]

julian-day->date,[2]]
julian-day->time-monotonic,[Z]]
julian-day->time-tai, IZ'
julian-day->time-utc,[2]]
kmp-step, [[7]

last,[6]

last-ec,[36]

last-pair,[6]

lax date structure,[2]]
lax-date?,[2]]

lazy, 38

length,[6]

length+,[f]

let,[]

let*-values,[I6]
let-string-start+end,[I7]
let-values,[I§|
library-vicinity, 2]
list,[f
list->char-set,[I§|
list->char-set!,[T§|
list->stream,[33]
list->string,[I7]
list->vector,[37]
list-copy,[6]
list-ec,[36]
list-index,[f]
list-ref,[f]
list-tabulate,[f]
load-bundle!,27]
localized—template,
1set—adjoin,|§|
lset-diff+intersection,[f]
lset-diff+intersection!,|6]
lset-difference,[f]
lset-difference!,[f]
lset-intersection,[f]
lset-intersection!,[f]
lset-union,[f]
lset-union!,[]
1set-xor,[6]
lset-xor!,[f]

1set=,[6]

make-array, 23]
make-date, 2]
make-kmp-restart-vector,[T7]
make-list,[f]
make-parameter,[33]
make—random-source,|2_3|
make-string, [I7]
make-time, 2]
make-vector,[37]
make-vicinity, 2]
map, [6]

59

map!, [§]

map-in-order,[f]

max-ec,[36]

member, [6]

memg, [§]

memv, [6]

min-ec,[36

modified-julian-day->date,[2]]

modified-julian-day->time-
monotonic,21]

modified-julian-day->time-tai,[2]

modified-julian-day->time-utc, @

nested,[36]

ninth,

not,@

not—pair?,|§|

null-list?,

null?, (6]

open-input-string,[12]

open-output-string,

or,[36]

pair-fold,[§

pair-fold-right,[§

pair-for-each,[o]

pair?,|6l

parameterize,[33|

partition,[§

partition!,[§

pathname->vicinity,[d?2]

port->stream, 33

product-ec,[36]

program, 13|

program-vicinity,d?2]

promise?,[3§]

proper-1ist?,[6]

raise,

random-integer, 23

random-real,[23]

random—source—make—integers,@

random-source-make-reals, @

random-source-pseudo-randomize!, @

random-source-randomize! ,@

60

random-source-state-ref, @
random-source-state-ref!, @
random-source?, 23
read-with-shared-structure,[32]
rec,[29|

receive,[T4]

reduce, [6]

reduce-right,[f]

remove, [f]

remove!,[f]

reverse,[f]

reverse!,[f]
reverse-list->string,
reverse-list->vector,
reverse-vector->list,[37]
sl6vector,

s32vector,

s64vector,

sSvector,

second, [f]
set!,20]

set-time-nanosecond!,[2]]

set-time-second!,[21]

set-time-type!,[2]]

seventh, [f]

shape, 23]

share-array, 23]

sixth,[6]

span, [f]

span!, [q

split-at,[f]

split-at!,|6]

SRFLT]

SRFI 11: Syntax for receiving multiple val-
ues, [16]

SRFI 13: String Libraries, [17]

SRFI 14: Character-set Library, [I§]

SRFI 16: Syntax for procedures of variable
arity, [T9]

SRFI 17: Generalized set!, 20]

SRFI 19: Time Data Types and Procedures,
21

SRFI 1: List Library, [§]

SRFI 23: Error reporting mechanism, [22]

SRFI 25: Multi-dimensional Array Primi-
tives, 23]

SRFI 26: Notation for Specializing Parame-
ters without Currying, [24]

SRFI 27: Sources of Random Bits, 23]

SRFI 28: Basic Format Strings, 26|

SRFI 29: Localization, 27]

SRFI 2: AND-LET*: an AND with local
bindings...,[7]

SRFI 30: Nested Multi-line Comments, |7_g|

SRFI 31: A special form rec for recursive
evaluation, 29|

SRFI 34: Exception Handling for Programs,
30

SRFI 35: Conditions, 31]

SRFI 38: External Representation for Data
With Shared Structure, [32]

SRFI 39: Parameter objects, 33|

SRFI 40: A Library of Streams, [34]

SRFI 41: Streams, 33]

SRFI 42: Eager Comprehensions, 36

SRFI 43: Vector Library, 37]

SRFI 45: Primitives for Expressing Iterative
Lazy Algorithms, [38]

SRFI 48: Intermediate Format Strings, B;gl

SRFI 4: Homogeneous numeric vector
datatypes, [§]

SRFI 54: Formatting, 0]

SRFI 57: Records, @]

SRFI 59: Vicinity, [42]

SRFI 5: A compatible let form with signa-
tures and rest arguments, |§|

SRFI 60: Integers as Bits, 3]

SRFI 61: A more general cond clause, [44]

SRFI 62: S-expression comments, |Z-_3]

SRFI 63: Homogeneous and Heterogeneous
Arrays, 46|

SRFI 64: A Scheme API for test suites, 7]

SRFI 66: Octet Vectors, [4§]

SRFI 67: Compare Procedures, @l

SRFI 69: Basic hash tables, [50]

61

SRFI 6: Basic String Ports, [T2]

SRFI 71: Extended LET-syntax for multiple
values, [51]

SRFI 74: Octet-Addressed Binary Blocks,
52]

SRFI 78: Lightweight testing, [53|

SRFI 7: Feature-based program configura-
tion language, [13]

SRFI 86: MU & NU simulating VALUES &
CALL-WITH-VALUES..., 34

SRFI 87: => in case clauses, 53]

SRFI 8: RECEIVE: Binding to multiple val-
ues, [14]

SRFI 98: An interface to access environment
variables, 56]
SRFI 9: Defining Record Types, [15]
srfi/1,[6]
srfi/11,[16]
srfi/13,[17]
srfi/14,[T§]
srfi/16,[19]
srfi/17,
srfi/19,
srfi/2,
srfi/23,
srfi/25,
srfi/26,
srfi/27,
srfi/28,
srfi/29,
srfi/30,[28§
srfi/31,29
srfi/34,[0]
srfi/35,
srfi/38,[32
srfi/39,[33
srfi/4, Bl
srfi/40, @
srfi/41,[33
srfi/42,[36]
srfi/43,
srfi/45,[3§
srfi/48,[39

srfi/5,[]
srfi/54,[4Q]
srfi/57,[]]
srfi/59,[2]

srf i/6,@

srf i/SO,@I
srfi/61,[4]
srfi/63,[6]
srfi/64,[d7
srfi/66,[s|
srfi/67,[d9
srfi/69,[50]
srfi/7,[13
srfi/71,[1]
srfi/74,62
srfi/78,[53
srfi/s,[14]
srfi/86,[54]
srfi/87,[53
srfi/9,[13
srfi/98,[56]

SRFIs: Libraries, [I]
store-bundle,[27]
stream,[34]
stream,[33]
stream->list, 33
stream-append, [33]
stream-car,[34]
stream-car, 33
stream-cdr,[34]
stream-cdr, 33
stream-concat,[33)
stream-cons, [34]
stream-cons, 37
stream-constant, 37
stream-delay, [34]
stream-drop, 33|
stream-drop-while, 33
stream-filter,[34]
stream-filter,[33]
stream-fold,[33
stream-for-each,[34]

stream-for-each, 33
stream-from, 33
stream-iterate,[33)
stream-lambda, 33
stream-length, 35
stream-let,[3))
stream-map, [34]
stream-map, [33]
stream-match, 33|
stream-null,[34]
stream-null,[33
stream-null?,[34
stream-null?,[33]
stream-of,[33]
stream—pair?,@
stream—range,@
stream-ref,[33]
stream-reverse, |§|
strea.m—scan,@
stream-take, 33|
stream-take-while,[33]
stream-unfold, 33
stream-unfoldn,34]
stream-zip,[33]
stream?,[34]
stream?,[33]

string, [I7]
string->char-set,[T§|
string->char-set!,[T§|
string->date, 2]
string->list,[7]
string-any,[T7]
string-append, [I7]
string-append-ec,[36]
string-append/shared,
string-ci<,[17]
string-ci<=,[[7]
string-ci<>,
string-ci=,[17]
string-ci>,
string-ci>=,
string-compare,

string-compare-ci,[T7]
string-concatenate, [I7]

string-concatenate-reverse,[I7]
string-concatenate-reverse/shared,

07

string- concatenate/shared,

string-contains,
string-contains-ci,
string-copy,[I7]
string-copy!,[17]
string—count,lm
string—delete,lﬂl
string-downcase, IE
string-downcase!, IE
string—drop,lﬂl
string—drop—right,lT_7|
string-ec,[36
string-every, [I7]
string-£ill!,[I7]
string-filter,[[7]
string-fold,[I7]
string-fold-right,[T7]
string-for-each,[T7]
string-for-each-index,[I7]
string-hash,[I7]
string-hash-ci,[I7]
string-index, [I7]
string-index-right,[I7]
string-join,[T7]

string-kmp-partial-search,[I7]

string-length,[I7]
string-map,[T7]
string-map!,[T7]
string-null?,[17]
string-pad,
string-pad-right,[I7]

string-parse-final-start+end,

string-parse-start+end,
string-prefix-ci?, |L7|
string-prefix-length, IE
string-prefix-length-ci, EI
string-pref ix?,lﬂl

string-ref,[T7]
string-replace,[I7]
string-reverse,[I7]
string-reverse!,[T7]
string-set!,[[7]
string-skip,[I7]
string-skip-right,[I7]
string-suffix-ci?,[7]
string-suffix-length,[T7]
string-suffix-length-ci,
string-suffix?,
string-tabulate,[I7]
string-take,[I7]
string-take-right,[I7]
string—titlecase,lﬂl
string-titlecase! ,El
string—tokenize,lﬂl
string—trim,lﬂl
string—trim—both,lﬂl
string—trim—right,l-f_7|
string-unfold,[I7]
string-unfold-right,[T7]
string-upcase,[[7]
string-upcase!,[I7]
string-xcopy!,[I7]
string<,[I7]
string<=,[T7]
string<>,[T7]
string=,[I7]

string>,[T7]
string>=,[T7]
string?,[T7]
sub-vicinity,d2]
substring-spec-ok?,[I7]
substring/shared,[T7]
subtract-duration,2]]
subtract-duration!,[2]]
sum-ec,[36]

take,[d]

take!,[f]

take-right,[6]
take-while,[6]

take-while!,[q]
tenth,
third,
time-difference,2]]
time-difference!,[2]]
time-duration,21]
time-monotonic, [21]
time-monotonic->date,[2]]
time-monotonic->julian-day, 2]
time-monotonic->modified-julian-
day,lzfl
time-monotonic->time-tai, |Zf|
time-monotonic->time-tai!,[2]]
time-monotonic->time-utc, @
time-monotonic->time-utc!,21]
time-nanosecond, @
time-process,[2]
time-resolution,[2]]
time-second, 2]
time-tai,[2]]
time-tai->date,
time-tai->julian-day, 2]
time-tai->modified-julian-day,2]]
time-tai->time-monotonic, 2]
time-tai->time-monotonic!,[2]]
time-tai->time-utc, 2]
time-tai->time-utc!,
time-thread,2]]
time-type, 2]]
time-utc,2]]
time-utc->date,[21]
time-utc->julian-day, 2]
time-utc->modified-julian-day,[2]]
time-utc->time-monotonic,21]
time-utc->time-monotonic!,[2]]
time-utc->time-tai,[21]
time-utc->time-tail,
time<=7,21]
time<?,[21]
time=7,[21]
time>=7,[21]
time>?,[21]

time?,21]

ul6vector,

u32vector,

ubdvector,

u8vector,[§]
ucs-range->char-set,[I§|
ucs-range->char-set!,[[§]
unfold,[f]
unfold-right,[6]
unzipi,[§

unzip2,[§

unzip3,[§

unzip4,[§

unzip5,|§|
user—vicinity,
Vector,l?_7|
vector->list,[37]
vector-any, |§_7|
vector-append, IZI
vector-binary-search, |§_7|
vector-concatenate, [37]

vector-copy,[37]
vector-copy!,[37]
vector-count,[37]
vector-ec, 36
vector-empty?,[37]
vector-every,[37]
vector-fill!,[37]
vector-fold,[37]
vector-fold-right,[37]
vector-for-each,[37]
vector-index,[37]
vector-index-right,[37]
vector-length,[37]
vector-map, [37]
vector-map!,[37]
vector-of-length-ec,[3§
vector-ref,[37]
vector-reverse!,[37]
vector-reverse-copy,[37]
vector-reverse-copy!,[37]
vector-set!,[37]

vector-skip,[37]
vector-skip-right,[37]
vector-swap!,[37]
vector-unfold,[37]
vector-unfold-right,[37]
vector=,[37]

vector?,[37]
vicinity:suffix?,[@2]
with-exception-handler, 30|
write-with-shared-structure,
xcons,

xsubstring,

zip,[f

65

	SRFI 1: List Library
	SRFI 2: AND-LET*: an AND with local bindings...
	SRFI 4: Homogeneous numeric vector datatypes
	SRFI 5: A compatible let form with signatures and rest arguments
	SRFI 6: Basic String Ports
	SRFI 7: Feature-based program configuration language
	SRFI 8: RECEIVE: Binding to multiple values
	SRFI 9: Defining Record Types
	SRFI 11: Syntax for receiving multiple values
	SRFI 13: String Libraries
	SRFI 14: Character-set Library
	SRFI 16: Syntax for procedures of variable arity
	SRFI 17: Generalized set!
	SRFI 19: Time Data Types and Procedures
	SRFI 23: Error reporting mechanism
	SRFI 25: Multi-dimensional Array Primitives
	SRFI 26: Notation for Specializing Parameters without Currying
	SRFI 27: Sources of Random Bits
	SRFI 28: Basic Format Strings
	SRFI 29: Localization
	SRFI 30: Nested Multi-line Comments
	SRFI 31: A special form rec for recursive evaluation
	SRFI 34: Exception Handling for Programs
	SRFI 35: Conditions
	SRFI 38: External Representation for Data With Shared Structure
	SRFI 39: Parameter objects
	SRFI 40: A Library of Streams
	SRFI 41: Streams
	SRFI 42: Eager Comprehensions
	SRFI 43: Vector Library
	SRFI 45: Primitives for Expressing Iterative Lazy Algorithms
	SRFI 48: Intermediate Format Strings
	SRFI 54: Formatting
	SRFI 57: Records
	SRFI 59: Vicinity
	SRFI 60: Integers as Bits
	SRFI 61: A more general cond clause
	SRFI 62: S-expression comments
	SRFI 63: Homogeneous and Heterogeneous Arrays
	SRFI 64: A Scheme API for test suites
	SRFI 66: Octet Vectors
	SRFI 67: Compare Procedures
	SRFI 69: Basic hash tables
	SRFI 71: Extended LET-syntax for multiple values
	SRFI 74: Octet-Addressed Binary Blocks
	SRFI 78: Lightweight testing
	SRFI 86: MU & NU simulating VALUES & CALL-WITH-VALUES...
	SRFI 87: => in case clauses
	SRFI 98: An interface to access environment variables
	Index
	Index

